WO2023138367A1 - 导电中框及其制备方法和显示装置 - Google Patents

导电中框及其制备方法和显示装置 Download PDF

Info

Publication number
WO2023138367A1
WO2023138367A1 PCT/CN2023/070346 CN2023070346W WO2023138367A1 WO 2023138367 A1 WO2023138367 A1 WO 2023138367A1 CN 2023070346 W CN2023070346 W CN 2023070346W WO 2023138367 A1 WO2023138367 A1 WO 2023138367A1
Authority
WO
WIPO (PCT)
Prior art keywords
middle frame
conductive
conductive middle
display device
mass
Prior art date
Application number
PCT/CN2023/070346
Other languages
English (en)
French (fr)
Inventor
肖建军
刘沙
郭安民
于会会
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023138367A1 publication Critical patent/WO2023138367A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/18Construction of rack or frame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present application relates to the field of display technology, in particular to a conductive middle frame, a manufacturing method thereof, and a display device.
  • plastic materials are used as the middle frame, and carbon fibers are added to the plastic middle frame to give it conductivity and reinforcement.
  • carbon fibers are added to the plastic middle frame to give it conductivity and reinforcement.
  • only adding carbon fibers to the plastic middle frame will easily cause a large number of floating fibers in the final middle frame product, which will affect its appearance and increase its brittleness.
  • the middle frame has good mechanical properties and a beautiful appearance.
  • the embodiment of the present application provides a low-cost conductive middle frame for a display device.
  • the conductive middle frame can have good electrical conductivity, toughness and excellent appearance.
  • the first aspect of the embodiment of the present application provides a conductive middle frame, which includes a plastic matrix and a conductive material distributed in the plastic matrix, the conductive material includes carbon fibers and carbon nanotubes, the mass of the carbon fibers accounts for 2%-12% of the mass of the plastic matrix, and the mass of the carbon nanotubes accounts for 2%-8% of the mass of the plastic matrix.
  • the conductive middle frame provided in the embodiment of the present application can ensure that the material of the conductive middle frame has high conductivity and strong electromagnetic shielding performance by simultaneously introducing appropriate proportions of carbon fibers and carbon nanotubes into the plastic matrix, so that the display device can meet high-standard ESD and RE performance requirements. More importantly, the introduction of two conductive materials, carbon fiber and carbon nanotubes, also solves the problem of a large number of floating fibers in the middle frame caused by the introduction of carbon fiber alone and the problem of excessive brittleness of the middle frame; in addition, the cost of the middle frame is lower than that of the aluminum alloy middle frame, and it does not need complex pre-processing such as laser engraving before it is connected to the metal backplane.
  • the mass proportion of the carbon nanotubes in the conductive middle frame is less than or equal to the mass proportion of the carbon fibers in the conductive middle frame. At this time, the amount of carbon nanotubes, which are more expensive than carbon fibers, is used in a lower amount, which is conducive to further reducing the cost of the conductive middle frame.
  • the mass of the carbon nanotubes is 0.4-1 times that of the carbon fibers.
  • the addition of carbon nanotubes in this proportion is more conducive to reducing the gap and interface strength between plastic materials and carbon fibers, improving the electron transfer between carbon fibers, and endowing the conductive middle frame with better mechanical properties and excellent electrical conductivity.
  • the length of the carbon fiber is 3-40mm; the diameter of the carbon nanotube is 2-30nm.
  • the length of the carbon fiber is within this range, which can ensure that the conductive middle frame has both excellent mechanical properties and electrical conductivity, and at the same time has relatively excellent injection molding performance.
  • the diameter of the carbon nanotube is within the above range, its preparation is easier and its toughness is better.
  • the conductive material further includes one or more of carbon black and graphene.
  • the dimensions of carbon black and graphene are different from those of the above-mentioned carbon nanotubes and carbon fibers. Their introduction is more conducive to the synergistic effect of these conductive materials and endows the conductive middle frame with better conductivity.
  • the total mass of the conductive material does not exceed 25% of the mass of the plastic matrix. As a result, better injection moldability and toughness of the conductive middle frame can be ensured.
  • the material of the plastic matrix includes one or more of polyamide resin, polycarbonate, polyphenylene sulfide, polyethylene terephthalate, acrylonitrile-butadiene-styrene copolymer, butadiene-styrene copolymer, styrene-butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, polysulfone resin, polyketone resin or modified products thereof.
  • the notched Izod impact strength of the conductive middle frame is greater than or equal to 6 kJ/m 2 .
  • the surface resistance of the conductive middle frame is less than or equal to 8 ⁇ 10 7 ⁇ .
  • the second aspect of the embodiment of the present application provides a display device, which includes a display screen, the conductive middle frame described in the first aspect of the embodiment of the present application, and a metal backplane, wherein the conductive middle frame is fixedly connected to the metal backplane.
  • the display device using the above-mentioned conductive middle frame has low risk of static electricity loss, excellent mechanical properties, high quality reliability, long service life, and obvious domestic and foreign market competitiveness.
  • the third aspect of the embodiment of the present application provides a method for preparing a conductive middle frame, including the following steps:
  • the plastic particles used to form the plastic matrix with conductive materials, and granulate to obtain conductive composite particles; wherein the conductive materials include carbon fibers and carbon nanotubes, the carbon fibers account for 2%-12% of the plastic matrix mass, and the carbon nanotubes account for 2%-8% of the plastic matrix mass;
  • the conductive composite particles are injection-molded to obtain a conductive middle frame.
  • the above-mentioned preparation method of the conductive middle frame has simple process, high production efficiency and low cost, and is suitable for industrial batch preparation.
  • the properties of the obtained conductive middle frame are excellent.
  • FIG. 1 is a front view of a display device provided by an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a display device with a conductive middle frame provided by an embodiment of the present application.
  • FIG. 3 is an exploded view of the device shown in FIG. 2 .
  • FIG. 4 is a schematic structural diagram of a U-shaped cross-section conductive middle frame provided by some embodiments of the present application.
  • FIG. 5 is another schematic structural view of a display device with a U-shaped conductive middle frame in FIG. 4 provided by an embodiment of the present application.
  • FIG. 1 and FIG. 2 are respectively a front view and a schematic cross-sectional view of a display device provided by an embodiment of the present application.
  • the display device 100 includes a display screen 1 , a conductive middle frame 2 and a metal backplane 3 , and the conductive middle frame 2 is fixedly connected to the metal backplane 3 .
  • the display screen 1 and the metal backplane 3 are respectively located on opposite sides of the conductive middle frame 2 .
  • the conductive middle frame 2 and the metal back plate 3 are sequentially located on the same side of the display screen 1 (which may be referred to as the “back side”) and can be used to support the display screen 1 .
  • the conductive middle frame 2 surrounds the periphery of the display screen 1 , or in other words, it surrounds the outer surface of the display screen 1 .
  • the fixed connection method between the conductive middle frame 2 and the metal backplane 3 may specifically be: the two are interlocked by screws 7, specifically, holes are opened at the joints of the two, and the screws 7 can pass through these holes, and the conductive middle frame 2 and the metal backplane 3 can be connected by tightening the screws 7.
  • the display screen 1 is also fixedly connected to the conductive middle frame 2 , specifically through the screen sealing adhesive 5 arranged on the outer periphery of the back of the display screen 1 .
  • the display screen 1 and the conductive middle frame 2 may also only be in contact, but not connected, for example, when the display device 100 also includes a front frame.
  • the middle frame provided by the embodiment of the present application is conductive (abbreviated as "conductive middle frame"), and it is fixedly connected to the metal backplane 3.
  • the conductive middle frame 2 provided in the embodiment of the present application includes a plastic matrix and conductive materials distributed in the plastic matrix, wherein the conductive material includes carbon fibers and carbon nanotubes, and the mass of carbon fibers accounts for 2%-12% of the mass of the plastic matrix, and the mass of carbon nanotubes accounts for 2%-8% of the mass of the plastic matrix.
  • the conductive middle frame 2 introduces an appropriate proportion of carbon fibers and carbon nanotubes into the plastic matrix constituting it to ensure high conductivity of the conductive middle frame 2. If static electricity enters from the above-mentioned gap, it can be conducted through the conductive middle frame 2 to the metal backplane 3 connected to the conductive middle frame 2, and then released to the outside, preventing the display screen 1 from being damaged by static electricity, so that the display device 100 meets high-standard ESD requirements.
  • the above-mentioned conductive middle frame 2 with good conductivity has strong electromagnetic shielding performance and strong electromagnetic interference prevention capability. The electromagnetic interference generated during use of the display device 100 including the conductive middle frame 2 is not likely to affect the use of other peripheral electronic devices, and meets high-standard RE performance requirements.
  • the cost of the conductive middle frame 2 provided by the embodiment of the present application is lower, and before it is connected with the metal backplane 3, there is no need for complex pre-treatments such as laser engraving to remove the oxide layer.
  • manual paste of conductive auxiliary materials is difficult and easily causes unevenness of the display screen. The introduction will increase the cost of the display device, reduce manufacturing efficiency, increase the risk of overall light leakage, and increase the unnecessary volume of the display device.
  • the conductive middle frame 2 of the present application is a plastic middle frame mixed with conductive materials, which will not increase the unnecessary volume of the display device, increase the overall risk of light leakage, and the like.
  • carbon fiber is added to the plastic matrix alone, although the carbon fiber with good conductivity can increase the strength of the middle frame and make it have a certain degree of electrical conductivity, it will also cause a large number of floating fibers on the surface of the middle frame, which will affect the appearance of the middle frame and greatly increase its brittleness, thereby reducing the aesthetics and drop resistance of the display device.
  • carbon nanotubes are added on the basis of adding carbon fibers to the plastic matrix.
  • Carbon nanotubes not only have excellent electrical conductivity, but also have good toughness (higher tensile strength and bending strength).
  • the introduction of carbon nanotubes can greatly reduce the phenomenon of floating fibers caused by adding carbon fibers, and can make the electrical conductivity of the middle frame better and the toughness can be improved; and the applicant of the present application has found through a series of studies that when the mass ratio of carbon fibers and carbon nanotubes to the plastic matrix is controlled at 2%-12% and 2%- In the range of 8%, the above-mentioned conductive middle frame is not easy to appear floating fibers, and can take into account excellent electrical conductivity and good toughness and other mechanical properties.
  • the raw material for forming the conductive middle frame-composite particles composed of conductive materials and plastic materials has the same shrinkage rate as ordinary plastic particles, and then the above-mentioned conductive middle frame can be molded by using a common plastic middle frame mold without additional molds.
  • the above-mentioned conductive middle frame provided by the embodiment of the present application has excellent electrical conductivity, good appearance, high mechanical strength, good toughness and low cost, so that a display device using the conductive middle frame can meet high-standard ESD and RE performance requirements, take into account low cost and reliability, and have outstanding product competitiveness.
  • the constituent material of the conductive middle frame can be obtained by melting and granulating the plastic base material and the above-mentioned conductive material.
  • the material of the plastic matrix may include one or more of polyamide (PA), polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (ABS) or modified products thereof, but not limited thereto.
  • the plastic matrix material includes PA and ABS.
  • the plastic matrix containing PA+ABS has better mechanical strength and toughness.
  • the plastic base material can be a modified (such as modified by a toughening agent) or an unmodified plastic material. Modification of the plastic base material can improve its toughness, which in turn can improve the toughness of the overall conductive middle frame without excessive brittleness.
  • At least some of the carbon fibers and carbon nanotubes are connected and entangled with each other, and they can form an interpenetrating conductive network and provide multiple conductive paths. This can endow the conductive middle frame with good conductivity.
  • the mass proportion of the carbon nanotubes is less than or equal to the mass proportion of the carbon fibers.
  • the cost of carbon nanotubes is generally higher than that of carbon fibers. Controlling the mass ratio of carbon nanotubes to be lower than carbon fibers can ensure that the conductive middle frame takes into account the above-mentioned good conductivity, toughness and appearance, and its cost can be further reduced.
  • the mass of the carbon nanotubes is 0.4-1 times the mass of the carbon fibers.
  • Carbon nanotubes have small size, high conductivity, and high toughness. The addition of this amount of carbon nanotubes is more conducive to reducing the gap between the plastic material and carbon fiber, improving the strength of the plastic material-carbon fiber interface, and improving the mechanical transfer and electron transfer between carbon fiber materials, so that the above-mentioned conductive middle frame has good mechanical properties such as impact strength, flexural strength, and flexural modulus, as well as excellent electrical conductivity.
  • the content of carbon nanotubes and carbon fibers within the above range is also more conducive to reducing the phenomenon of floating fibers in the middle frame.
  • the length of the carbon fiber may be 3mm-40mm.
  • the length of the carbon fiber is in an appropriate range, which can ensure that the conductive middle frame can take into account both excellent mechanical properties and electrical conductivity, and can avoid affecting the injection molding performance of the middle frame material due to the length being too long.
  • the length of the carbon fibers is too long, it will affect the appearance of the conductive middle frame, such as floating fibers, and a certain degree of entanglement may also occur between the carbon fibers.
  • the conductive performance of the conductive middle frame is better, it will affect their dispersion during the injection molding process, affect the injection molding effect, and reduce the mechanical properties of the resulting conductive middle frame.
  • the length of the carbon fiber is 8mm-30mm, and further may be 10mm-25mm.
  • the diameter of the carbon fiber is generally in the order of microns, for example, it may be 1-15 ⁇ m.
  • the diameter of the carbon nanotubes may be 2-30 nm.
  • Carbon nanotubes with a suitable diameter have better toughness and less rigidity, which can better improve the toughness of the conductive middle frame, and are easier to prepare.
  • the diameter of a carbon nanotube specifically refers to its inner diameter.
  • the carbon nanotubes have a diameter of 10 nm-20 nm.
  • the conductive material may also include one or more of carbon black and graphene.
  • Carbon black is three-dimensional granular, and graphene can be two-dimensional layered. They can be combined with one-dimensional carbon fibers and carbon nanotubes.
  • the formed conductive network is denser, which can endow the conductive middle frame 2 with better conductive properties.
  • the mass of carbon black and/or graphene accounts for 1%-5% of the mass of the plastic matrix. As a result, the conductive middle frame 2 can take into account both excellent conductive performance and relatively low injection molding difficulty.
  • the total mass of the above-mentioned conductive materials does not exceed 25% of the mass of the plastic matrix, for example, it is 5%-25%. In this way, too much conductive material will increase the injection molding difficulty and increase the brittleness of the above-mentioned conductive middle frame, and avoid the shrinkage rate of the composite particles composed of conductive materials and plastic materials from being too far different from ordinary plastic particles.
  • the mass content of carbon fiber and carbon nanotube compared with the plastic matrix is controlled in the range of 2%-12% and 2%-8%, respectively, so that the above-mentioned conductive middle frame 2 has good conductivity, high impact strength, bending strength, bending strength, etc., and can better balance toughness and rigidity.
  • the notched Izod impact strength of the conductive middle frame 2 is greater than or equal to 6 kJ/m 2 .
  • the impact strength is the ratio of the energy absorbed during the impact failure process of the sample to the original cross-sectional area.
  • the notched impact strength of the cantilever beam reflects the impact resistance of the conductive middle frame material, which is not easy to break and has good toughness.
  • the notched Izod impact strength may be 6-8 kJ/m 2 .
  • the bending strength of the conductive middle frame 2 is greater than or equal to 90 MPa.
  • Bending strength can characterize the anti-bending energy of a material. It refers to the maximum stress that a material can withstand when it breaks under a bending load or reaches a specified bending moment. This stress is the maximum normal stress during bending. The higher bending strength reflects that the material of the conductive middle frame 2 has better toughness, so that the conductive middle frame has a flexible shape design.
  • the flexural modulus of the conductive middle frame 2 is greater than or equal to 4000 MPa.
  • Flexural modulus is the ratio of bending stress to deformation caused by bending. Flexural modulus can be used to characterize the stiffness of a material. A higher flexural modulus means that the conductive middle frame material is more rigid and less likely to deform. In some embodiments, the flexural modulus is 4000-5000 MPa.
  • the surface resistance of the conductive middle frame 2 is less than or equal to 8 ⁇ 10 7 ⁇ .
  • Appropriate surface resistance helps the conductive middle frame 2 to have a certain electromagnetic shielding property, so that the electromagnetic interference generated by the display device 100 in use is not easy to affect the use of other peripheral electronic devices, which meets the high-standard RE performance requirements, and at the same time makes the toughness of the middle frame not too low.
  • the sheet resistance is in the range of 2 ⁇ 10 5 ⁇ to 8 ⁇ 10 7 ⁇ . At this time, it is more favorable for the display device 100 to have both high RE performance and the conductive middle frame 2 to have good toughness.
  • the conductive middle frame provided above in the embodiment of the present application can not only have excellent electrical conductivity, but also have many advantages such as high mechanical strength, high toughness, good appearance, and low cost, so that the display device can take into account reliability, safety, and low cost, etc., and enhance the competitiveness of domestic and foreign markets.
  • the embodiment of the present application also provides a preparation method of the above-mentioned conductive middle frame, including:
  • the plastic particles used are thermoplastic resin materials, which can be transformed into a product with a certain shape through a mature injection molding process, which has a large degree of freedom in structural design, convenient processing, and low cost.
  • the material of the plastic particles includes one or more of polyamide resin (PA), polycarbonate (PC), PPS (polyphenylene sulfide), polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene copolymer (ABS), butadiene-styrene copolymer (BS), styrene-butadiene-styrene copolymer (SBS), butadiene-acrylonitrile copolymer, polysulfone resin, polyketone resin or modified products thereof, but not limited thereto.
  • PA polyamide resin
  • PC polycarbonate
  • PPS polyphenylene sulfide
  • PET polyethylene terephthalate
  • ABS acrylonitrile-butadiene-sty
  • the toughness modification of some of the above-mentioned plastic particles can be achieved by a toughening agent, and an exemplary toughening agent can be a maleic anhydride-grafted elastomer (such as maleic anhydride-grafted polypropylene, polyurethane, styrene, polyolefin, etc.).
  • a toughening agent can be a maleic anhydride-grafted elastomer (such as maleic anhydride-grafted polypropylene, polyurethane, styrene, polyolefin, etc.).
  • step S01 the plastic particles, carbon fibers and carbon nanotubes used can be weighed with a high-precision weighing scale according to the above ratio requirements, and the weighed raw materials can be mixed in a high-speed mixer first.
  • the high-precision measuring scale can ensure that the dosage of each raw material is more in line with the above-mentioned ratio requirements of the application, and the high-speed mixer can ensure that the solid raw materials are firstly mixed and contacted, which is conducive to further fusion in the subsequent granulator.
  • controlling the mass ratio of carbon fibers and carbon nanotubes within the above range can avoid floating fibers in the conductive middle frame formed in step S02 on the premise of ensuring that the two can be fully mixed and dispersed in the plastic particles.
  • the granulation of the mixture of plastic particles and conductive materials can be carried out in an extruder.
  • the above-mentioned mixture is heated and melted in the extruder.
  • the screw (such as a twin-screw) of the extruder rotates at a certain speed to drive the molten mixture to be continuously extruded and mixed.
  • the screw of the granulator extrudes the gradually cooled paste feed through the die to form a strand, and cut the strand into granules with the help of a rotating blade to obtain conductive composite particles that can be directly used for injection molding.
  • the rotation speed of the screw of the extruder may be 500-700 rpm.
  • the process of "injection molding” specifically includes: loading the injection mold into the injection molding machine, loading the conductive composite particles into the hopper of the injection molding machine, transporting them to the heating zone of the injection molding machine, heating and melting them, injecting them into the cavity of the injection mold under a certain pressure, cooling and solidifying, and demoulding to obtain a formed conductive middle frame.
  • the conductive composite particles can be dried in the hopper, and the drying temperature can be 110-120° C. At this time, the conductive composite particles are not melted.
  • the specific parameters of injection molding can be determined according to the material of the plastic matrix. Generally, the injection port temperature of the injection molding machine is 220°C-260°C, the pressure is 40MPa-110MPa; the mold temperature is 80°C-140°C.
  • the method for preparing the above-mentioned conductive middle frame provided in the embodiment of the present application has simple process, low cost and high production efficiency, and is suitable for industrial batch production.
  • the cost of the obtained conductive middle frame is low, the mechanical performance is excellent, the electrical conductivity is excellent, and the appearance is good, and the floating fiber phenomenon is not easy to occur.
  • An embodiment of the present application further provides a display device, which includes a display screen, the conductive middle frame described in the embodiment of the present application, and a metal backplane, and the conductive middle frame is fixedly connected to the metal backplane.
  • a display device which includes a display screen, the conductive middle frame described in the embodiment of the present application, and a metal backplane, and the conductive middle frame is fixedly connected to the metal backplane.
  • the structural relationship of the conductive middle frame, the display screen, and the conductive middle frame can be as described above in this application.
  • the above-mentioned display device 100 further includes a backlight assembly 4 installed on the metal backplane 3 .
  • the metal backplane 3 can be used to carry the backlight assembly 4, and the backlight assembly 4 is mainly used to provide light source for the display screen 1, so that the display screen 1 displays images.
  • the backlight assembly 4 may include a backlight and at least one optical film such as a reflection sheet, a diffusion sheet, and a prism sheet.
  • the conductive middle frame 2 has a first protruding portion 21 and a second protruding portion 22 , wherein the first protruding portion 21 is located between the display screen 1 and the metal back plate 3 , and the metal back plate 3 is located between the first protruding portion 21 and the second protruding portion 22 .
  • the first protruding portion 21 and the second protruding portion 22 in FIG. 2 extend from the main side wall (parallel to the direction from the display screen 1 to the backlight assembly 4), and may be parallel to each other, that is, the first protruding portion 21 and the second protruding portion 22 are perpendicular to the main side wall.
  • the conductive middle frame 2 with two protruding parts can ensure effective contact with the metal backplane 3 , and indirectly connect the display screen to the metal backplane 3 through the conductive middle frame 2 .
  • the second protruding portion 22 of the conductive middle frame 2 and the metal backplane 3 are locked by screws.
  • the longitudinal cross-sectional structure of the conductive middle frame 2 with two protruding parts can be F-shaped as shown in FIG. 2, which is easier to install and position, and has a closer contact with the display screen 1 and the metal back plate 3, so that the display device has a better anti-light leakage effect, and can avoid using the front frame to assist in fixing the display screen 1, which can reduce the volume of the overall display device.
  • the cross-section of the conductive middle frame 2 with two protrusions can also be U-shaped (as shown in FIG. 4 ), ⁇ -shaped, ⁇ -shaped, etc.
  • the above-mentioned first protruding portion 21 has an outer surface and an inner surface oppositely disposed, and the outer surface is close to the display screen 1 , and a sealant 5 is provided between the outer surface and the display screen 1 .
  • the screen sealant 5 is used to fix the conductive middle frame 2 and the display screen 1 .
  • the inner surface is pasted with foam 6 so that the foam 6 is sandwiched between the first protruding portion 21 and the metal back plate 3 (specifically, the backlight assembly 4 thereon). In this way, the effect of the backlight assembly 4 against external shocks can be improved, so as not to be broken or the like.
  • the display device mentioned above in the embodiment of the present application can be assembled by the following method: install the corresponding backlight assembly 4 on the metal backplane 3, paste the foam 6 on the inner surface of the first protrusion 21 of the above-mentioned conductive middle frame 2, buckle it on the metal backplane 3, paste the screen sealant 5 on the outer surface of the first protrusion 21 of the conductive middle frame 2, tear off the release paper of the screen sealant on the conductive middle frame 2, and attach the display screen 1 on the Apply a certain pressure to the screen sealing adhesive 5 of the conductive middle frame 2, so that the display screen 1 and the conductive middle frame 2 are pressed together; the second protrusion 22 of the conductive middle frame 2 is locked with the metal back plate 3 by screws 7, so that the conductive middle frame 2 is tightly fastened to the metal back plate 3, and a current conduction path is formed between the two, and a display device 100 as shown in FIG. 2 is obtained.
  • the structure of the display device formed by it can be as shown in FIG. 2 , except that the F-shaped middle frame is replaced with a U-shaped middle frame, and no additional schematic diagram is provided here.
  • the structural diagram of a display device with a U-shaped conductive middle frame may also be as shown in FIG. 5 .
  • the display device includes a display screen 1 , a conductive middle frame 2 , a metal backplane 3 , a backlight assembly 4 , and a bracket 8 .
  • the conductive middle frame 2 has a first protruding portion 21 and a second protruding portion 22, the display screen 1, bracket 8, backlight assembly 4, and metal back plate 3 are all located in the U-shaped accommodation space of the conductive middle frame 2, and they are all located between the first protruding portion 21 and the second protruding portion 22.
  • the above-mentioned conductive middle frame 2 may also be T-shaped with a protruding portion, or other irregular shapes.
  • the protrusion extends toward a first direction (perpendicular to the direction from the display screen 1 to the backlight assembly 4).
  • the display screen 1 and the metal back plate 3 can be located on both sides of the protruding part of the T-shaped middle frame.
  • the shape of the conductive middle frame 2 can be various, and its cross-sectional shape can be selected according to actual needs.
  • the display device provided in the embodiment of the present application adopts the aforementioned conductive middle frame of the present application.
  • the display device has high quality reliability, good safety, long service life, and low cost. Its ESD and RE performance can meet the high-standard overseas market needs, and the market competitiveness of the display device is obvious.
  • the margin of the quasi-peak value (abbreviated as QP) of the radiation emission intensity of the display device is greater than or equal to 4db.
  • QP quasi-peak value
  • This parameter is obtained by placing the display device on an 80cm table in the RE test environment and rotating it 360°. At a distance of 3m from the display device, the receiving antenna moves in a height range of 1-4m, and tests the radiation intensity emitted by the display device at different heights. After analysis and calculation, the above QP margin parameters are obtained.
  • the above QP margin parameter is a relative indicator rather than an absolute indicator.
  • the margin parameter is large, it means that the electromagnetic field generated by the display device during use is not likely to affect the use of other surrounding electronic equipment, that is, the electromagnetic radiation interference is small, and the RE performance requirement can be met.
  • the above-mentioned display device may specifically be an ordinary TV set, a smart screen, a DVD player, a video recorder, a camcorder, a record player, a virtual reality (VR) terminal device, a desktop computer, a tablet computer, a home/office device, a mobile phone, and other wearable or mobile electronic devices.
  • the display screen 1 may be a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diodes, OLED) display, a light-emitting diode (light-emitting diode, LED) display, or other types of displayable devices, including but not limited to notch screens, water drop screens, full screens, and curved screens.
  • a conductive middle frame the preparation method of which comprises:
  • plastic particles which contain PC, and use high-precision measuring scales to weigh the plastic particles and conductive materials-carbon fibers and carbon nanotubes according to the following ratios, and mix them in a high-mixer to obtain a mixed material; wherein, the plastic particles are 100 parts by weight, the carbon fibers are 6 parts by weight, and the carbon nanotubes are 4 parts by weight;
  • a display device the installation process of which can be seen in Fig. 3, specifically includes the following steps: install a backlight assembly 4 on a metal backplane 3, paste foam 6 on the inner surface of the first protrusion 21 of the conductive middle frame 2 in embodiment 1, fasten it on the metal backplane 3, stick a screen sealant 5 on the outer surface of the first protrusion 21 of the conductive middle frame 2, tear off the release paper of the screen sealant on the conductive middle frame 2, attach the display screen 1 to the screen sealer 5 of the conductive middle frame 2, and apply With a certain pressure, the display screen 1 and the conductive middle frame 2 are pressed together; the second protrusion 22 of the conductive middle frame 2 is locked with the metal back plate 3 by screws 7, so that the conductive middle frame 2 is tightly fastened to the metal back plate 3, and a current conduction path is formed between the two, and the display device 100 as shown in FIGS. 1 and 2 is obtained.
  • a display device the structure of which is the same as that of Embodiment 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Embodiment 1 is that: when preparing conductive composite particles, 100 parts by weight of plastic particles, 2 parts by weight of carbon fibers, and 2 parts by weight of carbon nanotubes.
  • a display device the structure of which is the same as that of Embodiment 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Embodiment 1 is that: when preparing conductive composite particles, 100 parts by weight of plastic particles, 12 parts by weight of carbon fibers, and 8 parts by weight of carbon nanotubes.
  • a display device the structure of which is the same as that of Embodiment 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Embodiment 1 is that: when preparing conductive composite particles, 100 parts by weight of plastic particles, 8 parts by weight of carbon fibers, and 2 parts by weight of carbon nanotubes.
  • a display device the structure of which is the same as that of Embodiment 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Embodiment 1 is that: when preparing conductive composite particles, 100 parts by weight of plastic particles, 4 parts by weight of carbon fibers, and 6 parts by weight of carbon nanotubes.
  • a display device the structure of which is the same as that of Example 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Example 1 is that the length of the carbon fiber used is about 40-45 mm when preparing conductive composite particles.
  • a display device the structure of which is the same as that of Embodiment 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Embodiment 1 is that: when preparing conductive composite particles, the added conductive material also includes carbon black and graphene, wherein, based on 100 parts by weight of plastic particles, carbon black is 2 parts by weight, and graphene is 1 part by weight.
  • a display device the structure of which is the same as that of Example 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Example 1 is that when preparing conductive composite particles, based on 100 parts by weight of plastic particles, carbon black is 2 parts by weight.
  • a display device the structure of which is the same as that of Example 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Example 1 is that when preparing conductive composite particles, the plastic particles used are PC+ABS.
  • a display device the structure of which is the same as that of Example 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Example 1 is that: when preparing conductive composite particles, the plastic particles used are PA9T (polyamide 9T).
  • a display device the structure of which is the same as that of Example 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Example 1 is that when preparing the conductive composite particles forming the conductive middle frame, the added conductive material is only carbon fiber.
  • a display device the structure of which is the same as that of Embodiment 1.
  • the difference between the conductive middle frame contained in the display device and the conductive middle frame of Embodiment 1 is that: when preparing the conductive composite particles forming the conductive middle frame, the conductive materials added are carbon fibers and carbon nanotubes, but the mass of the carbon fibers is 2% of the mass of the plastic particles, and the mass of the carbon nanotubes is 0.5% of the mass of the plastic particles.
  • the display devices of the above embodiments and comparative examples were placed on an 80cm table in the RE test environment, and rotated 360°. At a distance of 3m from the display device, the receiving antenna moved in the height range of 1-4m, and the radiation intensity emitted by the display device at different heights was tested. After analysis and calculation, the margin of the quasi-peak value (QP) of the radiation emission intensity of the display device was obtained. The surface resistance of each conductive middle frame was also tested with a surface resistance tester, and the results are recorded in Table 1 below.
  • the conductive middle frame of the embodiment of the present application has a higher appearance and fewer floating fibers, a higher notched Izod impact strength means that the middle frame has better toughness, and a suitable flexural modulus means that the middle frame is not easily deformed.
  • the middle frame of the embodiment of the present application since the middle frame of the embodiment of the present application is added with a certain mass ratio of carbon fibers and carbon nanotubes at the same time, the middle frame has good electrical conductivity.
  • the static electricity arc will be preferentially directed to the middle frame, and the static electricity will be directed to the ground through the metal back plate in time to protect the display screen from static damage.
  • the screen display is normal and meets the ESD performance requirements for going to sea.
  • the middle frame of the embodiment of the present application has good electrical conductivity, small surface resistance, and less radiation interference, which can meet RE performance requirements.
  • Comparative Example 1 and Example 1 show that simply adding carbon fibers to the plastic particles will result in a large number of floating fibers on the surface of the resulting middle frame, and the appearance does not meet the requirements.
  • the mechanical properties of the middle frame are poor, the impact strength is low, and the flexural modulus is not high.
  • the shrinkage rate differs greatly from ordinary plastic particles, and the mold cannot be shared, and the RE performance requirements are not met.
  • the results of Comparative Example 2 and Example 1 show that when the content of carbon fibers and carbon nanotubes added at the same time is not within the scope defined in this application, the appearance and mechanical properties of the obtained middle frame are not good.
  • Example 6 compared with Example 1, the mass of carbon nanotubes and carbon fibers in Examples 4-5 is relatively small (for example, the ratio in Example 4 is less than 0.4), and the effect of improving the appearance of the conductive middle frame to appear floating fibers is not particularly prominent. There are a few floating fibers in the appearance of the middle frame, but it can still meet the appearance requirements of some middle frame products; In Example 6, compared with Example 1, the carbon fiber length is longer. Although the middle frame has better electrical conductivity, there may be a small amount of floating fibers in its appearance, but it can still meet the appearance requirements of some middle frame products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本申请实施例提供一种导电中框及其制备方法和显示装置,该导电中包括塑胶基体和分布在所述塑胶基体中的导电材料,所述导电材料包括碳纤维和碳纳米管,所述碳纤维的质量占所述塑胶基体质量的2%-12%,所述碳纳米管的质量占所述塑胶基体质量的2%-8%。该导电中框的导电性良好,可使显示装置满足高规格的ESD和RE性能要求,同时导电中框的外观特性好,不易出现浮纤,且还具有较高的韧性等优异机械性能。

Description

导电中框及其制备方法和显示装置
本申请要求于2022年1月18日提交至中国专利局、申请号为202210053215.4、申请名称为“导电中框及其制备方法和显示装置”的中国专利申请的优先权,其全部内容通过引用方式结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种导电中框及其制备方法和显示装置。
背景技术
普通电视机、智慧屏等显示装置在使用过程中,易积累静电,如若静电不能及时转移,会损伤显示屏,导致设备无法正常工作。为提高显示装置的静电释放(Electro-static Discharge,ESD)能力及降低辐射干扰(Radiated Emission,RE),业界一般采用金属中框(例如铝合金)来承载显示屏,并将其与金属背板固定连接,以将进入显示屏和中框间隙的静电及时导向大地。但是,金属中框的制造成本高,另外对于铝合金中框来说,其表面常有一层氧化层,其与背板连接处需经镭雕处理才可实现中框和背板的电流传导,制造工艺繁琐。
近年来也有报道采用塑胶材料作中框,并在该塑胶中框中添加碳纤维,以赋予其导电和增强作用,然而,仅向塑胶中框中添加碳纤维,易使最终的中框产品呈现大量浮纤,影响其外观效果,并增大其脆性。
因此,有必要开发一种显示装置用新型中框,以在使显示装置满足高规格的ESD及RE要求的同时,还使该中框具有良好的机械性能和优美的外观。
发明内容
鉴于此,本申请实施例提供了一种显示装置用的低成本导电中框,其通过在塑胶基体中同时引入适当比例的碳纤维和碳纳米管,可使该导电中框兼顾良好的导电性、韧性及优异的外观。
具体地,本申请实施例第一方面提供了一种导电中框,包括塑胶基体和分布在所述塑胶基体中的导电材料,所述导电材料包括碳纤维和碳纳米管,所述碳纤维的质量占所述塑胶基体质量的2%-12%,所述碳纳米管的质量占所述塑胶基体质量的2%-8%。
本申请实施例提供的导电中框,通过在塑胶基体中同时引入适当比例的碳纤维和碳纳米管,可保证导电中框构成材料的导电性较高、电磁屏蔽性强,使显示装置满足高规格的ESD和RE性能要求。更重要的是,碳纤维和碳纳米管这两种导电材料的适量引入还解决了单独引入碳纤维所带来的中框易出现大量浮纤的问题及中框脆性过大的问题;此外,该中框的成本比铝合金中框低,其与金属背板进行连接之前,无需进行镭雕等复杂前处理。
本申请一些实施方式中,所述碳纳米管在所述导电中框中的质量占比小于或者等于所述碳纤维在所述导电中框中的质量占比。此时,成本比碳纤维高的碳纳米管用量较低,利于导电中框的成本进一步降低。
本申请一些实施方式中,所述碳纳米管的质量是所述碳纤维的质量的0.4-1倍。碳纳米管 以此比例添加,更利于减少塑胶材料-碳纤维之间的空隙和界面强度,提高碳纤维之间的电子传递作用,赋予导电中框更良好的力学性能及优异的导电性能。
本申请实施方式中,所述碳纤维的长度为3-40mm;所述碳纳米管的直径为2-30nm。碳纤维的长度在此范围,可在保证导电中框兼顾优异的机械性能和导电性能的同时,还具有较优异的注塑性能。碳纳米管的直径在上述范围,其制备更容易、韧性更好。
本申请一些实施方式中,所述导电材料还包括碳黑和石墨烯中的一种或多种。碳黑、石墨烯的维度与上述碳纳米管、碳纤维不同,它们的引入更利于这几种导电材料发挥协同作用,赋予导电中框更优异的导电性能。
本申请一些实施方式中,所述导电材料的总质量不超过所述塑胶基体质量的25%。由此,可保证导电中框的注塑成型性更好、韧性更优。
本申请实施方式中,所述塑胶基体的材料包括聚酰胺类树脂、聚碳酸酯、聚苯硫醚、聚对苯二甲酸乙二醇酯、丙烯腈-丁二烯-苯乙烯共聚物、丁二烯-苯乙烯共聚物、苯乙烯-丁二烯-苯乙烯共聚物、丁二烯-丙烯腈共聚物、聚砜类树脂、聚酮类树脂或其改性物中的一种或多种。
本申请实施方式中,所述导电中框的悬臂梁缺口冲击强度大于或者等于6kJ/m 2
本申请实施方式中,所述导电中框的表面电阻小于或者等于8×10 7Ω。
本申请实施例第二方面提供了一种显示装置,其包括显示屏、本申请实施例第一方面所述的导电中框和金属背板,其中,所述导电中框与所述金属背板固定连接。
使用上述导电中框的显示装置被静电损失的风险小,力学性能优良,质量可靠性高,使用寿命长,国内外市场竞争力明显。
本申请实施例第三方面提供了一种导电中框的制备方法,包括以下步骤:
将用于形成塑胶基体的塑胶粒子与导电材料混合,经造粒,得到导电复合粒子;其中,所述导电材料包括碳纤维和碳纳米管,所述碳纤维的质量占所述塑胶基体质量的2%-12%,所述碳纳米管的质量占所述塑胶基体质量的2%-8%;
将所述导电复合粒子注塑成型,得到导电中框。
上述导电中框的制备方法,工艺简单、生产效率高、成本低廉,适合工业化批量制备。所得导电中框的各项性能优异。
附图说明
图1为本申请实施例提供的一种显示装置的主视图。
图2为本申请实施例提供的带导电中框的显示装置的剖面示意图。
图3为图2中显示装置的爆炸图。
图4为本申请一些实施例提供的U型截面的导电中框的结构示意图。
图5为本申请实施例提供的带图4中U型导电中框的显示装置的另一结构示意图。
主要附图标记说明:显示装置-100,显示屏-1,导电中框-2,第一凸出部-21。第二凸出部-22,金属背板-3,背光源组件-4,封屏胶-5,泡棉-6,螺丝-7,支架-8。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请一并参见图1和图2,图1和图2分别是本申请实施例提供显示装置的主视图和剖面示意图。该显示装置100包括显示屏1、导电中框2和金属背板3,导电中框2与金属背板3 固定连接。图2中,显示屏1和金属背板3分别位于导电中框2的相对两侧。导电中框2和金属背板3依次位于显示屏1的同一侧面(可称为“背面”),可用于支撑显示屏1。导电中框2环绕显示屏1的四周,或者说,其围设在显示屏1的外侧面。本申请实施方式中,导电中框2与金属背板3的固定连接方式可以具体是:二者通过螺丝7相锁附,具体说来,二者的连接处均开设有孔,螺丝7可穿过这些孔,通过拧紧螺丝7可将导电中框2与金属背板3连接起来。图2中,显示屏1与导电中框2也是固定连接,具体是通过设置在显示屏1背部外周的封屏胶5相粘合。当然,在其他实施方式中,显示屏1与导电中框2也可以是仅接触,并未连接,例如显示装置100还包括前框的情况下。
通常,显示屏1的侧边与导电中框2的侧边之间不可避免地存在一定缝隙(参见图2中虚线箭头处),静电可从该缝隙处进入显示装置100,静电如若不能及时释放到外界,其可能会在显示屏1上积累,损伤显示屏1(例如击穿显示屏)。但是,本申请实施例提供的中框是导电的(简称“导电中框”),且其与金属背板3是固定连接的,若静电从上述缝隙处进入,其首先会与该导电中框2接触,并通过该导电中框2传导给与金属背板3,进而通过显示装置最外侧的金属背板3释放到外界,避免了显示屏1受静电损伤。
具体说来,本申请实施例提供的导电中框2包括塑胶基体和分布在塑胶基体中的导电材料,其中,导电材料包括碳纤维和碳纳米管,且碳纤维的质量占塑胶基体的质量的2%-12%,碳纳米管的质量占塑胶基体的质量的2%-8%。
导电中框2通过在构成其的塑胶基体中同时引入适当比例的碳纤维和碳纳米管,可保证导电中框2的导电性较高,若静电从上述缝隙进入,其可通过该导电中框2传导给与导电中框2连接的金属背板3,进而释放到外界,避免显示屏1受静电损伤,使显示装置100满足高规格的ESD要求满足高规格的ESD要求。另外上述导电性良好的导电中框2的电磁屏蔽性强,其防电磁干扰能力强,含该导电中框2的显示装置100在使用中产生的电磁干扰也不易影响到周边其他电子设备的使用,满足高规格的RE性能要求。
与业界常用的铝合金中框相比,本申请实施例提供的上述导电中框2的成本较低,且在其与金属背板3进行连接之前,无需进行镭雕以除去氧化层的复杂前处理。也有一些显示装置通过采用塑胶做中框,并在塑胶中框的四周粘贴导电敷料,并借助导电辅料连接背板,以解决上述显示屏的静电损失问题,但导电辅料的人工粘贴难度大、易造成显示屏不平整,其引入会增加显示装置的成本、降低制造效率、增加整体漏光的风险,并增大了显示装置的不必要体积,且导电辅料易随时间脱落,从而不能持久地解决ESD风险。与该类技术方案比,本申请的导电中框2是混合有导电材料的塑胶中框,其不会增大显示装置的不必要体积、增大整体漏光风险等。此外,若是向塑胶基体中单独添加碳纤维,虽然导电性良好的碳纤维可使中框的强度提高并使其具有一定的导电能力,但也会使中框表面出现大量浮纤,影响中框的外观呈现效果,并大大增大其脆性,进而降低显示装置的美感和抗跌落性能等。而本申请实施例中,在塑胶基体中添加碳纤维的基础上还引入碳纳米管,碳纳米管不仅具有优异的导电性能,还具有良好的韧性(拉伸强度及弯曲强度较大),碳纳米管的引入可大大降低加入碳纤维带来的浮纤现象,并可使中框的导电性能更优异、韧性得到提升;且本申请的申请人经一系列研究发现,当将碳纤维和碳纳米管相较于塑胶基体的质量占比分别控制在2%-12%和2%-8%的范围时,可以使得上述导电中框不易出现浮纤,且能兼顾优异的导电性及良好的韧性等力学性能,还可使用于形成导电中框的原料-导电材料与塑胶材料构成的复合粒子与普通塑胶粒子的收缩率相同,进而可使上述导电中框能采用普通塑胶中框的模具进行成型,无需额外制作模具。
因此,本申请实施例提供的上述导电中框的导电性能优异、外观良好、机械强度高、韧性好且成本低,进而可使采用该导电中框的显示装置能满足高规格的ESD和RE性能要求,兼顾低成本和可靠性,产品竞争力突出。
本申请中,导电中框的构成材料可以通过塑胶基体材料和上述导电材料熔融、造粒后得到。其中,塑胶基体的材料可以包括聚酰胺(PA)、聚碳酸酯(PC)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)或其改性物等中的一种或多种,但不限于此。在一些实施方式中,塑胶基体材料包括PA和ABS。含PA+ABS的塑胶基体的机械强度和韧性较好。其中,塑胶基体材料可以是改性(如采用增韧剂改性)或者未经改性的塑胶材料。对塑胶基体材料进行改性,可提升其韧性,进而可提升整体导电中框的韧性,不致脆性过大。
本申请实施方式中,至少有一部分碳纤维与碳纳米管之间相互连接、缠绕,它们能形成互穿的导电网络,提供多条导电通路。这样可赋予所述导电中框良好的导电性。
本申请实施方式中,在所述导电中框中,所述碳纳米管的质量占比小于或者等于所述碳纤维的质量占比。碳纳米管的成本一般高于碳纤维,控制碳纳米管的质量占比低于碳纤维,可在保证导电中框兼顾上述良好的导电性、韧性及外观的同时,其成本还可以进一步降低。
本申请一些实施方式中,所述导电中框中,所述碳纳米管的质量是所述碳纤维的质量的0.4-1倍。碳纳米管的尺寸小,导电性高、韧性高,该用量的碳纳米管的添加更有利于减少塑胶材料-碳纤维之间的空隙,改善塑胶材料-碳纤维界面的强度,提高碳纤维材料之间的力学传递作用、电子传递作用,进而使上述导电中框兼顾良好的抗冲击强度、弯曲强度、弯曲模量等力学性能,以及优异的导电性能。此外,碳纳米管与碳纤维的含量在上述范围,也更有利于降低中框的浮纤现象。
本申请实施方式中,所述碳纤维的长度可以为3mm-40mm。碳纤维的长度在合适范围,可以保证导电中框能兼顾优异的机械性能和导电性能,可避免因长度过长而影响中框材料的注塑性能。具体地,碳纤维的长度若过长,会影响导电中框的外观,如出现浮纤,且碳纤维之间还可发生一定的交缠、虽使导电中框的导电性能较好,但会影响它们在注塑过程中的分散性,影响注塑效果,降低所得导电中框的机械性能。本申请一些实施方式中,碳纤维的长度为8mm-30mm,进一步可以是10mm-25mm。本申请实施方式中,所述碳纤维的直径一般为微米级,例如可以为1-15μm。
本申请实施方式中,碳纳米管的直径可以为2-30nm。合适直径的碳纳米管韧性较好、刚性不会过强,其能更好地提升导电中框的韧性,且其制备较容易。需要说明的是,碳纳米管的直径具体是指其内径。在一些具体实施例中,碳纳米管的直径为10nm-20nm。
本申请一些实施方式中,所述导电材料还可以包括碳黑和石墨烯中的一种或多种。碳黑为三维颗粒状,石墨烯可以是二维层状,它们可与一维的碳纤维和碳纳米管相配合,在多维度导电材料的协同作用下,所形成的导电网络更致密,能赋予导电中框2更优异的导电性能。在一些实施方式中,碳黑和/或石墨烯的质量占所述塑胶基体的质量的1%-5%。由此,可使导电中框2兼顾优异的导电性能及较低的注塑成型难度。
本申请实施方式中,上述导电材料的总质量不超过所述塑胶基体质量的25%,例如为5%-25%。这样可避免过多的导电材料增加形成上述导电中框的注塑难度、增大脆性等,及避免导电材料与塑胶材料构成的复合粒子与普通塑胶粒子的收缩率相差过远。
本申请中,将碳纤维和碳纳米管相较于塑胶基体的质量含量分别控制在2%-12%和2%-8%的范围,可以使得上述导电中框2具有良好的导电性、较高的抗冲击强度、弯曲强度、弯曲强度等,能较好地兼顾韧性和刚性。
本申请实施方式中,导电中框2的悬臂梁缺口冲击强度大于或等于6kJ/m 2。冲击强度是试样冲击破坏过程中所吸收的能量与原始横截面积之比较大的悬臂梁缺口冲击强度反映导电中框材料的抗冲击能力强,不易断裂,韧性好。在一些实施方式中,该悬臂梁缺口冲击强度可以在6-8kJ/m 2
本申请实施方式中,导电中框2的弯曲强度大于或等于90MPa。弯曲强度可表征材料的抗弯曲能量,它是指材料在弯曲负荷作用下破裂或达到规定弯矩时能承受的最大应力,此应力为弯曲时的最大正应力。较高的弯曲强度反映出导电中框2构成材料的韧性较好,使得导电中框具有灵性的形状可设计性。
本申请实施方式中,导电中框2的弯曲模量大于或者等于4000MPa。弯曲模量是指弯曲应力与弯曲所产生的形变之比。弯曲模量可以用来表征材料的刚性。较高的弯曲模量代表导电中框材料的刚性较大,不易变形。在一些实施方式中,该弯曲模量为4000-5000MPa。
本申请实施方式中,导电中框2的表面电阻小于或者等于8×10 7Ω。适当的表面电阻利于导电中框2具有一定的电磁屏蔽性,使显示装置100在使用中产生的电磁干扰也不易影响到周边其他电子设备的使用,满足高规格的RE性能要求,同时使中框的韧性不致过低。在一些实施方式中,该表面电阻在2×10 5Ω至8×10 7Ω的范围内。此时,更利于显示装置100兼顾高RE性能和导电中框2兼顾良好韧性。
本申请实施例上述提供的导电中框能在具有优异导电性的同时,还具有较高的机械强度、较高的韧性、良好的外观、较低的成本等诸多优点,从而可使显示装置兼顾可靠性、安全性、低成本等,提升国内外市场竞争力。
本申请实施例还提供了上述导电中框的一种制备方法,包括:
S01,将用于形成塑胶基体的塑胶粒子与导电材料混合,经造粒,得到导电复合粒子;其中,所述导电材料包括碳纤维和碳纳米管,碳纤维的质量是所述塑胶粒子质量的2%-12%,碳纳米管的质量是所述塑胶粒子质量的2%-8%;
S02,将所述导电复合粒子注塑成型,得到导电中框。
步骤S01中,所用塑胶粒子为热塑性树脂材料,其可通过成熟的注塑成型工艺,转变为具有一定形状的制品,在结构设计上具有较大自由度,加工方便,成本较低。具体地,塑胶粒子的材料包括聚酰胺类树脂(PA)、聚碳酸酯(PC)、PPS(聚苯硫醚)、聚对苯二甲酸乙二醇酯(PET)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、丁二烯-苯乙烯共聚物(BS)、苯乙烯-丁二烯-苯乙烯共聚物(SBS)、丁二烯-丙烯腈共聚物、聚砜类树脂、聚酮类树脂或其改性物中的一种或多种,但不限于此。上述一些塑胶粒子的韧性改性可以通过增韧剂实现,示例性的增韧剂可以是马来酸酐接枝的弹性体(如马来酸酐接枝的聚丙烯、聚氨酯类、苯乙烯类、聚烯烃类等)。
步骤S01中,所使用的塑胶粒子、碳纤维和碳纳米管可按照上述比例要求,采用高精度的计量称进行称取,称取后的各原料可以先在高混机中进行混合。其中,高精度的计量称可保证各原料的用量更贴合本申请的上述比例要求,高混机可保证固态的各原料先实现初步的混合、接触,进而利于在后续造粒机中的进一步融合。此外,碳纤维和碳纳米管的质量比例控制上述范围,可在保证二者能充分混合、在塑胶粒子中可充分分散的前提下,避免步骤S02形成的导电中框出现浮纤现象。
其中,塑胶粒子与导电材料的混合物料的造粒可以在挤出机中进行,上述混合物料在挤出机内被加热熔融,挤出机的螺杆(例如是双螺杆)以一定速率转动,带动熔融态的混合物料不断被挤压和混合,造粒机的螺杆最后将逐渐冷却的膏状喂料通过模头挤出形成料条,并 借助旋转刀片将料条切成颗粒状,获得可直接用于注塑成型的导电复合粒子。本申请一些实施方式中,在造粒过程中,挤出机的螺杆的转动速率可以是500-700rpm。由此,可保证熔融态的混合物料充分混合,利于碳纳米管和碳纤维充分接触、连接、缠绕等,进而保证二者之间优异导电网络的构建。
步骤S02中,所述“注塑成型”的过程具体包括:将注塑模具装入注塑机中,将所述导电复合粒子装入注塑机的料斗中,输送至注塑机的加热区经加热熔化后,在一定压力下射入所述注塑模具的型腔内,经冷却固化后,脱模得到成型的导电中框。其中,在料斗中可进行所述导电复合粒子的烘干,烘干的温度可以在110-120℃,此时,导电复合粒子并未熔化。注塑成型的具体参数可以根据塑胶基体的材料来确定。一般地,注塑机的注射口温度为220℃-260℃,压力为40MPa-110MPa;模具温度为80℃-140℃。
本申请实施例提供的上述导电中框的制备方法,工艺简单、成本低廉、制备效率高,适合工业化批量制备。所得导电中框的成本较低,机械性能优异、导电性能优良,且外观优良,不易出现浮纤现象。
本申请实施例还提供了一种显示装置,其包括显示屏、本申请实施例所述的导电中框和金属背板,所述导电中框与所述金属背板固定连接。其中,导电中框、显示屏、导电中框的结构关系可如本申请前文所述。
请继续参见图2,上述提及的显示装置100还包括安装在金属背板3上的背光源组件4。金属背板3可用于承载背光源组件4,背光源组件4主要用于向显示屏1提供光源,以使显示屏1显示画面。示例性的,背光源组件4可以包括背光源及反射片、扩散片、棱镜片等至少一种光学膜片。
本申请实施方式中,如图2所示,导电中框2具有第一凸出部21和第二凸出部22,其中第一凸出部21位于显示屏1与金属背板3之间,金属背板3位于第一凸出部21和第二凸出部22之间。图2中的第一凸出部21和第二凸出部22是自主侧壁(平行于自显示屏1指向背光源组件4的方向)延伸出去,且可以是相互平行的,即第一凸出部21和第二凸出部22垂直于主侧壁。具有两个凸出部的导电中框2,可保证其能与金属背板3形成有效接触,间接使显示屏通过该导电中框2与金属背板3建立连接。在图2中具体是导电中框2的第二凸出部22与金属背板3通过螺丝锁附。可以理解的是,具有两个凸出部的导电中框2的纵截面结构可以是图2所示的F型,其较易安装定位,与显示屏1、金属背板3之间的接触更紧密,使显示装置的整机防漏光效果较好,且可以避免再使用前框来辅助固定显示屏1,能降低整体显示装置的体积。当然,具有两个凸出部的导电中框2,其截面还可以是U型(图4所示)、П型、π型等。
请继续参见图2,上述第一凸出部21具有相对设置的外侧表面和内侧表面,且外侧表面靠近显示屏1,该外侧表面与显示屏1之间设有封屏胶5。封屏胶5用于将导电中框2与显示屏1相固定。进一步地,如图2所示,该内侧表面贴有泡棉6,以使泡棉6夹持在第一凸出部21与金属背板3(具体是其上的背光源组件4)之间。这样可以提高背光源组件4抵抗外力冲击的效果,以免破碎等。
参见图2及图3所示的显示装置的爆炸图,本申请实施例上述提到的显示装置可以通过如下方法装配得到:在金属背板3上安装相应的背光源组件4,在上述导电中框2的第一凸出部21的内侧表面贴上泡棉6后,将其扣在金属背板3上,在导电中框2的第一凸出部21的外侧表面贴上封屏胶5,撕掉导电中框2上封屏胶的离型纸后,将显示屏1贴附在导电中框2的封屏胶5上,并施加一定压力,以使显示屏1与导电中框2压合在一起;导电中框2 的第二凸出部22与金属背板3通过螺丝7锁附,以使导电中框2紧扣着金属背板3,二者之间形成一个电流导地通路,得到如图2所示的显示装置100。
进一步地,当导电中框2是图4所示的是U型(图4所示)时,通过其形成的显示装置的结构可以如图2所示,只是将F型中框换成U型中框,这里不再另外提供示意图。当然,本申请一些实施方式中,带U型导电中框的显示装置的结构示意图还可以如图5所示。图5中,该显示装置包括显示屏1、导电中框2、金属背板3、背光源组件4,还包括支架8。导电中框2虽具有第一凸出部21和第二凸出部22,但显示屏1、支架8、背光源组件4、金属背板3均位于该导电中框2的U型容置空间内,它们均位于第一凸出部21和第二凸出部22之间。
需要说明的是,在其他实施方式中,上述导电中框2还可以是具有一个凸出部的T型,或者其他不规则形状等。该凸出部朝着第一方向(垂直于自显示屏1指向背光源组件4的方向)延伸。当导电中框2是T型时,参考图2,显示屏1与金属背板3可以位于该T型中框凸出部的两侧。导电中框2的形状可以是多样的,其截面形状可根据实际需求进行选择。
本申请实施例提供的显示装置由于采用了本申请前述的导电中框,该显示装置的质量可靠性高,安全性好,使用寿命长、成本低,其ESD和RE性能可满足高标准的海外市场需要,该显示装置的市场竞争力明显。
本申请实施方式中,所述显示装置的辐射发射强度的准峰值(简写为QP)的余量大于或者等于4db。该参数是通过将显示装置放置在RE测试环境中的80cm台子上,360°旋转,在距离该显示装置3m处,接收天线在1-4m高度范围移动,测试不同高度位置处显示装置发射的辐射强度,经分析、计算得到上述QP余量参数。上述QP余量参数是一个相对指标,而非绝对指标。当该余量参数较大时,说明显示装置在使用过程中产生的电磁场不易影响到周边其他电子设备的使用,即,电磁辐射干扰小,可以满足RE性能要求。
上述显示装置可以具体是普通电视机、智慧屏、影碟机、录像机、摄录机、电唱机、虚拟现实(Virtual Reality,VR)终端设备、台式电脑、平板电脑、家庭/办公设备、手机及其它可穿戴或可移动的电子设备等。其中,显示屏1可以是液晶显示屏(Liquid Crystal Display,LCD)、有机电致发光二极管(Organic Light-Emitting Diodes,OLED)显示屏、发光二极管(light-emitting diode,LED)显示屏,或者其他类型的可显示器件,包括但不限于刘海屏、水滴屏、全面屏、曲面屏等。
下面分多个具体实施例对本申请实施例进行进一步的说明。其中,本申请实施例不限定于以下的具体实施例。
实施例1
一种导电中框,其制备方法包括:
(1)提供塑胶粒子,其含有PC,采用高精度的计量称,按下述比例称取该塑胶粒子与导电材料-碳纤维和碳纳米管,并将它们在高混机中进行混合,得到混合物料;其中,塑胶粒子是100重量份,碳纤维是6重量份,碳纳米管是4重量份;所用碳纤维的长度为10-15mm,直径约为10μm,碳纳米管的直径约为10-15nm;
(2)将上述混合物料置于挤出机内,边加热边使挤出机的双螺杆按照600rpm的转速转动,以使挤出机内的熔融物料不断地被挤压和混合,最后将逐渐冷却的膏状喂料通过模头挤出形成料条,并借助旋转刀片将料条切成米粒状,得到导电复合粒子;
(3)将用于形成普通塑胶中框的注塑模具装入注塑机中,将所上述导电复合粒子装入注 塑机的料斗中进行烘干,输送至注塑机的加热区进行加热熔化,之后在一定压力下射入所述注塑模具的型腔内,保压一定时间,冷却、脱模,得到注塑成型的导电中框,其结构示意图如图2中所示。
一种显示装置,其安装过程可参见图3,具体包括以下步骤:在金属背板3上安装背光源组件4,在实施例1导电中框2的第一凸出部21的内侧表面贴上泡棉6后,将其扣在金属背板3上,在导电中框2的第一凸出部21的外侧表面贴上封屏胶5,撕掉导电中框2上封屏胶的离型纸后,将显示屏1贴附在导电中框2的封屏胶5上,并施加一定压力,以使显示屏1与导电中框2压合在一起;导电中框2的第二凸出部22与金属背板3通过螺丝7锁附,以使导电中框2紧扣着金属背板3,二者之间形成一个电流导地通路,得到如图1和图2所示的显示装置100。
实施例2
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1的导电中框的区别在于:制备导电复合粒子时,塑胶粒子是100重量份,碳纤维是2重量份,碳纳米管是2重量份。
实施例3
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1的导电中框的区别在于:制备导电复合粒子时,塑胶粒子是100重量份,碳纤维是12重量份,碳纳米管是8重量份。
实施例4
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1的导电中框的区别在于:制备导电复合粒子时,塑胶粒子是100重量份,碳纤维是8重量份,碳纳米管是2重量份。
实施例5
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1的导电中框的区别在于:制备导电复合粒子时,塑胶粒子是100重量份,碳纤维是4重量份,碳纳米管是6重量份。
实施例6
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1的导电中框的区别在于:制备导电复合粒子时,所用碳纤维的长度约为40-45mm。
实施例7
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1导电中框的区别在于:在制备导电复合粒子时,所添加的导电材料还包括炭黑和石墨烯,其中,基于100重量份的塑胶粒子,炭黑是2重量份,石墨烯是1重量份。
实施例8
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1导电中框的区别在于:在制备导电复合粒子时,基于100重量份的塑胶粒子,炭黑是2重量份。
实施例9
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1的导电中框的区别在于:制备导电复合粒子时,所用塑胶粒子为PC+ABS。
实施例10
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1的导电中框的区别在于:制备导电复合粒子时,所用塑胶粒子为PA9T(聚酰胺9T)。
此外,为突出本申请实施例的有益效果,还设置以下对比例。
对比例1
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1导电中框的区别在于:在制备形成导电中框的导电复合粒子时,所添加的导电材料仅为碳纤维。
对比例2
一种显示装置,其结构与实施例1相同,该显示装置中包含的导电中框与实施例1导电中框的区别在于:在制备形成导电中框的导电复合粒子时,所添加的导电材料为碳纤维和碳纳米管,但碳纤维的质量是塑胶粒子质量的2%,碳纳米管的质量是塑胶粒子质量的0.5%。
为了对本申请实施例的技术方案带来的有益效果进行有力支持,观察各实施例和对比例的导电中框的外观,记录是否有浮纤现象等;将以上实施例的导电复合粒子加工成试样条,测试其悬臂梁缺口冲击强度,结果汇总在下表1中。
用静电枪靠近各显示装置的导电中框的侧边与显示屏的侧边缝隙中间(见图2中虚线位置),启动显示装置,采用静电枪依次用±8KV、±10KV、±15KV进行空气放电,观察显示屏的屏幕画面显示是否正常,是否出海的ESD性能要求,结果记录在表1中。
另外,将以上各实施例和对比例的显示装置放置在RE测试环境中的80cm台子上,360°旋转,在距离该显示装置3m处,接收天线在1-4m高度范围移动,测试不同高度位置处显示装置发射的辐射强度,经分析、计算得到显示装置的辐射发射强度的准峰值(QP)的余量。还采用表面电阻测试仪测试各导电中框的表面电阻,结果记录在下表1中。
表1 各项测试结果汇总表
Figure PCTCN2023070346-appb-000001
Figure PCTCN2023070346-appb-000002
从表1可以获知,本申请实施例的导电中框外观较高,浮纤少,较高的悬臂梁缺口冲击强度代表中框的韧性较好,合适的弯曲模量代表中框不易变形。此外,由于本申请实施例的中框同时添加了一定质量比的碳纤维和碳纳米管,该中框的导电性能好,当中框与显示屏的侧边孔隙存在静电时,静电弧会优先导向中框,通过金属背板将静电及时地导向大地,保护显示屏不受静电损伤,屏画面显示正常,满足出海的ESD性能要求。本申请实施例的中框的导电性能好,其表面电阻小,辐射干扰少,可满足RE性能要求。
对比例1与实施例1的结果说明,向塑胶粒子中单纯添加碳纤维,所得中框的表面会出现大量浮纤,外观不符合要求,且中框的力学性能差,冲击强度较低、弯曲模量也不高;另外,与普通塑胶粒子的收缩率差异大,不能共用模具,也不满足RE性能要求。对比例2与实施例1的结果说明,当同时添加的碳纤维和碳纳米管的含量不在本申请定义范围时,所得中框的外观、力学性能均不佳。此外,实施例4-5与实施例1相比,碳纳米管与碳纤维的质量比较小(例如实施例4中该比值小于0.4),改善导电中框的外观出现浮纤的效果不是特别突出,中框外观存在少许浮纤,但仍能满足有些中框产品的外观要求;若碳纳米管与碳纤维的质量比较大(例如实施例5中该比值大于1),导电中框的弯曲模量可能略有降低。实施例6与实施例1相比,碳纤维的长度较长,虽然中框的导电性能较好,但其外观可能会存在少量的浮纤,但仍能满足有些中框产品的外观要求。

Claims (15)

  1. 一种导电中框,其特征在于,所述导电中框包括塑胶基体和分布在所述塑胶基体中的导电材料,所述导电材料包括碳纤维和碳纳米管,所述碳纤维的质量占所述塑胶基体质量的2%-12%,所述碳纳米管的质量占所述塑胶基体质量的2%-8%。
  2. 如权利要求1所述的导电中框,其特征在于,所述碳纳米管在所述导电中框中的质量占比小于或者等于所述碳纤维在所述导电中框中的质量占比。
  3. 如权利要求1或2所述的导电中框,其特征在于,所述碳纳米管的质量是所述碳纤维的质量的0.4-1倍。
  4. 如权利要求1-3任一项所述的导电中框,其特征在于,所述碳纤维的长度为3-40mm;所述碳纳米管的直径为2-30nm。
  5. 如权利要求1-4任一项所述的导电中框,其特征在于,所述导电材料还包括碳黑和石墨烯中的一种或多种。
  6. 如权利要求1-5任一项所述的导电中框,其特征在于,所述导电材料的总质量不超过所述塑胶基体质量的25%。
  7. 如权利要求1-6任一项所述的导电中框,其特征在于,所述塑胶基体的材料包括聚酰胺类树脂、聚碳酸酯、聚苯硫醚、聚对苯二甲酸乙二醇酯、丙烯腈-丁二烯-苯乙烯共聚物、丁二烯-苯乙烯共聚物、苯乙烯-丁二烯-苯乙烯共聚物、丁二烯-丙烯腈共聚物、聚砜类树脂、聚酮类树脂或其改性物中的一种或多种。
  8. 如权利要求1-7任一项所述的导电中框,其特征在于,所述导电中框的悬臂梁缺口冲击强度大于或者等于6kJ/m 2
  9. 如权利要求1-8任一项所述的导电中框,其特征在于,所述导电中框的表面电阻小于或者等于8×10 7Ω。
  10. 一种显示装置,其特征在于,包括显示屏、如权利要求1-9任一项所述的导电中框和金属背板,其中,所述导电中框与所述金属背板固定连接。
  11. 如权利要求10所述的显示装置,其特征在于,所述显示屏和所述金属背板分别位于所述导电中框的相对两侧,所述显示屏通过封屏胶与所述导电中框相粘合,所述导电中框与所述金属背板通过螺丝锁附。
  12. 如权利要求10或11所述的显示装置,其特征在于,所述导电中框具有相互平行的第一凸出部和第二凸出部,所述第一凸出部位于所述显示屏与所述金属背板之间,所述金属背板位于所述第一凸出部和第二凸出部之间,所述第二凸出部与所述金属背板固定连接。
  13. 如权利要求12所述的显示装置,其特征在于,所述第一凸出部具有相对设置的外侧表面和内侧表面,且所述外侧表面靠近所述显示屏,所述外侧表面与所述显示屏之间设有封屏胶。
  14. 如权利要求10-13任一项所述的显示装置,其特征在于,所述显示装置的辐射发射强度的准峰值的余量大于或者等于4db。
  15. 一种导电中框的制备方法,其特征在于,包括以下步骤:
    将用于形成塑胶基体的塑胶粒子与导电材料混合,经造粒,得到导电复合粒子;其中,所述导电材料包括碳纤维和碳纳米管,所述碳纤维的质量占所述塑胶基体质量的2%-12%,所述碳纳米管的质量占所述塑胶基体质量的2%-8%;
    将所述导电复合粒子注塑成型,得到导电中框。
PCT/CN2023/070346 2022-01-18 2023-01-04 导电中框及其制备方法和显示装置 WO2023138367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210053215.4A CN116496612A (zh) 2022-01-18 2022-01-18 导电中框及其制备方法和显示装置
CN202210053215.4 2022-01-18

Publications (1)

Publication Number Publication Date
WO2023138367A1 true WO2023138367A1 (zh) 2023-07-27

Family

ID=87325383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070346 WO2023138367A1 (zh) 2022-01-18 2023-01-04 导电中框及其制备方法和显示装置

Country Status (2)

Country Link
CN (1) CN116496612A (zh)
WO (1) WO2023138367A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161726A (zh) * 2007-09-28 2008-04-16 深圳市科聚新材料有限公司 高导电聚苯硫醚复合材料及其制备方法
CN104231587A (zh) * 2014-08-27 2014-12-24 上海日之升新技术发展有限公司 一种用于电磁屏蔽外壳热塑性复合材料及其制备方法
CN107383874A (zh) * 2017-09-15 2017-11-24 长沙新材料产业研究院有限公司 一种耐磨抗静电聚酰亚胺复合材料及其制备方法
CN111339835A (zh) * 2020-02-06 2020-06-26 京东方科技集团股份有限公司 屏下指纹识别显示模组、显示装置和电子设备
CN112409789A (zh) * 2020-11-27 2021-02-26 南京德尔隆工程塑料有限公司 一种5g手机中框用聚酰胺组合物及其制备方法
CN112852138A (zh) * 2020-12-31 2021-05-28 深圳烯湾科技有限公司 热塑性树脂基导电复合材料及其制备方法
CN113150541A (zh) * 2021-04-02 2021-07-23 浙江工业大学 一种高强度高导热尼龙复合材料及其制备方法
US20210257625A1 (en) * 2018-06-13 2021-08-19 Nissan Motor Co., Ltd. Resin Current Collector and Laminated Type Resin Current Collector, and Lithium Ion Battery Comprising This
CN113462158A (zh) * 2021-06-26 2021-10-01 华为技术有限公司 无线充电器壳体及无线充电器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161726A (zh) * 2007-09-28 2008-04-16 深圳市科聚新材料有限公司 高导电聚苯硫醚复合材料及其制备方法
CN104231587A (zh) * 2014-08-27 2014-12-24 上海日之升新技术发展有限公司 一种用于电磁屏蔽外壳热塑性复合材料及其制备方法
CN107383874A (zh) * 2017-09-15 2017-11-24 长沙新材料产业研究院有限公司 一种耐磨抗静电聚酰亚胺复合材料及其制备方法
US20210257625A1 (en) * 2018-06-13 2021-08-19 Nissan Motor Co., Ltd. Resin Current Collector and Laminated Type Resin Current Collector, and Lithium Ion Battery Comprising This
CN111339835A (zh) * 2020-02-06 2020-06-26 京东方科技集团股份有限公司 屏下指纹识别显示模组、显示装置和电子设备
CN112409789A (zh) * 2020-11-27 2021-02-26 南京德尔隆工程塑料有限公司 一种5g手机中框用聚酰胺组合物及其制备方法
CN112852138A (zh) * 2020-12-31 2021-05-28 深圳烯湾科技有限公司 热塑性树脂基导电复合材料及其制备方法
CN113150541A (zh) * 2021-04-02 2021-07-23 浙江工业大学 一种高强度高导热尼龙复合材料及其制备方法
CN113462158A (zh) * 2021-06-26 2021-10-01 华为技术有限公司 无线充电器壳体及无线充电器

Also Published As

Publication number Publication date
CN116496612A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
CN102702693B (zh) 一种抗静电母粒及其制备方法
US11746199B2 (en) Method for manufacturing TPU hot-melt film and method of producing a fabric product using the TPU hot-melt film
JPWO2004035688A1 (ja) 熱可塑性飽和ノルボルネン系樹脂フィルム、及び、熱可塑性飽和ノルボルネン系樹脂フィルムの製造方法
CN1868737A (zh) 一种低成本高效聚乙烯导电复合薄膜及其制备方法
KR20110097720A (ko) 편광판의 제조 방법
TW201347993A (zh) 偏光板及液晶顯示裝置
CN115011277B (zh) Pbt离型膜及其制备方法和应用
CN108350196B (zh) 环状烯烃系树脂组合物膜
US20090086126A1 (en) Polarizing plate and liquid crystal display device using the same
WO2023138367A1 (zh) 导电中框及其制备方法和显示装置
WO2023160107A1 (zh) 一种量子点扩散板及其制备方法和应用
KR102034670B1 (ko) 전도성 수지 조성물 및 그 제조방법
WO2015178279A1 (ja) 環状オレフィン系樹脂組成物フィルム
WO2008010562A1 (fr) Plaque de polarisation composite, son procédé de fabrication, élément optique composite et dispositif d'affichage à cristaux liquides
US20090096963A1 (en) Cyclic polyolefin film, process for producing the film, and polarizing plate and liquid crystal display device using the same
JP2015117253A (ja) 導電性樹脂組成物マスターバッチ
CN101419304A (zh) 偏光板
JP5635901B2 (ja) 漏電及び感電防止用成形体
KR20170033269A (ko) 고리형 올레핀계 수지 조성물 필름
CN110383110A (zh) 抗静电膜、偏振片、触控面板以及液晶显示装置
US20170152360A1 (en) Cyclic olefin resin composition film
CN114517010B (zh) 低密度尼龙复合材料及其制备方法
CN110669296A (zh) 碳纳米材料增强聚苯乙烯及其制备方法和应用
JP2006343479A (ja) 位相差フィルムおよびその製造方法、光学素子、並びに画像表示装置
CN102617982A (zh) 一种碳纳米管/尼龙纤维改性环氧树脂复合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742683

Country of ref document: EP

Kind code of ref document: A1