WO2023138149A1 - 硅基光调制器控制芯片及硅基光调制器的控制方法 - Google Patents

硅基光调制器控制芯片及硅基光调制器的控制方法 Download PDF

Info

Publication number
WO2023138149A1
WO2023138149A1 PCT/CN2022/128839 CN2022128839W WO2023138149A1 WO 2023138149 A1 WO2023138149 A1 WO 2023138149A1 CN 2022128839 W CN2022128839 W CN 2022128839W WO 2023138149 A1 WO2023138149 A1 WO 2023138149A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
phase shift
monitoring
shift arm
heating element
Prior art date
Application number
PCT/CN2022/128839
Other languages
English (en)
French (fr)
Inventor
张洪强
王祥忠
孙雨舟
郭金明
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2023138149A1 publication Critical patent/WO2023138149A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • G02F1/0113Glass-based, e.g. silica-based, optical waveguides

Definitions

  • the present application relates to the technical field of optical communication, in particular to a silicon-based optical modulator control chip and a control method for the silicon-based optical modulator.
  • Silicon-based optical modulator is one of the core devices of on-chip optical logic, optical interconnect and optical processor, which is used to convert radio frequency electrical signals into high-speed optical signals. It can form a complete functional network with lasers, detectors and other wavelength division multiplexing devices.
  • the current silicon-based optical modulator has the characteristics of high extinction ratio and easy integration, and it is generally made based on SOI (silicon-on-insulator, silicon-on-insulator) process.
  • SOI silicon-on-insulator, silicon-on-insulator
  • Silicon-based optical modulators based on SOI technology are generally composed of optical waveguide loads and traveling-wave electrodes. Electromagnetic waves are transmitted between the traveling-wave electrodes, and optical carriers are transmitted in the load optical waveguide. In the process of optical carrier and electromagnetic wave transmission, the interaction between the electromagnetic wave and the optical carrier causes the phase of the optical carrier to change, thereby completing the modulation from the electrical signal to the optical signal.
  • the current silicon-based optical modulator needs to set its operating point and appropriate bandwidth, but there is no corresponding control chip, and the operating point of the silicon-based optical modulator is prone to shift due to temperature, so that the silicon-based optical modulator cannot work at the optimal operating point.
  • the purpose of the present application is to provide a silicon-based optical modulator control chip and a control method for the silicon-based optical modulator in the embodiments of the present application, which realize automatic temperature compensation of the silicon-based optical modulator under different ambient temperatures, so as to avoid the problem that the operating point of the silicon-based optical modulator is shifted due to the influence of temperature, so that the silicon-based optical modulator can always work at the optimal operating point (or target operating point).
  • an embodiment of the present application provides a silicon-based optical modulator control chip, the silicon-based optical modulator includes an input coupler for receiving an incident optical signal and converting it into an optical signal to be modulated, a phase shift arm for modulating the phase of the optical signal, a heating element for heating the phase shift arm, an output coupler for converting the modulated optical signal into an outgoing optical signal, and a monitoring detector for monitoring the outgoing optical signal to obtain monitoring results
  • the control chip includes an acquisition unit, a comparison unit and an adjustment unit; The monitoring result of the detector; the comparison unit is connected to the acquisition unit, and is used to compare the monitoring result with the set value corresponding to the target operating point at the current ambient temperature; the adjustment unit is connected to the comparison unit, and is used to adjust the electrical parameter value applied to the heating element according to the comparison result of the monitoring result and the set value to change the optical parameter value of the phase shift arm, so that the difference between the monitoring result and the set value is within a preset range.
  • the heating element is arranged near the phase shift arm, and the heating element is used to change the optical parameter value of the phase shift arm by changing its temperature value, so as to adjust the phase of the optical signal passing through the phase shift arm accordingly.
  • the temperature value of the heating element is determined according to the voltage or current applied to the heating element.
  • phase shift arms there are at least one pair of phase shift arms, one or at least one pair of monitoring detectors, and one or each pair of monitoring detectors is connected to a corresponding pair of phase shift arms through the same output coupler.
  • At least one of each pair of phase shift arms is an adjustable phase shift arm.
  • the working point of the silicon-based optical modulator is determined according to the monitoring result of the monitoring detector, wherein the monitoring result is used to represent the optical parameter value of the phase shift arm.
  • an embodiment of the present application provides a method for controlling a silicon-based optical modulator, which includes:
  • the method before the step of obtaining the monitoring result of the monitoring detector of the silicon-based optical modulator, the method includes: obtaining a current ambient temperature value; and determining a set value of a target operating point based on the current ambient temperature value.
  • the step of determining the set value of the target operating point based on the current ambient temperature value includes: determining the set value of the corresponding target operating point according to different current ambient temperature values.
  • the method for determining the set value of the target operating point includes: obtaining the target monitoring result of the monitoring detector; based on the target monitoring result, determining the set value of the target operating point and the corresponding temperature value of the heating element.
  • the method for adjusting the electrical parameter value applied to the heating element of the silicon-based modulator includes: adjusting the voltage or current applied to the heating element through a control chip.
  • control method further includes: modulating the phase of the optical signal passing through the phase-shifting arm based on the adjusted optical parameter value; updating the monitoring result of the monitoring detector based on the phase of the optical signal passing through the phase-shifting arm after modulation.
  • Embodiments of the present application provide a control chip for a silicon-based optical modulator and a control method for the silicon-based optical modulator, which realize automatic temperature compensation for the silicon-based optical modulator at different ambient temperatures, so as to avoid the problem that the operating point of the silicon-based optical modulator is shifted due to the influence of temperature, so that the silicon-based optical modulator can always work at the optimal operating point.
  • the voltage control or flow control mode of the heating element can be provided to change the phase of the phase shift arm, and the bandwidth bias voltage of the silicon-based optical modulator can be adjusted, and the monitoring results of the monitoring detector can be monitored, so as to ensure the working stability of the silicon-based optical modulator under different temperature conditions to improve the reliability of the product.
  • FIG. 1 is a schematic diagram of the connection between a silicon-based optical modulator control chip and the silicon-based optical modulator provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the phase shift arm shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of the architecture of the control chip.
  • FIG. 4 is a top view of a doped structure according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram showing the effect of the silicon-based light modulator working at different operating points according to the embodiment of the present application.
  • FIG. 6 is a flow chart of steps of a method for controlling a silicon-based optical modulator provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the preceding steps of step S110 shown in FIG. 6 .
  • first and second herein are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, it can also be an electrical connection, or it can communicate with each other; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal connection between two components or an interaction between two components.
  • FIG. 1 is a schematic diagram of the connection between a silicon-based optical modulator control chip and the silicon-based optical modulator provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the phase shift arm shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of the architecture of the control chip.
  • FIG. 4 is a top view of a doped structure according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram showing the effect of the silicon-based light modulator working at different operating points according to the embodiment of the present application.
  • an embodiment of the present application provides a silicon-based optical modulator control chip.
  • the silicon-based optical modulator includes an input coupler 120 for receiving an incident optical signal and converting it into an optical signal to be modulated, a heating element 180 for heating the phase shift arm (as shown in FIG. 2 ), at least one pair of phase shift arms 130 for modulating the phase of the optical signal, an output coupler 140 for converting the modulated optical signal into an outgoing optical signal, and a monitoring detector 15 for monitoring the outgoing optical signal to obtain monitoring results.
  • 0 monitoring photodetector, referred to as MPD).
  • the control chip 170 includes an acquisition unit 171 , a comparison unit 172 and an adjustment unit 173 .
  • the acquisition unit 171 is used to acquire the monitoring result of the monitoring detector; the comparison unit 172 is connected to the acquisition unit 171, and is used to compare the monitoring result with the set value corresponding to the target operating point at the current ambient temperature; the adjustment unit 173 is connected to the comparison unit 172, and is used to adjust the electrical parameter value applied to the heating element according to the comparison result of the monitoring result and the set value to change the optical parameter value of the phase shift arm, so that the difference between the monitoring result and the set value is within a preset range, so that the silicon-based optical modulator Tend to work at the target operating point.
  • the silicon-based optical modulator control chip 170 described in this application realizes automatic temperature compensation for the silicon-based optical modulator at different ambient temperatures (or full temperature), so as to avoid the problem that the operating point of the silicon-based optical modulator is shifted due to the influence of temperature, so that the silicon-based optical modulator can always work at the optimal operating point, thereby improving the reliability of the product.
  • the silicon-based optical modulator includes an input coupler 120 , a phase shift arm 130 , an output coupler 140 , a monitoring detector 150 and a heating element 180 (as shown in FIG. 2 ).
  • the silicon-based optical modulator further includes: an input port 110 and an output port 160 .
  • the number of input ports 110 is at least two, and the number of output ports 160 is at least two. In this embodiment, there are two input ports and two output ports.
  • the input coupler 120 is respectively connected to each of the input ports 110 for receiving an incident optical signal input through each of the input ports 110 and converting it into an optical signal to be modulated.
  • the input coupler 120 is a 2*2 coupler, where 2*2 means that there are 2 inputs and 2 outputs.
  • the light intensity of the incident light signal is 3dB, wherein the light intensity of the incident light signal is not limited thereto.
  • the output coupler 140 is respectively connected to each of the output ports 160 for converting the modulated optical signal through the phase shift arm 130 into an outgoing optical signal, and outputting the outgoing optical signal through each of the output ports 160 .
  • the output coupler 140 is a 2*2 coupler, where 2*2 means that there are 2 inputs and 2 outputs.
  • the light intensity of the outgoing optical signal is 3dB, wherein the light intensity of the outgoing optical signal is not limited thereto.
  • the phase shift arm 130 is used for modulating the phase of the optical signal.
  • the phase shift arm can modulate the phase of the optical signal or not adjust the phase of the optical signal according to actual requirements.
  • the number of the phase shift arms 130 is two, that is, one pair, while in some other embodiments, the number of the phase shift arms 130 may be one or more pairs.
  • Each of the phase shift arms 130 is connected to the input coupler 120 and the output coupler 140 respectively.
  • at least one of each pair of phase shift arms 130 is an adjustable phase shift arm.
  • the phase shift arms 130 are all adjustable phase shift arms. In other partial embodiments, one of the two phase shift arms 130 is an adjustable phase shift arm.
  • the adjustable phase shift arm means that the optical parameter value of the phase shift arm can be changed.
  • the optical parameter may be a refractive index, but is not limited thereto. If the refractive index changes, the phase of the optical signal passing through the phase shift arm also changes accordingly.
  • the optical parameter value of the phase shift arm 130 can be determined according to the temperature value of the heating element 180, and the optical parameter value of the phase shift arm 130 corresponds to the phase of the optical signal passing through the phase shift arm 130, please refer to the following description for details.
  • monitoring detectors 150 there are two monitoring detectors 150, that is, a pair. In some other embodiments, there are one or more pairs of monitoring detectors 150 .
  • the monitoring detector 150 is used to monitor the optical signal passing through the phase shift arm 130 and the output coupler 140, and can convert part of the optical signal into an electrical signal to output the monitoring result.
  • the monitoring result is used to feed back the phase condition of the phase shift arm 130 and provide tuning information of the adjustable phase shift arm.
  • the control chip 170 can obtain the monitoring result of the monitoring detector. Further, when there is one monitoring detector, and the monitoring detector is connected to at least one pair of phase shift arms through an output coupler, in this case, the control chip 170 can obtain corresponding monitoring results through the monitoring detector. It should be noted that the monitoring detector can obtain the required monitoring result of the corresponding phase shift arm through specific settings of the output coupler (for example, performing partial shielding operation (or interference operation) on multiple optical signals passing through the phase shift arm).
  • the control chip 170 can obtain corresponding monitoring results through the two monitoring detectors in each pair of monitoring detectors, so that the ratio between the monitoring results can be further obtained.
  • the phase shift arm 130 includes a first phase shift arm 131 and a second phase shift arm 132 .
  • the monitoring detector 150 includes a first monitoring detector 151 and a second monitoring detector 152 .
  • the first monitoring detector 151 corresponds to the first phase shift arm 131
  • the second monitoring detector 152 corresponds to the second phase shift arm 132 .
  • the monitoring result of the first monitoring detector 151 is the first monitoring result, which feeds back the phase information of the first phase shift arm 131 , and can be represented by the optical parameter value (eg, refractive index) of the first phase shift arm 131 .
  • the monitoring result of the second monitoring detector 152 is the second monitoring result, which feeds back the phase information of the second phase shift arm 132 , and can be represented by the optical parameter value (eg, refractive index) of the second phase shift arm 132 . Therefore, the acquisition unit 171 of the control chip 170 can obtain the ratio between the monitoring results.
  • the ratio between the monitoring results in this embodiment is the ratio between the actual phase of the optical signal passing through the first phase shift arm 131 and the actual phase of the optical signal passing through the second phase shift arm 132 . It can also be said that the ratio between the monitoring results is the ratio between the actual refractive index of the first phase shift arm 131 and the actual refractive index of the second phase shift arm 132 .
  • the comparison unit 172 of the control chip 170 is used for comparing the monitoring result with the set value corresponding to the current ambient temperature at the target operating point after obtaining the monitoring result. It should be noted that the comparison of the monitoring result with the set value corresponding to the target operating point at the current ambient temperature may include the following two situations: one situation is that when there is one monitoring detector, the control chip 170 compares the obtained corresponding monitoring result with the set value; the other situation is that when there are at least one pair of monitoring detectors, the control chip 170 compares the ratio of the monitoring results with the set value. In this embodiment, the comparison refers to comparing the ratio between the monitoring results with the set value.
  • the adjustment unit 173 of the control chip 170 is used to adjust the electrical parameter value applied to the heating element to change the optical parameter value of the phase shift arm according to the comparison result of the monitoring result and the setting value, so that the difference between the monitoring result and the setting value is within a preset range.
  • the adjustment unit 173 of the control chip 170 can adjust the electrical parameter value applied to the heating element 180 to change the optical parameter value of the phase shift arm 130 according to the comparison result between the ratio of the monitoring results and the set value.
  • the preset range may be preset according to actual needs.
  • the heating element 180 may be a heating resistor. Of course, in some other embodiments, the heating element 180 may also be other heat-providing or temperature-regulating devices. As shown in FIG. 2 , the heating element 180 is disposed near the phase shift arm 130 . The bottom of the phase shift arm (located in the waveguide layer, not marked in the figure) is provided with a buried oxide layer 220 and a silicon-based substrate 210 in sequence.
  • the heating element 180 is used to change the optical parameter value of the phase shift arm 130 by changing its temperature value, thereby adjusting the phase of the optical signal passing through the phase shift arm 130 accordingly.
  • the optical parameter value (such as the refractive index) of the phase shift arm 130 can be determined according to the temperature value of the heating element 180 , and corresponds to the phase of the optical signal passing through the phase shift arm 130 .
  • the temperature value of the heating element 180 can be determined according to the voltage or current applied to the heating element 180 . If the voltage value is fixed, the temperature value of the heating element 180 can be changed accordingly through the control of the current value by the control chip 170 . If the current value is fixed, the temperature value of the heating element 180 can also be changed correspondingly through the control of the voltage value by the control chip 170 .
  • the temperature value of the heating element 180 changes accordingly.
  • the optical parameter value such as the refractive index
  • the phase shift arm 130 and the phase of the optical signal passing through the phase shift arm 130 also change accordingly.
  • the monitoring result of the monitoring detector 150 will change.
  • the ratio between the first monitoring result and the second monitoring result will also be changed.
  • the control chip 170 continuously adjusts the electrical parameter value, the ratio will also change continuously.
  • PID Proportion Integration Differentiation (proportional integral differential) control algorithm is adjusted until the difference between the monitoring result and the set value is within the preset range, so that the silicon-based optical modulator can tend to work at the target operating point.
  • the target operating point of the silicon-based light modulator corresponds to each ambient temperature.
  • the target operating point of the silicon-based optical modulator is determined based on the monitoring result of the monitoring detector 150 , wherein the monitoring result can represent the optical parameter value of the phase shift arm 130 .
  • the phase shift arm 130 is adjusted through the heating effect of the heating element 180, so that the silicon-based optical modulator can work towards the target under different ambient temperatures. operating point, which can further improve the reliability of the product.
  • the silicon-based optical modulator further includes a doped structure disposed on a silicon-based substrate, the doped structure includes an optical waveguide 330, and a P-type doped region 310 and an N-type doped region 320 respectively disposed on both sides of the optical waveguide; the P-type doped region 310 and the optical waveguide 330 are connected by a plurality of P-type doped connecting arms 311, and the N-type doped region 320 and the optical waveguide 330 are connected by a plurality of N-type doped connecting arms 321;
  • the ends 312 of the plurality of P-type doped connection arms 311 and the ends 322 of the plurality of N-type doped connection arms 321 are periodically arranged along the light propagation direction (the direction of the dashed arrow in FIG. 4 ) to form a PN junction depletion layer perpendicular to the light propagation direction.
  • control chip 170 is also used to adjust at least one of the potential of the electrode of the P-type doped region 310 and the potential of the electrode of the N-type doped region 320, so as to change the width of the PN junction depletion layer accordingly, so that the optical parameter value in the phase shift arm 130 changes accordingly.
  • the control chip 170 can adjust the potential of the electrode in the P-type doped region 310, or adjust the potential of the electrode in the N-type doped region 320, or adjust the potential of the electrode in the P-type doped region 310 and the potential of the electrode in the N-type doped region 320, thereby changing the width of the PN junction depletion layer.
  • the optical parameter value (such as the refractive index) of the phase shift arm 130 will also change, so that the difference between the monitoring result and the set value can be adjusted to be within a preset range, so that the silicon-based optical modulator can tend to work at the target operating point.
  • the abscissa represents the phase of the phase shift arm 130 in the silicon-based optical modulator
  • the ordinate represents the monitoring result of the monitoring detector 150 in the silicon-based optical modulator.
  • point A is the target operating point when working at the first temperature
  • point B is the target operating point when working at the second temperature.
  • arrow 1 that is, upward
  • the direction of arrow 2 that is, downward
  • the silicon-based optical modulator control chip described in this application can realize automatic temperature compensation of the silicon-based optical modulator under different ambient temperatures, so as to avoid the problem that the working point of the silicon-based optical modulator is shifted due to the influence of temperature, so that the silicon-based optical modulator can always work at the optimal operating point.
  • FIG. 6 is a flow chart of steps of a method for controlling a silicon-based optical modulator provided by an embodiment of the present application.
  • an embodiment of the present application provides a method for controlling a silicon-based light modulator.
  • the specific structure of the silicon-based light modulator is as described above, and will not be repeated here.
  • the control method of the silicon-based light modulator includes:
  • Step S110 acquiring the monitoring result of the monitoring detector of the silicon-based light modulator.
  • the ratio between the monitoring results of two monitoring detectors in each pair of monitoring detectors is obtained.
  • monitoring detectors there is a pair of monitoring detectors, and a pair of phase shift arms.
  • the monitoring detector and the phase shifting arm are connected in pairs and connected through the same input coupler.
  • One or each pair of monitoring detectors is connected to a corresponding pair of phase shifting arms through the same output coupler.
  • Step S120 comparing the monitoring result with the target working point corresponding to the set value at the current ambient temperature.
  • comparing the ratio with the target operating point corresponds to the set value at the current ambient temperature.
  • Step S130 when it is determined that the difference between the monitoring result and the set value exceeds a preset range, adjust the electrical parameter value of the heating element applied to the silicon-based modulator to change the optical parameter value of the phase shift arm of the silicon-based modulator.
  • the electrical parameter value of the heating element applied to the silicon-based modulator is adjusted to change the optical parameter value of the phase shift arm.
  • Step S140 until the difference between the monitoring result and the set value is within a preset range.
  • the ratio of the monitoring result of the monitoring detector is updated until the difference between the updated ratio and the set value is within a preset range, so that the silicon-based optical modulator tends to work at the target operating point.
  • step S110 that is, before the step of obtaining the monitoring result of the monitoring detector of the silicon-based optical modulator, it includes:
  • step S101 is to obtain the current ambient temperature value.
  • Step S102 based on the current ambient temperature value, determine the set value of the target operating point.
  • the set value of the target operating point may be determined by looking up a table based on the current ambient temperature value.
  • the data in the look-up table can be obtained through the method of determining the set value of the target operating point described below.
  • step S101 it may further include: determining the setting value of the corresponding target operating point according to different current ambient temperature values. That is to say, in the case of different ambient temperatures, the set value of the target operating point of the silicon-based optical modulator corresponds to each ambient temperature.
  • the set value of the target operating point is correlated with the monitoring result of the monitoring detector.
  • the method for determining the set value of the target operating point includes: obtaining the target monitoring result of the monitoring detector; based on the target monitoring result, determining the set value of the target operating point and the corresponding temperature value of the heating element.
  • the method for adjusting the electrical parameter value applied to the heating element of the silicon-based modulator may include: adjusting the voltage or current applied to the heating element through a control chip.
  • the heating element is arranged near the phase shift arm, and the heating element can adjust the phase of the optical signal passing through the phase shift arm accordingly through the change of its temperature value. That is to say, the optical parameter value (such as the refractive index) of the phase shift arm can be determined according to the temperature value of the heating element, and corresponds to the phase of the optical signal passing through the phase shift arm.
  • the optical parameter value such as the refractive index
  • the temperature value of the heating element can be determined according to the voltage or current applied to the heating element. If the voltage value is fixed, the temperature value of the heating element can be changed accordingly by controlling the current value of the control chip. If the current value is fixed, the temperature value of the heating element can also be changed correspondingly through the control of the voltage value by the control chip.
  • the temperature value of the heating element changes accordingly.
  • the optical parameter value (such as the refractive index) of the phase shift arm also changes correspondingly.
  • the method includes: modulating the phase of the optical signal passing through the phase-shifting arm based on the adjusted optical parameter value of the phase-shifting arm; updating the monitoring result of the monitoring detector based on the phase of the optical signal passing through the phase-shifting arm after modulation.
  • step S140 in the process of updating the monitoring result of the monitoring detector, at least the electrical parameter value of the heating element can be adjusted by using the PID control algorithm until the difference between the monitoring result and the set value is within the preset range, so that the silicon-based optical modulator tends to work at the target operating point.
  • the silicon-based optical modulator tends to work at the target operating point.
  • the embodiment of the present application provides a silicon-based optical modulator control chip and a control method for the silicon-based optical modulator, which realize automatic temperature compensation for the silicon-based optical modulator under different ambient temperatures, so as to avoid the problem that the operating point of the silicon-based optical modulator is shifted due to the influence of temperature, so that the silicon-based optical modulator can always work at the optimal operating point.
  • the voltage control or flow control mode of the heating element can be provided to adjust the phase of the phase shift arm, and the bandwidth bias voltage of the silicon-based optical modulator can be adjusted, and the monitoring results of the monitoring detector can be monitored, so as to ensure the working stability of the silicon-based optical modulator under different temperature conditions and improve the reliability of the product.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种硅基光调制器控制芯片及所述硅基光调制器的控制方法,其旨在实现对所述硅基光调制器在不同环境温度下的自动温度补偿,以避免所述硅基光调制器的工作点因温度影响而发生偏移的问题,从而使得所述硅基光调制器能够一直工作于最佳工作点,并且提高产品的可靠性。

Description

硅基光调制器控制芯片及硅基光调制器的控制方法 技术领域
本申请涉及光通信技术领域,具体涉及一种硅基光调制器控制芯片及所述硅基光调制器的控制方法。
背景技术
硅基光调制器是片上光逻辑、光互联和光处理器的核心器件之一,用于将射频电信号转化为高速光信号。它可以与激光器、探测器和其他波分复用器件构成一个完整的功能性网络。
目前的硅基光调制器具有较高消光比和易集成的特点,其一般是基于SOI(silicon-on-insulator,绝缘体上硅)工艺所制成。基于SOI工艺的硅基光调制器一般由光波导负载和行波电极组成,电磁波在行波电极间传输,光载波在负载光波导中传输。在光载波和电磁波传输过程中,电磁波与光载波相互作用使光载波的相位发生变化,从而完成电信号到光信号的调制。
然而,目前的硅基光调制器需要设定其工作点以及合适的带宽,但是并未提供相应的控制芯片,而且硅基光调制器的工作点容易受温度影响而发生偏移,于是使得硅基光调制器无法工作于最佳工作点。
因此,需要对现有技术问题提出解决方法。
技术问题
本申请的目的在于,本申请实施例提供一种硅基光调制器控制芯片及所述硅基光调制器的控制方法,其实现对所述硅基光调制器在不同环境温度下的自动温度补偿,以避免所述硅基光调制器的工作点因温度影响而发生偏移的问题,从而使得所述硅基光调制器能够一直工作于最佳工作点(或称目标工作点)。
技术解决方案
根据本申请的一方面,本申请一实施例提供了一种硅基光调制器控制芯片,所述硅基光调制器包括用于接收入射光信号并转成待调制的光信号的输入耦合器、用于调制光信号的相位的相移臂、用于给相移臂加热的加热件、用于将调制后的光信号转成出射光信号的输出耦合器以及用于监测出射光信号以获得监测结果的监测探测器,其特征在于,所述控制芯片包括获取单元、比较单元和调整单元;所述获取单元用于获取所述监测探测器的监测结果;所述比较单元与所述获取单元相连,用于将所述监测结果与目标工作点对应于当前环境温度下的设定值进行比较;所述调整单元与所述比较单元相连,用于根据监测结果和设定值的比较结果调整施加于所述加热件的电学参数值而改变所述相移臂的光学参数值,以使监测结果与所述设定值之间的差值介于预设范围之内。
可选地,所述加热件设置在相移臂的附近,并且所述加热件用于通过其温度值的改变以改变所述相移臂的光学参数值,以相应地调整经由相移臂的光信号的相位。
可选地,所述加热件的温度值是根据施加于所述加热件的电压或电流大小而确定的。
可选地,所述相移臂为至少一对,所述监测探测器为一个或至少一对,一个或每对监测探测器通过同一个输出耦合器与相应一对的相移臂相连。
可选地,每对相移臂中的至少一个为可调相移臂。
可选地,所述硅基光调制器的工作点为根据所述监测探测器的监测结果而确定的,其中,所述监测结果用于表示相移臂的光学参数值。
根据本申请的另一方面,本申请一实施例提供了一种硅基光调制器的控制方法,其包括:
获取所述硅基光调制器的监测探测器的监测结果;
比较所述监测结果与目标工作点对应于当前环境温度下的设定值;
当判定所述监测结果与所述设定值之间的差值超过预设范围时,调整施加于所述硅基调制器的加热件的电学参数值而改变所述硅基调制器的相移臂的光学参数值;直至所述监测结果与所述设定值之间的差值介于预设范围之内。
可选地,所述获取所述硅基光调制器的监测探测器的监测结果的步骤之前,包括:获取当前环境温度值;基于当前环境温度值,确定目标工作点的设定值。
可选地,所述基于当前环境温度值,确定目标工作点的设定值的步骤,包括:根据不同的当前环境温度值,确定相应目标工作点的设定值。
可选地,所述确定目标工作点的设定值的方法,包括:获取所述监测探测器的目标监测结果;基于所述目标监测结果,确定目标工作点的设定值以及加热件的相应温度值。
可选地,所述调整施加于所述硅基调制器的加热件的电学参数值的方法,包括:通过控制芯片调整施加于所述加热件的电压或电流大小。
可选地,在所述调整施加于所述硅基调制器的加热件的电学参数值以改变所述硅基调制器的相移臂的光学参数值的步骤之后和在所述直至所述监测结果与所述设定值之间的差值介于预设范围之内的步骤之前,所述控制方法还包括:基于调整后所述相移臂的光学参数值,调制经由所述相移臂的光信号的相位;基于调制后经由所述相移臂的光信号的相位,更新监测探测器的监测结果。
有益效果
本申请实施例提供了硅基光调制器控制芯片及所述硅基光调制器的控制方法,其实现对硅基光调制器在不同环境温度下的自动温度补偿,以避免硅基光调制器的工作点因温度影响而发生偏移的问题,从而使得硅基光调制器能够一直工作于最佳工作点。此外,通过控制芯片,可以提供加热件的压控或流控方式,以改变相移臂的相位,而且也能够调整硅基光调制器的带宽偏压,以及监控监测探测器的监测结果,从而能够保证硅基光调制器在不同温度条件下的工作稳定性,以提高产品的可靠性。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请一实施例提供的一种硅基光调制器控制芯片与硅基光调制器的连接示意图。
图2为图1所示的相移臂的示意图。
图3为所述控制芯片的架构示意图。
图4为本申请实施例的掺杂结构的俯视图。
图5为本申请实施例所述硅基光调制器工作于不同工作点的效果示意图。
图6为本申请一实施例提供的一种硅基光调制器的控制方法的步骤流程图。
图7为图6所示步骤S110的前序步骤示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
文中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
图1为本申请一实施例所提供的一种硅基光调制器控制芯片与硅基光调制器的连接示意图。图2为图1所示的相移臂的示意图。图3为所述控制芯片的架构示意图。图4为本申请实施例的掺杂结构的俯视图。图5为本申请实施例所述硅基光调制器工作于不同工作点的效果示意图。
参阅图1至图5,本申请一实施例提供了一种硅基光调制器控制芯片,所述硅基光调制器包括用于接收入射光信号并转成待调制的光信号的输入耦合器120、用于给相移臂加热的加热件180(如图2所示)、用于调制光信号的相位的至少一对相移臂130、用于将调制后的光信号转成出射光信号的输出耦合器140以及用于监测出射光信号以获得监测结果的监测探测器150(monitor photodetector,简称MPD)。结合图3所示,所述控制芯片170包括获取单元171、比较单元172和调整单元173。所述获取单元171用于获取所述监测探测器的监测结果;所述比较单元172与所述获取单元171相连,用于将所述监测结果与目标工作点对应于当前环境温度下的设定值进行比较;所述调整单元173与所述比较单元172相连,用于根据监测结果和设定值的比较结果调整施加于所述加热件的电学参数值而改变所述相移臂的光学参数值,以使监测结果与所述设定值之间的差值介于预设范围之内,从而使得硅基光调制器趋向工作于目标工作点。
本申请所述硅基光调制器控制芯片170实现对硅基光调制器在不同环境温度(或称全温)下的自动温度补偿,以避免硅基光调制器的工作点因温度影响而发生偏移的问题,从而使得硅基光调制器能够一直工作于最佳工作点,从而提高产品的可靠性。
以下将结合图1至图5进一步详细描述硅基光调制器的结构及工作机制。
参阅图1所示,所述硅基光调制器包括输入耦合器120、相移臂130、输出耦合器140、监测探测器150和加热件180(如图2所示)。在本实施例中,所述硅基光调制器还包括:输入端口110和输出端口160。
具体地,输入端口110的数量为至少两个,输出端口160的数量为至少两个。在本实施例中,输入端口的数量为两个,输出端口的数量为两个。所述输入耦合器120分别与每一所述输入端口110相连,用于接收通过每一所述输入端口110所输入的入射光信号,并且转成待调制的光信号。在本实施例中,所述输入耦合器120为2*2的耦合器,其中2*2表示输入为2个,输出为2个。而且,入射光信号的光强度为3dB,其中入射光信号的光强度不限于此。
同样,所述输出耦合器140分别与每一所述输出端口160相连,用于将经由相移臂130的调制后的光信号转成出射光信号,并且将出射光信号通过每一所述输出端口160输出。在本实施例中,所述输出耦合器140为2*2的耦合器,其中2*2表示输入为2个,输出为2个。而且出射光信号的光强度为3dB,其中出射光信号的光强度不限于此。
所述相移臂130为用于调制光信号的相位。所述相移臂可以根据实际需求,可以调制光信号的相位,也可以不调整光信号的相位。在本实施例中,所述相移臂130的数量为两个,即为一对,而在其他部分实施例中,相移臂130的数量可以为一个或多对。每一所述相移臂130分别与所述输入耦合器120和所述输出耦合器140相连。在一些实施例中,每对相移臂130中的至少一个为可调相移臂。在本实施例中,相移臂130均为可调相移臂。而在其他部分实施例中,两个相移臂130中的一个为可调相移臂。需说明的是,可调相移臂是指可以改变相移臂的光学参数值。其中,光学参数可以为折射率,但不限于此。若折射率发生变化时,经由相移臂的光信号的相位也相应发生变化。进一步地,所述相移臂130的光学参数值可以根据所述加热件180的温度值而确定的,并且所述相移臂130的光学参数值与经由相移臂130的光信号的相位相对应,具体参阅下文描述。
在本实施例中,所述监测探测器150为两个,即一对。而在其他部分实施例中,所述监测探测器150为一个或多对。所述监测探测器150用于监测经由相移臂130和输出耦合器140的光信号,并且可以将其中部分光信号转换成电信号,以输出监测结果。该监测结果用于反馈相移臂130的相位情况以及提供可调相移臂的调谐信息。
所述控制芯片170可以获取监测探测器的监测结果。进一步地,当所述监测探测器为一个,且该监测探测器通过输出耦合器与至少一对相移臂相连,在这种情况下,所述控制芯片170可以通过该监测探测器得到相应的监测结果。需说明的是,可以通过对输出耦合器的特定设置(例如对多个经由相移臂的光信号进行部分屏蔽操作(或称干扰操作)),使得该监测探测器得到所需对应相移臂的监测结果。当所述监测探测器为至少一对,且每对监测探测器中的两个监测探测器通过同一输出耦合器与至少一对相移臂相连,在这种情况下,所述控制芯片170可以通过每对监测探测器中的两个监测探测器得到相应的监测结果,这样,可以进一步得到监测结果之间的比值。
在本实施例中,相移臂130包括第一相移臂131和第二相移臂132。监测探测器150包括第一监测探测器151和第二监测探测器152。第一监测探测器151与第一相移臂131对应,第二监测探测器152与第二相移臂132对应。第一监测探测器151的监测结果为第一监测结果,其反馈第一相移臂131的相位信息,并且可以用第一相移臂131的光学参数值(例如折射率)来表示。同样,第二监测探测器152的监测结果为第二监测结果,其反馈第二相移臂132的相位信息,并且可以用第二相移臂132的光学参数值(例如折射率)来表示。于是,所述控制芯片170的获取单元171可以得到监测结果之间的比值。换言之,在本实施例中的监测结果之间的比值即为经由第一相移臂131的光信号的实际相位与经由第二相移臂132的光信号的实际相位之间的比值。也可以说,监测结果之间的比值即为第一相移臂131的实际折射率与第二相移臂132的实际折射率之间的比值。
所述控制芯片170的比较单元172用于在获取监测结果之后,可以将监测结果与目标工作点对应于当前环境温度下的设定值进行比较。需说明的是,所述将监测结果与目标工作点对应于当前环境温度下的设定值进行比较,可以包括以下两种情况:一种情况为当所述监测探测器为一个时,所述控制芯片170将所得到的相应监测结果与设定值进行比较;另一种情况为当所述监测探测器为至少一对时,所述控制芯片170将监测结果之间的比值与设定值进行比较。在本实施例中,所述比较是指将监测结果之间的比值与设定值进行比较。
所述控制芯片170的调整单元173用于根据监测结果和设定值的比较结果,调整施加于所述加热件的电学参数值而改变所述相移臂的光学参数值,以使监测结果与所述设定值之间的差值介于预设范围之内。在本实施例中,具体为,所述控制芯片170的调整单元173可以根据监测结果之间的比值与设定值之间的比较结果,调整施加于加热件180的电学参数值而改变所述相移臂130的光学参数值。其中,预设范围可以根据实际需求而预先设定好。
在本实施例中,加热件180可以为发热电阻。当然,在其他部分实施例中,加热件180也可以为其他可供热或调温器件。如图2所示,所述加热件180设置在相移臂130的附近。相移臂(位于波导层,图中未标注)的底部依次设置埋氧层220和硅基衬底210。
加热件180用于通过改变其温度值而改变所述相移臂130的光学参数值,进而相应地调整经由相移臂130的光信号的相位。换言之,所述相移臂130的光学参数值(例如折射率)可以根据加热件180的温度值而确定,并且与经由相移臂130的光信号的相位相对应。
在本实施例中,加热件180的温度值可以根据施加于加热件180的电压或电流大小而确定。若电压值为固定时,通过控制芯片170对电流值的控制,可以使加热件180的温度值发生相应的变化。若电流值为固定时,通过控制芯片170对电压值的控制,也可以使加热件180的温度值发生相应的变化。
当通过控制芯片170改变加热件180的电学参数值时,加热件180的温度值发生相应的变化。当加热件180的温度值发生变化后,相移臂130的光学参数值(例如折射率)和经由相移臂130的光信号的相位也相应地发生变化。于是,监测探测器150的监测结果会发生改变。在本实施例中,具体为第一监测结果与第二监测结果之间的比值也会得到发生改变。随着控制芯片170不断调整电学参数值,比值也会不断变化。在此调整过程中,可以采用PID(Proportion Integration Differentiation,即比例积分微分)控制算法进行调整,直至监测结果与设定值之间的差值介于预设范围之内,这样使得硅基光调制器可以趋向工作于目标工作点。
应理解的是,在不同的环境温度情况下,硅基光调制器的目标工作点与每一个环境温度相对应。所述硅基光调制器的目标工作点为基于监测探测器150的监测结果而确定的,其中,监测结果可以表示相移臂130的光学参数值。而在实际情况中,由于硅基光调制器的实际工作点容易受到外界环境变化(例如环境温度)而发生偏移,因此,通过控制芯片170、加热件180、相移臂130和监测探测器150的协同配合,当监测到经由相移臂130的光信号的相位发生偏移后,通过加热件180的加热作用以调整经由相移臂130的光信号的相位,从而使得硅基光调制器在不同环境温度下可以趋向工作于目标工作点,这样可以进一步提高产品的可靠性。
参阅图4,在本实施例中,所述硅基光调制器还包括设于硅基衬底上的掺杂结构,所述掺杂结构包括光波导330,以及分别设置于光波导两侧的P型掺杂区域310和N型掺杂区域320;P型掺杂区域310与光波导330之间通过多根P型掺杂连接臂311连接,N型掺杂区域320与光波导330之间通过多根N型掺杂连接臂321连接;所述多根P型掺杂连接臂311的末端312与所述多根N型掺杂连接臂321的末端322沿光传播方向(图4中的虚线箭头方向)周期性排列形成与光传播方向垂直的PN结耗尽层。
进一步地,所述控制芯片170还用于调整P型掺杂区域310的电极的电势和N型掺杂区域320的电极的电势中的至少一个,以相应地改变PN结耗尽层的宽度,使得相移臂130中的光学参数值发生相应的变化。具体地,所述控制芯片170可以调整P型掺杂区域310的电极的电势,也可以调整N型掺杂区域320的电极的电势,或者对P型掺杂区域310的电极的电势和N型掺杂区域320的电极的电势均作调整,从而改变PN结耗尽层的宽度。当PN结耗尽层的宽度发生变化时,相移臂130的光学参数值(例如折射率)也会发生变化,从而能够调整监测结果与设定值之间的差值,使其介于预设范围之内,从而使得硅基光调制器可趋向工作于目标工作点。
如图5所示,横坐标表示硅基光调制器中的相移臂130的相位,纵坐标表示硅基光调制器中的监测探测器150的监测结果。其中,A点为工作于第一温度时的目标工作点,B点为工作于第二温度时的目标工作点,沿箭头1方向(即朝上方向),表示经由第一相移臂131的光信号发生偏差,沿箭头2方向(即朝下方向),表示经由第二相移臂132的光信号发生偏差。
本申请所述硅基光调制器控制芯片可以实现对硅基光调制器的在不同环境温度下的自动温度补偿,以避免硅基光调制器的工作点因温度影响而发生偏移的问题,从而使得硅基光调制器能够一直工作于最佳工作点。
图6为本申请一实施例所提供的一种硅基光调制器的控制方法的步骤流程图。
参阅图6,本申请一实施例提供了一种硅基光调制器的控制方法。所述硅基光调制器的具体结构如上文所述,在此不再赘述。
所述硅基光调制器的控制方法包括:
步骤S110,获取所述硅基光调制器的监测探测器的监测结果。
具体地,在本实施例中,获取每对监测探测器中的两个监测探测器的监测结果之间的比值。
需要说明的是,在本实施例中,监测探测器为一对,相移臂为一对。监测探测器和相移臂是成对连接,并且通过同一个输入耦合器连接。在其他部分实施中,监测探测器可以为一个或多对,相移臂为多对。一个或每对监测探测器通过同一个输出耦合器与相应一对的相移臂相连。
步骤S120,比较所述监测结果与目标工作点对应于当前环境温度下的设定值。
在本实施例中,比较所述比值与目标工作点对应于当前环境温度下的设定值。
步骤S130,当判定所述监测结果与所述设定值之间的差值超过预设范围时,调整施加于所述硅基调制器的加热件的电学参数值而改变所述硅基调制器的相移臂的光学参数值。
在本实施例中,当判定所述比值与所述设定值之间的差值超过预设范围时,调整施加于硅基调制器的加热件的电学参数值而改变所述相移臂的光学参数值。
步骤S140,直至所述监测结果与所述设定值之间的差值介于预设范围之内。
在本实施例中,基于调整后所述相移臂的光学参数值,更新监测探测器的监测结果的比值,直至更新后的比值与所述设定值之间的差值介于预设范围之内,使得硅基光调制器趋向工作于目标工作点。
以下将结合附图进一步详细描述每一步骤。
在步骤S110之前,即所述获取所述硅基光调制器的监测探测器的监测结果的步骤之前,包括:
结合参阅图7,步骤S101,获取当前环境温度值。
步骤S102,基于当前环境温度值,确定目标工作点的设定值。
在步骤S102中,可以基于当前环境温度值,通过查表方式,以确定目标工作点的设定值。其中查表中的数据可以通过下文所述的确定目标工作点的设定值的方法而获得。
在上述步骤S101中,可以进一步包括:根据不同的当前环境温度值,确定相应目标工作点的设定值。也就是说,在不同的环境温度情况下,硅基光调制器的目标工作点的设定值与每一个环境温度相对应。
目标工作点的设定值与监测探测器的监测结果是相关联的。在一些实施例中,所述确定目标工作点的设定值的方法,包括:获取所述监测探测器的目标监测结果;基于所述目标监测结果,确定目标工作点的设定值以及加热件的相应温度值。
在步骤S130中,在一些实施例中,所述调整施加于所述硅基调制器的加热件的电学参数值的方法可以包括:通过控制芯片调整施加于所述加热件的电压或电流大小。
所述加热件设置在相移臂的附近,并且加热件用于通过其温度值的改变,可以相应地调整经由相移臂的光信号的相位。也就是说,所述相移臂的光学参数值(例如折射率)可以根据加热件的温度值而确定,并且与经由相移臂的光信号的相位相对应。
在本实施例中,加热件的温度值可以根据施加于加热件的电压或电流大小而确定。若电压值为固定时,通过控制芯片对电流值的控制,可以使加热件的温度值发生相应的变化。若电流值为固定时,通过控制芯片对电压值的控制,也可以使加热件的温度值发生相应的变化。
当通过控制芯片改变加热件的电学参数值时,加热件的温度值发生相应变化。当加热件的温度值发生变化后,相移臂的光学参数值(例如折射率)也相应的发生变化。
在此情况下,在所述调整施加于所述硅基调制器的加热件的电学参数值以改变所述硅基调制器的相移臂的光学参数值的步骤之后和在所述直至所述监测结果与所述设定值之间的差值介于预设范围之内的步骤之前,包括:基于调整后所述相移臂的光学参数值,调制经由所述相移臂的光信号的相位;基于调制后经由所述相移臂的光信号的相位,更新监测探测器的监测结果。
继续参阅图6,在步骤S140中,在更新监测探测器的监测结果的过程中,至少可以通过采用PID控制算法对加热件的电学参数值进行调整,直至监测结果与所述设定值之间的差值介于预设范围之内,使得硅基光调制器趋向工作于目标工作点。这样,可以实现对硅基光调制器在不同环境温度下的自动温度补偿,以避免硅基光调制器的工作点因温度影响而发生偏移的问题,从而使得硅基光调制器能够一直工作于最佳工作点。
本申请实施例提供了硅基光调制器控制芯片及硅基光调制器的控制方法,其实现对硅基光调制器在不同环境温度下的自动温度补偿,以避免硅基光调制器的工作点因温度影响而发生偏移的问题,从而使得硅基光调制器能够一直工作于最佳工作点。此外,通过控制芯片,可以提供加热件的压控或流控方式,以调整相移臂的相位,而且也能够调整硅基光调制器的带宽偏压,以及监控监测探测器的监测结果,从而能够保证硅基光调制器在不同温度条件下的工作稳定性,以提高产品的可靠性。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种硅基光调制器控制芯片及硅基光调制器的控制方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (12)

  1. 一种硅基光调制器控制芯片,所述硅基光调制器包括用于接收入射光信号并转成待调制的光信号的输入耦合器、用于调制光信号的相位的相移臂、用于给相移臂加热的加热件、用于将调制后的光信号转成出射光信号的输出耦合器以及用于监测出射光信号以获得监测结果的监测探测器,其特征在于,所述控制芯片包括获取单元、比较单元和调整单元;所述获取单元用于获取所述监测探测器的监测结果;所述比较单元与所述获取单元相连,用于将所述监测结果与目标工作点对应于当前环境温度下的设定值进行比较;所述调整单元与所述比较单元相连,用于根据监测结果和设定值的比较结果调整施加于所述加热件的电学参数值而改变所述相移臂的光学参数值,以使监测结果与所述设定值之间的差值介于预设范围之内。
  2. 根据权利要求1所述的硅基光调制器控制芯片,其特征在于,所述加热件设置在相移臂的附近,并且所述加热件用于通过其温度值的改变以改变所述相移臂的光学参数值,以相应地调整经由相移臂的光信号的相位。
  3. 根据权利要求1所述的硅基光调制器控制芯片,其特征在于,所述加热件的温度值是根据施加于所述加热件的电压或电流大小而确定的。
  4. 根据权利要求1所述的硅基光调制器控制芯片,其特征在于,所述相移臂为至少一对,所述监测探测器为一个或至少一对,一个或每对监测探测器通过同一个输出耦合器与相应一对的相移臂相连。
  5. 根据权利要求4所述的硅基光调制器控制芯片,其特征在于,每对相移臂中的至少一个为可调相移臂。
  6. 根据权利要求1所述的硅基光调制器控制芯片,其特征在于,所述硅基光调制器的工作点为根据所述监测探测器的监测结果而确定的,其中,所述监测结果用于表示相移臂的光学参数值。
  7. 一种硅基光调制器的控制方法,其特征在于,其包括:
    获取所述硅基光调制器的监测探测器的监测结果;
    比较所述监测结果与目标工作点对应于当前环境温度下的设定值;
    当判定所述监测结果与所述设定值之间的差值超过预设范围时,调整施加于所述硅基调制器的加热件的电学参数值而改变所述硅基调制器的相移臂的光学参数值;直至所述监测结果与所述设定值之间的差值介于预设范围之内。
  8. 根据权利要求7所述的控制方法,其特征在于,所述获取所述硅基光调制器的监测探测器的监测结果的步骤之前,包括:
    获取当前环境温度值;
    基于当前环境温度值,确定目标工作点的设定值。
  9. 根据权利要求8所述的控制方法,其特征在于,所述基于当前环境温度值,确定目标工作点的设定值的步骤,包括:根据不同的当前环境温度值,确定相应目标工作点的设定值。
  10. 根据权利要求8所述的控制方法,其特征在于,所述确定目标工作点的设定值的方法,包括:
    获取所述监测探测器的目标监测结果;
    基于所述目标监测结果,确定目标工作点的设定值以及加热件的相应温度值。
  11. 根据权利要求7所述的控制方法,其特征在于,所述调整施加于所述硅基调制器的加热件的电学参数值的方法,包括:
    通过控制芯片调整施加于所述加热件的电压或电流大小。
  12. 根据权利要求7所述的控制方法,其特征在于,在所述调整施加于所述硅基调制器的加热件的电学参数值以改变所述硅基调制器的相移臂的光学参数值的步骤之后和在所述直至所述监测结果与所述设定值之间的差值介于预设范围之内的步骤之前,所述控制方法还包括:
    基于调整后所述相移臂的光学参数值,调制经由所述相移臂的光信号的相位;
    基于调制后经由所述相移臂的光信号的相位,更新监测探测器的监测结果。
PCT/CN2022/128839 2022-01-18 2022-11-01 硅基光调制器控制芯片及硅基光调制器的控制方法 WO2023138149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210056145.8A CN116500812A (zh) 2022-01-18 2022-01-18 硅基光调制器控制芯片及硅基光调制器的控制方法
CN202210056145.8 2022-01-18

Publications (1)

Publication Number Publication Date
WO2023138149A1 true WO2023138149A1 (zh) 2023-07-27

Family

ID=87318887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128839 WO2023138149A1 (zh) 2022-01-18 2022-11-01 硅基光调制器控制芯片及硅基光调制器的控制方法

Country Status (3)

Country Link
CN (1) CN116500812A (zh)
TW (1) TW202331361A (zh)
WO (1) WO2023138149A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428398A (zh) * 2009-03-31 2012-04-25 甲骨文美国公司 双层热调谐光学器件
US20150280832A1 (en) * 2014-03-27 2015-10-01 Nec Corporation Optical modulator and operating point control method
US20180267340A1 (en) * 2017-03-15 2018-09-20 Elenion Technologies, Llc Bias control of optical modulators
US20190326996A1 (en) * 2018-04-19 2019-10-24 Fujitsu Limited Optical modulator
CN111929929A (zh) * 2020-07-25 2020-11-13 烽火通信科技股份有限公司 一种直调直检光调制器自动偏压控制装置和方法
CN112379479A (zh) * 2020-11-10 2021-02-19 中国科学院上海微系统与信息技术研究所 一种硅基光收发器件及其制备方法
CN112925122A (zh) * 2021-01-28 2021-06-08 华中科技大学 基于导频法的硅基马赫曾德尔调制器偏压控制装置及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102428398A (zh) * 2009-03-31 2012-04-25 甲骨文美国公司 双层热调谐光学器件
US20150280832A1 (en) * 2014-03-27 2015-10-01 Nec Corporation Optical modulator and operating point control method
US20180267340A1 (en) * 2017-03-15 2018-09-20 Elenion Technologies, Llc Bias control of optical modulators
US20190326996A1 (en) * 2018-04-19 2019-10-24 Fujitsu Limited Optical modulator
CN111929929A (zh) * 2020-07-25 2020-11-13 烽火通信科技股份有限公司 一种直调直检光调制器自动偏压控制装置和方法
CN112379479A (zh) * 2020-11-10 2021-02-19 中国科学院上海微系统与信息技术研究所 一种硅基光收发器件及其制备方法
CN112925122A (zh) * 2021-01-28 2021-06-08 华中科技大学 基于导频法的硅基马赫曾德尔调制器偏压控制装置及系统

Also Published As

Publication number Publication date
CN116500812A (zh) 2023-07-28
TW202331361A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US10313015B2 (en) Optical transmitter and bias voltage control method
US7907324B2 (en) Optical modulator and controlling method and apparatus thereof
US7657130B2 (en) Silicon-based optical modulator for analog applications
CN108476063B (zh) 用于光发射机中的光损的表征和补偿方法以及光发射机
US20100129088A1 (en) Optical transmission apparatus
JP2012519873A (ja) 改善した光導波路スプリッタ
JP2001154162A (ja) Wdmシステム用の光学的送信機
JP2019507381A (ja) マッハツェンダ変調器を有する光送信器及びその動作方法
US5488503A (en) Low-power, stabilized, photonic modulator system
WO2023051393A1 (zh) 一种光学调制装置及调制方法
CN111458908A (zh) 基于铌酸锂单晶薄膜的微环电光调制器及使用方法和应用
CN114167555A (zh) 一种面向高速光通信的6.4 Tbps硅基光引擎收发芯片组件
US20200089075A1 (en) Mach-zehnder optical modulator
WO2023138149A1 (zh) 硅基光调制器控制芯片及硅基光调制器的控制方法
WO2020123944A1 (en) Automatic bias control of an optical transmitter
CN109856885A (zh) 一种低压负啁啾调制器
WO2021233268A1 (zh) 光调制器及其控制方法
US11320675B2 (en) Automatic bias control of an optical transmitter
WO2021143171A1 (zh) 一种相干发射机、控制相干发射机的方法及相干收发系统
WO2011043718A1 (en) Method and device for controlling the operation point of a semiconductor mach-zender modulator
JP7151934B1 (ja) 光半導体装置、光変調器および光送信装置
CN107026382A (zh) 一种光电振荡器
US20230129460A1 (en) Self-adjusted automatic bias control of an electro-absorption modulator
WO2024065174A1 (zh) 光发射机、光发射方法、光模块、设备及系统
US11294206B2 (en) Performance prediction and maintenance of an optical transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921573

Country of ref document: EP

Kind code of ref document: A1