WO2023138048A1 - 一种基于bdd电极的电解模组及水处理系统 - Google Patents

一种基于bdd电极的电解模组及水处理系统 Download PDF

Info

Publication number
WO2023138048A1
WO2023138048A1 PCT/CN2022/113836 CN2022113836W WO2023138048A1 WO 2023138048 A1 WO2023138048 A1 WO 2023138048A1 CN 2022113836 W CN2022113836 W CN 2022113836W WO 2023138048 A1 WO2023138048 A1 WO 2023138048A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
electrolysis
electrolysis module
bdd electrode
water
Prior art date
Application number
PCT/CN2022/113836
Other languages
English (en)
French (fr)
Inventor
王玉宝
赵小玻
徐金昌
曹延新
王晓玲
张鑫维
刘明昭
张敬群
訾蓬
王传奇
魏华阳
Original Assignee
山东欣远新材料科技有限公司
中材人工晶体研究院(山东)有限公司
江西欣远新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东欣远新材料科技有限公司, 中材人工晶体研究院(山东)有限公司, 江西欣远新材料科技有限公司 filed Critical 山东欣远新材料科技有限公司
Publication of WO2023138048A1 publication Critical patent/WO2023138048A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the invention relates to the technical field of electrochemistry, in particular to an electrolysis module and a water treatment system based on a BDD electrode.
  • BDD electrode Boron-doped diamond (BDD) electrode is a BDD electrode made by depositing a boron-doped diamond film on a substrate by vapor deposition. After it is energized, the effective components produced by electrolyzing water in water are ozone and hydroxyl radicals, which can oxidize viruses, bacteria, and organic pollutants. In addition to the advantages of high oxygen evolution potential and high electrocatalytic activity, BDD electrodes also have excellent chemical stability and can withstand electrode loss caused by electrochemical corrosion during long-term electrolytic applications.
  • the structure of the existing BDD electrode is two-dimensional flat.
  • sandblasting, laser drilling and cutting, water jet, chemical etching and other processing methods are used to process the surface and structure to increase the surface area and improve the reaction efficiency.
  • these processing methods are usually prone to processing stress (for example, processing stress caused by laser drilling and cutting), which affects the mechanical strength and low processing efficiency.
  • the commonly used electrode structures of two-dimensional flat BDD electrodes are generally pure flat plates, orifice plates, etc. (as shown in Figure 1).
  • the direction of water flow is perpendicular to the exhaust direction during application (as shown in Figure 2).
  • the hydrogen and ozone generated during the operation of the electrolysis module are difficult to discharge in time, which reduces the effective working area and hinders the efficient progress of the electrolysis reaction.
  • the water to be treated contains particulate matter or impurities are deposited during the electrochemical reaction, it is easy to block the vent (or tank) and reduce the electrolysis efficiency.
  • the present invention provides an electrolysis module and a water treatment system based on BDD electrodes to solve the problems that hydrogen, ozone, oxygen and other gases generated during electrolysis by the existing BDD electrodes are difficult to be discharged in time, which reduces the effective working area and hinders the efficient progress of the electrolysis reaction; when the water to be treated contains particulate matter or impurities are deposited during the electrochemical reaction process, it is easy to block the vent hole (or tank) and reduce the electrolysis efficiency.
  • the present invention provides an electrolysis module based on BDD electrodes, the electrolysis module includes a water flow guide module and an electrolysis module; wherein the electrolysis module is arranged in the water flow guide module; the electrolysis module includes a BDD electrode, and the BDD electrode includes a main body and several branches arranged on both sides of the main body, and the main body and the several branches on both sides form a fishbone-like structure.
  • the BDD electrode of the present invention includes a main body and several branches arranged on both sides of the main body.
  • the main body and the branches form a fishbone-like structure.
  • the fishbone-like structure makes the side seams between adjacent branches have no blind ends, and the gas generated during electrolysis will not block the holes. The probability ensures the effective electrolysis reaction area, which can improve the electrolysis efficiency and water treatment efficiency.
  • the distance between adjacent branches is 0.05mm-2.5mm
  • the width of each branch is 0.05mm-10mm
  • the angle between each branch and the main body toward the tail of the fishbone structure is 0-90°.
  • the processing devices all have certain specifications, and the distance between adjacent branches (that is, the width of the side slit) is set in order to be suitable for the specifications of the processing device, so as to facilitate the processing of the fishbone-like structure; on the basis of the design of the width of the side slit, the width of each branch is in the range of 0.05mm-10mm, which can ensure the reaction area of the BDD electrode in the electrolysis module in contact with water on the one hand, and ensure the electrolysis efficiency. On the other hand, it can ensure the strength of the BDD electrode.
  • the angle between each branch and the main body toward the tail of the fishbone-shaped structure is designed to be 0-90°, which is conducive to cooperating with the water flow and washing away the gas generated in the side seam between adjacent branches during the electrolysis process.
  • the BDD electrode is a BDD electrode prepared by depositing a boron-doped diamond film on a fishbone-shaped substrate; the material of the substrate is selected from one of titanium, niobium, tantalum, nickel, single crystal silicon, polycrystalline silicon, silicon carbide single crystal, silicon carbide ceramics, silicon nitride single crystal, and silicon nitride ceramics; the substrate is processed by a diamond wire-cut method.
  • the beneficial effect of adopting the above further technical solution is that the fishbone-like structure of the BDD electrode is derived from the fishbone-like structure of the substrate, and the BDD electrode with the fishbone-like structure can be obtained after depositing a boron-doped diamond film on the fishbone-like substrate.
  • the material selection of the substrate is beneficial to the deposition of the boron-doped diamond film, and the boron-doped diamond film is not easy to fall off.
  • Diamond wire cutting is used to side-cut the substrate of the BDD electrode to obtain a fishbone-like structure.
  • the BDD electrode includes a BDD electrode serving as an anode and a BDD electrode serving as a cathode, and an ion membrane is disposed between the BDD electrode serving as the anode and the BDD electrode serving as the cathode.
  • the beneficial effect of adopting the above further technical solution is that the ion membrane, the BDD electrode as the anode and the BDD electrode as the cathode form a BDD sandwich structure to form an electrolytic cell.
  • the ionic membrane has selective permeability to ions, allowing charged ions to pass through. Through the fast channel of the ionic membrane, the hydrogen ions generated by the electrolysis of water at the BDD electrode quickly pass through the ionic membrane to meet the electrolysis efficiency requirements. Compared with only relying on ions in water to achieve electrolysis without an ion membrane, the electrolysis efficiency of the ion membrane is higher.
  • the water flow guide module includes a main water inlet guide pipe, a cavity connected to the main water inlet guide pipe and whose side is perpendicular to the main water inlet guide pipe, and a branch water inlet guide pipe that communicates with the cavity and the main water inlet guide pipe and is perpendicular to the upper and lower surfaces of the cavity; the electrolysis module is arranged in the cavity and is parallel to the upper and lower surfaces of the cavity, and the tail of the BDD electrode with a fishbone-like structure is far away from the direction of the main water inlet guide pipe.
  • the main water inlet guide pipe of the water flow guide module of the present invention controls the main water flow direction of the water flow
  • the branch water inlet guide pipe controls the branch water flow direction of the water flow.
  • the side of the cavity is perpendicular to the main water inlet guide pipe, so that the direction of the main water flow is consistent with the BDD electrode of the fishbone structure from the beginning to the end.
  • the connecting end of the water inlet guide pipe and the cavity is perpendicular to the upper and lower surfaces of the cavity, so that the direction of the branch water flow is perpendicular to the BDD electrode of the fishbone structure, that is, the branch water flow can flush the side seams between adjacent branches, and the gas in the side seams will be flushed out.
  • the interaction between the advanced electrolysis module and the water flow guide module improves the gas discharge efficiency and the sediment discharge efficiency, ensures the effective electrolysis reaction area, and ensures the electrolysis efficiency.
  • the mutual cooperation of the electrolysis module including the fishbone-shaped BDD electrode of the present invention and the water flow guiding module also makes the cooling efficiency of the water flow to the electrolysis module relatively high, which can solve the heating problem of the BDD electrode during the electrolysis process.
  • the current density per unit area of the electrode is higher, so that higher electrolysis efficiency can be obtained.
  • the diameter ratio of the branch inlet water guide pipe to the main water inlet guide pipe is 1:1-1:20.
  • the beneficial effect of adopting the above-mentioned further technical solution is that the present invention designs the pipe diameter ratio of the water inlet guide pipe and the main water inlet guide pipe to be 1:1-1:20, which can effectively control the water flow rate of the main shunt, and then control the flow rate of each water flow, so as to realize the efficient discharge of gas.
  • the water flow diverted into the water guide pipe is controlled by a switch with pulse control characteristics.
  • the beneficial effect of adopting the above-mentioned further technical solution is that a switch is provided on the diverting water guide pipe, which can control the opening and closing of the branch water flow and the size of the water flow.
  • the pulse control characteristic is realized by the switching frequency of the diverging water guide pipe.
  • the pulsed water flow is more conducive to detaching and discharging the air bubbles generated on the BDD electrode.
  • one end of the water diversion guide pipe communicating with the cavity is a circular tube, duckbill or liquid separation structure.
  • the one end of the water-inlet guide pipe communicating with the cavity is designed as a circular tube, duckbill or liquid-separating structure, which corresponds to the branch of the fishbone-shaped structure, which is conducive to the water flow introduced from the water-inlet guide pipe to scour the side seam between two adjacent branches, especially the liquid-separating structure, where each branch pipe corresponds to a side seam, and the seam flushing effect is better and the gas discharge efficiency is higher.
  • the present invention also provides a water treatment system, including the electrolysis module described in any one of the above, the water treatment system also includes a filter module and a gas-liquid mixing module, the electrolysis module is located between the filter module and the gas-liquid mixing module, the electrolysis module and the filter module are connected through a water inlet channel, and the electrolysis module and the gas-liquid mixing module are connected through a water outlet channel.
  • the water treatment system of the present invention includes the electrolysis module, the filter module and the gas-liquid mixing module of the present invention.
  • the filter module Before the water flow enters the electrolysis module, it is pre-filtered through the filter module to filter out some particles and suspended solids, which can prevent the electrochemical flocculation of these particles and suspended solids into large particles when the electrolysis module performs electrolytic treatment, and block the side seam between two adjacent branches;
  • the gas-liquid mixing module performs gas-liquid mixing, so that the ozone generated by the electrolysis reaction can be mixed with water more fully, effectively increasing the concentration of ozone in the treated water, and improving the disinfection and treatment effect.
  • the filter module is a filter module with recoil function, and the pore size of the filter membrane of the filter module is 0.2-75 ⁇ m; the gas-liquid mixing method of the gas-liquid mixing module adopts microporous aeration and/or spiral gas mixing; the ratio of the cross-sectional area of the water inlet channel between the filter module and the electrolysis module to the cross-sectional area of the water outlet channel between the electrolysis module and the gas-liquid mixing module is 1:3-20:1.
  • the filter module has a recoil function, which can prevent the filter membrane pores from being blocked, and discharge the filtrate in time to ensure the outflow rate of the filtered liquid;
  • the filter membrane pore diameter is 0.2-75 ⁇ m, which can filter out particles and suspended solids within the particle size range, which can avoid problems such as electrochemical flocculation of these particles and suspended solids when the electrolytic module performs electrolytic treatment, and block the side seam between two adjacent branches.
  • the use of microporous aeration and/or spiral gas mixing is conducive to more complete gas-liquid mixing.
  • the ratio of the cross-sectional area of the water inlet channel between the filtration module and the electrolysis module to the cross-sectional area of the water outlet channel between the electrolysis module and the gas-liquid mixing module is designed to be 1:3-20:1, in order to cooperate with the processing efficiency of the electrolysis module and the gas-liquid mixing module, to make electrolysis treatment and gas-liquid mixing more efficient, and to ensure the overall treatment efficiency of the entire water treatment system.
  • Fig. 1 is a schematic diagram of the electrode structure commonly used in the prior art two-dimensional planar BDD electrode
  • Fig. 2 is a structural schematic diagram of water flow and exhaust direction during electrolysis of a two-dimensional flat BDD electrode structure in the prior art
  • Fig. 3 is a schematic structural diagram of a water treatment system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an electrolysis module of an electrolysis module according to an embodiment of the present invention.
  • Fig. 5 is a structural schematic diagram of the connecting end between the inlet water guide pipe and the cavity of the water flow guide module of the electrolysis module according to an embodiment of the present invention.
  • This embodiment provides an electrolysis module and a water treatment system based on BDD electrodes.
  • Fig. 3 shows a schematic structural view of the water treatment system of this embodiment
  • Fig. 4 shows a schematic structural view of the electrolysis module of the electrolysis module of this embodiment
  • Fig. 5 shows a schematic structural view of the water-inlet guide pipe and the connecting end of the cavity of the water flow guide module of the electrolysis module of the present embodiment.
  • the electrolysis module 1 of this embodiment includes a water flow guiding module 11 and an electrolysis module 12 .
  • the electrolysis module 12 is disposed in the water flow guiding module 11 .
  • the electrolysis module 12 includes a BDD electrode 121.
  • the BDD electrode 121 includes a main body 1211 and several branches 1212 arranged on both sides of the main body 1211.
  • the main body 1211 and the several branches 1212 on both sides form a fishbone structure.
  • the distance between adjacent branch parts 1212 (that is, the width of the side slit) is 0.05 mm-2.5 mm
  • the width of each branch part 1212 is 0.05 mm-10 mm
  • the angle ⁇ between each branch part 1212 and the main body part 1211 toward the tail of the fishbone structure is 0-90°.
  • the fishbone-like structure is similar to the fishbone structure of a fish after the head is removed.
  • the tail of the fishbone-like structure indicates the direction of the fish tail, and the head of the fishbone-like structure indicates the direction away from the fish tail.
  • the included angle ⁇ usually refers to the acute angle between the branch part 1212 and the main body part 1211, and the included angle is at most 90° (that is, the two angles formed between the branch part 1212 and the main part 1211 are equal (90°)).
  • the BDD electrode 121 is a BDD electrode prepared by depositing a boron-doped diamond film on a fishbone-shaped substrate; the material of the substrate is selected from one of titanium, niobium, tantalum, nickel, single crystal silicon, polycrystalline silicon, silicon carbide single crystal, silicon carbide ceramics, silicon nitride single crystal, and silicon nitride ceramics; the substrate is processed by a diamond wire cutting method.
  • the substrate is placed in a concentrated suspension of diamond micropowder for ultrasonic treatment, and the ultrasonic wave is used to drive the diamond micropowder to hit the surface of the substrate for surface treatment to increase the surface area.
  • a boron-doped diamond film with a thickness of 0.5-100 ⁇ m is deposited to obtain a BDD electrode with a fishbone-like structure.
  • the BDD electrode 121 includes a BDD electrode serving as an anode and a BDD electrode serving as a cathode, and an ion membrane 122 is disposed between the BDD electrode serving as the anode and the BDD electrode serving as the cathode. It is not shown in the figure that the BDD electrodes on the upper and lower sides of the ionic membrane 122 are anodes and cathodes. The anode and cathode are identified according to the positive and negative connections between the BDD electrodes and the external battery (located outside the cavity 112, not shown in the figure).
  • the water flow guide module 11 includes a main water inlet guide pipe 111, a cavity 112 that communicates with the main water inlet guide pipe 111 and whose side is perpendicular to the main water inlet guide pipe 111, and a branch water inlet guide pipe 113 that communicates with the cavity 112 and the main water inlet guide pipe 111 and is perpendicular to the upper and lower surfaces of the cavity 112.
  • the electrolysis module 12 is arranged in the cavity 112 and is parallel to the upper and lower surfaces of the cavity 112.
  • the tail of the fishbone-shaped BDD electrode 121 is away from the direction of the main water inlet guide pipe 111, and the head is facing the direction of the main water inlet guide pipe 111 (that is, as shown in FIG.
  • the pipe diameter ratio of the branch inlet water guide pipe 113 and the main water inlet guide pipe 111 is 1:1-1:20.
  • the water flow into the water guide pipe 113 is controlled by a switch 1131 with pulse control characteristics.
  • one end (that is, the communicating end) of the inlet water guide pipe 113 communicating with the cavity 112 is a circular tube, duckbill or liquid-separating structure, preferably a liquid-separating structure.
  • the liquid separation structure includes several branch pipes, and each branch pipe corresponds to a side slit, so that the punching effect is better and the gas discharge efficiency is higher.
  • the water treatment system of this embodiment includes the electrolysis module 1 of this embodiment.
  • the water treatment system of this embodiment also includes a filter module 2 and a gas-liquid mixing module 3.
  • the electrolysis module 1 is located between the filter module 2 and the gas-liquid mixing module 3.
  • the electrolysis module 1 and the filter module 2 are connected through the water inlet channel 4, and the electrolysis module 1 and the gas-liquid mixing module 3 are connected through the water outlet channel 5.
  • the filter module 2 is a filter module with a recoil function, and the filter membrane 21 of the filter module 2 has a pore size of 0.2-75 ⁇ m.
  • the gas-liquid mixing mode of the gas-liquid mixing module 3 adopts microporous aeration and/or spiral gas mixing.
  • the ratio of the cross-sectional area of the water inlet channel 4 between the filtration module 2 and the electrolysis module 1 to the cross-sectional area of the water outlet channel 5 between the electrolysis module 1 and the gas-liquid mixing module 3 is 1:3-20:1.
  • the working process of the water treatment system in this embodiment is as follows: the water to be treated is passed into the filter module 2, and the water filtered by the filter module 2 enters the main water inlet guide pipe 111 and the water inlet guide pipe 113 through the water inlet channel 4 (because the water inlet guide pipe 113 is provided with a switch 1131, the opening and closing of the water inlet guide pipe 113 and the flow rate of the water inlet guide pipe 113 can be controlled as required), and then enters the cavity 112, and the electrolysis in the cavity 112
  • the module 12 carries out the electrolytic treatment of water under the energy supply of an external battery (located outside the cavity 112, not shown in the figure).
  • the electrolytically treated water flows out of the cavity 112 from the water outlet channel 5 and enters the gas-liquid mixing module 3, and the gas-liquid mixing module 3 fully mixes the ozone generated by the electrolysis reaction with water and then flows out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明提供一种基于BDD电极的电解模组,包括水流导向模块和电解模块;电解模块设置于水流导向模块内;电解模块包括BDD电极,BDD电极包括主体部和设置于主体部两侧的若干分支部,主体部及其两侧的若干分支部构成鱼刺状结构。本发明电解模组的BDD电极为鱼刺状结构,相比于现有孔板电极结构,电解时产生的气体不会堵孔,在水流导向模块的共同作用下,气体易于排出,实现了气体产物的高效排出,可降低颗粒物堵塞的机率,保证了有效的电解反应面积,可提高电解效率及水处理效能。本发明还提供一种包括本发明电解模组的水处理系统,配合过滤模组和气液混合模组,有效提高处理效果。

Description

一种基于BDD电极的电解模组及水处理系统 技术领域
本发明涉及电化学技术领域,具体而言,涉及一种基于BDD电极的电解模组及水处理系统。
背景技术
掺硼金刚石(BDD)电极是利用气相沉积法在衬底上沉积掺硼金刚石膜后所制成的BDD电极,其通电后在水中电解水产生的有效组分为臭氧和羟基自由基,可对病毒、细菌、有机污染物等进行氧化处理。BDD电极除具备析氧电势高和电催化活性高等优点外,还具有优异的化学稳定性,能在长期电解应用过程中耐电化学腐蚀引起的电极损耗,被广泛应用于消毒杀菌及水处理,例如,用于喷壶、加湿器、洗菜机、洗衣机、空气净化机、净水机、除味器、污水处理机等。
然而,现有BDD电极技术还存在以下问题:
1、现有的BDD电极结构形态为二维平板状,一般采用喷砂、激光打孔切割、水射流、化学刻蚀等加工方法对表面和结构形态进行加工以增加表面积,提高反应效率,但这些加工方法通常容易存在加工应力(例如,激光打孔切割引起的加工应力),影响机械强度,加工效率偏低。
2、二维平板状BDD电极常用的电极结构一般为纯平板、孔板等(如图1所示),应用时水流方向与排气方向垂直(如图2所示),电解模组工作过程中产生的氢气和臭氧等难以及时排出,降低了有效工作面积,阻碍了电解反应高效进行。另外,当所需处理的水中含有颗粒物或电化学反应过程中有杂质沉积出来时,容易堵住排气孔(或槽),降低电解效率。
发明内容
本发明提供了一种基于BDD电极的电解模组及水处理系统,以解决通过现有BDD电极电解时产生的氢气、臭氧和氧气等气体难以及时排出,降低了有效工作面积,阻碍了电解反应高效进行;当所需处理的水中含有颗粒物或电化学反应过程中有杂质沉积出来时,容 易堵住排气孔(或槽),降低电解效率等问题。
一方面,本发明提供了一种基于BDD电极的电解模组,所述电解模组包括水流导向模块和电解模块;其中,所述电解模块设置于水流导向模块内;所述电解模块包括BDD电极,所述BDD电极包括主体部和设置于主体部两侧的若干分支部,所述主体部及其两侧的若干分支部构成鱼刺状结构。
与现有技术相比,本发明具有以下有益效果:本发明BDD电极包括主体部和设置于主体部两侧的若干分支部,主体部及分支部构成鱼刺状结构,相比于现有孔板电极结构,鱼刺状结构使得相邻分支部之间的侧缝无盲端,电解时产生的气体不会堵孔,在水流导向模块的共同作用下,水流通过电解模块时,气体易于冲刷排出,沉积的杂质易于被带走,实现了气体产物的高效排出,可降低颗粒物堵塞的机率,保证了有效的电解反应面积,可提高电解效率及水处理效能。
在本发明的一些实施方式中,相邻分支部之间的间距为0.05mm-2.5mm,各分支部的宽度为0.05mm-10mm,各分支部与主体部之间的朝向鱼刺状结构尾部的夹角为0-90°。
采用上述进一步技术方案的有益效果在于,加工装置都具备一定的规格,相邻分支部之间的间距(即侧缝宽度)范围的设置是为了适用于加工装置的规格,以方便鱼刺状结构的加工;在侧缝宽度设计的基础上,各分支部的宽度范围为0.05mm-10mm,一方面可以保证电解模块中BDD电极与水接触的反应面积,保证电解效率,另一方面可保证BDD电极的强度,再一方面该宽度范围有利于电解反应产生的气体排出;各分支部与主体部之间的朝向鱼刺状结构尾部的夹角设计为0-90°则有利于配合水流,将电解过程中相邻分支部之间的侧缝中产生的气体冲刷带走。
在本发明的一些实施方式中,BDD电极为在鱼刺状结构的衬底上沉积掺硼金刚石膜后制得的BDD电极;衬底的材质选自钛、铌、钽、镍、单晶硅、多晶硅、碳化硅单晶、碳化硅陶瓷、氮化硅单晶、氮化硅陶瓷中的一种;衬底通过金刚石线切方法加工而成。
采用上述进一步技术方案的有益效果在于,BDD电极的鱼刺状结构源于衬底的鱼刺状结构,在鱼刺状结构的衬底上沉积掺硼金刚石膜后即得到鱼刺状结构的BDD电极。衬底的选材有利于掺硼金刚石膜的沉积,掺硼金刚石膜不易脱落。采用金刚石线切对BDD电极的衬底进行侧切加工得到鱼刺状结构,相比于现有加工方法,如激光打孔切割加工(因存在激光高热影响区,因热膨胀问题产生较大残余应力,加工后容易在加工位置周围出现微小裂纹),其加工应力较小,衬底强度高,且试验证实,金刚石线切加工的加工效率最高,可有效提高加工效率。
在本发明的一些实施方式中,所述BDD电极包括作为阳极的BDD电极和作为阴极的BDD电极,作为阳极的BDD电极和作为阴极的BDD电极之间设置有离子膜。
采用上述进一步技术方案的有益效果在于,离子膜与作为阳极的BDD电极和作为阴极的BDD电极形成BDD三明治结构,组成一个电解槽。离子膜对离子具有选择透过性,容许带电荷的离子通过,通过离子膜这个快速通道,BDD电极电解水所产生的氢离子快速透过离子膜以满足电解效率需求。相比于不设置离子膜时仅依靠水中离子实现电解,设置离子膜的电解效率更高。
在本发明的一些实施方式中,所述水流导向模块包括主入水导向管、与主入水导向管连通且侧面垂直于主入水导向管的腔体、与腔体和主入水导向管连通且与腔体的连通端垂直于腔体上下表面的分入水导向管;所述电解模块设置于腔体内且与腔体的上下表面平行,鱼刺状结构的BDD电极尾部远离主入水导向管方向。
采用上述进一步技术方案的有益效果在于,本发明水流导向模块的主入水导向管控制水流的主水流方向,分入水导向管则控制水流的分路水流方向。腔体侧面垂直于主入水导向管,使得主水流方向与鱼刺状结构的BDD电极由首至尾的方向一致,分入水导向管与腔体的连通端垂直于腔体上下表面,使得分路水流方向垂直于鱼刺状结构的BDD电极,即分路水流可冲刷相邻分支部之间的侧缝,将侧缝中的气体冲出,在主水流的作用下,将冲刷出的气体带走,进而实现包括鱼刺状结构的BDD电极的电解模块与水流导向模块的相互配合,提高气体排出效率以及沉积物排出效率,保证有效电解反应面积,保证电解效率。另外,本发明的包括鱼刺状结构的BDD电极的电解模块与水流导向模块的相互配合,还使得水流对电解模块的冷却效率相对较高,可解决电解过程中BDD电极发热问题,相比现有技术,电极单位面积电流密度更高,从而可获得更高的电解效率。
在本发明的一些实施方式中,所述分入水导向管与主入水导向管的管径比为1:1-1:20。
采用上述进一步技术方案的有益效果在于,本发明将分入水导向管与主入水导向管的管径比设计为1:1-1:20,可有效控制主分路的水流量大小,进而控制各路水流流速,实现气体的高效排出。
在本发明的一些实施方式中,所述分入水导向管的水流由具备脉冲控制特性的开关控制。
采用上述进一步技术方案的有益效果在于,分入水导向管上设置开关,可控制分路水流的打开、关闭以及水流量大小,脉冲控制特性通过分入水导向管开关频率实现,脉冲水流更有利于将BDD电极上产生的气泡脱离和排出。
在本发明的一些实施方式中,所述分入水导向管与腔体连通的一端为圆管式、鸭嘴式或分液式结构。
采用上述进一步技术方案的有益效果在于,分入水导向管与腔体连通的一端设计为圆管式、鸭嘴式或分液式结构,其对应于鱼刺状结构的分支部,有利于自分入水导向管导入的水流冲刷相邻两分支部间的侧缝,尤其是分液式结构,其每个分支管对应于一个侧缝,冲缝效果更好,气体排出效率更高。
另一方面,本发明还提供了一种水处理系统,包括上述任一项所述的电解模组,所述水处理系统还包括过滤模组和气液混合模组,电解模组位于过滤模组和气液混合模组之间,电解模组与过滤模组通过入水通道连通,电解模组与气液混合模组通过出水通道连通。
与现有技术相比,本发明具有以下有益效果:本发明的水处理系统包括本发明的电解模组和过滤模组以及气液混合模组。水流进入电解模组前通过过滤模组预先进行过滤,过滤掉一些颗粒和悬浮物,可避免电解模组进行电解处理时,这些颗粒和悬浮物发生电化学絮凝而变成大颗粒,堵塞两相邻分支部间的侧缝;水流通过电解模组后通过气液混合模组进行气液混合,使电解反应生成的臭氧与水混合更充分,有效提升处理后的水中臭氧浓度,提高消杀及处理效果。
在本发明的一些实施方式中,所述过滤模组为具备反冲功能的过滤模组,过滤模组的过滤膜孔径为0.2-75μm;所述气液混合模组的气液混合方式采用微孔曝气和/或螺旋混气;所述过滤模组和电解模组之间的入水通道截面积与电解模组和气液混合模组之间的出水通道截面积之比为1:3-20:1。
采用上述进一步技术方案的有益效果在于,过滤模组具备反冲功能,可防止堵塞过滤膜孔,将过滤出的过滤物及时排出,保证过滤后液体流出速率;过滤膜孔径为0.2-75μm则可以过滤掉粒径在此范围内的颗粒和悬浮物,可避免电解模组进行电解处理时,这些颗粒和悬浮物发生电化学絮凝而变成大颗粒,堵塞两相邻分支部间的侧缝,大颗粒难以通过冲缝排出等问题的产生。采用微孔曝气和/或螺旋混气则有利于气液混合的更充分。过滤模组和电解模组之间的入水通道截面积与电解模组和气液混合模组之间的出水通道截面积之比设计为1:3-20:1,则是为了配合电解模组与气液混合模组的处理效率,使电解处理、气液混合更高效的同时,保证整个水处理系统的整体处理效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例中所需要使用 的附图进行说明。
图1为现有技术二维平板状BDD电极常用的电极结构示意图;
图2为现有技术二维平板状BDD电极结构电解时水流与排气方向结构示意图;
图3为本发明一种实施例的水处理系统结构示意图;
图4为本发明一种实施例的电解模组的电解模块结构示意图;
图5为本发明一种实施例的电解模组的水流导向模块的分入水导向管与腔体连通端的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下将结合具体实施例对本发明涉及的各个方面进行详细说明,但这些具体实施例仅用于举例说明本发明,并不对本发明的保护范围和实质内容构成任何限定。
本实施例提供一种基于BDD电极的电解模组及水处理系统。图3示出了本实施例的水处理系统结构示意图,图4示出了本实施例的电解模组的电解模块结构示意图,图5示出了本实施例的电解模组的水流导向模块的分入水导向管与腔体连通端的结构示意图。
如图3-4所示,本实施例的电解模组1包括水流导向模块11和电解模块12。其中,电解模块12设置于水流导向模块11内。电解模块12包括BDD电极121,BDD电极121包括主体部1211和设置于主体部1211两侧的若干分支部1212,主体部1211及其两侧的若干分支部1212构成鱼刺状结构。
在本实施例中,相邻分支部1212之间的间距(即侧缝宽度)为0.05mm-2.5mm,各分支部1212的宽度为0.05mm-10mm,各分支部1212与主体部1211之间的朝向鱼刺状结构尾部的夹角α为0-90°。在本实施例中,鱼刺状结构类似于鱼的刨除头部后的鱼骨结构,鱼刺状结构尾部表示鱼尾方向,鱼刺状结构首部表示远离鱼尾的方向,夹角α通常指分支部1212与主体部1211之间呈锐角的角度,夹角最大为90°(即分支部1212与主体部1211之间形成的两个角相等(均为90°))。
在本实施例中,BDD电极121为在鱼刺状结构的衬底上沉积掺硼金刚石膜后制得的BDD电极;衬底的材质选自钛、铌、钽、镍、单晶硅、多晶硅、碳化硅单晶、碳化硅陶瓷、氮化硅单晶、氮化硅陶瓷中的一种;衬底通过金刚石线切方法加工而成。在本实施例中,通过金刚石线切方法加工出鱼刺状结构的衬底后,将衬底放入金刚石微粉浓悬浮液中进行 超声波处理,利用超声波带动金刚石微粉撞击衬底表面进行表面处理以增加表面积,然后再沉积0.5-100μm厚度的掺硼金刚石膜,得到鱼刺状结构的BDD电极。
在本实施例中,BDD电极121包括作为阳极的BDD电极和作为阴极的BDD电极,作为阳极的BDD电极和作为阴极的BDD电极之间设置有离子膜122。图中未示出离子膜122上下两侧的BDD电极何为阳极,何为阴极,阳极和阴极的认定根据BDD电极与外部电池(位于腔体112外,图中未示出)的正负极连接方式进行。
在本实施例中,水流导向模块11包括主入水导向管111、与主入水导向管111连通且侧面垂直于主入水导向管111的腔体112、与腔体112和主入水导向管111连通且与腔体112的连通端垂直于腔体112上下表面的分入水导向管113。在本实施例中,电解模块12设置于腔体112内且与腔体112的上下表面平行,鱼刺状结构的BDD电极121尾部远离主入水导向管111方向,首部朝向主入水导向管111的方向(即,如图4所示,鱼刺状结构的BDD电极121自首部至尾部的方向与主入水导向管111形成的主水流方向一致)。
在本实施例中,分入水导向管113与主入水导向管111的管径比为1:1-1:20。分入水导向管113的水流由具备脉冲控制特性的开关1131控制。
在本实施例中,如图5所示,分入水导向管113与腔体112连通的一端(即连通端)为圆管式、鸭嘴式或分液式结构,优选为分液式结构。在本实施例中,分液式结构包括若干分支管,每个分支管对应于一个侧缝,冲缝效果更好,气体排出效率更高。
如图3所示,本实施例的水处理系统包括本实施例的电解模组1。本实施例的水处理系统还包括过滤模组2和气液混合模组3,电解模组1位于过滤模组2和气液混合模组3之间,电解模组1与过滤模组2通过入水通道4连通,电解模组1与气液混合模组3通过出水通道5连通。
在本实施例中,过滤模组2为具备反冲功能的过滤模组,过滤模组2的过滤膜21的孔径为0.2-75μm。气液混合模组3的气液混合方式采用微孔曝气和/或螺旋混气。过滤模组2和电解模组1之间的入水通道4的截面积与电解模组1和气液混合模组3之间的出水通道5的截面积之比为1:3-20:1。
本实施例的水处理系统工作过程如下:将待处理水通入过滤模组2,经过滤模组2过滤后的水通过入水通道4进入主入水导向管111和分入水导向管113(因分入水导向管113上设置有开关1131,可根据需要控制分入水导向管113的打开、关闭以及分入水导向管113水流流量的大小),进而进入腔体112,腔体112内的电解模块12在外部电池(位于腔体112外,图中未示出)的供能下进行水的电解处理(在电解时,一般阴极表面容易沉积水中的钙镁 等离子,而阳极容易受电化学腐蚀,本实施例可通过电路控制,隔一段时间后将电池的正负极反转,进而电解模块阴极和阳极互换倒极,原阴极变为阳极,原阳极变为阴极,沉积在原阴极的沉积层会在倒极变成阳极后被清理掉,进而降低颗粒物堵塞机率,延长电极使用寿命,提高电解效率。),电解处理后的水从出水通道5流出腔体112并进入气液混合模组3,气液混合模组3将电解反应生成的臭氧与水充分混合后流出。
以上结合具体实施方式对本发明进行了说明,这些具体实施方式仅仅是示例性的,不能以此限定本发明的保护范围,本领域技术人员在不脱离本发明实质的前提下可进行各种修改、变化或替换。因此,根据本发明所作的各种等同变化,仍属于本发明所涵盖的范围。

Claims (10)

  1. 一种基于BDD电极的电解模组,其特征在于,所述电解模组包括水流导向模块和电解模块;
    其中,所述电解模块设置于水流导向模块内;
    所述电解模块包括BDD电极,所述BDD电极包括主体部和设置于主体部两侧的若干分支部,所述主体部及其两侧的若干分支部构成鱼刺状结构。
  2. 如权利要求1所述的电解模组,其特征在于,相邻分支部之间的间距为0.05mm-2.5mm,各分支部的宽度为0.05mm-10mm,各分支部与主体部之间的朝向鱼刺状结构尾部的夹角为0-90°。
  3. 如权利要求1所述的电解模组,其特征在于,BDD电极为在鱼刺状结构的衬底上沉积掺硼金刚石膜后制得的BDD电极;衬底的材质选自钛、铌、钽、镍、单晶硅、多晶硅、碳化硅单晶、碳化硅陶瓷、氮化硅单晶、氮化硅陶瓷中的一种;衬底通过金刚石线切方法加工而成。
  4. 如权利要求1所述的电解模组,其特征在于,所述BDD电极包括作为阳极的BDD电极和作为阴极的BDD电极,作为阳极的BDD电极和作为阴极的BDD电极之间设置有离子膜。
  5. 如权利要求1所述的电解模组,其特征在于,所述水流导向模块包括主入水导向管、与主入水导向管连通且侧面垂直于主入水导向管的腔体、与腔体和主入水导向管连通且与腔体的连通端垂直于腔体上下表面的分入水导向管;
    所述电解模块设置于腔体内且与腔体的上下表面平行,鱼刺状结构的BDD电极尾部远离主入水导向管方向。
  6. 如权利要求5所述的电解模组,其特征在于,所述分入水导向管与主入水导向管的管径比为1:1-1:20。
  7. 如权利要求5所述的电解模组,其特征在于,所述分入水导向管的水流由具备脉冲 控制特性的开关控制。
  8. 如权利要求5所述的电解模组,其特征在于,所述分入水导向管与腔体连通的一端为圆管式、鸭嘴式或分液式结构。
  9. 一种水处理系统,其特征在于,所述水处理系统包括如权利要求1-8中任一项所述的电解模组,所述水处理系统还包括过滤模组和气液混合模组,电解模组位于过滤模组和气液混合模组之间,电解模组与过滤模组通过入水通道连通,电解模组与气液混合模组通过出水通道连通。
  10. 如权利要求9所述的水处理系统,其特征在于,所述过滤模组为具备反冲功能的过滤模组,过滤模组的过滤膜孔径为0.2-75μm;
    所述气液混合模组的气液混合方式采用微孔曝气和/或螺旋混气;
    所述过滤模组和电解模组之间的入水通道截面积与电解模组和气液混合模组之间的出水通道截面积之比为1:3-20:1。
PCT/CN2022/113836 2022-01-20 2022-08-22 一种基于bdd电极的电解模组及水处理系统 WO2023138048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210064023.3A CN114314769B (zh) 2022-01-20 2022-01-20 一种基于bdd电极的电解模组及水处理系统
CN202210064023.3 2022-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/735,154 Continuation US20240317613A1 (en) 2022-01-20 2024-06-05 Electrolytic module units and water treatment systems based on boron-doped diamond (bdd) electrodes

Publications (1)

Publication Number Publication Date
WO2023138048A1 true WO2023138048A1 (zh) 2023-07-27

Family

ID=81029605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113836 WO2023138048A1 (zh) 2022-01-20 2022-08-22 一种基于bdd电极的电解模组及水处理系统

Country Status (2)

Country Link
CN (1) CN114314769B (zh)
WO (1) WO2023138048A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314769B (zh) * 2022-01-20 2023-04-18 山东欣远新材料科技有限公司 一种基于bdd电极的电解模组及水处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048732A (zh) * 1989-07-14 1991-01-23 帕马斯坎德公司 电极
US20020083842A1 (en) * 2000-11-14 2002-07-04 Kown Dong Heon Automatic vending machine with functional water generator
CN103255432A (zh) * 2013-04-03 2013-08-21 氢动力能源科技有限公司 一种电解水装置
KR20150055929A (ko) * 2013-11-14 2015-05-22 에스티엑스중공업 주식회사 담수지역에서 사용가능한 전기분해 방식 선박평형수 처리장치
CN204550152U (zh) * 2015-02-27 2015-08-12 江苏江大环境工程有限责任公司 一种电解除磷装置
JP6170266B1 (ja) * 2017-03-25 2017-07-26 伯東株式会社 オゾン水製造装置、オゾン水製造方法及びオゾン水を用いた殺菌方法
JP6220956B1 (ja) * 2016-12-12 2017-10-25 日科ミクロン株式会社 ダイヤモンド電極、ダイヤモンド電極の製造方法及び電解水生成装置
CN114314769A (zh) * 2022-01-20 2022-04-12 山东欣远新材料科技有限公司 一种基于bdd电极的电解模组及水处理系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072640A1 (en) * 2000-03-30 2001-10-04 Cho Moon Ki Water purification system and method
GB2490913B (en) * 2011-05-17 2015-12-02 A Gas Internat Ltd Electrochemical cell and method for operation of the same
CN203803398U (zh) * 2014-03-03 2014-09-03 上海维埃姆环保科技有限公司 一种微型气液混合泵
BR112020019820A2 (pt) * 2018-03-29 2021-01-05 NorthStar Medical Radioisotopes LLC Sistema de geração de água com ozônio
TWI796480B (zh) * 2018-05-25 2023-03-21 日商松下知識產權經營股份有限公司 電解水生成裝置及電解水生成系統
CN210736908U (zh) * 2019-09-09 2020-06-12 广州市德百顺电气科技有限公司 一种臭氧电解室
CN111646633B (zh) * 2020-05-11 2022-11-04 南京岱蒙特科技有限公司 一种高效节能三维电极有机水处理系统及其处理水的方法
CN112359372A (zh) * 2020-12-15 2021-02-12 上海楚净医疗科技有限公司 一种臭氧电解槽
CN213834682U (zh) * 2020-12-15 2021-07-30 上海楚净医疗科技有限公司 一种臭氧水在线制备单元
CN112723910B (zh) * 2021-01-19 2022-07-01 山东欣远新材料科技有限公司 一种掺硼金刚石薄膜电极泡沫陶瓷基体及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048732A (zh) * 1989-07-14 1991-01-23 帕马斯坎德公司 电极
US20020083842A1 (en) * 2000-11-14 2002-07-04 Kown Dong Heon Automatic vending machine with functional water generator
CN103255432A (zh) * 2013-04-03 2013-08-21 氢动力能源科技有限公司 一种电解水装置
KR20150055929A (ko) * 2013-11-14 2015-05-22 에스티엑스중공업 주식회사 담수지역에서 사용가능한 전기분해 방식 선박평형수 처리장치
CN204550152U (zh) * 2015-02-27 2015-08-12 江苏江大环境工程有限责任公司 一种电解除磷装置
JP6220956B1 (ja) * 2016-12-12 2017-10-25 日科ミクロン株式会社 ダイヤモンド電極、ダイヤモンド電極の製造方法及び電解水生成装置
JP6170266B1 (ja) * 2017-03-25 2017-07-26 伯東株式会社 オゾン水製造装置、オゾン水製造方法及びオゾン水を用いた殺菌方法
CN114314769A (zh) * 2022-01-20 2022-04-12 山东欣远新材料科技有限公司 一种基于bdd电极的电解模组及水处理系统

Also Published As

Publication number Publication date
CN114314769B (zh) 2023-04-18
CN114314769A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023138048A1 (zh) 一种基于bdd电极的电解模组及水处理系统
CN205856075U (zh) 一种用于水处理的电催化膜反应器
CN106977027A (zh) 一种油田采出污水的深度处理系统及方法
JP2007144258A (ja) 水の電解処理方法及び電解装置
CN102583661A (zh) 一种强化传质和防污除垢的高效电解装置及其水处理方法
CN113165917A (zh) 用于通过电凝聚处理废水的电极电解池的清洁方法和装置
WO2016179863A1 (zh) 过滤装置及其清洗方法
NZ272233A (en) Cleaning aqueous liquid filter during use by electrolytically generated microbubbles
CN110937666A (zh) 一种阳极保护式自动除垢的电解含盐有机废水装置
CN214936266U (zh) 一种超声辅助海水电解槽
CN216946405U (zh) 一种脉冲曝气装置、清洗设备和膜生物反应器系统
CN212504150U (zh) 一种电催化氧化装置和废水处理系统
CN201785276U (zh) 基于电凝和二次过滤的组合横流式气浮水处理装置
CN210825558U (zh) 水处理用电化学处理装置
CN210559548U (zh) 一种石墨烯薄膜电极电催化装置
CN110735149B (zh) 一种电解水制氧系统、密闭空间空气质量控制系统
CN204384936U (zh) 一种多单元集成式电解槽
KR101933894B1 (ko) 수중 플라즈마 방전을 역세 공정에 이용한 멤브레인 여과 장치
CN103145255B (zh) 一种净水机及一体化电解滤芯结构
CN112919589A (zh) 一种穿透式电催化水处理装置及运行方法
CN101948202B (zh) 基于电凝和二次过滤的组合横流式气浮水处理装置
CN212895018U (zh) 一种电解回收铜装置
CN220467673U (zh) 去离子滤芯及包括该去离子滤芯的净水设备
CN207877341U (zh) 电凝絮反应器
RU2038323C1 (ru) Устройство для очистки и обеззараживания воды

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE