WO2023137987A1 - 核电站控制棒导向筒 - Google Patents

核电站控制棒导向筒 Download PDF

Info

Publication number
WO2023137987A1
WO2023137987A1 PCT/CN2022/102855 CN2022102855W WO2023137987A1 WO 2023137987 A1 WO2023137987 A1 WO 2023137987A1 CN 2022102855 W CN2022102855 W CN 2022102855W WO 2023137987 A1 WO2023137987 A1 WO 2023137987A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
control rod
nuclear power
full
power plant
Prior art date
Application number
PCT/CN2022/102855
Other languages
English (en)
French (fr)
Inventor
黄建学
陈秋英
段远刚
冉小兵
刘言午
石琳
莫少嘉
吴铦敏
肖威
熊祎
Original Assignee
中广核工程有限公司
深圳中广核工程设计有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 深圳中广核工程设计有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Publication of WO2023137987A1 publication Critical patent/WO2023137987A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/10Lifting devices or pulling devices adapted for co-operation with fuel elements or with control elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the field of guiding control rods of a pressurized water reactor nuclear power plant, and more specifically relates to a control rod guiding cylinder of a nuclear power plant.
  • the control rod drive line of pressurized water reactor is mainly composed of control rod drive mechanism, pressure vessel socket, thermowell, control rod guide tube, fuel assembly and so on.
  • the control rods When the reactor is running, the control rods mainly move up and down along the drive line between the roof chamber, the upper chamber and the core chamber. Because the control rods are affected by the fluid at different heights, if there is no protective device for the control rod running channel, the control rod will be subject to violent swings, deviate from the vertical direction, and cannot work normally. Therefore, the control rod guide cylinder is set to guide and protect the control rods.
  • the control rods and drive rods can move, insert and pull out along the vertical direction of the control rod guide cylinders.
  • the control rod guide cylinders provide protection and guidance to ensure that the control rods are free from fluid impact, ensure their stable operation, and reduce the influence of coolant lateral load on the rod drop time during transient and steady-state operation.
  • the control rod and the drive rod are released.
  • the drive rod needs to be stored in a suitable position on the drive line.
  • the control rod guide cylinder provides a convenient and feasible storage position for it.
  • the continuous guide assembly provided in the control rod guide cylinder is a component to protect the control rods and ensure that the control rods can be quickly inserted into the core structure of the core when needed.
  • the existing control rod guide cylinder is composed of a lower guide section 10 and an upper guide section 11, which are connected back to back by flanges 110, 103, and the flanges 110, 103 are fixed on the support plate of the upper stack internals by bolts.
  • the upper guide section 11 is a cylindrical structure, and four guide grids 111 are embedded inside.
  • the lower guide section 10 is composed of a cladding 100, a continuous guide section 101 and a guide grid 102;
  • the cladding 100 is a square tube welded by two half square tubes, its upper end is welded with the middle flange 103, and its lower end is welded with the lower flange 104;
  • the guide grid 102 is welded and embedded in the cladding 100;
  • the C-shaped tube and the double-hole tube between 104 are formed, and the C-shaped tube and the double-hole tube make the whole continuous guide section 101 be a continuous guide.
  • the continuous guide section is a section of guide structure above the fuel assembly, which is located at the sensitive position where the core outlet fluid changes from vertical to horizontal, and plays an important role in the performance of control rod drop and the structural integrity of control rods.
  • the object of the present invention is to provide a control rod guide cylinder of a nuclear power plant that is not easy to wear, so as to prolong its service life.
  • the present invention provides a nuclear power plant control rod guide tube, which includes a protective cover and a full-range guide assembly installed in the protective cover;
  • the full-range guide assembly includes at least one full-range continuous guide element, and a full-range continuous guide channel is provided in the full-range continuous guide element, and the full-range continuous guide channel provides full-range continuous guidance to at least one control rod in a single group of control rod assemblies within the travel range of the guide cylinder.
  • the full-range guide assembly also includes a lower flange and multiple guide grids, the lower flange and multiple guide grids are distributed along the axial intervals of the full-range continuous guide elements, and serve as the radial support of the full-range continuous guide elements; the full-range continuous guide elements run through the lower flange and all guide grids and are fixed in the lower flange and guide grids to provide a full-range continuous guide channel for the control rods.
  • the full-range continuous guide element is a long double-joint tube, and two guide holes are provided in each long double-joint tube, which can continuously guide the two control rods throughout the whole process; the number of the long double-joint tubes is at least two, and each long double-joint tube has a guide hole to continuously guide a control rod near the center of a single group of control rod assemblies.
  • the full-range guide assembly also includes a short-range continuous guide element.
  • the short-range continuous guide element runs through the lowermost guide grid and the lower flange and is fixed in the lowermost guide grid and the lower flange.
  • the long double pipe and the short-range continuous guide elements together form a continuous guide section for the entire channel of the control rod bundle, and provide continuous guidance for all control rods between the lowermost guide grid and the lower flange.
  • the short-distance continuous guide element includes short double pipes and C-shaped pipes; each short double pipe is provided with two guide holes, which can conduct short-distance continuous guidance to the lower sections of the two control rods; the cross-section of the C-shaped pipes is C-shaped, and is used to form short-distance continuous guidance to the lower sections of other control rods other than the short double pipes and long double pipes.
  • the number of the long double tubes is four; the cross section of the guide grid is circular, and the two guide holes of each long double tube are located on the same radius of the cross section of the guide grid, and the four long double tubes form a central unconnected "ten" shape on the circular cross section of the guide grid.
  • the number of the short double pipes is four, and the four short double pipes are arranged at intervals with the four long double pipes, forming a center unconnected "meter" shape on the circular cross section of the guide grid, and each short double pipe forms a short-distance continuous guide for the lower sections of the two control rods located on the same radius in the single control rod assembly; the number of the C-shaped pipes is 8, which are respectively located between the short double pipes and the long double pipes, and controls the eight peripheral ones.
  • the lower section of the rod forms a short-range continuous guide.
  • the lower flange is welded to the lower end of the protective cover, and other parts of the full-range guide assembly are inserted into the protective cover.
  • the nuclear power plant control rod guide cylinder also includes a first centering structure and/or a second centering structure fixed to the protective cover.
  • the first centering structure and the second centering structure are snapped into the corresponding guide grids of the full range guide assembly to limit the radial and circumferential movement of the full range guide assembly.
  • the first centering structure is installed at the uppermost guide grid, which includes at least two pins arranged at equal intervals; the outer peripheral wall of the uppermost guide grid is provided with grooves corresponding to the pins one by one, the first end of the pin passes through the upper protective sleeve and snaps into the corresponding groove of the uppermost guide grid, and the second end is welded and fixed with the upper protective sleeve.
  • the first end of the pin in the radial and circumferential directions of the uppermost guide grid, is in clearance fit with the groove; in the axial direction of the uppermost guide grid, the groove runs through the uppermost guide grid.
  • the protective cover includes an upper protective sleeve and a lower protective sleeve.
  • the lower end of the upper protective sleeve is provided with a first flange, and the upper end of the lower protective sleeve is provided with a second flange.
  • the upper protective sleeve and the lower protective sleeve are connected back to back through the first flange and the second flange.
  • the second centering structure is installed at the middle guide grid at the connection position between the first flange and the second flange;
  • the second centering structure includes at least two position-limiting components arranged at equal intervals, and each position-limiting component includes a positioning block and a positioning pin;
  • the outer peripheral wall of the central guide grid is provided with a groove corresponding to the positioning block one by one, the first end of the positioning block is fixed in the second flange and/or the first flange through the positioning pin, and the second end is snapped into the corresponding groove of the middle guide grid.
  • the second end of the positioning block is inserted into the groove and then presses the middle guide grid.
  • the second end of the positioning block is provided with an elastic groove. The existence of the elastic groove enables the second end of the positioning block to retract properly when it is subjected to the radial pressure of the middle guide grid.
  • the first flange and the second flange are fixedly connected to the upper support plate of the upper internal component by fasteners.
  • the nuclear power plant control rod guide cylinder also includes elastic cotter pins arranged under the lower flange, and the lower flange forms an easily detachable tight fit connection with the core upper plate through the elastic cotter pins.
  • the nuclear power plant control rod guide cylinder of the present invention changes the discontinuous guide section structure of the guide grids arranged at intervals into a full-range continuous guide section formed by a long double-tube structure, which optimizes the control rod stroke protection function, reduces the risk of rod bending deformation caused by the lateral impact of the fluid in the upper chamber, and ensures the integrity of the control rod structure; at the same time, it improves the wear resistance of the specific position of the control rod guide cylinder, thereby greatly extending the service life of the control rod guide cylinder and reducing later operation costs.
  • the present invention also uses the first centering structure and the second centering structure to realize the centering and positioning of the full-range guide assembly in the protective cover, so that the full-range guide assembly is restricted in the radial and circumferential directions while maintaining axial freedom, eliminating the internal stress caused by the temperature difference inside and outside the cylinder in the axial direction of the control rod guide cylinder, and reducing the stress level of the internal components of the control rod guide cylinder.
  • Fig. 1 is a structural schematic diagram of a conventional control rod guide cylinder.
  • Fig. 2 is a schematic diagram of the overall structure of the nuclear power plant control rod guide cylinder of the present invention.
  • Fig. 3 is a schematic structural view of the whole process guide assembly of the control rod guide cylinder of the nuclear power plant according to the present invention.
  • Fig. 4 is a bottom view at section A-A in Fig. 3 .
  • Fig. 5 is a top view at section B-B in Fig. 3 .
  • Fig. 6 is a top view at section C-C in Fig. 2 .
  • Fig. 7 is a schematic diagram of cooperation of a pin of the first centering structure with the upper protective sleeve and the uppermost guide grid.
  • Fig. 8 is a top view at the section D-D in Fig. 2 .
  • FIG. 9 is an enlarged schematic view of a limit assembly in FIG. 8 .
  • Fig. 10 is a schematic diagram of cooperation between the stopper assembly of the first centering structure, the first flange, the second flange and the central guide grid.
  • Fig. 11 is a schematic structural view of the elastic cotter pin under the lower flange.
  • Fig. 12 is a schematic diagram of the installation of the nuclear power plant control rod guide cylinder of the present invention.
  • the nuclear power plant control rod guide cylinder of the present invention includes a protective cover 30 and a full-range guide assembly 40 installed in the protective cover 30;
  • the full-range guide assembly 40 includes at least one full-range continuous guide element, and a full-range continuous guide channel is provided in the full-range continuous guide element, and the full-range continuous guide channel provides full-range continuous guidance for at least one control rod in a single control rod assembly within the travel range of the guide cylinder.
  • the protective cover 30 comprises an upper protective sleeve 32 and a lower protective sleeve 34.
  • the lower end of the upper protective sleeve 32 is provided with a first flange 320
  • the upper end of the lower protective sleeve 34 is provided with a second flange 340.
  • the upper protective sleeve 32 and the lower protective sleeve 34 are connected back to back by the first flange 320 and the second flange 340, and the first flange 320 and the second flange 340 are fixedly connected to the upper support plate 81 of the upper stack internal member by a fastener (as shown in FIG. 12 ), realize the fixing of protective cover 30.
  • the fasteners may be bolts.
  • the whole guide assembly 40 also includes a lower flange 440 and a plurality of guide grids 44 (the guide grids 44 include a common guide grid 441, a lowermost guide grid 442, an uppermost guide grid 444, and a middle guide grid 446 at the junction of the first flange 320 and the second flange 340).
  • the guide assembly provides a full-range continuous guide channel for the control rod, and guides and protects the control rod throughout the travel range of the guide cylinder.
  • the whole continuous guide element runs through the lower flange 440 and all the guide grids 44 and is fixed in the lower flange 440 and the guide grids 44, preferably by welding.
  • the lower flange 440 is connected to the lower end of the lower protective sleeve 34 of the protective cover 30 , and other parts of the full range guide assembly 40 are inserted into the protective cover 30 .
  • the guide grids 44 are distributed in the upper protective sleeve 32 and the lower protective sleeve 34, and one of the guide grids 44 is located at the connecting position of the upper protective sleeve 32 and the lower protective sleeve 34, which is called the middle guide grid 446 in this specification (the "middle" of the middle guide grid 446 means that the position of the guide grid is roughly located in the middle area of the nuclear power plant control rod guide cylinder, but it does not specifically refer to being in the middle of all the guide grids).
  • the connection between the lower flange 440 and the lower end of the lower protective sleeve 34 is a welding connection.
  • At least one continuous guiding passage is provided in each whole-range continuous guiding element, and each continuous guiding passage guides one control rod in the single-group control rod assembly continuously within the stroke range of the guide cylinder.
  • the full-range continuous guiding element is preferably a long double tube 42, which has good structural stability, and each long double tube 42 is provided with two guide holes, which can continuously guide the two control rods throughout the whole process.
  • the number of long double pipes 42 is at least two, and each long double pipe 42 has a guide hole to continuously guide a control rod near the center of the single control rod assembly.
  • the number of long double-joint pipes 42 is preferably four: please refer to the embodiment shown in FIG.
  • the four control rods close to the center and the four peripheral control rods form a continuous guidance throughout the whole process.
  • the long double pipe 42 has good structural stability and is evenly distributed on the guide grid 44. It can continuously guide and protect the four control rods near the center within the travel range of the guide cylinder, reducing the probability of wear and failure of the control rod guide cylinder, thereby improving the service life of the control rod guide cylinder.
  • the fixing mode of the long double pipe 42 and the guide grid 44 is welding.
  • the full-range guide assembly 40 also includes short-range continuous guide elements.
  • the short-range continuous guide element runs through the lowermost guide grid 442 and the lower flange 440 and is fixed in the lowermost guide grid 442 and the lower flange 440.
  • the long double pipe 42 and the short-range continuous guide element together form a continuous guide section for the whole channel of the control rod bundle. Between the lowermost guide grid 442 and the lower flange 440, all control rods are continuously guided.
  • the short-range continuous guiding element includes a short double tube 46 and a C-shaped tube 48 .
  • Each short double pipe 46 is provided with two guide holes, which can continuously guide the two control rods in a short distance;
  • the cross-section of the C-shaped pipe 48 is C-shaped, and is used to form short-distance continuous guidance to the lower sections of other control rods other than the short double pipe 46 and the long double pipe 42 .
  • the number of short double pipes 46 is preferably four.
  • the four short double pipes 46 and the four long double pipes 42 are arranged at intervals, forming a central unconnected "m" shape on the circular cross section of the guide grid 44, and each short double pipe 46 forms a short-distance continuous guide for the lower sections of the two control rods located on the same radius in the single group control rod assembly.
  • the long double pipe 42, the short double pipe 46, and the C-shaped pipe 48 jointly form a continuous guide section for the entire channel of the control rod bundle, and form a continuous guide for all the control rods between the lowermost guide grid 442 and the lower flange 440, which can effectively prevent the control rods from bending and ensure the performance and structural integrity of the control rods.
  • the nuclear power plant control rod guide cylinder of the present invention also includes a first centering structure and/or a second centering structure fixed to the protective cover 30.
  • the first centering structure and the second centering structure snap into the corresponding guide grid 44 of the full-range guide assembly 40 to limit the radial and circumferential movement of the full-range guide assembly 40, but not restrict axial movement.
  • the first centering structure is installed at the uppermost guide grid 444 , which includes at least two pins 50 arranged at equal intervals.
  • the outer peripheral wall of the uppermost guide grid 444 is provided with a groove 445 corresponding to the pin 50 one by one.
  • the first end 52 of the pin 50 passes through the upper protective sleeve 32 and snaps into the corresponding groove 445 of the uppermost guide grid 444.
  • the second end 54 is welded and fixed to the upper protective sleeve 32.
  • the first end 52 of the pin 50 and the groove 445 are clearance fits, and the radial and circumferential movement of the upper position of the full range guide assembly 40 can be restricted by the pin 50; in the axial direction of the uppermost guide grid 444, the groove 445 runs through the uppermost guide grid 444, so the pin 50 will not limit the axial movement of the full range guide assembly 40, and the axial movement of the full range guide assembly 40 is kept relatively free to avoid the temperature difference between the inside and outside of the control rod guide cylinder. As a result, internal stress is generated at the pin 50 of the full range guide assembly 40 .
  • the number of pins 50 is preferably four.
  • the second centering structure is installed at the middle guide grid 446 where the first flange 320 and the second flange 340 are connected.
  • the second centering structure includes at least two equally spaced limiting components 60, and each limiting component 60 includes a positioning block 62 and a positioning pin 64.
  • the outer peripheral wall of the middle guide grid 446 is provided with a groove 447 corresponding to the positioning block 62 one by one.
  • the first end 621 of the positioning block 62 is fixed in the second flange 340 and/or the first flange 320 by the positioning pin 64, and the second end 622 is inserted into the corresponding groove 447 of the middle guide grid 446: in the radial direction of the middle guide grid 446, the second end 622 of the positioning block 62 is inserted into the groove 447 and then the middle guide grid 446 is pressed.
  • the radial movement of the middle position of the whole range guide assembly 40 can be limited by the positioning block 62.
  • the second end 622 of the positioning block 62 is provided with an elastic groove 624.
  • the existence of the elastic groove 624 makes the second end 622 of the positioning block 62 can be properly retracted when the positioning block 62 is subjected to the radial pressure of the middle guide grid 446; Circumferential movement.
  • the groove 447 runs through the middle guide grid 446, so the positioning block 62 will not restrict the axial movement of the full range guide assembly 40, and keep the full range guide assembly 40 relatively free in the axial direction, so as to avoid the internal stress generated by the full range guide assembly 40 at the positioning block 62 due to the difference in temperature between the inside and outside.
  • the number of limiting components 60 is preferably four.
  • control rod guide cylinder of the nuclear power plant of the present invention can be provided with the first centering structure and the second centering structure at the same time, or only one of the first centering structure and the second centering structure can be provided.
  • first centering structure can be installed not only at the uppermost guide grid 444, but also at other guide grids, such as any common guide grid 441, or even at the bottom guide grid 442 or the middle guide grid 446 when necessary.
  • control rod guide cylinder of the nuclear power plant of the present invention also includes an elastic cotter pin 70 arranged below the lower flange 440 , and the lower flange 440 forms an easily detachable tight fit connection with the core upper plate 82 (as shown in FIG. 12 ) through the elastic cotter pin 70 .
  • the upper reactor internals in the reactor pressure vessel 80 include an upper support plate 81 and a core upper plate 82.
  • the control rod guide cylinder of the nuclear power plant of the present invention is installed and fixed on the upper support plate 81 and the core upper plate 82.
  • the specific installation method is that the first flange 320 and the second flange 340 of the protective cover 30 are fixedly connected to the upper support plate 81 by fasteners, and the lower flange 440 of the full-range guide assembly 40 forms an easy-to-detach tight fit with the core upper plate 82 through the elastic cotter pin 70. Connection to meet the replacement requirements of the control rod guide cylinder.
  • control rod guide cylinder 88 After installation, the upper section of the control rod guide cylinder 88 is located in the reactor roof chamber 84 , and the lower section of the control rod guide cylinder 88 is located in the reactor upper chamber 85 .
  • the entire control rod guide cylinder 88 is located on the reactor control rod driving line, and its lower end is aligned with the fuel assembly 860 in the core chamber 86 to provide a guide channel for the control rod assembly to enter the fuel assembly 860 .
  • the nuclear power plant control rod guide cylinder of the present invention provides guidance for the control rod assembly, allows the control rod and the drive rod to move, insert and withdraw in the vertical direction, protects the control rod, and reduces the influence of the lateral force of the coolant on the rod drop time during transient and steady state operation. After the connecting joint of the driving rod is disengaged from the star frame, the driving rod is seated on the support of the duplex pipe and maintains a vertical position.
  • the nuclear power plant control rod guide cylinder of the present invention changes the discontinuous guide section structure of the guide grids arranged at intervals into a full-range continuous guide section formed by a long double-tube structure, which optimizes the stroke protection function of the control rods, reduces the risk of bending deformation of the control rods caused by the lateral impact of the fluid in the upper chamber, and ensures the integrity of the control rod structure; at the same time, it improves the wear resistance of the specific position of the control rod guide cylinder, thereby greatly extending the service life of the control rod guide cylinder and reducing later operation costs.
  • the nuclear power plant control rod guide cylinder of the present invention has at least the following advantages:
  • At least one full-range continuous guide element is set at a specific position.
  • At least one full-range continuous guide element is set at a specific position, which greatly improves the wear resistance of the sensitive area of the control rod guide cylinder, reduces the wear failure probability of the control rod guide cylinder, and prolongs the service life of the control rod guide cylinder.
  • the long double pipe 42, the short double pipe 46, and the C-shaped pipe 48 jointly form a continuous guide section for the whole channel of the control rod bundle, and form a continuous guide for all the control rods between the lowermost guide grid 442 and the lower flange 440, which can effectively prevent the control rods from bending, and ensure the drop performance and structural integrity of the control rods.
  • the centering and positioning of the full-range guide assembly 40 in the protective cover 30 is realized through the first centering structure and the second centering structure, so that the full-range guide assembly 40 is restricted in the radial and circumferential directions while maintaining axial freedom, eliminating the internal stress caused by the temperature difference inside and outside the cylinder in the axial direction of the control rod guide cylinder, and reducing the stress level of the internal components of the control rod guide cylinder.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种核电站控制棒导向筒,其包括保护罩(30)和安装在保护罩(30)内的全程导向组件(40);全程导向组件(40)包括至少一根全程连续导向元件,全程连续导向元件内设全程连续导向通道,全程连续导向通道在导向筒行程范围内对单组控制棒组件中的至少一根控制棒进行全程连续导向。核电站控制棒导向筒将间隔设置的导向格板非连续导向段结构变更为由长双联管结构形成的全程连续导向段,优化了控制棒行程保护功能,降低了控制棒受上腔室流体横向冲击引起棒弯曲变形的风险,保证了控制棒结构的完整性;同时,提高了控制棒导向筒特定位置的耐磨性能,从而大大延长控制棒导向筒使用寿命,降低后期运营成本。

Description

核电站控制棒导向筒 技术领域
本发明属于压水反应堆核电站控制棒导向领域,更具体地说,本发明涉及一种核电站控制棒导向筒。
背景技术
压水反应堆控制棒驱动线主要由控制棒驱动机构、压力容器管座、热套管、控制棒导向筒、燃料组件等组成。反应堆运行时,控制棒沿驱动线主要在顶盖腔室、上腔室和堆芯腔室之间上下运动。由于控制棒在不同高度位置上受到流体的影响,如果控制棒运行通道无保护装置,控制棒将受到剧烈的摆动,偏离竖直方向,无法正常工作。因此,设置控制棒导向筒对控制棒进行导向和保护,当控制棒在顶盖腔室和上腔室运行时,控制棒和驱动杆可沿控制棒导向筒竖直方向移动、插入和拔出,由控制棒导向筒提供保护和导向,确保控制棒免受流体冲击,保证其稳定运行,减小在瞬态和稳态运行时冷却剂横向载荷对落棒时间的影响。换料时,控制棒与驱动杆脱扣,为保证下次驱动杆与控制棒的顺利联扣,驱动杆需储存在驱动线上适合位置,控制棒导向筒为其提供方便可行的存放位置。控制棒导向筒内设的连续导向组件是保护控制棒的组件,保证控制棒在需要时快速插入堆芯的核心结构。
请参阅图1,现有的控制棒导向筒由下部导向段10和上部导向段11组成,两者通过法兰110、103背靠背连接,法兰110、103通过螺栓固定在上部堆内构件上支承板上。其中,上部导向段11为圆筒结构,内部嵌入4个导向格板111。下部导向段10由包壳100、连续导向段101和导向格板102组成;包壳100为由两个半方筒拼焊而成的方筒,其上端与中法兰103焊接、下端与下法兰104 焊接;导向格板102焊接嵌入在包壳100内;连续导向段101为包壳100中靠近下法兰104的一段,由位于最下端的导向格板102和下法兰104之间的C形管、双孔管组成,C形管、双孔管使得整个连续导向段101为连续导向。安装后,连续导向段是燃料组件上方的一段导向结构,处在堆芯出口流体由竖向转为横向的敏感位置,对控制棒落棒性能和控制棒结构完整性具有重要作用。
通过以上描述可知,现有的控制棒导向筒只有下端的连续导向段101能够对控制棒进行连续导向,除连续导向段101外,控制棒导向筒的其余长度范围仅依靠间隔布置的导向格板102、111对控制棒进行导向,为非连续导向。这就造成导向格板102、111的特定位置上磨损速度快,从而导致整个控制棒导向筒的使用寿命短,在反应堆寿期内常常需要对磨损失效的控制棒导向筒进行更换。
有鉴于此,确有必要提供一种能够解决上述问题的核电站控制棒导向筒。
发明内容
本发明的目的在于:提供一种不易磨损的核电站控制棒导向筒,以延长其使用寿命。
为了实现上述发明目的,本发明提供了一种核电站控制棒导向筒,其包括保护罩和安装在保护罩内的全程导向组件;所述全程导向组件包括至少一根全程连续导向元件,全程连续导向元件内设全程连续导向通道,全程连续导向通道在导向筒行程范围内对单组控制棒组件中的至少一根控制棒进行全程连续导向。
作为本发明核电站控制棒导向筒的一种改进,所述全程导向组件还包括下法兰和多个导向格板,下法兰和多个导向格板沿着全程连续导向元件的轴向间隔分布,作为全程连续导向元件的径向支承;全程连续导向元件贯穿下法兰和所有导向格板并固定在下法兰和导向格板中,为控制棒提供全程连续导向通道。
作为本发明核电站控制棒导向筒的一种改进,所述全程连续导向元件为长双联管,每根长双联管内设两个导向孔,能够对两根控制棒进行全程连续导向; 所述长双联管的数量为至少两根,每根长双联管中均有一个导向孔对单组控制棒组件中靠近中心的一根控制棒进行全程连续导向。
作为本发明核电站控制棒导向筒的一种改进,所述全程导向组件还包括短程连续导向元件,短程连续导向元件贯穿最下端导向格板和下法兰并固定在最下端导向格板和下法兰中,所述长双联管和短程连续导向元件共同形成控制棒束全通道连续导向段,在最下端导向格板和下法兰之间对全部控制棒均形成连续导向。
作为本发明核电站控制棒导向筒的一种改进,所述短程连续导向元件包括短双联管和C形管;每根短双联管内设两个导向孔,能够对两根控制棒的下段进行短程连续导向;C形管的横截面为C形,用于对短双联管和长双联管以外的其他控制棒的下段形成短程连续导向。
作为本发明核电站控制棒导向筒的一种改进,所述长双联管的数量为四根;导向格板的横截面为圆形,每根长双联管的两个导向孔位于导向格板横截面的同一条半径上,四根长双联管在导向格板的圆形横截面上形成一个中心未连接的“十”字形,四根长双联管对单组控制棒组件中四根靠近中心的控制棒以及四根外围控制棒形成全程连续导向。
作为本发明核电站控制棒导向筒的一种改进,所述短双联管的数量为四根,四根短双联管与四根长双联管间隔设置,在导向格板的圆形横截面上形成一个中心未连接的“米”字形,每根短双联管对单组控制棒组件中位于同一条半径上的两根控制棒的下段形成短程连续导向;所述C形管的数量为8根,分别位于短双联管和长双联管之间,对外围的8根控制棒的下段形成短程连续导向。
作为本发明核电站控制棒导向筒的一种改进,所述下法兰与保护罩的下端焊接连接,全程导向组件的其他部分插入保护罩中。
作为本发明核电站控制棒导向筒的一种改进,所述核电站控制棒导向筒还包括固定于保护罩的第一对中结构和/或第二对中结构,第一对中结构、第二对 中结构卡入全程导向组件的对应导向格板中,限制全程导向组件的径向和周向运动。
作为本发明核电站控制棒导向筒的一种改进,所述第一对中结构安装在最上端导向格板处,其包括至少两个等间距布置的销钉;最上端导向格板的外周壁设有与销钉一一对应的凹槽,销钉的第一端穿过上部保护套筒卡入最上端导向格板的对应凹槽中,第二端与上部保护套筒焊接固定。
作为本发明核电站控制棒导向筒的一种改进,在最上端导向格板的径向和周向,销钉的第一端与凹槽均为间隙配合;在最上端导向格板的轴向,凹槽贯穿最上端导向格板。
作为本发明核电站控制棒导向筒的一种改进,所述保护罩包括上部保护套筒和下部保护套筒,上部保护套筒的下端设有第一法兰,下部保护套筒的上端设有第二法兰,上部保护套筒和下部保护套筒通过第一法兰和第二法兰背靠背连接。
作为本发明核电站控制棒导向筒的一种改进,所述第二对中结构安装在第一法兰和第二法兰连接位置的中部导向格板处;所述第二对中结构包括至少两个等间距布置的限位组件,每一限位组件包括一个定位块和一个定位销;中部导向格板的外周壁设有与定位块一一对应的凹槽,定位块的第一端通过定位销固定在第二法兰和/或第一法兰中,第二端卡入中部导向格板的对应凹槽中。
作为本发明核电站控制棒导向筒的一种改进,在中部导向格板的径向,定位块的第二端卡入凹槽后压紧中部导向格板,定位块的第二端设有一个弹性凹槽,弹性凹槽的存在使得定位块受到中部导向格板的径向压力时第二端能够适当回缩;在中部导向格板的周向,定位块的第二端与凹槽为间隙配合;在中部导向格板的轴向,凹槽贯穿中部导向格板。
作为本发明核电站控制棒导向筒的一种改进,所述第一法兰和第二法兰通过紧固件固定连接在上部堆内构件的上支承板。
作为本发明核电站控制棒导向筒的一种改进,所述核电站控制棒导向筒还包括设置在下法兰下方的弹性开口销,下法兰通过弹性开口销与堆芯上板形成易拆卸的紧配合连接。
与现有技术相比,本发明核电站控制棒导向筒将间隔设置的导向格板非连续导向段结构变更为由长双联管结构形成的全程连续导向段,优化了控制棒行程保护功能,降低了控制棒受上腔室流体横向冲击引起棒弯曲变形的风险,保证了控制棒结构的完整性;同时,提高了控制棒导向筒特定位置的耐磨性能,从而大大延长控制棒导向筒使用寿命,降低后期运营成本。本发明还通过第一对中结构、第二对中结构实现全程导向组件在保护罩内的对中和定位,使得全程导向组件在径向和周向受限的同时,保持轴向自由,消除控制棒导向筒轴向由于筒体内外温差引起的内应力,降低控制棒导向筒内构件应力水平。
附图说明
下面结合附图和具体实施方式,对本发明核电站控制棒导向筒及其有益效果进行详细说明。
图1为现有控制棒导向筒的结构示意图。
图2为本发明核电站控制棒导向筒的整体结构示意图。
图3为本发明核电站控制棒导向筒的全程导向组件的结构示意图。
图4为图3中A-A剖面处的仰视图。
图5为图3中B-B剖面处的俯视图。
图6为图2中C-C剖面处的俯视图。
图7为第一对中结构的一个销钉与上部保护套筒和最上端导向格板的配合示意图。
图8为图2中D-D剖面处的俯视图。
图9为图8中一个限位组件的放大示意图。
图10为第一对中结构的限位组件与第一法兰、第二法兰以及中部导向格板 的配合示意图。
图11为下法兰下方弹性开口销的结构示意图。
图12为本发明核电站控制棒导向筒的安装示意图。
具体实施方式
为了使本发明的目的、技术方案及其有益技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参阅图2至图5,本发明核电站控制棒导向筒包括保护罩30和安装在保护罩30内的全程导向组件40;全程导向组件40包括至少一根全程连续导向元件,全程连续导向元件内设全程连续导向通道,全程连续导向通道在导向筒行程范围内对单组控制棒组件中的至少一根控制棒进行全程连续导向。
保护罩30包括上部保护套筒32和下部保护套筒34,上部保护套筒32的下端设有第一法兰320,下部保护套筒34的上端设有第二法兰340,上部保护套筒32和下部保护套筒34通过第一法兰320和第二法兰340背靠背连接,且第一法兰320和第二法兰340通过紧固件固定连接在上部堆内构件的上支承板81(如图12所示),实现保护罩30的固定。所述紧固件可以为螺栓。
全程导向组件40还包括下法兰440和多个导向格板44(导向格板44包括普通导向格板441、最下端导向格板442、最上端导向格板444以及位于第一法兰320和第二法兰340连接处的中部导向格板446),下法兰440和多个导向格板44沿着全程连续导向元件的轴向间隔分布,作为全程连续导向元件的径向支承;全程连续导向元件从下至上贯穿整个全程导向组件,为控制棒提供全程连续导向通道,在导向筒行程范围内对控制棒进行全程导向和保护。全程连续导向元件贯穿下法兰440和所有导向格板44并固定在下法兰440和导向格板44中,固定方式优选为焊接。下法兰440连接在保护罩30的下部保护套筒34下端,全程导向组件40其他部分插入保护罩30中。导向格板44分布在上部保护 套筒32和下部保护套筒34中,其中一个导向格板44位于上部保护套筒32和下部保护套筒34的连接位置处,本说明书中称之为中部导向格板446(中部导向格板446的“中部”是指这个导向格板的位置大致位于核电站控制棒导向筒的中部区域,却并非特指位于所有导向格板最中间)。下法兰440与下部保护套筒34下端的连接为焊接连接。
每一全程连续导向元件内设至少一个连续导向通道,每一连续导向通道在导向筒行程范围内对单组控制棒组件中的一根控制棒进行全程连续导向。具体的,全程连续导向元件优选为长双联管42,长双联管42结构稳定性好,每根长双联管42内设两个导向孔,能够对两根控制棒进行全程连续导向。长双联管42的数量为至少两根,每根长双联管42中均有一个导向孔对单组控制棒组件中靠近中心的一根控制棒进行全程连续导向。
单组控制棒组件中,靠近中心的四根控制棒最容易磨损,为此,长双联管42的数量优选为四根:请参阅图4所示实施方式,导向格板44的横截面为圆形,每根长双联管42的两个导向孔位于导向格板横截面的同一条半径上,四根长双联管42在导向格板44的圆形横截面上形成一个中心未连接的“十”字形,四根长双联管42对单组控制棒组件中四根靠近中心的控制棒以及四根外围控制棒形成全程连续导向。长双联管42结构稳定性好,在导向格板44上分布均衡,能够对靠近中心的四根控制棒在导向筒行程范围内进行全程连续导向和保护,降低了控制棒导向筒的磨损失效概率,从而提高了控制棒导向筒的使用寿命。长双联管42与导向格板44的固定方式为焊接。
为了对长双联管42以外的其他控制棒进行导向,全程导向组件40还包括短程连续导向元件。短程连续导向元件贯穿最下端导向格板442和下法兰440并固定在最下端导向格板442和下法兰440中,长双联管42和短程连续导向元件共同形成控制棒束全通道连续导向段,在最下端导向格板442和下法兰440之间对全部控制棒均形成连续导向。
具体的,短程连续导向元件包括短双联管46和C形管48。每根短双联管46内设两个导向孔,能够对两根控制棒进行短程连续导向;短双联管46的横截面形状与长双联管42横截面形状近似,但两个导向孔的间距比长双联管42略小。C形管48的横截面为C形,用于对短双联管46和长双联管42以外的其他控制棒的下段形成短程连续导向。
具体的,在图5所示实施方式中,短双联管46数量优选为四根,四根短双联管46和四根长双联管42间隔设置,在导向格板44的圆形横截面上形成一个中心未连接的“米”字形,每根短双联管46对单组控制棒组件中位于同一条半径上的两根控制棒的下段形成短程连续导向。C形管48的数量为8根,分别位于短双联管46和长双联管42之间,对外围的8根控制棒的下段形成短程连续导向。长双联管42、短双联管46、C形管48共同形成控制棒束全通道连续导向段,在最下端导向格板442和下法兰440之间对全部控制棒均形成连续导向,能够有效防止控制棒弯曲,确保控制棒落棒性能和结构完整性。
为了实现全程导向组件40在保护罩30内的对中和定位,本发明核电站控制棒导向筒还包括固定于保护罩30的第一对中结构和/或第二对中结构,第一对中结构、第二对中结构卡入全程导向组件40的对应导向格板44中,限制全程导向组件40的径向和周向运动,但不限制轴向运动。
请参阅图2、图6和图7,第一对中结构安装在最上端导向格板444处,其包括至少两个等间距布置的销钉50。最上端导向格板444的外周壁设有与销钉50一一对应的凹槽445,销钉50的第一端52穿过上部保护套筒32卡入最上端导向格板444的对应凹槽445中,第二端54与上部保护套筒32焊接固定。在最上端导向格板444的径向和周向,销钉50的第一端52与凹槽445均为间隙配合,通过销钉50即可限制全程导向组件40上端位置的径向和周向运动;在最上端导向格板444的轴向,凹槽445贯穿最上端导向格板444,因此销钉50不会限制全程导向组件40的轴向运动,保持全程导向组件40轴向相对自由, 以避免因控制棒导向筒内外侧温差不同导致全程导向组件40在销钉50处产生内应力。销钉50的数量优选为4个。
请参阅图2和图8-10,第二对中结构安装在第一法兰320和第二法兰340连接位置的中部导向格板446处,第二对中结构包括至少两个等间距布置的限位组件60,每一限位组件60包括一个定位块62和一个定位销64。中部导向格板446的外周壁设有与定位块62一一对应的凹槽447,定位块62的第一端621通过定位销64固定在第二法兰340和/或第一法兰320中,第二端622卡入中部导向格板446的对应凹槽447中:在中部导向格板446的径向,定位块62的第二端622卡入凹槽447后压紧中部导向格板446,通过定位块62即可限制全程导向组件40中部位置的径向运动,同时,定位块62的第二端622设有一个弹性凹槽624,弹性凹槽624的存在使得定位块62受到中部导向格板446的径向压力时第二端622能够适当回缩;在中部导向格板446的周向,定位块62的第二端622与凹槽447为间隙配合,通过定位块62即可限制全程导向组件40中部位置的周向运动。在中部导向格板446的轴向,凹槽447贯穿中部导向格板446,因此定位块62不会限制全程导向组件40的轴向运动,保持全程导向组件40轴向相对自由,以避免因内外侧温差不同导致全程导向组件40在定位块62处产生内应力。限位组件60的数量优选为4个。
易于理解的是,本发明核电站控制棒导向筒可以同时设置第一对中结构和第二对中结构,也可以仅设置第一对中结构和第二对中结构中的一种,而且,第一对中结构不仅可以安装在最上端导向格板444处,也可以安装在其他位置的导向格板处,例如任一个普通导向格板441处,甚至确有需要时,也可以安装在最下端导向格板442或中部导向格板446处。
请参阅图11,本发明核电站控制棒导向筒还包括设置在下法兰440下方的弹性开口销70,下法兰440通过弹性开口销70与堆芯上板82(如图12所示)形成易拆卸的紧配合连接。
请参阅图12,反应堆压力容器80中的上部堆内构件包括上支承板81和堆芯上板82,本发明核电站控制棒导向筒安装固定于上支承板81和堆芯上板82上,具体安装方式是将保护罩30的第一法兰320和第二法兰340通过紧固件固定连接在上支承板81,将全程导向组件40的下法兰440通过弹性开口销70与堆芯上板82形成易拆卸的紧配合连接,满足控制棒导向筒的更换需求。安装好后,控制棒导向筒88的上段位于反应堆顶盖腔室84中,控制棒导向筒88的下段位于反应堆上腔室85中。整个控制棒导向筒88位于反应堆控制棒驱动线上,下端与堆芯腔室86中的燃料组件860对中,为控制棒组件进入燃料组件860提供导向通道。本发明核电站控制棒导向筒为控制棒组件提供导向,允许控制棒和驱动杆沿竖直方向移动、插入和抽出,对控制棒进行保护,减小在瞬态和稳态运行时冷却剂作用的横向力对落棒时间的影响。当驱动杆连接接头与星型架脱开后,驱动杆座落在双联管的支座上,并保持竖直位置。
通过以上描述可知,本发明核电站控制棒导向筒通过将间隔设置的导向格板非连续导向段结构变更为由长双联管结构形成的全程连续导向段,优化了控制棒行程保护功能,降低了控制棒受上腔室流体横向冲击引起棒弯曲变形的风险,保证了控制棒结构的完整性;同时,提高了控制棒导向筒特定位置的耐磨性能,从而大大延长控制棒导向筒使用寿命,降低后期运营成本。
与现有技术相比,本发明核电站控制棒导向筒至少具有以下优点:
1)设置至少一根全程连续导向元件,优化对特定位置控制棒的导向和行程保护功能,降低控制棒受流体冲击引起棒弯曲变形的风险,保证控制棒结构完整性。
2)在特定位置设置至少一根全程连续导向元件,通过优化连续导向功能,减小流体横向扰动的影响,使控制棒运行和落棒过程更加平稳,提升控制棒驱动线运行性能。
3)在特定位置设置至少一根全程连续导向元件,大大提高了控制棒导向筒 敏感区域的耐磨性,降低了控制棒导向筒磨损失效概率,延长了控制棒导向筒使用寿命。
4)长双联管42、短双联管46、C形管48共同形成控制棒束全通道连续导向段,在最下端导向格板442和下法兰440之间对全部控制棒均形成连续导向,能够有效防止控制棒弯曲,确保控制棒落棒性能和结构完整性。
5)采用长双联管42串接下法兰和所有导向格板44,简化结构,易于制造。
6)通过第一对中结构、第二对中结构实现全程导向组件40在保护罩30内的对中和定位,使得全程导向组件40在径向和周向受限的同时,保持轴向自由,消除控制棒导向筒轴向由于筒体内外温差引起的内应力,降低控制棒导向筒内构件应力水平。
7)通过设置第一对中结构、第二对中结构和底部焊接连接结构,提升全程导向组件40的结构刚度,限制流致振动的振幅和应力。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (16)

  1. 一种核电站控制棒导向筒,其特征在于:包括保护罩和安装在保护罩内的全程导向组件;所述全程导向组件包括至少一根全程连续导向元件,全程连续导向元件内设全程连续导向通道,全程连续导向通道在导向筒行程范围内对单组控制棒组件中的至少一根控制棒进行全程连续导向。
  2. 根据权利要求1所述的核电站控制棒导向筒,其特征在于:所述全程导向组件还包括下法兰和多个导向格板,下法兰和多个导向格板沿着全程连续导向元件的轴向间隔分布,作为全程连续导向元件的径向支承;全程连续导向元件贯穿下法兰和所有导向格板并固定在下法兰和导向格板中,为控制棒提供全程连续导向通道。
  3. 根据权利要求2所述的核电站控制棒导向筒,其特征在于:所述全程连续导向元件为长双联管,每根长双联管内设两个导向孔,能够对两根控制棒进行全程连续导向;所述长双联管的数量为至少两根,每根长双联管中均有一个导向孔对单组控制棒组件中靠近中心的一根控制棒进行全程连续导向。
  4. 根据权利要求3所述的核电站控制棒导向筒,其特征在于:所述全程导向组件还包括短程连续导向元件,短程连续导向元件贯穿最下端导向格板和下法兰并固定在最下端导向格板和下法兰中,所述长双联管和短程连续导向元件共同形成控制棒束全通道连续导向段,在最下端导向格板和下法兰之间对全部控制棒均形成连续导向。
  5. 根据权利要求4所述的核电站控制棒导向筒,其特征在于:所述短程连续导向元件包括短双联管和C形管;每根短双联管内设两个导向孔,能够对两根控制棒的下段进行短程连续导向;C形管的横截面为C形,用于对短双联管和长双联管以外的其他控制棒的下段形成短程连续导向。
  6. 根据权利要求5所述的核电站控制棒导向筒,其特征在于:所述长双联 管的数量为四根;导向格板的横截面为圆形,每根长双联管的两个导向孔位于导向格板横截面的同一条半径上,四根长双联管在导向格板的圆形横截面上形成一个中心未连接的“十”字形,四根长双联管对单组控制棒组件中四根靠近中心的控制棒以及四根外围控制棒形成全程连续导向。
  7. 根据权利要求6所述的核电站控制棒导向筒,其特征在于:所述短双联管的数量为四根,四根短双联管与四根长双联管间隔设置,在导向格板的圆形横截面上形成一个中心未连接的“米”字形,每根短双联管对单组控制棒组件中位于同一条半径上的两根控制棒的下段形成短程连续导向;所述C形管的数量为8根,分别位于短双联管和长双联管之间,对外围的8根控制棒的下段形成短程连续导向。
  8. 根据权利要求2所述的核电站控制棒导向筒,其特征在于:所述下法兰与保护罩的下端焊接连接,全程导向组件的其他部分插入保护罩中。
  9. 根据权利要求2所述的核电站控制棒导向筒,其特征在于:所述核电站控制棒导向筒还包括固定于保护罩的第一对中结构和/或第二对中结构,第一对中结构、第二对中结构卡入全程导向组件的对应导向格板中,限制全程导向组件的径向和周向运动。
  10. 根据权利要求9所述的核电站控制棒导向筒,其特征在于:所述第一对中结构安装在最上端导向格板处,其包括至少两个等间距布置的销钉;最上端导向格板的外周壁设有与销钉一一对应的凹槽,销钉的第一端穿过上部保护套筒卡入最上端导向格板的对应凹槽中,第二端与上部保护套筒焊接固定。
  11. 根据权利要求10所述的核电站控制棒导向筒,其特征在于:在最上端导向格板的径向和周向,销钉的第一端与凹槽均为间隙配合;在最上端导向格板的轴向,凹槽贯穿最上端导向格板。
  12. 根据权利要求9所述的核电站控制棒导向筒,其特征在于:所述保护罩包括上部保护套筒和下部保护套筒,上部保护套筒的下端设有第一法兰,下 部保护套筒的上端设有第二法兰,上部保护套筒和下部保护套筒通过第一法兰和第二法兰背靠背连接。
  13. 根据权利要求12所述的核电站控制棒导向筒,其特征在于:所述第二对中结构安装在第一法兰和第二法兰连接位置的中部导向格板处;所述第二对中结构包括至少两个等间距布置的限位组件,每一限位组件包括一个定位块和一个定位销;中部导向格板的外周壁设有与定位块一一对应的凹槽,定位块的第一端通过定位销固定在第二法兰和/或第一法兰中,第二端卡入中部导向格板的对应凹槽中。
  14. 根据权利要求13所述的核电站控制棒导向筒,其特征在于:在中部导向格板的径向,定位块的第二端卡入凹槽后压紧中部导向格板,定位块的第二端设有一个弹性凹槽,弹性凹槽的存在使得定位块受到中部导向格板的径向压力时第二端能够适当回缩;在中部导向格板的周向,定位块的第二端与凹槽为间隙配合;在中部导向格板的轴向,凹槽贯穿中部导向格板。
  15. 根据权利要求12所述的核电站控制棒导向筒,其特征在于:所述第一法兰和第二法兰通过紧固件固定连接在上部堆内构件的上支承板。
  16. 根据权利要求2所述的核电站控制棒导向筒,其特征在于:所述核电站控制棒导向筒还包括设置在下法兰下方的弹性开口销,下法兰通过弹性开口销与堆芯上板形成易拆卸的紧配合连接。
PCT/CN2022/102855 2022-01-24 2022-06-30 核电站控制棒导向筒 WO2023137987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210081755.3 2022-01-24
CN202210081755.3A CN114464331A (zh) 2022-01-24 2022-01-24 核电站控制棒导向筒

Publications (1)

Publication Number Publication Date
WO2023137987A1 true WO2023137987A1 (zh) 2023-07-27

Family

ID=81411755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102855 WO2023137987A1 (zh) 2022-01-24 2022-06-30 核电站控制棒导向筒

Country Status (2)

Country Link
CN (1) CN114464331A (zh)
WO (1) WO2023137987A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464331A (zh) * 2022-01-24 2022-05-10 中广核工程有限公司 核电站控制棒导向筒

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237595A (en) * 1990-02-26 1993-08-17 Westinghouse Electric Corp. Guide plate for guide tubes used in nuclear reactors
CN101770822A (zh) * 2008-12-31 2010-07-07 中国核动力研究设计院 管束式对星形架全行程连续导向组件
CN202736503U (zh) * 2012-06-08 2013-02-13 中国核动力研究设计院 开式管束型长行程连续导向组件
CN109448872A (zh) * 2018-11-30 2019-03-08 上海核工程研究设计院有限公司 一种堆内构件导向筒结构
CN110085332A (zh) * 2019-04-25 2019-08-02 中广核研究院有限公司 一种反应堆控制棒束的导向装置
CN114464331A (zh) * 2022-01-24 2022-05-10 中广核工程有限公司 核电站控制棒导向筒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237595A (en) * 1990-02-26 1993-08-17 Westinghouse Electric Corp. Guide plate for guide tubes used in nuclear reactors
CN101770822A (zh) * 2008-12-31 2010-07-07 中国核动力研究设计院 管束式对星形架全行程连续导向组件
CN202736503U (zh) * 2012-06-08 2013-02-13 中国核动力研究设计院 开式管束型长行程连续导向组件
CN109448872A (zh) * 2018-11-30 2019-03-08 上海核工程研究设计院有限公司 一种堆内构件导向筒结构
CN110085332A (zh) * 2019-04-25 2019-08-02 中广核研究院有限公司 一种反应堆控制棒束的导向装置
CN114464331A (zh) * 2022-01-24 2022-05-10 中广核工程有限公司 核电站控制棒导向筒

Also Published As

Publication number Publication date
CN114464331A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2023137987A1 (zh) 核电站控制棒导向筒
JP5032404B2 (ja) 原子炉内計測用配管の固定装置およびそれを用いた固定工法
US8279995B2 (en) Guide thimble of dual tube type structure nuclear fuel assembly
JP2016503180A (ja) 計装装置貫通フランジを有する原子炉の燃料交換方法および装置
US8275088B2 (en) Perforated plate support for dual-cooled segmented fuel rod
KR101749787B1 (ko) 핵연료 조립체 홀드 다운 스프링
US3200045A (en) Liquid cooled nuclear reactor with improved flow distribution means
CN218992741U (zh) 一种新型燃气管道补偿器
JPH04232895A (ja) 炉内構造物組立体における案内管挿入物アセンブリ
US10229758B2 (en) Control rod guide tube with an extended intermediate guide assembly
US4839135A (en) Anti-vibration flux thimble
US20140241486A1 (en) Fuel assembly
CN103299371B (zh) 核燃料棒充气室弹簧组件
JPH0210194A (ja) 水冷却減速炉用の上方内部装備
JP5214137B2 (ja) 沸騰水型原子炉
CN103813879A (zh) 沟槽式核燃料组件部件插入物
US11289216B2 (en) Nuclear reactor core shroud securing device
CA2764270C (en) Fuel channel spacer system and method
JPS5932888A (ja) 核燃料集合体用のスペ−サ保持手段および下部タイプレ−ト取付け具
KR101160773B1 (ko) 원자로
WO2018021044A1 (ja) 沸騰水型原子炉の炉心
US20170206985A1 (en) Top nozzle and pressurized water nuclear reactor including same
CN115410728A (zh) 一种全自然循环反应堆本体系统
CN116487076A (zh) 一种外挂式反应堆压力容器整体保温层结构
CN85106420A (zh) 用于核反应堆燃料组件的单中子源定位机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921418

Country of ref document: EP

Kind code of ref document: A1