WO2023137980A1 - 多绕组电机驱动系统、变频电驱系统、泵送系统、压裂设备及井场设备 - Google Patents

多绕组电机驱动系统、变频电驱系统、泵送系统、压裂设备及井场设备 Download PDF

Info

Publication number
WO2023137980A1
WO2023137980A1 PCT/CN2022/101882 CN2022101882W WO2023137980A1 WO 2023137980 A1 WO2023137980 A1 WO 2023137980A1 CN 2022101882 W CN2022101882 W CN 2022101882W WO 2023137980 A1 WO2023137980 A1 WO 2023137980A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
unit
power
plunger pump
rectification
Prior art date
Application number
PCT/CN2022/101882
Other languages
English (en)
French (fr)
Inventor
李守哲
仲跻风
谢元杰
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to CA3179725A priority Critical patent/CA3179725A1/en
Priority to US18/315,888 priority patent/US20230283215A1/en
Publication of WO2023137980A1 publication Critical patent/WO2023137980A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to the field of fracturing in oil and gas fields, in particular to a multi-winding motor drive system, a variable frequency electric drive system, a pumping system, fracturing equipment and well site equipment.
  • the driving scheme usually adopted for the motor is: the power device in the frequency converter (such as an inverter unit, or a combination of a rectifier unit and an inverter unit) is electrically connected to the motor to provide variable frequency current to the motor, so as to achieve the purpose of driving the motor.
  • the power device in the frequency converter such as an inverter unit, or a combination of a rectifier unit and an inverter unit
  • the variable frequency current is provided as a whole for the multiple coil windings of the motor. Therefore, if there is a problem with any coil winding in the motor, the entire motor will not work normally.
  • the frequency converter has only a single power device (such as IGBT (Insulated Gate Bipolar Transistor: Insulated Gate Bipolar Transistor), etc.), once the power device fails, the motor will not work properly.
  • the output voltage of the current power supply facilities is usually not lower than 10kV (for example, in China, the power supply voltage of the distribution network is mainly 10kV/50Hz; con Controlled Rectifier: thyristor rectifier), GTR (Giant Transistor: power transistor), GTO (Gate Turn-Off Transistor: gate turn-off transistor), IEGT (Injection Enhanced Gate Transistor: injection enhanced gate transistor), etc.) have limited withstand voltage and withstand current, and cannot withstand the output of high voltage and high current from power supply facilities, that is, they cannot be directly connected to power supply facilities for use. Therefore, a transformer is needed to adjust the voltage. That is, as shown in (B) in FIG.
  • the conventional frequency converter needs to be indirectly connected to the power supply facility by using a transformer, through which the high output voltage of the power supply facility (above 10 kV) is reduced to the low input voltage of the conventional frequency converter (below 6.6 kV), and then the power device in the conventional frequency converter is electrically connected with the motor to drive the motor.
  • existing electric-driven fracturing equipment electrical-driven fracturing equipment (1), electric-driven fracturing equipment (2), electric-driven fracturing equipment (3), ...) are electrically connected to power supply facilities via frequency converter skids (frequency converter skids (1), frequency converter skids (2), ...), and each frequency converter sled is provided with at least one frequency converter.
  • the frequency converter includes a transformer
  • the volume and weight are large, so the frequency converter needs to be separated from the motor in the electric fracturing equipment and placed separately.
  • the problem brought about is: the frequency converter and the motor are separated by a certain distance, and there are many wirings between the motor and the frequency converter, which need to be connected by the complete machine manufacturer or on-site operators.
  • harmonic pollution causes a lot of heat in the wiring, and the heat will be conducted to the motor; in addition, harmonic pollution will directly cause additional power loss and heat generation of the motor. This will cause the insulation material of the motor to age, shorten the life of the motor, and the heat dissipation capacity of the motor is insufficient, making the motor easy to damage.
  • More wiring also leads to enlargement of floor area and complexity of equipment production or well site layout.
  • the transformer is arranged outside the frequency converter.
  • the frequency converter sled can include two parts, the transformer and the frequency converter.
  • multiple frequency converters share a transformer and/or rectification unit. In these cases, there are also problems caused by the inclusion of transformers.
  • the present invention is developed in view of the above situation, and an object of the present invention is to provide a multi-winding motor drive system.
  • the motor has multiple independent coil windings, and each of the multiple coil windings is separately driven by a power unit.
  • the power unit can be arranged separately from the electric machine, or can be at least partially integrated on the electric machine.
  • the present invention also provides a pumping system containing the above-mentioned multi-winding motor drive system, fracturing equipment or pumping equipment or cementing equipment containing the pumping system, and well site equipment containing the fracturing equipment or pumping equipment or well cementing equipment.
  • variable frequency electric drive system capable of eliminating the transformer.
  • the variable frequency electric drive system includes a motor and a power unit that is directly electrically connected to a power supply system and used to drive the motor.
  • Such a variable frequency electric drive system solves various problems in the prior art due to the presence of a transformer. For example, since the power unit is directly electrically connected to the power supply system without a transformer, it can be integrated on the motor with reduced volume and weight.
  • the present invention also provides a pumping system including the frequency conversion electric drive system, fracturing equipment or pumping equipment or cementing equipment including the pumping system, and well site equipment including the fracturing equipment, pumping equipment or well cementing equipment.
  • an embodiment of the present invention provides a multi-winding motor drive system, which includes a motor and a power unit.
  • the motor has multiple independent windings.
  • the power unit includes a rectification unit and a plurality of inverter units, the number of the plurality of inverter units corresponds to the multiple windings of the motor one by one, and each inverter unit supplies power to a corresponding one of the multiple windings of the motor.
  • An embodiment of the present invention provides a pumping system, which includes the above-mentioned multi-winding motor drive system, and further includes at least one plunger pump.
  • the plunger pump is driven by the motor.
  • the plunger pump is integrated with the multi-winding motor drive system.
  • the drive input shaft of the plunger pump may be directly mechanically connected to the drive output shaft of the electric motor.
  • the drive output shaft of the electric motor may be indirectly mechanically connected to the drive input shaft of the plunger pump via a clutch or coupling.
  • One embodiment of the present invention provides a fracturing equipment, which includes the above-mentioned pumping system, and further includes an upper liquid manifold disposed at one side of the plunger pump, a discharge manifold disposed at one or both ends of the plunger pump, and a power supply for supplying power to the fracturing equipment.
  • An embodiment of the present invention provides wellsite equipment, which includes the above-mentioned fracturing equipment.
  • the working fluid may be a fracturing fluid.
  • the upper liquid manifold supplies the fracturing fluid to the plunger pump, and the plunger pump pressurizes the fracturing fluid and sends it out to the formation through the discharge manifold to fracture the formation.
  • One embodiment of the present invention provides a well site equipment, which includes a pumping equipment, an upper liquid manifold, a discharge manifold and a power supply.
  • the pumping device includes the pumping system described above.
  • the working fluid may be a pumped fluid.
  • the upper liquid manifold supplies the pumped liquid to the plunger pump, and the plunger pump pressurizes the pumped liquid and sends it out to the downhole through the discharge manifold to pump the downhole tool.
  • One embodiment of the present invention provides a well site equipment, which includes a cementing equipment, an upper liquid manifold, a discharge manifold and a power supply.
  • the well cementing equipment includes the above-mentioned pumping system.
  • the working fluid may be cement slurry.
  • the upper liquid manifold supplies cement slurry to the plunger pump, and the plunger pump pressurizes the cement slurry and sends it out into the well through the discharge manifold, thereby fixing the wellbore through the cement slurry.
  • an embodiment of the present invention provides a variable frequency electric drive system, which includes: a motor; and a power unit that is directly electrically connected to a power supply system and used to drive the motor.
  • the power unit includes a rectification unit electrically connected directly to the power supply system and an inverter unit electrically connected to the rectification unit and driving the motor.
  • the rectification unit adopts a three-phase rectification circuit, and the upper arm and the lower arm of each phase of the three-phase rectification circuit are composed of rectification modules, and each rectification module includes a plurality of rectification devices connected in series.
  • An embodiment of the present invention also provides a pumping system, fracturing equipment, cementing equipment and well site equipment including the above-mentioned frequency conversion electric drive system.
  • the multi-winding motor drive system of the present invention a motor with mutually independent multiple windings is used, and a power unit is used to drive different windings of the motor separately by combining a rectification unit and an inverter unit in a specific way. In this way, when any path fails, the multi-winding motor drive system can continue to work, and the reliability is greatly improved. Therefore, the multi-winding motor drive system has the advantages of high system efficiency and excellent performance.
  • phase-shifting transformer can be used instead of a transformer used in a conventional frequency converter.
  • harmonics can be eliminated by phase shifting, and the required output voltage value can also be obtained by adjusting the voltage.
  • the phase-shifting transformer can only play the role of phase shifting.
  • the present invention can use a rectifier unit with a series voltage divider structure, so that the input line of the power unit can be directly electrically connected to the power supply facility without going through a transformer, realizing high-voltage (in the present invention, high voltage is, for example, a voltage higher than 3 kV, etc.) high-voltage variable-frequency control for the integration of variable-frequency electric drives, solving the problems of limited output distance of high-voltage frequency converters in the prior art, and interference of output cables to surrounding equipment.
  • the transformer is eliminated in the present invention, the weight and volume of the power unit are small, and the power unit can be integrated on the motor, effectively shortening the output line of the power unit.
  • the present invention can integrate a part of the power unit (such as the inverter unit) on the motor, and place other parts (such as the rectification unit, etc.) outside the motor, which can reduce the occupied space of the overall machine layout while taking into account the balanced distribution of weight and space to prevent local overweight or oversize.
  • the power unit such as the inverter unit
  • other parts such as the rectification unit, etc.
  • a rectifier unit using a series voltage divider structure can also be used at the same time.
  • the use of multi-winding motors solves the problem that other roads can still operate when any road fails.
  • the transformer in the frequency converter in the prior art can also be eliminated by using the series voltage division structure in the rectifier unit, and then the integration of the power unit and the motor can be realized.
  • FIG. 1 shows the electrical connection mode between the existing electric drive fracturing equipment and the power supply facility via the frequency converter skid.
  • FIG. 1 shows a configuration of an existing conventional frequency converter and a schematic block diagram of a motor driven by the conventional frequency converter.
  • Fig. 2A shows a schematic block diagram of a first example of a pumping system according to a first embodiment of the invention.
  • Fig. 2B shows a schematic block diagram of a second example of a pumping system according to the first embodiment of the invention.
  • Fig. 2C shows a schematic block diagram of a third example of a pumping system according to the first embodiment of the invention.
  • Fig. 3 shows a first example of a multi-winding motor drive system in a pumping system according to a first embodiment of the present invention.
  • Fig. 4A shows a second example of a multi-winding motor drive system in a pumping system according to the first embodiment of the present invention.
  • FIG. 4B shows a schematic circuit diagram of electrical connections between multiple inverter units and corresponding windings of the motor in the multi-winding motor drive system shown in FIG. 4A .
  • FIG. 4C shows a circuit diagram of the electrical connections of the rectification unit and multiple inverter units in the multi-winding motor drive system shown in FIG. 4A .
  • FIG. 4D shows a partially enlarged view of the filtering unit and the inverter unit in FIG. 4C.
  • Fig. 5A shows a third example of a multi-winding motor drive system in a pumping system according to the first embodiment of the present invention.
  • FIG. 5B shows a schematic circuit diagram of electrical connections between multiple inverter units and corresponding windings of the motor in the multi-winding motor drive system shown in FIG. 5A .
  • FIG. 5C shows a circuit diagram of the electrical connection of the rectification unit and multiple inverter units in the multi-winding motor drive system shown in FIG. 5A .
  • Fig. 5D shows a fourth example of a multi-winding motor drive system in a pumping system according to the first embodiment of the present invention.
  • Fig. 6 shows a schematic block diagram of a fourth embodiment of the pumping system according to the first embodiment of the present invention, in which a phase-shifting transformer is provided on the input side of the rectification unit of the multi-winding motor drive system.
  • Fig. 7A shows a first example of the whole machine layout including the pumping system of the present invention and its related power supply system and control system according to the second embodiment of the present invention.
  • Fig. 7B shows a second example of the whole machine layout including the pumping system of the present invention and its related power supply system and control system according to the second embodiment of the present invention.
  • Fig. 8A shows a third example of the whole machine layout including the pumping system of the present invention and its related power supply system and control system according to the second embodiment of the present invention.
  • Fig. 8B shows a fourth example of the whole machine layout including the pumping system of the present invention and its related power supply system and control system according to the second embodiment of the present invention.
  • Fig. 9 shows an example of fracturing equipment integrated through a carrier frame according to a third embodiment of the present invention.
  • Fig. 10 shows an example of fracturing equipment integrated by a semi-trailer according to the third embodiment of the present invention.
  • Fig. 11 shows another example of fracturing equipment integrated by a semi-trailer according to the third embodiment of the present invention.
  • Fig. 12 shows an example of the control method of the multi-winding motor of the present invention.
  • the pumping system 90 includes a multi-winding motor drive system and a plunger pump 11 driven by the multi-winding motor drive system.
  • the multi-winding motor drive system includes a power unit 40 and a motor 21 .
  • the output line of the power unit 40 is electrically connected to the power input end of the motor 21 to drive the motor 21 with speed regulation.
  • the transmission output shaft of the motor 21 is mechanically connected with the transmission input shaft of the plunger pump 11 .
  • the plunger of the plunger pump 11 reciprocates in the cylinder, so that the volume of the working chamber sealed with the working fluid changes, thereby realizing the suction and pressurization of the working fluid, and discharging the pressurized working fluid to the outside.
  • the motor 21 is a multi-winding motor with multiple windings R1 ⁇ Rn (n ⁇ 2).
  • Each winding is insulated from each other, that is, different windings are independent from each other.
  • each winding includes three-phase coils (for example, winding R1 includes three-phase coils R1_u, R1_v, R1_w, see for example FIG. 3 described later).
  • a plurality of inverter units 70 1 to 70 n are provided in the power unit 40 .
  • the inverter units 70 1 -70 n are electrically connected to the windings R1 -Rn of the motor 21, respectively.
  • the number of inverter units 70 is consistent with the number of windings of the motor 21, so that multiple inverter units 70 of one power unit 40 are electrically connected to multiple windings of one motor 21 in one-to-one correspondence, thereby realizing independent driving for each winding.
  • the present invention is not limited thereto.
  • the number of each of the motor windings and the inverter unit is more than four.
  • the multi-winding motor drive system of the pumping system 90 of the present invention adopts a mutually independent multi-channel structure between the power unit 40 and the motor 21, so that the pumping system has a certain degree of redundancy.
  • the working structure of the winding and/or inverter unit containing the failure can be disconnected, and the pumping system can still run without stopping, so it can continue to work, and the reliability is greatly improved.
  • the multiple windings of the motor are separately driven by multiple inverter units of the power unit, so the torque performance (speed adjustment) of the pumping system is more stable, the efficiency is higher, and the generated harmonic pollution is lower.
  • a rectification unit 50 may also be provided.
  • the rectification unit 50 rectifies the received AC power and then inputs it to the inverter unit 70 .
  • 2A to 2C show an example in which one rectification unit 50 is electrically connected to a plurality of inverter units 70, but the present invention is not limited thereto. More than two rectification units 50 may be provided in one power unit 40, and each rectification unit 50 may be electrically connected to at least one inverter unit 70.
  • the power unit 40 can be at least partly integrated and installed on the motor 21 to obtain a space-optimized high-voltage frequency conversion integrated machine (the high-voltage frequency conversion integrated machine 412 will be described later in FIGS. 9 to 11 ).
  • the inverter unit 70 for constituting the power unit 40 is integrated on the motor 21 .
  • the power unit 40 includes a rectification unit 50 and the rectification unit 50 is also disposed in the pumping system 90
  • the rectification unit 50 can be integrated with the inverter unit 70 on the motor 21 .
  • the power unit 40 is at least partly integrated and installed on the motor 21 , which can reduce the occupied space of the whole machine layout while taking into account the balanced distribution of weight and space.
  • Fig. 3 shows a first example of a multi-winding motor drive system in a pumping system according to a first embodiment of the present invention.
  • the power unit 40 includes a plurality of inverter units 70 1 -70 n , and each inverter unit 70 includes one or more inverter components such as IGBT, IGCT, diode, SCR, GTO or IEGT or a combination thereof.
  • the power unit 40 under the condition of AC input, the power unit 40 further includes a plurality of rectification units 50 1 -50 n , and each rectification unit 50 includes one or more rectification devices.
  • the power unit 40 may further include a plurality of capacitors 80 1 -80 n .
  • the number of rectification units 50 and the number of capacitors 80 may be consistent with the number of inverter units 70 , so the rectification units 50 and inverter units 70 are electrically connected in one-to-one correspondence.
  • the three-phase alternating current is respectively input to each rectifier unit 50, rectified by the rectifier unit 50, and then input to a corresponding inverter unit 70, and then input to the input end of the three-phase coil (R_u, R_v, R_w) of the corresponding winding R of the motor 21 after being rectified by the inverter unit 70.
  • the other end of the three-phase coil can be connected in a star or delta connection.
  • any one of the multiple working structures between the power unit 40 and the motor 21 (in this example, one working structure formed by the rectifying unit 501 , the capacitor 801, the inverter unit 701 and the winding R1 in the motor 21 in the power unit 40, and so on) and other working structures work independently of each other.
  • This first example can achieve the above-mentioned effect that when any part of any working structure fails, other working structures of the pumping system can still continue to work.
  • the noise of the motor is small, the system efficiency is high, and the harmonic pollution generated is also low.
  • the number of rectification units 50 in FIG. 3 may be inconsistent with the number of inverter units 70.
  • at least some rectification units 50 may be shared, and the shared rectification units 50 may drive more than two inverter units 70.
  • Fig. 4A shows a second example of a multi-winding motor drive system in a pumping system according to the first embodiment of the present invention.
  • the difference between the second example of the multi-winding motor drive system shown in FIG. 4A and the first example shown in FIG. 3 is that the power unit 40 does not include multiple rectification units, but only one rectification unit 50 is used.
  • the rectification unit 50 may contain more than one rectification device, and the rectification unit 50 is electrically connected to a plurality of inverter units 70 1 -70 n .
  • a plurality of inverter units 701-70n are connected in series (for example, the negative pole of the first inverter unit 701 is connected to the positive pole of the second inverter unit 702 , and so on), the positive pole of the first inverter unit 701 is connected to the positive output terminal of the rectification unit 50, and the negative pole of the last inverter unit 70n is connected to the negative output terminal of the rectification unit 50.
  • any one of the multiple working structures between the power unit 40 and the motor 21 in this example, a working structure formed by the capacitor 801 in the power unit 40, the inverter unit 701 and the winding R1 in the motor 21, and so on
  • other working structures work independently of each other.
  • the configuration of the second example can also achieve the above-mentioned effect that other working structures of the pumping system can still continue to work when any one of the working structures fails.
  • the second example adopts the above-mentioned structure of sharing one rectification unit 50, which saves the occupied space when multiple rectification units are used, so that the volume and weight of the power unit 40 can be further reduced, thus it is more beneficial to at least partially integrate the power unit 40 on the motor 21, or it can be more conducive to the layout of the whole machine.
  • FIG. 4B shows a schematic circuit diagram of the electrical connection between multiple inverter units and the three-phase coils of the corresponding windings of the motor in the multi-winding motor drive system shown in FIG. 4A .
  • FIG. 4C shows a circuit diagram of the electrical connections of the rectification unit and multiple inverter units in the multi-winding motor drive system shown in FIG. 4A .
  • FIG. 4D shows a partially enlarged view of the filtering unit and the inverter unit in FIG. 4C.
  • the schematically shown filter capacitors D1-Dn correspond to the above-mentioned capacitors 80 1-80 n
  • the schematically shown inverters NB1-NBn correspond to the above-mentioned inverter units 70 1-70 n
  • R1-Rn are mutually independent windings in the motor 21, and each winding has a three-phase coil.
  • a three-phase three-level inverter circuit is used in each of the inverters NB1-NBn.
  • the upper arm and the lower arm of each phase are composed of triodes and diodes, and the output end of each phase is electrically connected to the input end of the corresponding one-phase coil of one winding of the motor.
  • the specific structure of the inverter unit of the present invention is not limited to the example of the inverter described here, and the inverter components used in the inverter are not limited to the transistors and diodes and their numbers shown in the drawings.
  • the circuit of the power unit 40 shown in FIG. 4C includes a rectification unit 50 , a reactor L, a filter unit 55 and a plurality of inverter units 70 1 -70 n .
  • the rectification unit 50 adopts a three-phase rectification circuit, the upper arm and the lower arm of each phase are composed of a rectification module 511 respectively, and the input end of each phase is electrically connected to the corresponding one-phase output end of the power supply facility for providing alternating current through a three-phase switch 512 .
  • Each rectification module 511 may include a plurality of rectification devices such as rectification diodes connected in series.
  • the rectifier module 511 of the upper arm may include 8 rectifier diodes connected in series (from bottom to top in FIG. 4C , the cathode of the first diode is connected to the anode of the second diode, and so on), and the rectifier module 511 of the lower arm (negative end) may also include 8 rectifier diodes connected in series (from top to bottom in FIG. 4C , the anode of the first diode is connected to the cathode of the second diode, and so on).
  • the anode of the first diode in the rectification module 511 of the upper arm and the cathode of the first diode in the rectification module 511 of the lower arm are commonly electrically connected to the input terminal of the phase
  • the cathode of the last diode in the rectification module 511 of the upper arm is connected to the positive output terminal of the rectification unit 50
  • the anode of the last diode in the rectification module 511 of the lower arm is connected to the negative output terminal of the rectification unit 50.
  • the power unit 40 of the present invention has a smaller volume and weight than the prior art frequency converter that needs a transformer because the transformer is eliminated, which is beneficial for integration to realize the space optimization of the whole machine layout.
  • the specific configuration of the rectification unit of the present invention is not limited to the examples described here.
  • the rectification unit 50 rectifies the three-phase alternating current input from the power supply facility and then supplies it to each inverter unit 70 1 -70 n through the reactor L.
  • the filtering unit 55 is arranged between the rectifying unit 50 and the inverter unit 70, and it is used to filter the output voltage of the rectifying unit 50, so that the waveform of the output voltage tends to be smooth (filtering burrs), and then provided to each inverter unit 70.
  • one filter circuit is provided corresponding to each inverter unit 70 .
  • the filter circuit corresponding to the inverter unit 701 is composed of resistors R01, R02 and capacitors C01, C02.
  • the inverter unit 701 uses a three-phase ( 701_u , 701_v and 701_w ) circuit.
  • the one-phase branch circuit 70 1 _u in the three-phase circuit it includes two capacitors C11-C12 and three transistor modules IGBT1-IGBT3.
  • the phase branch circuit 70 1 — v in the three-phase circuit it includes two capacitors C13 - C14 and three transistor modules IGBT4 - IGBT6 .
  • For yet another phase branch circuit 70 1 —w in the three-phase circuit it includes two capacitors C15-C16 and three transistor modules IGBT7-IGBT9.
  • the respective output terminals A1 , B1 and C1 of the three-phase branch circuits 70 1 _u, 70 1 _v and 70 1 _w are respectively electrically connected to the corresponding one-phase input terminals of the three-phase coils of the winding R1 of the motor 21 .
  • the inverter unit 701 converts the voltage filtered by a corresponding filter circuit in the filter unit 55 into a controllable alternating current capable of driving the corresponding motor winding to run.
  • Other inverter units have similar structures, which will not be repeated here.
  • the inverter unit of the present invention is not limited thereto, and other suitable configurations may also be adopted.
  • FIG. 5A shows a third example of a multi-winding motor drive system in a pumping system according to the first embodiment of the present invention.
  • FIG. 5B shows a schematic circuit diagram of electrical connections between multiple inverter units and corresponding windings of the motor in the multi-winding motor drive system shown in FIG. 5A .
  • FIG. 5C shows a circuit diagram of the electrical connection of the rectification unit and multiple inverter units in the multi-winding motor drive system shown in FIG. 5A .
  • 4A to 4C is that the multiple inverter units 70 1 - 70 n are not connected in series, but connected in parallel (for example, the positive pole of each inverter unit 70 1 - 70 n is connected to the positive output terminal of the rectification unit 50, and the negative pole of each inverter unit 70 1 - 70 n is connected to the negative output terminal of the rectification unit 50).
  • Other configurations are similar to those shown in the second example and will not be repeated here.
  • FIG. 5D shows a fourth example of a multi-winding motor drive system in a pumping system according to the first embodiment of the present invention.
  • a plurality of inverter units 70 are connected in series and in parallel in a hybrid manner. Specifically, in FIG.
  • the first inverter unit 701 and the second inverter unit 702 are connected in series
  • the third inverter unit 703 and the fourth inverter unit 704 are connected in series
  • the series structure formed by the first inverter unit 701 and the second inverter unit 702 and the series structure formed by the third inverter unit 703 and the fourth inverter unit 704 are connected in parallel between the positive output terminal and the negative output terminal of the rectification unit.
  • FIG. 5D is only an example of a hybrid connection manner, and the present invention is not limited thereto.
  • each rectification unit 50 may also adopt a configuration including the rectification module 511 described above.
  • Fig. 6 shows a schematic block diagram of a fourth example of a pumping system according to the first embodiment of the invention.
  • the phase-shifting transformer 10 includes one primary winding 101 and multiple secondary windings 102 1 -102 n , and the phases of the output voltages of the multiple secondary windings 102 1 -102 n are shifted at certain intervals.
  • Each rectifying unit 50 1 ⁇ 50 n in the power unit 40 is electrically connected to a corresponding one of the plurality of secondary windings 102 1 ⁇ 102 n of the phase-shifting transformer 10 .
  • a phase-shifting transformer 10 is provided on the input side of the rectifying unit 50 .
  • the purpose of voltage regulation can be achieved by changing the turns ratio of each secondary winding of the phase-shifting transformer 10 to the primary winding.
  • harmonics can be eliminated by shifting the phase of the phase-shifting transformer 10 .
  • electrical isolation between the rectification unit and the power supply network can also be realized.
  • the present invention provides a method for driving a multi-winding motor, comprising: providing a motor with mutually independent multi-path windings; and providing a combined power unit comprising at least one rectification unit and a plurality of inverter units, the plurality of inverter units corresponding in number to the multi-path windings of the motor, and each of the inverter units is used to supply power to a corresponding one of the multi-path windings of the motor. Under the condition of DC power supply, the rectification unit can be omitted in the power unit.
  • the step of providing a power unit may include: providing a plurality of rectification units, so that each rectification unit supplies power to one or more of the plurality of inverter units; or providing a rectification unit, so that the rectification unit supplies power to the plurality of inverter units.
  • it may further include: installing the plurality of inverter units integrally on the motor.
  • the above method for driving a multi-winding motor may further include: installing the rectification unit integrally on the motor.
  • it may further include: providing a phase-shifting transformer on the input side of the rectification unit.
  • it may further include: providing a filter capacitor between the rectification unit and each of the plurality of inverter units.
  • it may further include: forming a part of the rectification unit by connecting a plurality of rectification devices in series.
  • it may further include: connecting the plurality of inverter units in series, in parallel, or in a combination of series and parallel.
  • the above multi-winding motor driving method also includes: providing an alarm system, when any one of the multiple windings of the motor or any one of the plurality of inverter units fails, the alarm system gives an alarm message; and/or providing a control system, when the actual total output power of the plurality of inverter units of the power unit does not exceed k ⁇ P ⁇ (n-n1-n2-1)/n and reaches a preset duration, the control system selectively turns off the output of one of the plurality of inverter units, where k is the motor and k ⁇ 1, P is the rated power of the motor, n is the number of multiple inverter units of the power unit (that is, the number of multi-way windings of the multi-winding motor), n1 is the number of inverter units that are currently closed, and n2 is the number of inverter units that are currently failing (such as failure).
  • the above method for driving a multi-winding motor further includes: providing a display system or a voice system for displaying or broadcasting the alarm information.
  • the pumping system of the present invention contains the above-mentioned multi-winding motor driving system or uses the above-mentioned multi-winding motor driving method, so it also has all the advantages brought by the multi-winding motor driving system and method.
  • the first to fourth examples of the above-mentioned driving modes show the special design of the rectification unit and the inverter unit, and the frequency conversion electric drive system of the present invention can be constructed by using such special design of the rectification unit and the inverter unit.
  • the variable frequency electric drive system may include: a motor; and a power unit that is directly electrically connected to the power supply system and used to drive the motor, and the power unit includes a specially designed rectification unit and inverter unit.
  • the power unit 40 at least one rectification unit 50 and at least one inverter unit 70 may be provided in the power unit 40 .
  • a plurality of rectification units 50 are provided, and they are provided in one-to-one correspondence with a plurality of inverter units 70 .
  • one rectification unit 50 is provided, which can be electrically connected to a plurality of inverter units 70 .
  • each rectification unit 50 may also be electrically connected to more than two inverter units 70 .
  • two or more inverter units 70 electrically connected to any rectifier unit 50 may be connected in series, in parallel, or in a combination of series and parallel.
  • the variable frequency electric drive system of the present invention is not limited to these examples.
  • each rectification unit 50 can adopt, for example, a three-phase rectification circuit as shown in FIG.
  • Multiple rectifying devices connected in series can realize the effect of voltage division, so that the rectifying unit 50 can be directly connected to high-voltage power supply facilities without a transformer.
  • the frequency conversion electric drive system of the present invention when multiple inverter units 70 are provided and at least two inverter units 70 are connected in series, the effect of improving the voltage tolerance of the inverter units 70 through series voltage division can also be realized.
  • the motor can be a multi-winding motor 21 with independent multi-circuit coil windings (as shown in Fig. 3, Fig. 4A, Fig. 5A, and Fig. 5D), or a conventional motor.
  • each inverter unit of the variable frequency electric drive system of the present invention corresponds to each coil winding of a multi-winding motor
  • each inverter unit of the variable frequency electric drive system of the present invention corresponds to each motor respectively. In either case, the problem of direct connection to the power supply system without going through a transformer is solved.
  • variable frequency electric drive system of the present invention may be provided with a phase-shifting transformer that only functions as a phase-shift at the input side of the power unit.
  • the pumping system of the present invention may contain the above-mentioned variable frequency electric drive system, and therefore also has all the advantages brought by the variable frequency electric drive system.
  • the rectifier unit and the inverter unit may or may not be integrated on the motor. Both the rectifying unit and the inverter unit can be integrated and installed together or placed separately. Rectifier units can be shared.
  • FIG. 7A shows a first example of a complete machine layout including a pumping system 90a, a power distribution unit 76 and a power supply 75 according to the second embodiment of the present invention.
  • the power distribution unit 76 is placed outside the pumping system 90 a, and the pumping system 90 a is electrically connected to the power source 75 via the power distribution unit 76 .
  • power supply 75 provides three-phase AC power to power distribution unit 76 .
  • a power distribution control system 761 is provided in the power distribution unit 76 .
  • the pumping system 90 a includes a power unit 40 , a motor 21 and a plunger pump 11 .
  • the pumping system 90a also includes a complete machine control system 901 .
  • a power unit control system 401 is also provided in the power unit 40 .
  • the power distribution control system 761 transmits temperature, voltage, current, alarm information, etc. to the power unit control system 401 , and the power unit control system 401 transmits control signals such as switch control to the power distribution control system 761 .
  • the other configurations of the pumping system 90 a are the same as those of the pumping system 90 shown in FIG. 2C , and repeated descriptions are omitted here.
  • the rectifier unit 50 in the power unit 40 is placed in the power distribution unit 76 , and the inverter unit 70 in the power unit 40 can be integrated on the motor 21 . In this way, while reducing the occupied space of the layout of the whole machine, a balanced distribution of weight and space is also taken into consideration.
  • the power (for example, three-phase power) provided by the power supply 75 can be directly provided to the power distribution unit 76, and then distributed to the rectifier unit 50 of the power unit 40 in the pumping system 90a via the power distribution unit 76 (after the power distribution unit 76 is regulated or not) and then provided to the inverter unit 70 to drive the motor 21.
  • the power distribution unit 76 also supplies power to other auxiliary devices (eg, control systems, etc.) in the pumping system 90a.
  • the whole machine control system 901 of the pumping system 90a can communicate with the power unit control system 401 in the power unit 40, obtain the electrical information status such as current and voltage of the power unit 40 by receiving information from the power unit control system 401, and send control instructions to the power unit control system 401 based on the electrical information status to adjust the frequency output of the power unit 40, and then adjust the speed of the motor 21 according to the operation requirements.
  • Fig. 7B shows a second example of a complete machine layout including a pumping system 90b, a power distribution unit 76 and a power supply 75 according to the second embodiment of the present invention.
  • the difference between the whole machine layout shown in FIG. 7B and the whole machine layout shown in FIG. 7A is that in the pumping system 90b, the rectifier unit 50 in the power unit 40 is placed in the pumping system 90b and integrated with the inverter unit 70 on the motor 21 (similar to the pumping system 90 shown in FIG. 2A , and repeated descriptions are omitted).
  • Such a layout of the whole machine can improve the degree of integration and further reduce the occupied space of the layout of the whole machine.
  • FIG. 8A shows a third example of a complete machine layout including a pumping system 90c, a power distribution unit 76 and a power supply 75 according to the second embodiment of the present invention.
  • the whole machine layout also includes instrumentation equipment 30, and a centralized control system 301 is arranged in the instrumentation equipment 30.
  • the main difference between FIG. 8A and FIG. 7A is that: on the one hand, the power distribution unit 76 is placed in the pumping system 90c; on the other hand, the complete machine control system 901 in the pumping system 90c is not only electrically connected to the power unit control system 401 in the power unit 40, but also electrically connected to the centralized control system 301 in the instrumentation device 30.
  • Centralized control system 301 is used to implement remote control of pumping system 90c and/or power supply 75 .
  • the power source 75 is a generator, in this case, the emergency shutdown of the generator can be realized through the centralized control system 301 .
  • Fig. 8B shows a fourth example of overall machine layout according to the second embodiment of the present invention.
  • the main difference between FIG. 8B and FIG. 8A is that the rectification unit 50 and the inverter unit 70 in the power unit 40 are integrated on the motor 21 . Repeated content will not be repeated.
  • the whole machine layout of the present invention may be the layout of the fracturing equipment including any one of the aforementioned multi-winding motor drive system, the aforementioned variable frequency electric drive system and the aforementioned pumping system.
  • the number of components in the overall machine layout of the present invention is not limited to those shown in FIGS. 7A to 7B and FIGS. 8A to 8B .
  • the layout of the whole machine shown in FIGS. 7A to 8B of the present invention since the multi-winding motor 21 is integrated with at least a part of the power unit 40, the structure is more compact.
  • two motors can be placed to drive one plunger pump respectively, or one motor can be placed to drive two plunger pumps.
  • the motor 21 and the power unit 40 may not be integrated.
  • each coil winding of the motor in the overall machine layout shown in Figure 7A to Figure 8B is driven by speed regulation respectively by the power unit so as to be able to control the independent work of different coil windings, therefore, when any road fails, other roads in the overall machine layout can still operate.
  • Fig. 9 shows an example of fracturing equipment integrated through a carrier frame according to a third embodiment of the present invention.
  • the fracturing equipment 100a shown in FIG. 9 includes: a carrier (skid) 67; a high-voltage frequency conversion integrated machine 412 mounted on the carrier 67; The plunger pump 11 is driven by the high-voltage frequency conversion integrated machine 412 to pump the fracturing fluid underground.
  • the power unit 40 of the present invention can be integrated and installed on the multi-winding motor 21 or an ordinary motor, so that a high-voltage frequency conversion integrated machine 412 that integrates high-voltage frequency conversion and electric drive is obtained.
  • the power unit 40 has a first housing
  • the motor 21 has a second housing.
  • the shapes of each housing can be, for example, a cuboid, a cube, or a column such as a cylinder, and the embodiments of the present invention do not specifically limit their shapes.
  • the first housing of the power unit 40 and the second housing of the motor 21 are in the shape of a cuboid or a cube, it is beneficial to tightly and fixedly install the first housing on the second housing.
  • the first housing may be directly connected to the second housing by means of bolts, screws, riveting, or welding, or may be fixedly connected to the second housing via a mounting flange.
  • the flange can be in other forms such as round or square.
  • a plurality of holes or a plurality of terminal posts (hereinafter referred to as housing-associated parts) for passing cables may be arranged on the connecting surfaces of both the first housing and the second housing.
  • the cables may include power supply cables for electrically connecting the power unit 40 and the motor 21, so that the AC power after frequency conversion and/or voltage regulation by the power unit 40 is directly output to the motor 21, and then the motor 21 is driven to run at an adjustable speed.
  • the output lines of the power unit 40 are all installed in the associated parts of the housing of the power unit 40 and the motor 21 , thereby effectively reducing the length of cables and reducing interference.
  • the power unit 40 may be integrally arranged at the top or side of the motor 21 . Especially when the power unit 40 is integrated on the top of the motor 21, the high-voltage frequency conversion integrated machine 412 obtained in this way greatly saves the installation space, and the power unit 40 does not need to occupy an independent installation space, making the overall device more compact.
  • the power unit 40 can also be partially integrated on the motor 21, so that the obtained high-voltage frequency conversion integrated machine 412 can not only reduce the occupied space of the whole machine layout, but also balance the load distribution of the equipment, and avoid the weight concentration of the equipment or excessive local size.
  • the transmission output shaft of the motor 21 in the high-voltage frequency conversion integrated machine 412 can be directly mechanically connected to the transmission input shaft of the plunger pump 11, for example, the two can be connected by splines.
  • the transmission output shaft of the motor 21 can have internal splines or external splines or flat keys or tapered keys
  • the transmission input shaft of the plunger pump 11 can have external splines or internal splines or flat keys or tapered keys adapted to the above-mentioned keys.
  • the transmission output shaft of the motor 21 can have a casing for protection
  • the transmission input shaft of the plunger pump 11 can have a casing for protection.
  • the casings of the two can be fixedly connected together by means such as screws, bolts, riveting, welding, or flanges.
  • the motor 21 can be mechanically connected to the transmission input end of the plunger pump 11 (for example, a multi-cylinder plunger pump such as three cylinders or five cylinders) via a clutch or a coupling, and the power unit provides speed-adjustable drives for each winding of the motor 21, so that the motor 21 outputs a variable speed, so that one motor 21 can drive one or more plunger pumps at the same time.
  • the direction extending horizontally outward along the transmission output shaft of the motor 21 and from the high-voltage frequency conversion integrated machine 412 toward the plunger pump 11 is the X direction
  • the upward direction perpendicular to the X direction is the Y direction
  • the direction perpendicular to both the X direction and the Y direction and perpendicular to the inward direction of the paper surface of FIG. 9 is the Z direction.
  • the directions opposite to the X direction, the Y direction, and the Z direction are -X direction, -Y direction, and -Z direction, respectively.
  • the fracturing equipment 100a may further include a control cabinet 66 .
  • the control cabinet 66 may be arranged at the end of the high-voltage frequency conversion integrated machine 412 in the ⁇ X direction, or at the end of the plunger pump 11 in the X direction.
  • the present invention does not limit the specific position of the control cabinet 66 relative to the high-voltage frequency conversion integrated machine 412 and the plunger pump 11, as long as their layout can make the fracturing equipment 100a highly integrated.
  • the control cabinet 66 can be any one of the power distribution units 76 shown in FIGS. 7A to 8B.
  • a high voltage switch cabinet and an auxiliary transformer may also be integrated in the control cabinet 66 .
  • the auxiliary transformer can output a low voltage of 300V-500V (AC), which is used to supply power to auxiliary electrical devices in the fracturing equipment 100a, such as a lubricating system and a cooling system.
  • the upper liquid manifold 34 can be arranged at one side of the plunger pump 11 in the Z direction or ⁇ Z direction, for supplying fracturing fluid to the supply end of the hydraulic end of the plunger pump 11 .
  • a discharge manifold 33 may be provided at one and/or both ends of the plunger pump 11 in the X direction and/or ⁇ X direction for discharging fracturing fluid from the hydraulic end discharge end of the plunger pump 11 .
  • the fracturing fluid enters the inside of the plunger pump 11 through the upper liquid manifold 34 through the supply end of the hydraulic end of the plunger pump 11 , and is then pressurized by the movement of the plunger pump 11 , and is discharged from the discharge end of the hydraulic end of the plunger pump 11 to the outside of the plunger pump 11 through the discharge manifold 33 .
  • the fracturing equipment 100a may also include any one or more of the following: a lubrication system; a lubricating oil heat dissipation system; and a coolant heat dissipation system.
  • the lubricating system includes: a lubricating oil tank 60 ; a first lubricating motor and lubricating pump unit 61 ; and a second lubricating motor and lubricating pump unit 62 .
  • different lubricating pumps can be set according to different lubricating positions to meet the lubricating demands of different pressures, flows, and oil products.
  • the lubricating oil cooling system includes a lubricating oil radiator 59 and the like, which are used to cool down the lubricating oil.
  • the coolant cooling system includes: a coolant radiator 63 ; and a coolant motor and a coolant pump set 64 .
  • each of the above heat dissipation systems may include a radiator and a heat dissipation fan for realizing heat exchange between liquid and air, and the heat dissipation fan is driven by a heat dissipation motor.
  • the high-voltage frequency conversion integrated machine 412 of the fracturing equipment 100a can also be cooled by air instead, and in this case, a heat dissipation fan is required to dissipate heat for various windings and bearings of the motor.
  • the high-voltage frequency conversion integrated machine 412 of the fracturing equipment 100a may alternatively adopt a combination of air cooling and cooling liquid cooling systems.
  • Each heat dissipation system can be integratedly arranged on the top or side of the plunger pump 11, and can also be integrated on the top or side of the high-voltage frequency conversion integrated machine 412, so as to give full play to the heat dissipation capacity and allow the high integration of the overall layout of the fracturing equipment 100a.
  • the high-voltage frequency conversion integrated machine 412 of the fracturing equipment 100a uses a multi-winding motor 21, and the power unit drives each winding of the motor 21 in a one-to-one correspondence, the fracturing equipment 100a can continue to work even if a certain working structure fails.
  • the entire fracturing equipment 100a adopts the high-voltage frequency conversion integrated machine 412 obtained by integrating at least a part of the power unit 40 in the foregoing embodiments of the present invention with the multi-winding motor 21, not only can the entire equipment be highly integrated on the carrier, but also can be directly electrically connected to the power supply facility without a transformer.
  • Fig. 10 shows an example of fracturing equipment integrated by a semi-trailer according to the third embodiment of the present invention.
  • Fig. 11 shows another example of fracturing equipment integrated by a semi-trailer according to the third embodiment of the present invention.
  • a high-voltage frequency conversion integrated machine 412 and a plunger pump 11 are integrally installed on a semi-trailer 68 .
  • the high-voltage frequency conversion integrated machine 412 is integrally composed of at least a part of the power unit 40 and the multi-winding motor 21 .
  • FIG. 10 shows an example in which a high-voltage frequency conversion integrated machine 412 drives a plunger pump 11 .
  • FIG. 11 shows an example in which one high-voltage frequency conversion integrated machine 412 drives multiple (for example, two) plunger pumps 11 .
  • the fracturing equipment 200a and 300a may also include any one or more of the following: a power distribution cabinet 69, a radiator 63, a connecting portion 36, a manifold 35 (such as an upper liquid manifold and a discharge manifold), and a lubricating oil tank 60, etc.
  • the fracturing equipment 200a and 300a also include motors and pumps used in cooperation with the radiator 63 and the lubricating oil tank 60 , for details, please refer to the aforementioned lubricating system, lubricating oil heat dissipation system, and coolant heat dissipation system.
  • connection part 36 is used to realize the mechanical connection between the high-voltage frequency conversion integrated machine 412 and the plunger pump 11 .
  • the power distribution cabinet 69 can be any one of the power distribution units 76 shown in FIGS. 7A to 8B . When it includes a part of the power unit 40 that is not integrated on the motor 21, it can reduce the occupied space of the overall machine layout and balance the load distribution of the equipment, avoiding the weight concentration of the equipment or excessive local size.
  • the integration by vehicle can also be considered.
  • fracturing equipment was used as an example for illustration.
  • the working fluid of the fracturing equipment is fracturing fluid.
  • the fracturing fluid can be supplied to the supply end of the hydraulic end of the plunger pump 11 of the fracturing equipment through the upper liquid manifold 34. After being pressurized by the plunger pump 11, it is discharged to the discharge manifold 33 through the discharge end of the hydraulic end of the plunger pump 11, and then sent to the ground by the discharge manifold 33 to fracture the formation.
  • the above-mentioned fracturing equipment may for example be replaced by a pumping equipment comprising the above-mentioned pumping system.
  • the working liquid is the pumping liquid
  • the pumping liquid can be supplied to the supply end of the hydraulic end of the plunger pump 11 of the pumping equipment through the upper liquid manifold 34, and after being pressurized by the plunger pump 11, it is discharged to the discharge manifold 33 through the discharge end of the hydraulic end of the plunger pump 11, and then sent downhole by the discharge manifold 33 to pump downhole tools.
  • the above-mentioned fracturing equipment may for example be replaced by a cementing equipment comprising the above-mentioned pumping system.
  • the working fluid is cement slurry.
  • Cement slurry can be supplied to the hydraulic end supply end of the plunger pump 11 of the cementing equipment through the upper liquid manifold 34, and after being pressurized by the plunger pump 11, it is discharged to the discharge manifold 33 through the liquid end discharge end of the plunger pump 11, and sent out into the well by the discharge manifold 33, thereby fixing the well wall (wellbore).
  • the wellsite equipment of the present invention may include at least one fracturing equipment or at least one pumping equipment or at least one cementing equipment or any combination thereof.
  • multiple fracturing devices may be included in a wellsite facility. These fracturing devices may share discharge manifold 33 .
  • the common discharge manifold 33 and the upper liquid manifold 34 of each fracturing equipment can be integrated on the manifold skid.
  • the above-mentioned wellsite equipment of the present invention often further includes a control room, in which a centralized control system is provided for controlling all fracturing equipment and the like.
  • the above-mentioned well site equipment of the present invention may also include a liquid distribution area, for example.
  • the liquid mixing area may include mixing liquid supply equipment, sand mixing equipment, liquid tanks, sand storage and sand adding equipment, etc.
  • the fracturing fluid injected downhole is a sand-carrying fluid, so it is necessary to suspend the sand grains in the fracturing fluid by mixing water, sand, and chemical additives.
  • clean water and chemical additives from various liquid tanks can be supplied to the mixed liquid supply equipment for mixing to form a mixed fluid.
  • the mixed fluid in the mixed liquid supply equipment and the sand in the sand storage and sand addition equipment enter the sand mixing equipment for mixing to form the sand-carrying fracturing fluid required for operation.
  • the low-pressure fracturing fluid formed by the sand mixing equipment is transported to the liquid inlet of the plunger pump of each fracturing equipment through each upper liquid manifold 34 , and the plunger pump pressurizes the fracturing fluid and transports it to the liquid outlet of the hydraulic end, and then it is discharged through the high-pressure discharge manifold 33 .
  • the power unit control system 401 in the power unit 40 can detect information such as the current or voltage output from the power unit 40, and when the output current or voltage is lower than a preset value for a period of time, it can selectively turn off some inverter units, so that a part of the multiple windings of the motor is powered off, thereby improving the overall efficiency of the pumping system and reducing resistance loss and heat loss.
  • the specific description of the control method is as follows.
  • a PLC Programmable Logic Controller
  • the PLC can judge by obtaining the total output power of the inverter units 701-70n in the power unit 40 from the power unit control system 401 in the power unit 40.
  • the PLC can also judge by means of the bus current. The following example is judged according to the output power, and in this example, the PLC compares the currently obtained total output power of the inverter units 70 1 -70 n with the rated power P of the motor 21 .
  • step S100 to step S108 the control method (step S100 to step S108) shown in FIG. 12 can be adopted to judge and implement control: wherein, assuming that k is the safety factor of the motor and k ⁇ 1, P is the rated power of the motor 21, n is the number of multiple inverter units 70 contained in each power unit 40, t1 is the alarm duration preset by the user, and t1 usually does not exceed the allowed overpower operation time of the power unit 40 or the motor 21, and t is a preset time preset by the user.
  • step S100 the power unit control system 401 obtains the actual operating power P1 of a single multi-winding motor 21 (or the output power P1 of a single motor), the number n1 of inverter units that are currently closed, and the number n2 of inverter units that are currently failing (for example, malfunctioning), and transmit the obtained information to the PLC in the overall machine control system 901.
  • the PLC judges whether the output power P1 of a single motor is not lower than k ⁇ P ⁇ (n-n1-n2)/n based on the above information received (see step S101 ). In a case where the judgment result is "Yes”, the process proceeds to step S106. In a case where the judgment result is "No”, the process proceeds to step S102.
  • step S102 the PLC judges whether the output power P1 of a single motor is not higher than k ⁇ P ⁇ (n-n1-n2-1)/n. In a case where the judgment result is "Yes”, the process proceeds to step S103. If the judgment result is "No”, the process proceeds to step S105. In this step S105, the complete machine control system 901 instructs the power unit control system 401 to maintain the current number of inverter units turned on (ie n-n1-n2).
  • step S103 the PLC judges whether the time for continuously satisfying the condition in step S102 is not less than a preset time t. If the judgment result is "No”, the process also proceeds to step S105, that is, the current number of inverter units turned on is maintained. If the judgment result is "Yes”, the whole machine control system 901 instructs the power unit control system 401 to shut down one inverter unit (see step S104). After step S104, step S102 and subsequent steps are repeated.
  • step S106 if the PLC determines that the number n1 of inverter units currently turned off is not less than one, then the overall machine control system 901 instructs the power unit control system 401 to turn on one more inverter unit (see step S107). After step S107, step S101 and subsequent steps are repeated. In addition, in step S106, if the PLC judges that the number n1 of the currently closed inverter units is less than one, the whole machine control system 901 will give an alarm message (see step S108).
  • the present invention can selectively shut down a part of the plurality of inverter units or adjust the working quantity of the plurality of inverter units according to the total output power of the power unit.
  • the n-way windings of the motor 21 are respectively provided with variable-frequency currents (output voltage and current) by corresponding power units.
  • the control system can give an alarm message (information in the form of graphics, color, text, sound, etc.) on the display interface to prompt the failure of the power unit or the motor winding.
  • an alarm message information in the form of graphics, color, text, sound, etc.
  • the power unit fault information will be transmitted to the power unit control system 401 of the power unit 40 along with the voltage or current information, and the power unit control system 401 will transmit the fault information to the whole machine control system 901 of the pumping system 90a.
  • the pumping system 90a of the present invention can improve safety and stability, reduce loss and improve economy.
  • steps S100 , S101 and S106 are the same as those described above, and descriptions thereof are omitted here.
  • the complete machine control system 901 if the PLC judges that the number n1 of the currently closed inverter units is lower than 1, then the complete machine control system 901 provides alarm information (information such as graphics, color, text, sound, etc.) through the alarm system arranged in the complete machine control system (see step S108).
  • the alarm system may be a display system or a voice system.
  • step S109 compare the above-mentioned alarm duration with the user-preset alarm duration t1 (see step S109). If the duration of the above alarm is equal to or longer than the preset alarm duration t1, the overall machine control system 901 instructs the power unit control system 401 to reduce the speed of the motor (see step S110). If the duration of the above-mentioned alarm is shorter than the preset alarm duration t1, continue to alarm through the alarm system (see step S111).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

本发明的多绕组电机驱动系统包括电机和功率单元。所述电机具有相互独立的多路绕组。所述功率单元包括整流单元和多个逆变单元,所述多个逆变单元在数量上与所述电机的所述多路绕组一一对应,各个所述逆变单元对所述电机的所述多路绕组之中的相应一者供电。本发明的泵送系统包括上述多绕组电机驱动系统和至少一台柱塞泵。所述柱塞泵与所述多绕组电机驱动系统集成安装在一起,且所述柱塞泵由所述电机驱动。所述柱塞泵的传动输入轴与所述电机的传动输出轴直接地机械连接,或者经由离合器或联轴器间接地机械连接。本发明的压裂设备或井场设备包括上述泵送系统、设置于柱塞泵的一侧处的上液管汇、以及设置于柱塞泵的一个或两个端部处的排出管汇等。

Description

多绕组电机驱动系统、变频电驱系统、泵送系统、压裂设备及井场设备
相关申请的引用
本公开要求于2022年01月18日向中华人民共和国国家知识产权局提交的第202210053618.9号中国专利申请的优先权和权益,在此将其全部内容以援引的方式整体并入文本中。
技术领域
本发明涉及油气田压裂领域,具体地,涉及多绕组电机驱动系统、变频电驱系统、泵送系统、压裂设备以及井场设备。
背景技术
鉴于全球的油气开发设备正朝着“低能耗、低噪音、低排放”的方向发展,以柴油发动机作为动力源的传统压裂设备已经被以电动机作为动力源的电驱压裂设备取代。在现有的电驱压裂设备或含有诸如压裂设备、泵送设备或固井设备等的井场设备中,使用变频器驱动电动机,电动机驱动柱塞泵进行工作以将诸如压裂液、水泥浆或泵送液体等加压后送入地下。针对电动机通常采用的驱动方案是:变频器中的功率器件(例如逆变单元、或者整流单元和逆变单元的组合)与电动机电气连接以向该电动机提供变频电流,从而实现驱动该电动机的目的。其问题在于,即使电动机有多路线圈绕组,也是针对电动机的多路线圈绕组而整体地提供变频电流的,因此,如果电动机中任意一路线圈绕组出现问题,那么整个电动机将无法正常工作,此外,由于变频器只有单一的功率器件(例如IGBT(Insulated Gate Bipolar Transistor:绝缘栅双极型晶体管)等),一旦该功率器件出现问题,电动机也将无法正常工作。
另外,对于现有的电驱压裂设备等,目前的供电设施的输出电压通常不低于10kV(例如在中国,配电网的供电电压主要是10kV/50Hz;在美国等地方,常见的发电机电压是13.8kV/60Hz),而电驱压裂设备等的常规变频器中的功率器件(例如IGBT、IGCT(Integrated Gate Commutated Transistor:集成栅级换流晶体管)、二极管、SCR(Silicon Controlled Rectifier:可控硅整流器)、GTR(Giant Transistor:电力晶体管)、GTO(Gate Turn-Off Transistor:栅级可关断晶体管)、IEGT(Injection Enhanced Gate Transistor:注入增强栅极晶体管)等)的耐受电压和耐受电流有限,无法承受来自供电设施的高电压大电流的输出,即,无法直接连接到供电设施进行使用。于是,需要经过变压器来调整电压。即,如图1中的(B)所示,常规变频器需要利用变压器而间接地连接到供电设施,通过该变压器将供电设施的高输出电压(10kV以上)降低至常规变频器的低输入电压(6.6kV以下),然后常规变频器中的功率器件与电动机电气连接以驱动该电动机。进一步地,如图1中的(A)所示,现有的电驱压裂设备(电驱压裂设备(1)、电驱压裂设备(2)、电驱压裂设备(3)、......)经由变频器橇(变频器橇(1)、变频器橇(2)、......)电气连接至供电设施,每个变频器橇上设置有至少一个变频器,所述至少一个变频器可以与由该变频器橇驱动的多个电驱压裂设备在数量上一致。通常由于变频器包含变压器,体积及重量都较大,因此变频器需要与电驱压裂设备中的电动机分开而单独放置着。所带来的问题是:变频器和电动机相隔一定距离,电动机和变频器之间有较多的接线需要整机生产厂家或者现场作业人员进行连接。而且,谐波污染导致接线大量发热,热量会传导至电动机;另外,谐波污染也会直接导致电动机的附加功率损耗和发热。这都会导致电动机的绝缘 材料老化,电动机寿命缩短,以及电动机的散热能力不足,使得电动机容易损坏。较多的接线也导致了占地面积的扩大化以及设备生产或井场布置的复杂化。
现有技术中,也存在有将变压器设置于变频器之外的情况,此时变频器橇可以包含变压器和变频器两大部分。此外,现有技术中还存在有让多个变频器共用变压器和/或整流单元的情况。这些情况也都存在着因为含有变压器而带来的问题。
发明内容
要解决的技术问题
本发明是鉴于上述状况而被研发出来的,本发明的一个目的是提供一种多绕组电机驱动系统。在所述多绕组电机驱动系统中,电机具有相互独立的多路线圈绕组,并且所述多路线圈绕组中的各者由功率单元分别驱动。藉此,当任一路发生故障时,多绕组电机驱动系统仍能继续工作,可靠性得到了很大提高。此外,所述功率单元可以与所述电机分离地布置着,也可以至少部分地集成于所述电机上。
本发明还提供了含有上述多绕组电机驱动系统的泵送系统、含有该泵送系统的压裂设备或泵送设备或固井设备、以及含有该压裂设备或泵送设备或固井设备的井场设备。
本发明的另外一个目的是提供一种能够取消变压器的变频电驱系统。该变频电驱系统包括电机以及直接电气连接至供电系统且用于驱动所述电机的功率单元。这样的变频电驱系统解决了现有技术中因含有变压器而存在的各种问题。例如,由于所述功率单元无需变压器而直接电气连接至供电系统,因此减小了体积和重量,就可以集成于所述电机上。
本发明还提供了含有上述变频电驱系统的泵送系统、含有该泵送系统的压裂设备或泵送设备或固井设备、以及含有该压裂设备或泵送设备或固井设备的井场设备。
解决问题的技术方案
为了实现上述目的,本发明的一个实施方式提供了一种多绕组电机驱动系统,其包括电机和功率单元。所述电机具有相互独立的多路绕组。所述功率单元包括整流单元和多个逆变单元,所述多个逆变单元在数量上与所述电机的所述多路绕组一一对应,各个所述逆变单元对所述电机的所述多路绕组之中的相应一者供电。
本发明的一个实施方式提供了一种泵送系统,其包括上述多绕组电机驱动系统,并且还包括至少一台柱塞泵。所述柱塞泵由所述电机驱动。所述柱塞泵与所述多绕组电机驱动系统集成安装在一起。所述柱塞泵的传动输入轴可以与所述电机的传动输出轴直接地机械连接。可供替代地,所述电机的传动输出轴可以经由离合器或联轴器与所述柱塞泵的传动输入轴间接地机械连接。
本发明的一个实施方式提供了一种压裂设备,其包括上述泵送系统,并且还包括设置于所述柱塞泵的一侧处的上液管汇、设置于柱塞泵的一个或两个端部处的排出管汇、以及用于向所述压裂设备供电的供电电源。
本发明的一个实施方式提供了一种井场设备,其包括上述压裂设备。工作液体可以是压裂液。 所述上液管汇将压裂液提供至所述柱塞泵中,所述柱塞泵将压裂液加压,经由所述排出管汇送出到地层,以压裂地层。
本发明的一个实施方式提供了一种井场设备,其包括泵送设备、上液管汇、排出管汇和供电电源。所述泵送设备包括上述泵送系统。工作液体可以是泵送液体。所述上液管汇将泵送液体提供至所述柱塞泵中,所述柱塞泵将泵送液体加压,经由所述排出管汇送出到井下,以泵送井下工具。
本发明的一个实施方式提供了一种井场设备,其包括固井设备、上液管汇、排出管汇和供电电源。所述固井设备包括上述泵送系统。工作液体可以是水泥浆。所述上液管汇将水泥浆提供至所述柱塞泵中,所述柱塞泵将水泥浆加压,经由所述排出管汇送出到井内,由此通过水泥浆固定井筒。
为了实现上述目的,本发明的一个实施方式提供了一种变频电驱系统,其包括:电机;以及直接电气连接至供电系统且用于驱动所述电机的功率单元。所述功率单元包括直接电气连接至供电系统的整流单元和电气连接至所述整流单元且对所述电机进行驱动的逆变单元。所述整流单元采用三相整流电路,所述三相整流电路的每一相的上臂及下臂分别由整流模块构成,各所述整流模块包括多个串联的整流器件。
本发明的一个实施方式还提供了包括上述变频电驱系统的泵送系统、压裂设备、固井设备及井场设备。
本发明的有益效果
在本发明的多绕组电机驱动系统中,采用了一种具有相互独立的多路绕组的电机,并且采用了一种通过将整流单元与逆变单元以特定方式组合以对电机的不同绕组分别进行驱动的功率单元。藉此,当任一路发生故障时,多绕组电机驱动系统能够继续工作,可靠性得到了很大提高。因此,多绕组电机驱动系统具有系统效率高、性能优良等优点。
另外,在本发明的多绕组电机驱动系统中,可以采用移相变压器来代替用于常规变频器的变压器。利用所述移相变压器,可以通过相位偏移来消除谐波,还可以通过调整电压来得到所需的输出电压值。在不需要变压器的情况下,移相变压器可以仅起到移相的作用。
此外,本发明可以通过采用使用了串联分压结构的整流单元,使得功率单元的输入线无需经由变压器而是可以直接电气连接到供电设施,实现了高压(本发明中,高压例如是高于3kV的电压等)变频电驱一体化的高压变频控制,解决了现有技术中的高压变频器输出距离受限、输出电缆对周围设备产生干扰等问题,也避免了长距离电平供电造成的电机端电压尖峰过大导致的电机绝缘老化甚至击穿的情况的发生。此外,本发明由于取消了变压器,因而功率单元的重量和体积较小,可以将功率单元集成于电机上,有效地缩短了功率单元的输出线。这与常规变频器必须跟电机分开放置的技术方案相比,节省了整机布局的占用空间,具有结构紧凑的优点。另外,本发明可以将功率单元中的一部分(例如逆变单元)集成于电机上,其他部分(例如整流单元等)放置在电机之外,这就能够在减少了整机布局的占用空间的同时,还兼顾了重量和空间的均衡分布,以防发生局部的重量过重或尺寸过大。
在本发明的多绕组电机驱动系统中也可以同时采用使用了串联分压结构的整流单元。利用多绕 组电机解决了当任一路出现故障时其他路依然可以运行的问题。利用整流单元中的串联分压结构还可以取消现有技术中的变频器中的变压器,进而可以实现功率单元与电机的集成化。
注意,这里所记载的效果仅是说明性的而非限制性的,并且本发明可以具有其他效果。
附图说明
图1中的(A)示出了现有的电驱压裂设备经由变频器橇与供电设施之间的电气连接模式。
图1中的(B)示出了现有的常规变频器的构造以及由该常规变频器驱动的电动机的示意性框图。
图2A示出了根据本发明第一实施方式的泵送系统的第一实施例的示意性框图。
图2B示出了根据本发明第一实施方式的泵送系统的第二实施例的示意性框图。
图2C示出了根据本发明第一实施方式的泵送系统的第三实施例的示意性框图。
图3示出了根据本发明第一实施方式的泵送系统中的多绕组电机驱动系统的第一示例。
图4A示出了根据本发明第一实施方式的泵送系统中的多绕组电机驱动系统的第二示例。
图4B示出了图4A所示的多绕组电机驱动系统中的多个逆变单元与电机的相应绕组的电气连接的电路示意图。
图4C示出了图4A所示的多绕组电机驱动系统中的整流单元和多个逆变单元的电气连接的电路图。
图4D示出了图4C中的滤波单元和逆变单元的局部放大图。
图5A示出了根据本发明第一实施方式的泵送系统中的多绕组电机驱动系统的第三示例。
图5B示出了图5A所示的多绕组电机驱动系统中的多个逆变单元与电机的相应绕组的电气连接的电路示意图。
图5C示出了图5A所示的多绕组电机驱动系统中的整流单元和多个逆变单元的电气连接的电路图。
图5D示出了根据本发明第一实施方式的泵送系统中的多绕组电机驱动系统的第四示例。
图6示出了根据本发明第一实施方式的泵送系统的第四实施例的示意性框图,其中在多绕组电机驱动系统的整流单元的输入侧设置有移相变压器。
图7A示出了根据本发明第二实施方式的含有本发明的泵送系统及与其有关的供电系统和控制系统的整机布局的第一示例。
图7B示出了根据本发明第二实施方式的含有本发明的泵送系统及与其有关的供电系统和控制系统的整机布局的第二示例。
图8A示出了根据本发明第二实施方式的含有本发明的泵送系统及与其有关的供电系统和控制系统的整机布局的第三示例。
图8B示出了根据本发明第二实施方式的含有本发明的泵送系统及与其有关的供电系统和控制系统的整机布局的第四示例。
图9示出了根据本发明第三实施方式的通过承载架进行集成化的压裂设备的一个示例。
图10示出了根据本发明第三实施方式的通过半挂车进行集成化的压裂设备的一个示例。
图11示出了根据本发明第三实施方式的通过半挂车进行集成化的压裂设备的另一个示例。
图12示出了本发明的多绕组电机的控制方法的示例。
具体实施方式
下面参照附图来详细说明本发明的实施例。以下的说明是本发明的一些具体实例,但是本发明并不限于此。另外,本发明也不限于各个附图中所示的各构成要素的布置、数量、尺寸、尺寸比等。在有些部件的附图标记后面附加有数字1、2、3、……、n,以表示多个这样的部件,但是在进行说明的时候如果不需要区分,也会省略这些附加的数字。
请注意,将会按照以下顺序给出说明。
<1.多绕组电机驱动的泵送系统>
1.1泵送系统的概略结构
1.2多绕组电机驱动系统
1.2.1驱动模式的第一示例
1.2.2驱动模式的第二示例
1.2.3驱动模式的第三示例
1.2.4驱动模式的第四示例
1.2.5其他示例
1.3多绕组电机驱动方法
1.4变频电驱系统
<2.含有泵送系统的整机布局>
<3.含有泵送系统的压裂设备>
3.1通过承载架进行集成化的压裂设备的结构
3.2通过半挂车进行集成化的压裂设备的结构
<4.泵送设备和固井设备的示例>
<5.井场设备的示例>
<6.多绕组电机的控制方法的示例1>
<7.多绕组电机的控制方法的示例2>
<1.多绕组电机驱动的泵送系统>
<1.1泵送系统的概略结构>
首先,将会说明本发明的多绕组电机驱动的泵送系统的概略结构。图2A至图2C示出了根据本发明第一实施方式的泵送系统90的第一至第三实施例的示意性框图。泵送系统90包括多绕组电机驱动系统和由该多绕组电机驱动系统驱动的柱塞泵11。多绕组电机驱动系统包括功率单元40和电机21。在多绕组电机驱动系统中,功率单元40的输出线与电机21的电力输入端电气连接,以对电机21进行调速驱动。电机21的传动输出轴与柱塞泵11的传动输入轴进行机械连接。在电机21的驱动下,柱塞泵11的柱塞在缸体中往复运动,使得密封有工作液体的工作腔体的容积发生变化,藉此实现工作液体的吸入及加压,并且将加压后的工作液体排出到外部。
<1.2多绕组电机驱动系统>
在由图2A至图2C所示的泵送系统采用的各种多绕组电机驱动系统中,电机21是多绕组电机,其具有多路绕组R1~Rn(n≥2)。各路绕组之间相互绝缘,即,不同绕组之间相互独立。例如,在三相交流电的供电条件下,每一路绕组都包含三相线圈(例如,绕组R1包括三相线圈R1_u、R1_v、R1_w,可参见稍后说明的例如图3)。
而且,在功率单元40中设置有多个逆变单元70 1~70 n(n≥2)。逆变单元70 1~70 n与电机21的绕组R1~Rn分别电气连接。逆变单元70的数量与电机21的绕组的数量一致,以使得一个功率单元40的多个逆变单元70与一台电机21的多路绕组一一对应地电气连接,从而实现对于各个绕组的单独驱动。虽然图2A至图2C中示出了n=3的示例(即,电机21具有3路相互独立的绕组R1至R3,并且功率单元40具有相应的3个逆变单元70 1至70 3),但本发明不限于此。优选地,电机绕组及逆变单元各者的数量优选为4个以上。
藉此,本发明的泵送系统90的多绕组电机驱动系统在功率单元40和电机21之间采用了相互独立的多路结构,使得该泵送系统具有一定的冗余能力。当电机21的任一路绕组和/或功率单元40的任一个逆变单元发生故障时,可以将含有故障的绕组和/或故障的逆变单元的一路工作结构断开,泵送系统仍可运行而不必要停车,因而能够继续工作,可靠性得到了很大提高。此外,电机的多路绕组由功率单元的多个逆变单元分别驱动,因此,泵送系统的转矩性能(转速调整)更加平稳,效率更高,所产生的谐波污染更低。
此外,在上述功率单元40中,作为一个示例,如果输入的是交流电,那么还可以设置有整流单元50。该整流单元50把接收到的交流电经过整流后输入到逆变单元70。图2A至图2C中示出了一个整流单元50电气连接至多个逆变单元70的示例,但是本发明不限于此,在一个功率单元40中可以设置有两个以上的整流单元50,每一个整流单元50可以电气连接到至少一个逆变单元70。
优选地,功率单元40可以至少部分地集成安装于电机21上,以得到空间优化的高压变频一体机(稍后将会在图9至图11中说明的高压变频一体机412)。在图2A所示的第一实施例中,用于构成功率单元40的逆变单元70集成于电机21上。如图2A所示,在功率单元40含有整流单元50 且整流单元50也设置于泵送系统90之内的情况下,整流单元50可以与逆变单元70一起集成于电机21上。图2B所示的第二实施例与图2A所示的第一实施例的区别是,仅将功率单元40的逆变单元70集成于电机21上,而整流单元50未集成于电机21上。图2C所示的第三实施例与图2B所示的第二实施例的区别是,整流单元50未设置于泵送系统90之内,而是设置于泵送系统90之外。本发明通过将功率单元40至少部分地集成安装于电机21上,能够在减少了整机布局的占用空间的同时,还兼顾了重量和空间的均衡分布。
<1.2.1驱动模式的第一示例>
图3示出了根据本发明第一实施方式的泵送系统中的多绕组电机驱动系统的第一示例。如图3所示,功率单元40包括多个逆变单元70 1~70 n,每个逆变单元70中包含1个或多个诸如IGBT、IGCT、二极管、SCR、GTO或IEGT等逆变部件或其组合。作为一个替代方案,在交流电输入的条件下,功率单元40还包括多个整流单元50 1~50 n,每个整流单元50中包含1个或多个整流器件。作为一个替代方案,功率单元40进一步还可以包括多个电容80 1~80 n。整流单元50的数量及电容80的数量可以与逆变单元70的数量一致,因此整流单元50与逆变单元70是一一对应电气连接的。例如,三相交流电分别输入到每个整流单元50,经过该整流单元50整流后输入到相应的一个逆变单元70,再经过该逆变单元70逆变后输入到电机21的相应一路绕组R的三相线圈(R_u、R_v、R_w)的输入端,该三相线圈的另一端可以通过星形或角形连接的方式进行连接。
于是,功率单元40与电机21之间的多路工作结构中的任一路(本示例中,由功率单元40中的整流单元50 1、电容80 1和逆变单元70 1与电机21中的绕组R1构成的一路工作结构,以此类推)与其他路工作结构是相互独立工作的。该第一示例能够实现前述的当任一路工作结构中任一处发生故障时泵送系统的其他路工作结构仍能够继续工作的效果。此外,在这样的泵送系统中,电机的噪音小,系统效率高,所产生的谐波污染也低。
作为一个可供替代的方案,图3中的整流单元50的数量可以与逆变单元70的数量不一致,例如至少一些整流单元50可以被共用,被共用的整流单元50可以驱动两个以上的逆变单元70。
<1.2.2驱动模式的第二示例>
图4A示出了根据本发明第一实施方式的泵送系统中的多绕组电机驱动系统的第二示例。图4A所示的多绕组电机驱动系统的第二示例与图3所示的第一示例的区别在于,功率单元40不是包括多个整流单元,而仅使用了一个整流单元50,该整流单元50中可以包含一个以上的整流器件,并且该整流单元50电气连接至多个逆变单元70 1~70 n。在该第二示例中,多个逆变单元70 1~70 n是串联连接的(例如第一个逆变单元70 1的负极连接到第二个逆变单元70 2的正极,以此类推),第一个逆变单元70 1的正极连接到整流单元50的正极输出端子,最后一个逆变单元70 n的负极连接到整流单元50的负极输出端子。在第二示例中,除了功率单元40中的整流单元50是共用的一个以外,功率单元40与电机21之间的多路工作结构中的任一路(本示例中,由功率单元40中的电容80 1和逆变单元70 1与电机21中的绕组R1构成的一路工作结构,以此类推)与其他路工作结构是相互独立工作的。第二示例的构造同样能够实现前述的当任一路工作结构中任一处发生故障时泵送系统 的其他路工作结构仍能够继续工作的效果。此外,第二示例采用了上述的将一个整流单元50共用的构造,这就节省了当采用多个整流单元时的占用空间,使得功率单元40的体积及重量可以进一步减小,因而更有利于将功率单元40至少部分地集成安装于电机21上,或者可以更有利于整机布局。
图4B示出了图4A所示的多绕组电机驱动系统中的多个逆变单元与电机的相应绕组的三相线圈电气连接的电路示意图。图4C示出了图4A所示的多绕组电机驱动系统中的整流单元和多个逆变单元的电气连接的电路图。图4D示出了图4C中的滤波单元和逆变单元的局部放大图。
在图4B中,示意性地示出的滤波电容D1~Dn相当于上述电容80 1~80 n,示意性地示出的逆变器NB1~NBn相当于上述逆变单元70 1~70 n,并且R1~Rn是电机21中的相互独立的绕组,每个绕组具有三相线圈。在逆变器NB1~NBn每一者中,采用了三相三电平逆变电路,每一相的上臂及下臂都由三极管与二极管构成,每一相的输出端电气连接到电机的一个绕组的相应一相线圈的输入端。本发明的逆变单元的具体构造不限于这里所说明的逆变器的示例,逆变器中所用的逆变部件不限于附图中所示的三极管和二极管及其数量。
图4C所示的功率单元40的电路包括整流单元50、电抗器L、滤波单元55以及多个逆变单元70 1~70 n。整流单元50采用了三相整流电路,每一相的上臂及下臂分别由整流模块511构成,每一相的输入端都经由三相开关512电气连接至用于提供交流电的供电设施的相应一相输出端。每个整流模块511可以包括多个串联的诸如整流二极管等整流器件。例如,上臂(正极端)的整流模块511可以包括依次串联的8个整流二极管(图4C中从下往上,第一个二极管的负极连接至第二个二极管的正极,以此类推),下臂(负极端)的整流模块511也可以包括依次串联的8个整流二极管(图4C中从上往下,第一个二极管的正极连接至第二个二极管的负极,以此类推)。在每一相中,上臂的整流模块511中的第一个二极管的正极及下臂的整流模块511中的第一个二极管的负极共同电气连接至该相的输入端,上臂的整流模块511中的最后一个二极管的负极连接至整流单元50的正极输出端子,下臂的整流模块511中的最后一个二极管的正极连接至整流单元50的负极输出端子。
由于本示例在整流单元50中采用了多个整流器件的串联分压连接方式,因此能够根据不同输出电压的要求而选择不同的串联级数。藉此,本发明的功率单元40因为取消了变压器,因而相比于现有技术的需要采用变压器的变频器而言具有更小的体积和重量,有利于进行集成以实现整机布局的空间优化。本发明的整流单元的具体构造不限于这里所说明的示例。
在工作时,整流单元50将从供电设施输入过来的三相交流电整流后经由电抗器L提供给各个逆变单元70 1~70 n。作为一个优选示例,滤波单元55设置于整流单元50与逆变单元70之间,其用来对整流单元50的输出电压进行滤波,使得该输出电压的波形趋于平滑(滤除毛刺),然后才提供给各个逆变单元70。在滤波单元55中,与每一个逆变单元70对应地设置有一个滤波器电路。例如如图4D所示,对应于逆变单元70 1的滤波器电路由电阻R01、R02和电容器C01、C02组成。
继续参照图4D进行说明,以逆变单元70 1为例,其采用了三相(70 1_u、70 1_v及70 1_w)电 路。对于三相电路之中的一相分支电路70 1_u,其包括两个电容器C11~C12以及三个晶体管模块IGBT1~IGBT3。对于三相电路之中的另一相分支电路70 1_v,其包括两个电容器C13~C14以及三个晶体管模块IGBT4~IGBT6。对于三相电路之中的又一相分支电路70 1_w,其包括两个电容器C15~C16以及三个晶体管模块IGBT7~IGBT9。这三相分支电路70 1_u、70 1_v及70 1_w各自的输出端A1、B1及C1分别电气连接至电机21的绕组R1的三相线圈的相应一相的输入端。逆变单元70 1把经过滤波单元55中的相应一个滤波器电路滤波后的电压转换为能够驱使相应的电机绕组运行的可控交流电。其他各路逆变单元具有类似的构造,不再赘述。本发明的逆变单元不限于此,也可采用其他合适的构造。
<1.2.3驱动模式的第三示例>
图5A示出了根据本发明第一实施方式的泵送系统中的多绕组电机驱动系统的第三示例。图5B示出了图5A所示的多绕组电机驱动系统中的多个逆变单元与电机的相应绕组的电气连接的电路示意图。图5C示出了图5A所示的多绕组电机驱动系统中的整流单元和多个逆变单元的电气连接的电路图。图5A至图5C所示的多绕组电机驱动系统的第三示例与图4A至图4C所示的第二示例的区别在于,多个逆变单元70 1~70 n不是串联连接的,而是并联连接的(例如每一个逆变单元70 1~70 n的正极连接到整流单元50的正极输出端子,每一个逆变单元70 1~70 n的负极连接到整流单元50的负极输出端子)。其他构造与第二示例中所示的构造类似,不再赘述。
<1.2.4驱动模式的第四示例>
一个功率单元40中的多个逆变单元70除了可以采用如图4A所示的串联或如图5A所示的并联以外,也可以采用其他连接方式。例如,图5D示出了根据本发明第一实施方式的泵送系统中的多绕组电机驱动系统的第四示例。在图5D中,多个逆变单元70采用了既有串联又有并联的混合连接方式。具体地,在图5D中,第一逆变单元70 1与第二逆变单元70 2是串联的,第三逆变单元70 3与第四逆变单元70 4是串联的,由第一逆变单元70 1和第二逆变单元70 2构成的串联结构与由第三逆变单元70 3与第四逆变单元70 4构成的串联结构并联于整流单元的正极输出端子与负极输出端子之间。图5D仅仅是混合连接方式的一个示例,本发明不限于此。
<1.2.5其他示例>
在前述第一至第三实施例以及第一至第四示例中所说明的技术内容可以视需要并且在不发生矛盾的情况下相互组合。例如,在图3所示的使用了多个整流单元50 1~50 n的示例中,每个整流单元50也可以采用包括上述整流模块511的构造。
此外,图6示出了根据本发明第一实施方式的泵送系统的第四实施例的示意性框图。在图6所示的泵送系统中,多绕组电机驱动系统与图3中所示的多绕组电机驱动系统的第一示例的区别在于,在功率单元40的上游(电力输入侧)还设置有移相变压器10。这里,移相变压器10包括一个主级绕组101和多个次级绕组102 1~102 n,多个次级绕组102 1~102 n的输出电压的相位以一定的间隔偏移。功率单元40中的各个整流单元50 1~50 n电气连接到移相变压器10的多个次级绕组102 1~102 n中的相应一者。
根据本发明,在整流单元50的输入侧设置有移相变压器10。一方面,能够通过改变移相变压器10的各个次级绕组与主级绕组的匝数比来实现调压目的。另一方面,能够通过移相变压器10的相位偏移来消除谐波。此外,利用移相变压器10,还能实现整流单元与供电网之间的电气隔离。
<1.3多绕组电机驱动方法>
本发明提供了一种多绕组电机驱动方法,包括:提供具有相互独立的多路绕组的电机;以及提供包括至少一个整流单元和多个逆变单元的组合的功率单元,所述多个逆变单元在数量上与所述电机的所述多路绕组一一对应,各个所述逆变单元用于向所述电机的所述多路绕组之中的相应一者分别供电。在直流供电的条件下,功率单元中可以省略整流单元。
在上述多绕组电机驱动方法中,提供功率单元的步骤可以包括:提供多个整流单元,使各个整流单元给所述多个逆变单元中的一者或多者供电;或者提供一个整流单元,使该整流单元给所述多个逆变单元供电。
在上述多绕组电机驱动方法中,还可以包括:将所述多个逆变单元集成地安装于所述电机上。
在上述多绕组电机驱动方法中,还可以包括:将所述整流单元也集成地安装于所述电机上。
在上述多绕组电机驱动方法中,还可以包括:在所述整流单元的输入侧提供移相变压器。
在上述多绕组电机驱动方法中,还可以包括:在所述整流单元与所述多个逆变单元各者之间提供滤波电容。
在上述多绕组电机驱动方法中,还可以包括:通过将多个整流器件串联,来构成所述整流单元的一部分。
在上述多绕组电机驱动方法中,还可以包括:将所述多个逆变单元串联、并联或者串并联混合连接。
在上述多绕组电机驱动方法中,还包括:提供报警系统,当所述电机的所述多路绕组中的任一路或者所述多个逆变单元中的任一个发生故障时,所述报警系统给出报警信息;和/或提供控制系统,当所述功率单元的所述多个逆变单元的实际输出总功率未超过k×P×(n-n1-n2-1)/n的状况达到了预设的持续时间时,所述控制系统选择性地关闭所述多个逆变单元中的一者的输出,这里,k为电机的安全系数且k<1,P为电机的额定功率,n为功率单元的多个逆变单元的个数(亦即多绕组电机的多路绕组的数量),n1为当前关闭的逆变单元数量,n2为当前失效(例如发生故障)的逆变单元数量。
在上述多绕组电机驱动方法中,还包括:提供显示系统或语音系统,用于显示或播报所述报警信息。
本发明的泵送系统含有上述多绕组电机驱动系统或者使用了上述多绕组电机驱动方法,因此也具有该多绕组电机驱动系统和方法所带来的所有优点。
<1.4变频电驱系统>
在如上所述的驱动模式的第一至第四示例中示出了整流单元及逆变单元的特殊设计,利用这样的整流单元及逆变单元的特殊设计可以构造出本发明的变频电驱系统。该变频电驱系统可以包括:电机;以及直接电气连接至供电系统且用于驱动所述电机的功率单元,所述功率单元含有整流单元及逆变单元的特殊设计。在功率单元40中,可以设置有至少一个整流单元50以及至少一个逆变单元70。如图3所示,设置有多个整流单元50,它们与多个逆变单元70一一对应地设置着。可供替代地,如图4A、图5A及图5D所示,设置有一个整流单元50,其可以电气连接至多个逆变单元70。可供替代地,例如在图3所示的功率单元40中设置有多个整流单元50的情况下,各个整流单元50也可以电气连接至两个以上的逆变单元70。此外,与任一整流单元50电气连接的两个以上逆变单元70彼此可以是串联连接、并联连接或串并联混合连接的。本发明的变频电驱系统不限于这些示例。
在本发明的变频电驱系统中,无论功率单元40中设置有一个或多个整流单元50,各整流单元50都可以采用例如如图4C中所示的三相整流电路,其每一相的上臂及下臂分别由整流模块511构成,每个整流模块511可以包括多个串联的诸如整流二极管等整流器件。串联起来的多个整流器件可以实现分压的效果,使得整流单元50无需变压器就能直接连接到高压供电设施。此外,在本发明的变频电驱系统中,在设置有多个逆变单元70且至少两个逆变单元70相互串联的情况下,也能实现通过串联分压来提高逆变单元70的电压耐受性的效果。
在本发明的变频电驱系统中,电机可以是具有独立的多路线圈绕组的多绕组电机21(如图3、图4A、图5A、图5D所示),也可以是常规电机。在多绕组电机的情况下,本发明的变频电驱系统的各个逆变单元分别对应于一台多绕组电机的各路线圈绕组,在常规电机的情况下,本发明的变频电驱系统中的各个逆变单元分别对应于各台电机。无论哪一种情况下,都能解决无需经过变压器就能直接连接至供电系统的问题。
作为一个可选的示例,本发明的变频电驱系统可以在功率单元的输入侧设置有仅起到移相作用的移相变压器。
本发明的泵送系统可以含有上述变频电驱系统,因此也具有该变频电驱系统所带来的所有优点。
在本发明的泵送系统中,不管其是含有提供了多绕组电机的多绕组电机驱动系统,还是含有取消了变压器的变频电驱系统,还是含有既提供了多绕组电机又取消了变压器的组合技术方案,整流单元和逆变单元各者可以集成于电机上也可以不集成于电机上。整流单元和逆变单元二者可以集成安装在一起也可以分离地放置着。整流单元可以被共用。
<2.含有泵送系统的整机布局>
下面,接着说明根据本发明第二实施方式的含有本发明的泵送系统及与其有关的供电系统和控制系统的整机布局的示例。
图7A示出了根据本发明第二实施方式的整机布局的第一示例,该整机布局包括泵送系统90a、配电单元76和电源75。在图7A所示的整机布局中,配电单元76放置于泵送系统90a之外,并且 泵送系统90a经由配电单元76电气连接至电源75。例如,电源75向配电单元76提供三相交流电。此外,在配电单元76中设置有配电控制系统761。
泵送系统90a包括功率单元40、电机21和柱塞泵11。优选地,泵送系统90a还包括整机控制系统901。优选地,在功率单元40中还设置有功率单元控制系统401。配电控制系统761向功率单元控制系统401传递温度、电压、电流、报警信息等,功率单元控制系统401向配电控制系统761传递诸如开关控制等控制信号。
除了整机控制系统901和功率单元控制系统401这两点以外,泵送系统90a的其他构造与图2C所示的泵送系统90中一样,在此省略重复的说明。由图7A可见,在泵送系统90a中,功率单元40中的整流单元50放置于配电单元76中,而功率单元40中的逆变单元70可以集成于电机21上。这样,就使得能够在减少了整机布局的占用空间的同时,还兼顾了重量和空间的均衡分布。
根据上述构造,电源75所提供的电力(例如三相电)可以直接提供至配电单元76,经由配电单元76(在配电单元76经过调压或者不调压之后)配送给泵送系统90a中的功率单元40的整流单元50,然后提供给逆变单元70,从而驱动电机21。配电单元76也给泵送系统90a中的其他辅助装置(例如控制系统等)供电。
泵送系统90a的整机控制系统901可以与功率单元40中的功率单元控制系统401进行通讯,通过接收来自功率单元控制系统401的信息来获取功率单元40的电流、电压等电气信息状态,并且通过基于该电气信息状态向功率单元控制系统401发出控制指令来调整功率单元40的频率输出,进而根据作业需求调整电机21的转速。
图7B示出了根据本发明第二实施方式的整机布局的第二示例,该整机布局包括泵送系统90b、配电单元76和电源75。图7B所示的整机布局与图7A所示的整机布局的区别在于:在泵送系统90b中,功率单元40中的整流单元50放置于泵送系统90b内且跟逆变单元70一起集成于电机21上(类似于图2A所示的泵送系统90,省略重复的说明)。这样的整机布局使得能够提高集成度,且进一步减少了整机布局的占用空间。
图8A示出了根据本发明第二实施方式的整机布局的第三示例,该整机布局包括泵送系统90c、配电单元76和电源75。优选地,该整机布局还包括仪表设备30,在仪表设备30中设置有集中控制系统301。图8A与图7A的主要区别在于:一方面,配电单元76放置于泵送系统90c之内;另一方面,泵送系统90c中的整机控制系统901除了电气连接至功率单元40中的功率单元控制系统401以外,还电气连接至仪表设备30中的集中控制系统301。集中控制系统301用于实施对泵送系统90c和/或电源75的远程控制。作为一个示例,例如电源75为发电机,在这种情况下,可通过集中控制系统301来实现该发电机的紧急关断。
图8B示出了根据本发明第二实施方式的整机布局的第四示例。图8B与图8A的主要区别在于:功率单元40中的整流单元50跟逆变单元70一起集成于电机21上。重复内容不再赘述。
本发明的整机布局可以是含有前述多绕组电机驱动系统、前述变频电驱系统和前述泵送系统中任一者的压裂设备的布局。本发明的整机布局中的部件数量不限于图7A至图7B和图8A至图8B 所示。例如,根据本发明的如图7A至图8B所示的整机布局,由于多绕组电机21跟功率单元40的至少一部分进行集成,使得结构更紧凑,因此,在一台压裂设备或其他井场设备的整机布局中可以放置两台电机分别驱动1台柱塞泵,也可以放置1台电机驱动两台柱塞泵。但是,在本发明的整机布局中,电机21跟功率单元40也可以不集成。
此外,本发明的整机布局由于含有本发明的前述多绕组电机驱动系统、前述变频电驱系统和前述泵送系统中任一者,因此也具有它们所带来的所有优点。例如,如图7A至图8B所示的整机布局中的电机的各线圈绕组由功率单元分别进行调速驱动从而能够控制不同线圈绕组的独立工作,因此,能够在任一路出现故障时,整机布局中的其他路依然可以运行。
<3.含有泵送系统的压裂设备>
<3.1通过承载架进行集成化的压裂设备的结构>
图9示出了根据本发明第三实施方式的通过承载架进行集成化的压裂设备的一个示例。
图9所示的压裂设备100a包括:承载架(撬)67;安装于承载架67上的高压变频一体机412;以及安装于承载架67上且集成地连接至高压变频一体机412的柱塞泵11。柱塞泵11由高压变频一体机412驱动从而将压裂液泵送到地下。
如前所述,本发明的功率单元40可以集成安装于多绕组电机21或者普通电机上,这样,就得到了使高压变频和电驱集成到一起的高压变频一体机412。具体地,功率单元40具有第一壳体,电机21具有第二壳体,各壳体的形状例如可以是长方体、正方体、或诸如圆柱体等柱状体,本发明的实施例对它们的形状不做具体限定。例如,当功率单元40的第一壳体和电机21的第二壳体的形状为长方体或正方体时,有利于将第一壳体紧密地固定安装到第二壳体上。第一壳体可以通过螺栓、螺钉、铆接、或焊接等方式直接连接于第二壳体上,或者可以经由安装法兰而固定连接于第二壳体上。该法兰可以是圆形或方形等其他形式。在第一壳体和第二壳体二者的连接面中可以布置有用于让电缆贯穿的多个孔洞或者多个接线柱(下文中称为壳体关联部件),所述电缆可以包括用于将功率单元40与电机21电气连接的供电电缆,以便把由功率单元40变频和/或调压之后的交流电直接输出给电机21,进而驱动该电机21以可调的转速运转。
通过上述集成方式,功率单元40的输出线都安装在功率单元40与电机21的壳体关联部件内,从而有效地减少了线缆长度,降低了干扰。
功率单元40可以集成地布置于电机21的顶部或侧面处。尤其当功率单元40集成于电机21的顶部上时,这样得到的高压变频一体机412极大地节约了安装空间,功率单元40无需占用独立的安装空间,使得整体设备更加紧凑。功率单元40也可以部分地集成于电机21上,这样得到的高压变频一体机412就能够在减少了整机布局的占用空间的同时,还能够平衡设备的负载分布,避免设备的重量集中或局部尺寸过大。
作为本发明的一个实施例,高压变频一体机412中的电机21的传动输出轴可以直接地机械连接至柱塞泵11的传动输入轴,例如它们二者可以通过花键连接。例如,电机21的传动输出轴可以具有内花键或外花键或平键或锥形键,柱塞泵11的传动输入轴可以具有与上述键适配的外花键或 内花键或平键或锥形键。电机21的传动输出轴可以具有用于保护的外壳,柱塞泵11的传动输入轴可以具有用于保护的外壳,这二者的外壳可以通过诸如螺钉、螺栓、铆接、焊接、或者法兰等方式而被固定连接在一起。例如,电机21可以经由离合器、或联轴器等与柱塞泵11(例如诸如三缸或五缸等多缸柱塞泵)的传动输入端实现机械连接,并且通过功率单元分别为电机21的各个绕组提供调速驱动,使得电机21输出可变的转速,从而一台电机21可以同时驱动一台或多台柱塞泵。
在图9中,假设沿着电机21的传动输出轴水平地向外延伸且从高压变频一体机412朝着柱塞泵11的方向为X方向,与X方向垂直的向上方向为Y方向,与X方向及Y方向都正交且垂直于图9的纸面向内的方向为Z方向。这里,X方向、Y方向及Z方向的反方向分别为-X方向、-Y方向及-Z方向。
作为本发明的一个实施例,压裂设备100a还可以包括控制柜66。例如,控制柜66可以布置于高压变频一体机412的在-X方向上的端部处,也可以布置于柱塞泵11的在X方向上的端部处。本发明并不限制控制柜66相对于高压变频一体机412及柱塞泵11的具体位置,只要它们的布局能够使得该压裂设备100a能够高度集成就行了。例如,控制柜66可以是图7A至图8B中所示的配电单元76任一者,当其包含功率单元40的未被集成于电机21上的一部分时,能够在减少了整机布局的占用空间的同时,还能够平衡设备的负载分布,避免设备的重量集中或局部尺寸过大。例如,优选地,在控制柜66中还可以集成地设置有高压开关柜和辅助变压器。作为一个示例,该辅助变压器可以输出300V~500V(交流)的低电压,用于给压裂设备100a内的诸如润滑系统、散热系统等辅助用电装置供电。
作为本发明的一个实施例,上液管汇34可以设置于柱塞泵11的在Z方向或-Z方向上的一侧处,用于向柱塞泵11的液力端供给端供给压裂液。排出管汇33可以设置于柱塞泵11的在X方向和/或-X方向上的一个和/或两个端部处,用于从柱塞泵11的液力端排出端排出压裂液。压裂液通过上液管汇34经由柱塞泵11的液力端供给端进入柱塞泵11内部,然后经过柱塞泵11的运动增压后,从柱塞泵11的液力端排出端通过排出管汇33排出到柱塞泵11外部。
作为本发明的一些实施例,压裂设备100a还可以包括下列中的任一者或多者:润滑系统;润滑油散热系统;以及冷却液散热系统等。例如,润滑系统包括:润滑油箱60;第一润滑电机及润滑泵组61;以及第二润滑电机及润滑泵组62等。例如,根据润滑位置不同可以设置不同的润滑泵,满足不同压力、流量、油品的润滑需求。例如,润滑油散热系统包括润滑油散热器59等,用于给润滑油降温。例如,冷却液散热系统包括:冷却液散热器63;以及冷却液电机和冷却液泵组64等。
例如,上述各散热系统可以包括用于实现液体和空气换热的散热器和散热风扇,并且散热风扇由散热电机驱动。例如,压裂设备100a的高压变频一体机412也可以替代地采用空气冷却,此时需要使用散热风机来为电机的各路绕组、轴承等进行散热。压裂设备100a的高压变频一体机412也可以替代地采用空气冷却和冷却液散热系统的组合方式。各散热系统可以集成地布置于柱塞泵11的顶部或侧面处,也可以集成地布置于高压变频一体机412的顶部或侧面处,以便在充分发挥散热能力的同时,还允许实现压裂设备100a的整机布局的高集成度。
压裂设备100a的高压变频一体机412中由于采用了多绕组电机21,并且通过功率单元对电机21的各路绕组一一对应地分别驱动,因此,即使某一路工作结构发生故障,压裂设备100a也能继续工作。此外,整个压裂设备100a由于采用了通过将本发明前述实施方式中的功率单元40的至少一部分与多绕组电机21集成而得到的高压变频一体机412,不仅能够实现整个设备在承载架上的高度集成,而且还能在不需要变压器的情况下,可以直接电气连接到供电设施上。
<3.2通过半挂车进行集成化的压裂设备的结构>
图10示出了根据本发明第三实施方式的通过半挂车进行集成化的压裂设备的一个示例。图11示出了根据本发明第三实施方式的通过半挂车进行集成化的压裂设备的另一个示例。在图10和图11所示的压裂设备200a和300a的示例中,在半挂车68上集成地安装有高压变频一体机412和柱塞泵11。高压变频一体机412由功率单元40的至少一部分及多绕组电机21集成地组成。图10示出的是一台高压变频一体机412驱动一台柱塞泵11的示例。例如,在一台集成化的压裂设备上可以设置有至少两套的单机单泵结构。此外,图11示出的是一台高压变频一体机412驱动多台(例如两台)柱塞泵11的示例。
作为本发明的一些实施例,压裂设备200a和300a还可以包括下列中的任一者或多者:配电柜69、散热器63、连接部36、管汇35(诸如上液管汇和排出管汇)、以及润滑油箱60等。压裂设备200a和300a还包括与散热器63及润滑油箱60各者协作使用的电机和泵组等,具体可参见前面所述的润滑系统、润滑油散热系统及冷却液散热系统等。连接部36用于实现高压变频一体机412与柱塞泵11之间的机械连接。例如,配电柜69可以是图7A至图8B中所示的配电单元76任一者,当其包含功率单元40的未被集成于电机21上的一部分时,能够在减少了整机布局的占用空间的同时,还能够平衡设备的负载分布,避免设备的重量集中或局部尺寸过大。
除了上述的采用承载架(橇)、半挂车的方式进行集成以外,也可以考虑用车载的方式进行集成。
<4.泵送设备和固井设备的示例>
前面在图9至图11中以压裂设备为例进行了说明,该压裂设备的工作液体是压裂液,压裂液可以经由上液管汇34被提供至压裂设备的柱塞泵11的液力端供给端,在由柱塞泵11加压后,经由柱塞泵11的液力端排出端排出到排出管汇33,由排出管汇33送出到地下,以压裂地层。
上述压裂设备例如可以被替换成泵送设备,该泵送设备包括上述泵送系统。此时,工作液体是泵送用液体,泵送用液体可以经由上液管汇34被提供至泵送设备的柱塞泵11的液力端供给端,在由柱塞泵11加压后,经由柱塞泵11的液力端排出端排出到排出管汇33,由排出管汇33送出到井下,以泵送井下工具。
上述压裂设备例如可以被替换为固井设备,该固井设备包括上述泵送系统。在该固井设备中,工作液体是水泥浆。水泥浆可以经由上液管汇34被提供至固井设备的柱塞泵11的液力端供给端,在由柱塞泵11加压后,经由柱塞泵11的液力端排出端排出到排出管汇33,由排出管汇33送出到井内,由此固定井壁(井筒)。
<5.井场设备的示例>
本发明的井场设备可以包括至少一个压裂设备或者至少一个泵送设备或者至少一个固井设备或者它们的任意组合。
例如,在一种井场设备中,可以包括多个压裂设备。这些压裂设备可以共用排出管汇33。共用的排出管汇33与各压裂设备的上液管汇34可以集成设置于管汇撬上。
在一些示例中,本发明的上述井场设备经常还包括控制室,在该控制室中设置有集中控制系统以用于控制所有的压裂设备等。
本发明的上述井场设备例如还可以包括配液区域。该配液区域可以包括混配供液设备、混砂设备、液罐及储砂加砂设备等。在一些情况下,注入到井下的例如压裂液为携砂液体,所以需要通过将水、砂、化学添加剂混合以使砂粒悬浮在压裂液中。例如,来自各个液罐的清水和化学添加剂可以被供给到混配供液设备中进行混合以形成混配液,混配供液设备中的混配液以及储砂加砂设备中的砂共同进入混砂设备中以进行混合,形成作业需要的携砂压裂液。由混砂设备形成的低压力压裂液经由各个上液管汇34被输送到各个压裂设备的柱塞泵的液力端进液口,柱塞泵对压裂液加压后将其输送到液力端出液口,然后经由高压力排出管汇33排出。
<6.多绕组电机的控制方法的示例1>
由于本发明的泵送系统在实际使用时的功率波动较大,可以选择关闭多个逆变单元中的一部分逆变单元或者调整多个逆变单元的工作数量或者调整电机转速。具体而言,例如在如图7A所示的泵送系统90a中,功率单元40中的功率单元控制系统401可以检测从功率单元40输出的电流、或电压等信息,当所输出的电流或电压在持续一段时间内都低于预先设定值时,可以选择性地关闭一部分逆变单元,因此将电机的多路绕组中的一部分绕组断电,从而提高泵送系统的总体效能,减少电阻损耗、发热损耗等。控制方法的具体说明如下。
在泵送系统90a中,在整机控制系统901中设置有PLC(可编程序控制器),该PLC可以通过从功率单元40中的功率单元控制系统401获取功率单元40中的逆变单元70 1~70 n的总输出功率来进行判断,该PLC也可以通过母线电流的方式进行判断。下面的示例是根据输出功率来进行判断的,并且在该示例中,该PLC根据当前所获取的逆变单元70 1~70 n的总输出功率与电机21的额定功率P进行比较。
具体地,可以采取图12所示的控制方法(步骤S100至步骤S108)来进行判断以实施控制:其中,假设k为电机的安全系数且k<1,P为电机21的额定功率,n为每个功率单元40中所含的多个逆变单元70的个数,t1是由用户预设的报警持续时间,且t1通常不超过功率单元40或电机21所允许的超功率运行时间,并且t是由用户预设的预设时间。
首先,在步骤S100中,功率单元控制系统401获取单台多绕组电机21的实际运行功率P1(或单台电机输出功率P1)、当前关闭的逆变单元数量n1、以及当前失效(例如发生故障)的逆变单元数量n2,并且将所获取的这些信息传送给整机控制系统901中的PLC。
接着,PLC基于所接收到的上述信息,判断单台电机输出功率P1是否不低于k×P×(n-n1-n2)/n(参见步骤S101)。在判断结果为“是”的情况下,过程进行到步骤S106。在判断结果为“否”的情况下,过程进行到步骤S102。
在步骤S102中,PLC判断单台电机输出功率P1是否不高于k×P×(n-n1-n2-1)/n。在判断结果为“是”的情况下,过程进行到步骤S103。在判断结果为“否”的情况下,过程进行到步骤S105,在该步骤S105中,整机控制系统901指示功率单元控制系统401维持当前的逆变单元开启数量(即n-n1-n2)。
在步骤S103中,PLC判断持续满足上述步骤S102中的条件的时间是否不小于预设时间t。在判断结果为“否”的情况下,过程也进行到步骤S105,即,维持当前的逆变单元开启数量。在判断结果为“是”的情况下,整机控制系统901就指示功率单元控制系统401关闭一个逆变单元(参见步骤S104)。在步骤S104之后,重复步骤S102及其后续的步骤。
在步骤S106中,如果PLC判断当前关闭的逆变单元数量n1不低于1个,那么整机控制系统901指示功率单元控制系统401增加地开启一个逆变单元(参见步骤S107)。在步骤S107之后,重复步骤S101及其后续的步骤。此外,在步骤S106中,如果PLC判断当前关闭的逆变单元数量n1低于1个,那么整机控制系统901就给出报警信息(参见步骤S108)。
藉此,本发明能够依据所述功率单元的总输出功率来选择性地关闭所述多个逆变单元中的一部分或者调整多个逆变单元的工作数量。
<7.多绕组电机的控制方法的示例2>
电机21的n路绕组由相应的功率单元分别提供变频电流(输出电压和电流),当其中一路绕组出现问题、或者相应的一个功率单元出现问题,那么其他功率单元仍然可以正常工作,电机的其他各路绕组仍然可以运行,但总的运行功率将会比额定功率低1/n。此时,控制系统可以在显示界面上给出报警信息(诸如图形、颜色、文字、声音等方式的信息),以提示功率单元或电机绕组故障。具体地,例如如图7A所示,如果功率单元40或电机21的绕组出现故障,功率单元故障信息会随着电压或电流信息传递给功率单元40的功率单元控制系统401,功率单元控制系统401会将该故障信息传递给泵送系统90a的整机控制系统901,整机控制系统901根据功率单元故障信息中所包含的损坏的功率单元数量或损坏的电机绕组数量来降低泵送系统90a的泵送排量,进而降低实际使用功率,限制电机21的输出功率使其低于当前最大能力的安全值(比如1路绕组损坏,则电机的功率比额定功率减少1/n,就将多个逆变单元的输出总功率限制为使电机输出功率不超过安全限值k×(P-(1/n)×P),这里,P为电机21的额定功率,k为电机的安全系数且k<1,n为电机的多路绕组的数量),这样就使其低于上述安全限值。藉此,本发明的泵送系统90a能够提高安全性和平稳性,减少损耗且提高经济性。
具体参照图12,步骤S100、S101和S106与前述一样,在此省略说明。在上述步骤S106中,如果PLC判断当前关闭的逆变单元数量n1低于1台的情况下,那么整机控制系统901就通过设置于该整机控制系统中的报警系统给出报警信息(诸如图形、颜色、文字、声音等方式的信息)(参 见步骤S108)。所述报警系统可以是显示系统或者语音系统。
接下来,将上述报警的持续时间与用户预设的报警持续时间t1进行比较(参见步骤S109)。如果上述报警的持续时间等于或者长于预设的报警持续时间t1,那么整机控制系统901就指示功率单元控制系统401降低电机的转速(参见步骤S110)。如果上述报警的持续时间短于预设的报警持续时间t1,那么继续通过报警系统报警(参见步骤S111)。
本发明的各个实施方式或实施例中的装置或者部件可以按需要相互组合或者进行替换,而不是限于前面所说明的具体示例。
本领域技术人员应当理解,可以根据设计要求和其他因素而想到各种变形、组合、子组合和变更,这些都落入所附权利要求及其等同物的范围内。

Claims (25)

  1. 多绕组电机驱动系统,包括:
    电机,其具有相互独立的多路绕组;以及
    功率单元,其包括整流单元和多个逆变单元,所述多个逆变单元在数量上与所述电机的所述多路绕组一一对应,各个所述逆变单元对所述电机的所述多路绕组之中的相应一者供电。
  2. 根据权利要求1所述的多绕组电机驱动系统,其中,
    所述整流单元被设置为一个,共用地电气连接至所述多个逆变单元,并且
    所述多个逆变单元串联连接、并联连接或串并联混合连接。
  3. 根据权利要求1所述的多绕组电机驱动系统,其中,
    所述整流单元被设置为多个,各个所述整流单元与所述多个逆变单元之中的相应的至少一者电气连接。
  4. 根据权利要求3所述的多绕组电机驱动系统,还包括:
    移相变压器,其设置于所述多个整流单元的输入侧,
    其中,所述移相变压器包括一个主级绕组和多个次级绕组,所述多个次级绕组的输出电压的相位以一定的间隔偏移,并且
    其中,各个所述整流单元电气连接到所述移相变压器的所述多个次级绕组中的相应一者。
  5. 根据权利要求1至3中任一项所述的多绕组电机驱动系统,其中,
    所述整流单元包括整流桥电路,所述整流桥电路的每个桥臂包括串联的多个整流器件。
  6. 根据权利要求1至4中任一项所述的多绕组电机驱动系统,其中,
    所述多个逆变单元集成安装于所述电机上。
  7. 根据权利要求5所述的多绕组电机驱动系统,其中,
    所述多个逆变单元集成安装于所述电机上。
  8. 根据权利要求6所述的多绕组电机驱动系统,其中,
    所述整流单元也集成安装于所述电机上。
  9. 根据权利要求7所述的多绕组电机驱动系统,其中,
    所述整流单元也集成安装于所述电机上。
  10. 泵送系统,包括:
    根据权利要求1至9中任一项所述的多绕组电机驱动系统;和
    至少一台柱塞泵,所述柱塞泵与所述多绕组电机驱动系统集成安装在一起,且所述柱塞泵由所述电机驱动,
    其中,所述柱塞泵的传动输入轴与所述电机的传动输出轴直接地机械连接,或者
    其中,所述电机的传动输出轴经由离合器或联轴器与所述柱塞泵的传动输入轴间接地机械连接。
  11. 根据权利要求10所述的泵送系统,其中,
    在所述柱塞泵的所述传动输入轴与所述电机的所述传动输出轴直接地机械连接的情况下,所述电机的所述传动输出轴设置有内花键或外花键或平键或锥形键,所述柱塞泵的所述传动输入轴设有 适配的外花键或内花键或平键或锥形键,并且
    所述电机的所述传动输出轴具有外壳,所述柱塞泵的所述传动输入轴具有外壳,这二者的外壳通过法兰被固定连接在一起。
  12. 根据权利要求10所述的泵送系统,还包括:
    配电单元,其设置于所述泵送系统之内或之外,将来自供电电源的电力供给到所述泵送系统的所述功率单元。
  13. 根据权利要求12所述的泵送系统,其中,
    所述功率单元的未集成安装于所述电机上的一部分被放置于所述配电单元内。
  14. 根据权利要求10至13中任一项所述的泵送系统,其中,
    所述功率单元还包括:功率单元控制系统,其用于检测和控制从所述功率单元输出的电流或电压,
    并且,所述泵送系统还包括:整机控制系统,其基于预期的电机输出机械功率或电机转速与来自所述功率单元控制系统的实际的电机输出机械功率或电机转速的比较结果,指示所述功率单元控制系统停止所述功率单元中的至少一部分所述逆变单元的输出或者指示所述功率单元控制系统调整所述逆变单元的工作数量或者指示所述功率单元控制系统调整电机转速。
  15. 根据权利要求14所述的泵送系统,其中
    所述整机控制系统包括报警系统,并且
    所述整机控制系统基于从所述功率单元控制系统传递过来的电压或电流信息进行故障判断,基于判断结果在所述报警系统上给出报警信息。
  16. 压裂设备,包括:
    根据权利要求10至15中任一项所述的泵送系统;
    上液管汇,其设置于所述泵送系统中的所述柱塞泵的一侧处;
    排出管汇,其设置于所述柱塞泵的一个或两个端部处,来自所述上液管汇的工作液体经过所述柱塞泵的加压后从所述排出管汇送出;以及
    供电电源,用于向所述压裂设备供电。
  17. 据权利要求16所述的压裂设备,还包括:
    仪表设备,所述仪表设备中设置有用于对所述泵送系统和/或所述供电电源实施远程控制的集中控制系统。
  18. 根据权利要求16或17所述的压裂设备,其中,
    所述压裂设备采用承载架、撬、半挂车或者车载的方式进行集成安装。
  19. 井场设备,包括:
    根据权利要求16至18中任一项所述的压裂设备,
    其中,所述工作液体是压裂液。
  20. 井场设备,包括:
    泵送设备,其包括根据权利要求10至15中任一项所述的泵送系统;
    上液管汇,其设置于所述泵送系统中的所述柱塞泵的一侧处;
    排出管汇,其设置于所述柱塞泵的一个或两个端部处,来自所述上液管汇的工作液体经过所述柱塞泵的加压后从所述排出管汇送出;以及
    供电电源,用于向所述泵送设备供电,
    其中,所述工作液体是泵送液体。
  21. 井场设备,包括:
    固井设备,其包括根据权利要求10至15中任一项所述的泵送系统;
    上液管汇,其设置于所述泵送系统中的所述柱塞泵的一侧处;
    排出管汇,其设置于所述柱塞泵的一个或两个端部处,来自所述上液管汇的工作液体经过所述柱塞泵的加压后从所述排出管汇送出;以及
    供电电源,用于向所述固井设备供电,
    其中,所述工作液体是水泥浆。
  22. 变频电驱系统,包括:
    电机;以及
    直接电气连接至供电系统且用于驱动所述电机的功率单元,所述功率单元包括直接电气连接至所述供电系统的整流单元和电气连接至所述整流单元且对所述电机进行驱动的逆变单元,
    其中,所述整流单元采用三相整流电路,所述三相整流电路的每一相的上臂及下臂分别由整流模块构成,各所述整流模块包括多个串联的整流器件。
  23. 根据权利要求22所述的变频电驱系统,其中,
    所述逆变单元被设置为多个,所述多个逆变单元串联连接、并联连接或串并联混合连接,并且
    所述电机被设置为多个,所述多个电机在数量上与所述多个逆变单元一一对应,或者,所述电机被设置为具有相互独立的多路绕组,所述多路绕组在数量上与所述多个逆变单元一一对应。
  24. 根据权利要求22所述的变频电驱系统,其中,
    所述逆变单元集成安装于所述电机上。
  25. 根据权利要求24所述的变频电驱系统,其中,
    所述整流单元也集成安装于所述电机上。
PCT/CN2022/101882 2022-01-18 2022-06-28 多绕组电机驱动系统、变频电驱系统、泵送系统、压裂设备及井场设备 WO2023137980A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3179725A CA3179725A1 (en) 2022-01-18 2022-06-28 Multi-winding-motor driving system, variable-frequency electric driving system, pumping system, fracturing device and wellsite equipment
US18/315,888 US20230283215A1 (en) 2022-01-18 2023-05-11 Multi-winding-motor driving system, variable-frequency electric driving system, pumping system, fracturing device and wellsite equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210053618.9A CN114553062A (zh) 2022-01-18 2022-01-18 多绕组电机驱动系统、变频电驱系统、泵送系统及设备
CN202210053618.9 2022-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/315,888 Continuation US20230283215A1 (en) 2022-01-18 2023-05-11 Multi-winding-motor driving system, variable-frequency electric driving system, pumping system, fracturing device and wellsite equipment

Publications (1)

Publication Number Publication Date
WO2023137980A1 true WO2023137980A1 (zh) 2023-07-27

Family

ID=81670799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101882 WO2023137980A1 (zh) 2022-01-18 2022-06-28 多绕组电机驱动系统、变频电驱系统、泵送系统、压裂设备及井场设备

Country Status (2)

Country Link
CN (1) CN114553062A (zh)
WO (1) WO2023137980A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109335B (zh) * 2021-10-14 2023-09-19 烟台杰瑞石油装备技术有限公司 由变频调速一体机驱动的压裂设备及井场布局
CA3179258A1 (en) 2021-10-14 2023-04-14 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. A fracturing device driven by a variable-frequency adjustable-speed integrated machine and a well site layout
CN114553062A (zh) * 2022-01-18 2022-05-27 烟台杰瑞石油装备技术有限公司 多绕组电机驱动系统、变频电驱系统、泵送系统及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2684460Y (zh) * 2004-02-01 2005-03-09 丁振荣 基于具有多个分支绕组的交流电动机的高压变频系统
CN105207567A (zh) * 2015-09-24 2015-12-30 卧龙电气集团股份有限公司 一种高低压转换星型多相变频驱动系统
CN108900136A (zh) * 2018-07-31 2018-11-27 中车永济电机有限公司 一种多相压裂机组电驱动控制系统
CN110513097A (zh) * 2019-09-24 2019-11-29 烟台杰瑞石油装备技术有限公司 一种电驱压裂的井场系统
US20210102451A1 (en) * 2019-10-03 2021-04-08 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
CN114553062A (zh) * 2022-01-18 2022-05-27 烟台杰瑞石油装备技术有限公司 多绕组电机驱动系统、变频电驱系统、泵送系统及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2684460Y (zh) * 2004-02-01 2005-03-09 丁振荣 基于具有多个分支绕组的交流电动机的高压变频系统
CN105207567A (zh) * 2015-09-24 2015-12-30 卧龙电气集团股份有限公司 一种高低压转换星型多相变频驱动系统
CN108900136A (zh) * 2018-07-31 2018-11-27 中车永济电机有限公司 一种多相压裂机组电驱动控制系统
CN110513097A (zh) * 2019-09-24 2019-11-29 烟台杰瑞石油装备技术有限公司 一种电驱压裂的井场系统
US20210102451A1 (en) * 2019-10-03 2021-04-08 U.S. Well Services, LLC Electric powered hydraulic fracturing pump system with single electric powered multi-plunger fracturing pump
CN114553062A (zh) * 2022-01-18 2022-05-27 烟台杰瑞石油装备技术有限公司 多绕组电机驱动系统、变频电驱系统、泵送系统及设备

Also Published As

Publication number Publication date
CN114553062A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023137980A1 (zh) 多绕组电机驱动系统、变频电驱系统、泵送系统、压裂设备及井场设备
US11492887B2 (en) Power supply semi-trailer for electric drive fracturing equipment
US11725491B2 (en) Electrically driven fracturing system
US20220389804A1 (en) Fracturing system
WO2021056174A1 (zh) 一种电驱压裂的井场系统
Wang et al. Integrated modular motor drive design with GaN power FETs
Zhou et al. A high-efficiency high-power-density on-board low-voltage DC–DC converter for electric vehicles application
CN101784744B (zh) 用于井底设备的动力传送系统
CN102835019B (zh) 用于模块化驱动功率转换器的电路布置
US7161456B2 (en) Systems and methods for driving large capacity AC motors
EP2200167B1 (en) Power converter system
WO2021074661A1 (en) Multibridge power converter with multiple outputs
US9065377B2 (en) Load commutated inverter drive systems for high power drive applications
CN105460227A (zh) 紧急动力供给系统、飞行器和在飞行器中提供动力的方法
CN103261571A (zh) 向海底高速电机提供稳定海底电力输送的系统
CN101454966B (zh) 永磁发电机控制器
JP2013541934A (ja) 整流装置に接続されるモジュール式多電圧値出力変換器装置
WO2014037583A2 (en) Power distribution system for autonomous facilities
US20230283215A1 (en) Multi-winding-motor driving system, variable-frequency electric driving system, pumping system, fracturing device and wellsite equipment
CN105899805A (zh) 用于涡轮发电机的湍流补偿系统和方法
US20230412108A1 (en) Variable frequency drive system, variable frequency speed regulation integrated machine, pump system, and well site layout
CN107733248A (zh) 车用电力变换装置
WO2023060945A1 (zh) 由变频调速一体机驱动的压裂设备及井场布局
JP2017147812A (ja) 電源装置およびその初充電制御方法
RU2623347C2 (ru) Электрическое устройство

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3179725

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921411

Country of ref document: EP

Kind code of ref document: A1