WO2023136307A1 - ポリアミドマルチフィラメントおよび織物 - Google Patents

ポリアミドマルチフィラメントおよび織物 Download PDF

Info

Publication number
WO2023136307A1
WO2023136307A1 PCT/JP2023/000668 JP2023000668W WO2023136307A1 WO 2023136307 A1 WO2023136307 A1 WO 2023136307A1 JP 2023000668 W JP2023000668 W JP 2023000668W WO 2023136307 A1 WO2023136307 A1 WO 2023136307A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
yarn
multifilament
inorganic particles
less
Prior art date
Application number
PCT/JP2023/000668
Other languages
English (en)
French (fr)
Inventor
泰輔 岸田
千奈美 兼田
雄大 渡邉
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023136307A1 publication Critical patent/WO2023136307A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres

Definitions

  • the present invention relates to a polyamide multifilament having aliphatic hydrocarbon chains with a carbon number of C7 or more between amide bonds.
  • the polyamide multifilament of the present invention is used for a woven fabric, it is possible to provide a woven fabric having low air permeability, quality, and high-order processability.
  • Polyamide fiber which is a synthetic fiber, has excellent properties such as unique softness, high strength, color development when dyeing, heat resistance, and moisture absorption, so it is widely used in clothing such as innerwear and outdoor jackets. ing.
  • polyamide fibers are also required to use non-petroleum raw materials.
  • polyamide resins using non-petroleum raw materials polyamide 410, polyamide 510, polyamide 610, polyamide 612, polyamide 1010, polyamide 11, etc. using castor beans as a starting material are known, and all of them have a long carbon chain as a monomer. This is the structure of the unit.
  • the fibers are made finer to reduce the air permeability of the fabric. Multifilament is required.
  • Patent Document 1 As a spinning technology for polyamide having a long carbon chain in the monomer unit, for example, in Patent Document 1, it is possible to adjust the viscosity by optimizing the polymer moisture content during spinning, and polyamide 610 with good fluff quality during stretching. We offer multifilament.
  • Patent Document 1 is intended for industrial applications such as fishing nets, and is intended for fibers with a single yarn fineness of 4.8 dtex or more, which is large compared to clothing applications.
  • the quality of the product such as streaks is inferior when it is made into a woven fabric because the processability of the high-order processing is inferior.
  • the present invention solves the above problems, and is a polyamide multifilament that can provide fabrics with excellent processability in advanced processing, low air permeability, and excellent product quality.
  • the present invention has the following configuration.
  • a woven fabric partially including the polyamide multifilament according to (1) or (2).
  • polyamide multifilament of the present invention it is possible to provide a fabric suitable for outdoor jackets, etc., which suppresses the occurrence of fluff and slack (feather slack), has excellent high-order process passability, low breathability, and excellent product quality. can.
  • FIG. 1 shows one embodiment of a production apparatus that can be used in the method for producing a polyamide multifilament of the present invention.
  • FIG. 2 shows a preferred embodiment of a measuring device capable of measuring the dynamic coefficient of friction of yarns.
  • the polyamide multifilament of the present invention has a single filament fineness of 2.2 dtex or less, the number of fluff slacks per 10000 m is 1 or less, the dynamic friction coefficient between yarn and metal is 0.8 ⁇ d or less, and the number of carbon atoms between amide bonds is C7. It is a polyamide multifilament having the above aliphatic hydrocarbon chains.
  • polyamide The polyamide constituting the polyamide multifilament of the present invention is a polyamide having an aliphatic hydrocarbon chain with 7 or more carbon atoms (hereinafter abbreviated as C) between amide bonds.
  • the number of carbon atoms (that is, the number of methylene groups) contained between the amide bonds is C9 or more in the polyamide produced by the polycondensation reaction using aminocarboxylic acid and cyclic amide as raw materials, and the polycondensation reaction using dicarboxylic acid and diamine as raw materials. C7 or higher in the produced polyamide.
  • the upper limit of the number of carbon atoms is preferably about C12 for both a polyamide produced by polycondensation reaction using aminocarboxylic acid and cyclic amide as raw materials, and a polyamide produced by polycondensation reaction using dicarboxylic acid and diamine as raw materials.
  • polyamides having aliphatic hydrocarbon chains of C7 or more between amide bonds include polyamide 11 for polyamides made from cyclic amides, and polyamide 410, polyamide 510, polyamide 610, polyamide 612 for polyamides made from dicarboxylic acids and diamines. Polyamide 1010 and the like.
  • Monomers include petroleum-derived monomers, biomass-derived monomers, mixtures of petroleum-derived monomers and biomass-derived monomers, and the like.
  • the raw material contains biomass-derived monomers, and it is more preferable that 50% by mass or more of the monomers are obtained using biomass.
  • the biomass-derived monomer unit is preferably 50% by mass or more, more preferably 100% by mass.
  • the biobased carbon concentration is 50% or more, more preferably 100%.
  • outdoor jackets and down jackets which are the core products of outdoor apparel that are driving the movement away from petroleum raw materials, require fabrics with low air permeability from the viewpoint of wind protection and prevention of down falling out. Yarn fineness and high multifilament are progressing.
  • the polyamide multifilament of the present invention It is important for the polyamide multifilament of the present invention to have a single filament fineness of 2.2 dtex or less in order to realize low breathability of the fabric for outdoor jackets and down jackets. It is preferably 1.3 dtex or less. If it is thicker than 2.2 dtex, the air permeability of the woven fabric is high, which is inferior as a numerical value required for outdoor jackets and down jackets. On the other hand, as the fineness of the single yarn is reduced, the strength of the single yarn is lowered, so fluff and slack are likely to occur. The fluff and slack may get caught on the reed during the weaving process, resulting in increased yarn breakage, or may cause defects such as streaks and unevenness due to tension fluctuations.
  • the single yarn fineness is preferably 0.2 dtex or more.
  • the polyamide multifilament of the present invention has a fluff count of 1 or less per 10,000 m measured by a laser fluff detector. By setting it as this range, it is excellent in high-order process passability and product quality. If the number of loose fluff is more than 1/10,000 m, the ability to pass through higher processes and the quality of the product will be inferior.
  • polyamide having an aliphatic hydrocarbon chain of C7 or more used in the present invention is fuzzy compared to polyamide 6 and polyamide 66 (polyamide having a C6 aliphatic hydrocarbon chain), which are general-purpose polyamides used for clothing. Sagging is likely to occur, and the mechanism of its occurrence has not been elucidated.
  • the present inventors have diligently studied the mechanism of the generation of fluff slack.
  • Polyamide having an aliphatic hydrocarbon chain of C7 or more has a low storage modulus compared to a polyamide having an aliphatic hydrocarbon chain of C6 or less in the temperature range (normal temperature to 80 ° C.) during fiber production. It was clarified that the coefficient of dynamic friction between the running multifilament and the yarn guide was high.
  • the polyamide multifilament having an aliphatic hydrocarbon chain of C7 or more is easily deformed by an external force caused by contact with the yarn guide or bending, and the contact area with the guide increases, the dynamic friction coefficient increases, and fluff Sagging is likely to occur.
  • a polyamide multifilament having an aliphatic hydrocarbon chain of C7 or more is susceptible to friction between the multifilament and the yarn guide during fiber production, and fluff sagging is likely to occur. Moreover, damage is caused by friction between the multifilament and the yarn guide not only during fiber production, but also during high-order processing. This tendency is more pronounced for multifilaments with finer single filament fineness.
  • the storage elastic modulus referred to here is obtained by measuring with an automatic dynamic viscoelasticity measuring instrument (Rheovibron), and considering the yarn temperature when the multifilament passes through the yarn guide, Evaluate on two levels.
  • the polyamide multifilament of the present invention has a thread-to-metal dynamic friction coefficient of 0.8 ⁇ d or less.
  • the dynamic friction coefficient referred to here is obtained by measuring with a running yarn friction coefficient measuring device. Evaluate the dynamic friction coefficient of A specific measuring method will be described later in Examples.
  • a preferable thread-to-metal dynamic friction coefficient is 0.7 ⁇ d or less.
  • inorganic particles Fine irregularities can be formed on the fiber surface by adding inorganic particles during the production of the fiber.
  • the inorganic particles are not particularly limited as long as they do not adversely affect fiber production, maintain the physical properties of the fibers, and do not cause coloring or the like in the polymer.
  • examples of inorganic particles include barium sulfate, titanium oxide, aluminum oxide, zirconium oxide, calcium oxide, magnesium oxide, aluminum nitride, boron nitride, zirconium nitride, aluminum silicate, and zirconium carbide.
  • barium sulfate, titanium oxide, magnesium oxide, and aluminum oxide are preferred in consideration of fiber physical properties, coloring properties, ease of handling of particles, and high-order workability.
  • the content of the inorganic particles may be appropriately adjusted so that the coefficient of dynamic friction is in the range, but if it is too much, the tensile strength, which is a property of spinning and fiber properties, will decrease, so it is preferably 0.01 to 5.0 mass. %.
  • the dynamic friction coefficient between the thread and the metal can be reduced, and the occurrence of fluff sagging can be reduced, and the high-order processability and product quality are excellent.
  • it 5.0% by mass or less it is possible to maintain durability and reduce single yarn fluff without hindering the orientation and crystallization of the fiber, so it is possible to pass through higher processes and improve product quality. Excellent. More preferably, it is 0.02 to 4.0% by mass.
  • the total fineness is preferably 156 dtex or less, more preferably 78 dtex or less.
  • the polyamide multifilament of the present invention Since the polyamide multifilament of the present invention is assumed to be used for clothing, it preferably has a strength of 3.0 cN/dtex or more. By setting it as this range, the durability of clothing will be a level withstanding actual use.
  • the polyamide multifilament of the present invention preferably has an elongation of 30 to 70% because it is assumed to be used in clothing applications. By setting the content in such a range, it is possible to provide clothing excellent in passability and quality in high-order processing.
  • Drawn yarn has a lower elongation than highly oriented undrawn yarn, and tends to easily cause fluff slack. In the case of drawn yarn when the coefficient of dynamic friction is controlled to 0.8 ⁇ d or less, that is, in the case of elongation of 30 to 50%, the effect of suppressing the generation of fluff slack is more pronounced.
  • the sulfuric acid relative viscosity of the polyamide is preferably 1.7 to 3.5. By setting it in such a range, it is possible to obtain a polyamide multifilament with the above-mentioned strength and elongation, the durability of the clothing is at a level that can withstand actual use, and the passageability and quality in high-order processing are also excellent. It is possible to provide clothes that are
  • the fiber cross-sectional shape of the single fiber of the polyamide multifilament of the present invention is not particularly limited, and may be, for example, a circular cross-section, a flat cross-section, a lens-shaped cross-section, a multi-lobal cross-section, a hollow cross-section, or other known modified cross-sections.
  • the polyamide multifilament of the present invention preferably has an ash content CV value of 0.5 or less measured at arbitrary 10 points in the longitudinal direction of the fiber.
  • the ash content here is a value measured according to JIS L1013 (2010) ash content, and the CV value is an index of variation.
  • the CV value was determined by calculating the average value and standard deviation of the ash content of fiber samples sampled at arbitrary 10 points in the longitudinal direction of the fiber.
  • CV value (%) (standard deviation) / (average value) x 100
  • the polyamide having an aliphatic hydrocarbon chain of C7 or more used in the present invention has a The dispersibility of inorganic particles is inferior.
  • a polyamide having an aliphatic carbon difference of C7 or more has a low amide bond density, resulting in low polarity as a polymer, and a large interfacial tension difference with highly polar inorganic particles, resulting in aggregation of inorganic particles.
  • the unevenness of the fiber surface tends to be uneven due to the deterioration of the dispersibility of the inorganic particles in the polyamide polymer and the generation of coarse particles due to aggregation. Therefore, as a method for adding inorganic particles, good dispersibility can be maintained. A method is desired.
  • the method of adding the inorganic particles to the polyamide may be melt-kneading when adding at the time of polymerization for chip production.
  • a method for adding inorganic particles for improving the dispersibility of the inorganic particles it is preferable to appropriately utilize, for example, the following methods.
  • inorganic particles, a dispersant, an appropriate amount of a terminal group modifier, a weathering agent, and an antioxidant are added to the aqueous solution of the polyamide raw material monomer described above, and the mixture is stirred. , mixing, dissolving and dispersing through circulation.
  • the inorganic particles are barium sulfate, titanium oxide, magnesium oxide, or aluminum oxide
  • polyacrylic acid it is preferable to use polyacrylic acid as the dispersant.
  • the content of the dispersant is appropriately adjusted according to the content of these inorganic particles, but when the polyacrylic acid content is 0.01 to 0.15% relative to the inorganic particles, good dispersibility can be obtained. and more preferred.
  • melt kneading In the case of melt-kneading, a method of kneading the polyamide chips having aliphatic hydrocarbon chains of C7 or more and the inorganic particles used in the present invention in a molten state with an extruder or the like is preferable. Also in this case, a dispersant may be used in the same manner as described above.
  • melt-kneading method examples include a method of blending and melting inorganic particles into chips, a method of blending and melting master chips containing inorganic particles at a high concentration with chips, and a method of adding inorganic particles to a polymer in a molten state and melt-kneading. There is a method to do it, and you may use any method.
  • the particle concentration of the master chip is preferably 20% by mass or less in order to prevent deterioration of concentration uniformity due to agglomeration of inorganic particles.
  • the filtration filter is a non-woven fabric made of SAS, preferably with a pore size of less than 50 microns.
  • a steam injection device in which steam is injected toward the spinneret surface provided directly below the spinneret, and is provided downstream of the steam injection device and cooled
  • the yarn is passed through a region where cooling air is blowing from the device to cool and solidify to room temperature, then oil is supplied by a lubricating device to bundle the yarn, entangled by a fluid entangling nozzle device, and a take-up roller and a drawing roller are applied. let it pass. At that time, the yarn is drawn according to the ratio of the peripheral speeds of the take-up roller and the drawing roller. Further, the yarn is thermally set by heating the drawing roller and wound up by a winder (winding device).
  • the yarn In the case of a drawn yarn, it is preferable to make the yarn with a high draft ratio and a low drawing ratio in order to suppress the occurrence of fluff slack. It is preferable that the draft ratio is 100 to 300 and the draw ratio is 1.1 to 2.0 times.
  • a high draft ratio stabilizes the fiber structure before drawing, and stabilizes the drawing point during drawing, which contributes to the suppression of fluff sagging.
  • the polyamide multifilament of the present invention is not limited to the production method described above, but may be a highly oriented undrawn yarn that is not drawn between the take-up roller and the drawing roller, or a two-step process of obtaining an undrawn yarn and then drawing. may be manufactured in
  • the polyamide multifilament of the present invention When the polyamide multifilament of the present invention is made into a highly oriented undrawn yarn, it can be processed by a commonly used method. Yarn processing can be appropriately selected from friction false twist processing, pin false twist processing, composite false twist processing, and the like.
  • the present invention also relates to a fabric comprising in part the polyamide multifilaments described above.
  • the polyamide multifilament of the present invention can be woven into fabrics by commonly used methods.
  • general woven fabrics such as plain weave, twill weave, satin weave, leno weave such as gauze and silk, dobby weave, and jacquard weave can be appropriately selected.
  • the polyamide multifilament of the present invention is used as it is for woven or knitted fabrics. Furthermore, the dyeing after making the fabric, the subsequent post-processing, and the final setting conditions may be carried out according to known methods, and the use of acid dyes and reactive dyes as the dye, and of course, the color is not limited.
  • the polyamide multifilament of the present invention is preferably used for outdoor jackets and down jackets, but it can also be used for shirts, pants, etc. by appropriately selecting the fabric structure.
  • a fiber sample is set on a measuring instrument with a fineness of 1.125 m/round, rotated 500 times to prepare a loop-shaped skein, dried with a hot air dryer (105 ⁇ 2 ° C., 60 minutes), and then weighed on a balance.
  • the fineness (dtex) was calculated from the value obtained by weighing and multiplying the official moisture content.
  • Sulfuric acid relative viscosity Dissolve 0.25 g of polyamide chip sample or fiber sample in 100 ml of sulfuric acid having a concentration of 98% by mass so as to be 1 g, and measure the flowing time (T1) at 25 ° C. using an Ostwald type viscometer. bottom. Subsequently, the flow-down time (T2) of sulfuric acid having a concentration of 98% by mass was measured. The ratio of T1 to T2, ie, T1/T2, was defined as the sulfuric acid relative viscosity.
  • Inorganic particle content (ash content)
  • the fiber sample was measured according to JIS L1013 (2010) ash content.
  • the crucible was baked in an electric furnace at 800° C. for 2 hours, cooled for 1 hour, and weighed (A1).
  • a fiber sample dried to a moisture content of less than 300 ppm was weighed into this crucible (S) and heated and spread by an electric furnace and a gas burner.
  • the crucible was heated in an electric furnace at 800° C. for 2 hours, cooled for 1 hour, and weighed accurately. Heating and spreading fire in an electric furnace and a gas burner, heating in an electric furnace, and fine weighing after cooling were repeated until the same value as the previous fine weighing result was obtained.
  • the content of inorganic particles was determined by the following formula.
  • Inorganic particle content (% by mass) (A2-A1)/S x 100.
  • Biobased Carbon Concentration Fiber samples were analyzed for biobased carbon concentration (%) by radiocarbon analysis according to ASTM D6866 method (20-B).
  • the dynamic viscoelasticity of the fiber sample was evaluated when the temperature was swept from 35° C. to 100° C. using an automatic dynamic viscoelasticity measuring device DDV-GP (Leovibron) manufactured by AND.
  • the viscoelastic behavior was analyzed at two levels of 50°C and 80°C, considering the temperature of the yarn when passing through a mechanical contact portion such as a guide. Since the elastic behavior is dominant in this temperature range, the storage modulus is indicated.
  • G. Coefficient of dynamic friction between thread and metal As shown in FIG. Using a yarn friction coefficient measuring device, the traveling yarn path of the yarn to be measured was set as shown in FIG. A metal cylinder with a diameter of 15 mm and a length of 100 mm is fixed to the tension roller 11, the surface of which is mirror-finished with metal chromium plating, and the measurement thread is brought into contact with the tension roller 11 (metal friction body d) at 90°, and the thread travels. The speed was set to 2.5 m/min, and the yarn tension (T1) before contacting the tension roller 11 (metal friction body d) was set to 10 cN, and the yarn was run for 60 seconds.
  • Example 1 Manufacture of Polyamide Multifilament
  • Polyamide 610 having an aliphatic hydrocarbon chain with a carbon number of C8 between amide bonds (relative viscosity of sulfuric acid 2.7, melting point: 225°C, melt viscosity at 280°C 700 poise, specific gravity 1.07 g/cm 3 , melt density 0.07) 92 g/cm 3 ) was used to produce a master chip of polyamide 610 containing 20% by weight of titanium oxide.
  • Polyamide 610 chips were obtained by adding 1.5% by mass of the master chips so that the content of titanium oxide in the yarn was 0.3% by mass. The moisture content of the chips was adjusted to 0.14% by mass, put into the spinning machine shown in FIG.
  • Spinning was carried out at a discharge rate of 39.6 g/min (discharge linear velocity of 19.8 m/min) from a spinneret 1 having 96 round holes with a hole diameter of 0.20 mm and a hole length of 0.70 mm.
  • the spun yarn is cooled and solidified by blowing cold air with the cooling device 2, lubricated with the lubricating device 3, then entangled with the fluid entangling nozzle device 4, and the peripheral speed of the take-up roller 5 (take-up speed) is 3460 m / min. (set value, draft ratio 175.1).
  • the yarn taken by the take-up roller 5 is taken by the drawing roller 6 having a surface temperature of 170° C., and is drawn at a draw ratio of 1.30 between the rollers (between the rollers 5 and 6). It was wound by a winder 7 with a take-up speed of 4500 m/min (set value) to obtain four polyamide 610 multifilaments of 22 dtex-24 filaments. The obtained polyamide multifilament was evaluated for fineness, strength and elongation, and the number of fluff slacks per 10,000 m. Table 1 shows the results. The CV value of ash content variation in the longitudinal direction of the fiber was 0.1.
  • the ability to pass through the fabric manufacturing process was extremely good.
  • the air permeability characteristics were also excellent, and the product quality was also excellent.
  • Example 2 Polyamide 610 multifilament of 22 dtex-24 filaments was obtained in the same manner as in Example 1 except that the inorganic particles to be added were barium sulfate and the content in the yarn was changed to 0.5% by mass, A woven fabric was produced in the same manner as in Example 1. Table 1 shows the evaluation results.
  • Example 3 Polyamide 610 multifilament of 22 dtex-24 filaments was obtained in the same manner as in Example 1 except that the inorganic particles to be added were magnesium oxide and the content in the yarn was changed to 0.04% by mass, A woven fabric was produced in the same manner as in Example 1. Table 1 shows the evaluation results.
  • Example 4 and 5 A 22 dtex-24 filament polyamide 610 multifilament was obtained in the same manner as in Example 1 except that the content of titanium oxide was changed as shown in Table 1, and a fabric was produced in the same manner as in Example 1. bottom. Table 1 shows the evaluation results.
  • Example 6 Example 1 except that a spinneret having 144 round holes with a discharge hole diameter of 0.20 mm and a hole length of 0.70 mm was used, no drawing was performed (drawing ratio: 1.0 times), and the winding speed was changed to 3500 m/min. Polyamide 610 multifilaments of 44 dtex-72 filaments were obtained as highly oriented undrawn yarns in the same manner as above.
  • Example 7 Example 1 except that a spinneret having 60 round holes with a discharge hole diameter of 0.20 mm and a hole length of 0.70 mm was used, no drawing was performed (drawing ratio: 1.0 times), and the winding speed was changed to 4000 m/min.
  • Polyamide 610 multifilaments of 26 dtex-20 filaments were obtained as highly oriented undrawn yarns in the same manner as above.
  • Yarn processing was performed in the same manner as in Example 6 to obtain a polyamide 610 false twisted yarn of 22 dtex-20 filaments.
  • a woven fabric was produced in the same manner as in Example 1 using the obtained false twisted yarn. Table 1 shows the results.
  • Example 3 The same method as in Example 1 except that a spinneret having 28 round holes with a discharge hole diameter of 0.30 mm and a hole length of 0.75 mm was used, the draw ratio was changed to 1.5 times, and the winding speed was changed to 4500 m/min. A polyamide 610 multifilament of 22 dtex-7 filaments was obtained, and a woven fabric was produced in the same manner as in Example 1. Table 1 shows the evaluation results.
  • Example 8 Polyamide 510 having an aliphatic hydrocarbon chain with a carbon number of C8 between amide bonds (relative viscosity of sulfuric acid 2.8, melting point: 225°C, melt viscosity at 280°C 800 poise, specific gravity 1.07 g/cm 3 , melt density 0.05) 92 g/cm 3 ), and a polyamide 510 multifilament of 22 dtex-24 filaments was obtained in the same manner as in Example 1 except that the draw ratio was changed to 1.4 times, and the same method as in Example 1 was performed. A woven fabric was made with Table 2 shows the evaluation results.
  • Example 4 A 22 dtex-24 filament polyamide 510 multifilament was obtained in the same manner as in Example 8 except that the content of titanium oxide was changed as shown in Table 2, and a fabric was produced in the same manner as in Example 1. bottom. Table 2 shows the evaluation results.
  • Example 9 Polyamide 410 having an aliphatic hydrocarbon chain of C8 carbon atoms between amide bonds (relative viscosity of sulfuric acid 2.8, melting point: 250° C., melt viscosity at 280° C. 1100 poise, specific gravity 1.09 g/cm 3 , melt density 0.00) 94 g/cm 3 ), and a polyamide 410 multifilament of 22 dtex-24 filaments was obtained in the same manner as in Example 1, except that the draw ratio was changed to 1.3 times.
  • a woven fabric was made with Table 2 shows the evaluation results.
  • Example 10 Polyamide 11 having an aliphatic hydrocarbon chain with a carbon number of C10 between amide bonds (sulfuric acid relative viscosity 2.0, melting point: 187° C., melt viscosity at 235° C. 1000 poise, specific gravity 1.03 g/cm 3 , melt density 0.00) 89 g/cm 3 ), the melting temperature was changed to 235° C., and the draw ratio was changed to 1.5 times, in the same manner as in Example 1 to obtain polyamide 11 multifilaments of 22 dtex-24 filaments, A woven fabric was produced in the same manner as in Example 1. Table 2 shows the evaluation results.
  • Example 8 A 22dtex-24 filament polyamide 11 multifilament was obtained in the same manner as in Example 10 except that the content of titanium oxide was changed as shown in Table 2, and a fabric was produced in the same manner as in Example 1. bottom. Table 2 shows the evaluation results.
  • polyamide multifilament of the present invention it is possible to provide a fabric suitable for outdoor jackets, etc., which suppresses the occurrence of fluff sagging, has excellent high-order process passability, low breathability, and excellent product quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

単糸繊度が2.2dtex以下、10000m当たりの毛羽タルミ個数が1個以下、糸-金属間の動摩擦係数が0.8μd以下のアミド結合間に炭素数C7以上の脂肪族炭化水素鎖を有するポリアミドマルチフィラメント。

Description

ポリアミドマルチフィラメントおよび織物
 本発明は、アミド結合間に炭素数C7以上の脂肪族炭化水素鎖を有するポリアミドマルチフィラメントに関するものである。本発明のポリアミドマルチフィラメントを織物に用いると、低通気性、品位、高次工程通過性に優れた織物を提供することができる。
 合成繊維であるポリアミド繊維は、その独特の柔らかさ、高強度、染色時の発色性、耐熱性、吸湿性等において優れた特性を有することから、インナーウェア、アウトドアジャケットなど衣料用途で幅広く使用されている。
 近年では、持続可能な社会作りへの意識の高まりから、脱石油原料の活動が活発化してきており、ポリアミド繊維においても非石油原料化を求められている。非石油原料を用いたポリアミド樹脂としては、トウゴマを出発原料として用いたポリアミド410、ポリアミド510、ポリアミド610、ポリアミド612、ポリアミド1010、ポリアミド11などが知られており、いずれも長鎖炭素鎖をモノマーユニットに有する構造である。
 他方、脱石油原料の活動を牽引するアウトドアアパレルの中心商品であるアウトドアジャケットやダウンジャケット用途においては、防風、ダウン抜け防止の観点から、織物の通気度を低減するため、繊維を細繊度化し、マルチフィラメント化することを求められている。
 長鎖炭素鎖をモノマーユニットに有するポリアミドの製糸技術として、例えば特許文献1では、製糸する際のポリマー水分率を適正化することで粘度調整を可能にし、延伸時の毛羽品位が良好なポリアミド610マルチフィラメントを提供している。
国際公開第2019/163971号
 しかしながら、特許文献1に記載の方法は、漁網を始めとする産業用途を対象としており、単糸繊度が4.8dtex以上と衣料用途対比で太繊度の繊維を対象とするものである。衣料用途で主に展開されている単糸細繊度品では、依然として毛羽が発生する課題が残されていた。また、高次加工の工程通過性も劣り、織物にした際にはスジ等の製品品位に劣る課題があった。
 本発明は上記課題を解決するものであり、高次加工の工程通過性に優れ、低通気性、製品品位に優れた織物を提供できるポリアミドマルチフィラメントである。
 上記課題を解決するため、本発明は以下の構成である。
(1)単糸繊度が2.2dtex以下、10000m当たりの毛羽タルミ個数が1個以下、糸-金属間の動摩擦係数が0.8μd以下である、アミド結合間に炭素数C7以上の脂肪族炭化水素鎖を有するポリアミドマルチフィラメント。
(2)無機粒子を0.01~5.0質量%含有する上記(1)記載のポリアミドマルチフィラメント。
(3)(1)または(2)に記載のポリアミドマルチフィラメントを一部に含む織物。
 本発明のポリアミドマルチフィラメントにより、毛羽やタルミ(羽毛タルミ)の発生を抑制した、高次工程通過性に優れ、低通気性、製品品位に優れたアウトドアジャケット等に好適な織物を提供することができる。
図1は、本発明のポリアミドマルチフィラメントの製造方法に用いることのできる製造装置の一実施態様を示す。 図2は、糸の動摩擦係数を測定することのできる測定装置の好ましい実施態様を示す。
〔ポリアミドマルチフィラメント〕
 本発明のポリアミドマルチフィラメントは、単糸繊度が2.2dtex以下、10000m当たりの毛羽タルミ個数が1個以下、糸-金属間の動摩擦係数が0.8μd以下である、アミド結合間に炭素数C7以上の脂肪族炭化水素鎖を有するポリアミドマルチフィラメントである。
(ポリアミド)
 本発明のポリアミドマルチフィラメントを構成するポリアミドは、アミド結合間に炭素数(以下、Cと略記)7以上の脂肪族炭化水素鎖を有するポリアミドである。
 アミド結合間に含む炭素数(すなわち、メチレン基の数)が、アミノカルボン酸、環状アミドを原料として重縮合反応によって製造されたポリアミドではC9以上、ジカルボン酸およびジアミンを原料として重縮合反応にて製造されたポリアミドではC7以上である。炭素数の上限は、アミノカルボン酸、環状アミドを原料として重縮合反応によって製造されたポリアミド、ジカルボン酸およびジアミンを原料として重縮合反応にて製造されたポリアミド、ともにC12程度が好ましい。
 アミド結合間にC7以上の脂肪族炭化水素鎖を有するポリアミドとして、環状アミドを原料としたポリアミドではポリアミド11、ジカルボン酸およびジアミンを原料としたポリアミドではポリアミド410、ポリアミド510、ポリアミド610、ポリアミド612、ポリアミド1010などがある。
 以下、これらのポリアミドを構成する原料の最小ユニットを包括してモノマーという。モノマーとしては、石油由来モノマー、バイオマス由来モノマー、石油由来モノマーとバイオマス由来モノマーの混合物など挙げられる。
 前述するように、石油資源の枯渇や地球温暖化が問題視され、世界的な規模で環境問題に対する取り組みが行われている中で、石油資源に依存しない環境に配慮した原料を用いた製品の開発が求められている。この観点から、バイオマス由来のモノマーを原料に含んでいることが好ましく、モノマーの50質量%以上がバイオマス利用で得られたモノマーであることがより好ましい。このバイオマス由来のモノマー単位は、好ましくは50質量%以上であり、より好ましくは100質量%である。
 なお、バイオマス由来原料の実証方法としては、ASTM D6866法(20-B)に基づいた放射性炭素分析にてバイオベース炭素濃度を評価する方法が挙げられる。バイオベース炭素濃度が50%以上であることが好ましく、より好ましくは100%である。
 前述のとおり、脱石油原料の活動を牽引するアウトドアアパレルの中心商品であるアウトドアジャケットやダウンジャケット用途では、防風、ダウン抜け防止の観点から、織物の低通気性が要求され、ポリアミドマルチフィラメントの単糸細繊度化、ハイマルチフィラメント化が進んでいる。
(単糸繊度)
 本発明のポリアミドマルチフィラメントは、単糸繊度が2.2dtex以下であることがアウトドアジャケットやダウンジャケット用織物の低通気性を実現するために重要である。好ましくは1.3dtex以下である。2.2dtexより太い場合、織物の通気度が高く、アウトドアジャケット用途、ダウンジャケット用途に要求される数値としては劣る。一方、単糸細繊度化に伴い、単糸強力が低下するため、毛羽やタルミが発生しやすくなる。毛羽やタルミは、製織工程で筬などに引っかかって糸切れが増加したり、張力変動によりスジやムラといった欠点を誘発したりするおそれがある。単糸繊度は0.2dtex以上が好ましい。
(毛羽タルミ)
 本発明のポリアミドマルチフィラメントは、レーザー式毛羽検知器で測定される10000m当たりの毛羽タルミ個数が1個以下である。かかる範囲とすることで、高次工程通過性、製品品位に優れる。毛羽タルミ個数が1個/10000mより多いと高次工程通過性、製品品位が劣位となる。
(貯蔵弾性率、動摩擦係数)
 とりわけ、本発明で用いるC7以上の脂肪族炭化水素鎖を有するポリアミドは、衣料用に用いる汎用ポリアミドであるポリアミド6やポリアミド66(C6の脂肪族炭化水素鎖を有するポリアミド)と比較しても毛羽タルミが発生しやすく、その発生のメカニズムは解明されていなかった。
 本発明者らは、その毛羽タルミの発生メカニズムについて、鋭意検討した。C7以上の脂肪族炭化水素鎖を有するポリアミドは、繊維製造時の温度領域(常温~80℃)において、C6以下の脂肪族炭化水素鎖を有するポリアミドと比較して貯蔵弾性率が低い性質を有し、走行するマルチフィラメントと糸道ガイドとの動摩擦係数が高くなっていることを解明した。
 すなわち、アミド結合間にC7以上の脂肪族炭化水素鎖を有することで、同質量当たりのアミド結合数が低下して分子間水素結合力が低下する。そしてポリアミドの結晶化が起こり難くなり、貯蔵弾性率が低くなって変形しやすい性質を持つポリアミドとなる。これより、C7以上の脂肪族炭化水素鎖を有するポリアミドマルチフィラメントは、糸道ガイドとの接触や屈曲で生じる外力によって変形しやすく、ガイドとの接触面積が増大して動摩擦係数が高くなり、毛羽タルミが発生しやすいのである。
 C7以上の脂肪族炭化水素鎖を有するポリアミドマルチフィラメントは、繊維製造時にマルチフィラメントと糸道ガイドの摩擦による影響を受けやすく、毛羽タルミが発生しやすくなる。また、繊維製造時だけでなく、高次加工工程においても同様に、マルチフィラメントと糸道ガイドの摩擦によるダメージを受ける。その傾向は単糸繊度が細いマルチフィラメント程顕著である。
 なお、ここでいう貯蔵弾性率は、動的粘弾性自動測定器(レオバイブロン)で測定することで得られ、マルチフィラメントが糸道ガイドを通過する時の糸温度を考慮し、50℃と80℃の2水準で評価する。
 本発明のポリアミドマルチフィラメントは、糸-金属間の動摩擦係数が0.8μd以下である。ここでいう動摩擦係数は、走行糸摩擦係数測定装置で測定することで得られ、糸道ガイドの材質として金属クロムメッキで鏡面加工を施した金属擦過体を用い、該金属擦過体とマルチフィラメント間の動摩擦係数を評価する。具体的な測定方法は実施例で後述する。
 糸-金属間の動摩擦係数0.8μd以下とすることにより、マルチフィラメントと糸道ガイドの摩擦によるダメージが軽減され、高次工程通過性、製品品位に優れる。糸-金属間の動摩擦係数が0.8μdより高いと、製織の際にマルチフィラメントと糸道ガイドの摩擦による変形ダメージを受け、糸切れや毛羽を誘発し、高次工程通過性、製品品位が劣位となる。好ましい糸-金属間の動摩擦係数は0.7μd以下である。
 本発明のポリアミドマルチフィラメントの動摩擦係数をかかる範囲とするためには、色々なアプローチがあるが、繊維表面に微細凹凸を形成させることが好ましい。繊維表面の微細凹凸によって、糸道ガイドとの接触面積を低減させ、動摩擦係数をコントロールすることができる。
(無機粒子)
 繊維表面に微細凹凸を形成させるには、繊維製造の際に無機粒子を添加することで可能となる。無機粒子を選択する際には、繊維製造時に悪影響を及ぼさず、繊維物性を保ち、ポリマーに着色等を発生させない無機粒子であれば特に限定されるものではない。無機粒子を例示すると、硫酸バリウム、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化カルシウム、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ジリコニウム、珪酸アルミニウム、炭化ジリコニウム等が挙げられる。これら無機粒子の中でも、繊維物性、発色性、粒子の取り扱いの容易性、高次加工性を勘案すると、硫酸バリウム、酸化チタン、酸化マグネシウム、酸化アルミニウムが好ましい。
 無機粒子の含有量は、動摩擦係数がかかる範囲となるように適宜調整すればよいが、多いと製糸性や繊維物性である引張強度が低下することから、好ましくは0.01~5.0質量%である。0.01質量%以上含有することで、繊維表面に微細凹凸部を形成し、糸-金属間の動摩擦係数を低減して毛羽タルミの発生を低減でき、高次工程通過性、製品品位に優れる。また、5.0質量%以下とすることで、繊維の配向・結晶化を阻害せず、耐久性を維持し、単糸毛羽を低減することが出来るため、高次工程通過性、製品品位に優れる。さらに好ましくは0.02~4.0質量%である。
(繊度)
 本発明のポリアミドマルチフィラメントは、衣料用途で使用されることを想定するため、総繊度は156dtex以下であることが好ましくより好ましくは78dtex以下である。
(強度)
 本発明のポリアミドマルチフィラメントは、衣料用途で使用されることを想定するため、強度は3.0cN/dtex以上であることが好ましい。かかる範囲とすることにより、衣料の耐久性が実使用に耐えるレベルとなる。
(伸度)
 本発明のポリアミドマルチフィラメントは、衣料用途で使用されることを想定するため、伸度は30~70%であることが好ましい。かかる範囲とすることにより、高次加工での通過性、品位にも優れた衣料を提供することが可能となる。高配向未延伸糸と比較して延伸糸は伸度が低く、毛羽タルミは発生しやすい傾向である。動摩擦係数を0.8μd以下に制御したときの延伸糸、すなわち伸度30~50%の場合、毛羽タルミの発生抑制効果がより発現する。
(硫酸相対粘度)
 本発明のポリアミドマルチフィラメントは、衣料用途で使用されることを想定するため、ポリアミドの硫酸相対粘度は1.7~3.5であることが好ましい。かかる範囲とすることにより、上述する強度、伸度とするポリアミドマルチフィラメントを得ることが可能となり、衣料の耐久性が実使用に耐えるレベルとなり、また高次加工での通過性、品位にも優れた衣料を提供することが可能となる。
(繊維断面形状)
 本発明のポリアミドマルチフィラメントの単糸の繊維断面形状は、特に限定されるものではなく、例えば、丸断面、偏平断面、レンズ型断面、マルチローバル断面、中空断面その他公知の異形断面でもよい。
(無機粒子の長手灰分量バラツキ)
 本発明のポリアミドマルチフィラメントは、繊維長手方向に任意の10点で測定した灰分量のCV値が0.5以下であることが好ましい。ここでいう灰分は、JIS L1013(2010)灰分に準じ測定した値であり、CV値はバラツキの指標である。繊維長手方向に任意の10点でサンプリングした繊維試料の灰分量の平均値と標準偏差を算出し、CV値を求めた。
 CV値(%)=(標準偏差)/(平均値)×100
 かかる範囲とすることで、均一に無機粒子が繊維表面に微細凹凸を形成し、動摩擦係数および毛羽の個数をかかる範囲とすることに有効である。
 とりわけ、本発明で用いるC7以上の脂肪族炭化水素鎖を有するポリアミドは、衣料用に用いる汎用ポリアミドであるポリアミド6やポリアミド66(C6の脂肪族炭化水素鎖を有するポリアミド)と比較しても、無機粒子の分散性は劣位である。これはC7以上の脂肪族炭素差を有するポリアミドは、アミド結合の密度が低くなることで、ポリマーとして低極性となり、高極性な無機粒子との界面張力差が大きくなることで、無機粒子の凝集が悪化するためである。このように、ポリアミドポリマー中の無機粒子の分散性の低下および凝集による粗大物の発生により、繊維表面凹凸が不均一になりやすいため、無機粒子の添加方法としては、良好な分散性を維持できる方法が望まれる。
〔ポリアミドマルチフィラメントの製造方法〕
 本発明のポリアミドマルチフィラメントを製造する一例を挙げる。
<無機粒子添加>
 無機粒子をポリアミドに添加する方法は、チップ製造の重合時に添加する場合、溶融混練する場合がある。無機粒子の分散性向上のための無機粒子添加方法は、例えば、以下の方法を適宜活用することが好ましい。
(重合時添加)
 重合時に添加する方法としては、ポリマー原料調製液の調製において、前述したポリアミド原料モノマーの水溶液に対し、無機粒子、分散剤、適量の末端基調整剤、耐候剤、酸化防止剤を添加し、攪拌、循環を通して混合・溶解・分散を行う。分散性を良好にするために、分散剤と酸末端基調整剤を予め混合せしめた後に、無機粒子を添加する方法が望ましい。これによれば、分散剤と無機粒子の表面を被覆している成分との相互作用により、無機粒子の凝集及びポリマー中の粗大粒子の生成を抑制できる。
・分散剤
 無機粒子が硫酸バリウム、酸化チタン、酸化マグネシウム、酸化アルミニウムの場合、分散剤として、ポリアクリル酸を用いること好ましい。これら無機粒子の含有率に合わせて分散剤の含有率は適宜調整を行うが、ポリアクリル酸含有率が無機粒子に対して0.01~0.15%である場合、良好な分散性が得られ、さらに好ましい。
(溶融混練)
 溶融混練の場合、エクストルーダーなどで本発明で用いるC7以上の脂肪族炭化水素鎖を有するポリアミドチップと無機粒子を溶融状態で混練する方法が好ましい。また、この場合においても、上記同様分散剤を使用してもよい。
・溶融粘度
 溶融混練により添加する場合は、ポリアミドの溶融温度での溶融粘度を3500poise以下とすることが好ましい。溶融粘度を3500poise以下とすることで、無機粒子添加後混練を強化しても無機粒子の分散が良好で、無機粒子の凝集及びポリマー中の粗大粒子の生成を抑制できる。なお、1poise=0.1Pa・sである。
 溶融混練方法を例示すると、チップへ無機粒子をブレンドし溶融する方法、高濃度の無機粒子を含有するマスターチップとチップをブレンドして溶融する方法、溶融状態のポリマーへ無機粒子を添加し溶融混練する方法があり、いずれの方法を用いてもよい。
 マスターチップブレンド法の場合、無機粒子の凝集により濃度均一性が低下することを防ぐため、マスターチップの粒子濃度は20質量%以下とすることが好ましい。
・溶融濾過
 溶融混練後、凝集した無機粒子を分散させるのがよい。そこで溶融押出の際に、濾過フィルターを通して濾過を実施することが好ましい。濾過フィルターはSAS製の不織布で、孔径50ミクロンメートル未満のフィルターが好ましい。
<製糸>
 無機粒子添加について、重合時添加の場合は、従来の方法でポリマーを溶融し、また溶融混練の場合は上述する溶融粘度、混練方法、溶融濾過を適用し、溶融したポリアミドポリマー濾過した後、ギヤポンプにて軽量・輸送し、紡糸口金から吐出させ、紡糸口金の直下に設けられた紡糸口金面に向けて蒸気が噴射されている蒸気噴出装置と、蒸気噴射装置の下流側に設けられ、かつ冷却装置から冷却風が吹き流れている領域を通過させて糸条を室温まで冷却固化し、次いで給油装置で給油して糸条を集束し、流体交絡ノズル装置で交絡し、引き取りローラー、延伸ローラーを通過させる。その際、糸条を引き取りローラーと延伸ローラーの周速度の比に従って延伸する。さらに、糸条を延伸ローラーの加熱により熱セットし、ワインダー(巻取装置)で巻き取る。
 延伸糸とした場合、高ドラフト比・低倍率延伸で製糸をすることが、毛羽タルミ発生を抑制するために好ましい。ドラフト比は100~300、延伸倍率1.1~2.0倍とすることが好ましい。高ドラフト比とすることで延伸前までに繊維構造が安定し、延伸時の延伸点が安定することで毛羽タルミ発生の抑制に貢献する。ドラフト比とは引取ローラーの周速度を、口金からの吐出線速度で除した数値であり、以下の数式で算出される。
ドラフト比=(引取ローラーの周速度)/(吐出線速度)
 本発明のポリアミドマルチフィラメントは、上述した製造方法のみによらず、引き取りローラーと延伸ローラー間で延伸をしない高配向未延伸糸としてもよく、また、未延伸糸を得てから延伸する二段階工程で製造してもよい。
 本発明のポリアミドマルチフィラメントは、高配向未延伸糸とした場合、一般的に用いられる方法で、糸加工することができる。糸加工としてはフリクション仮撚り加工、ピン仮撚り加工、複合仮撚り加工等、適宜選択することができる。
〔織物〕
 本発明は、上述のポリアミドマルチフィラメントを一部に含む織物にも関する。
 本発明のポリアミドマルチフィラメントは、一般的に用いられる方法で、製織し織物とすることができる。織物の製織としては、平織、綾織、朱子織や紗や絽といったからみ組織、ドビー組織、ジャガード組織など一般的な織物組織を適宜選択することができる。
 本発明のポリアミドマルチフィラメントは、そのまま織編物に使用される。さらに布帛とした後の染色やそれに続く後加工、ファイナルセット条件についても公知の方法にしたがい行えばよく、染料として酸性染料、反応染料を用いることやもちろん色なども限定されるものではない。
 本発明ポリアミドマルチフィラメントは、アウトドアジャケットやダウンジャケットに用いることが好ましいが、布帛組織を適宜選択することにより、シャツ、パンツ等にも使用できる。
 以下、実施例により本発明をさらに詳細に説明する。
 A.強度、伸度
 JIS L1013(2010)引張強さ及び伸び率に準じて繊維試料を測定した。試験条件としては、試験機の種類は定速緊張形、つかみ間隔50cm、引張速度50cm/分にて行った。なお、切断時の強さが最高強さより小さい場合は、最高強さおよびそのときの伸び率を測定した。
 強度、及び伸度は、下記式にて求めた。
 強度=切断時の強さ(cN)/繊度(dtex)
 伸度=切断時の伸び率(%)
 B.繊度
 1.125m/周の検尺器に繊維試料をセットし、500回転させて、ループ状かせを作製し、熱風乾燥機にて乾燥後(105±2℃、60分)、天秤にてかせ質量を量り、公定水分率を乗じた値から繊度(dtex)を算出した。
 C.硫酸相対粘度
 ポリアミドチップ試料又は繊維試料0.25gを、濃度98質量%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98質量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
 D.無機粒子の含有量(灰分量)
 JIS L1013(2010)灰分に準じて繊維試料を測定した。
 ルツボを800℃とした電気炉中で2時間空焼きし、1時間冷却後精秤(A1)した。このルツボに水分量300ppm未満に乾燥した繊維試料を量りとり(S)、電気炉およびガスバーナーで加熱延焼した。次いで、該ルツボを800℃とした電気炉中で2時間加熱し、1時間冷却後精秤した。電気炉およびガスバーナーでの加熱延焼、電気炉での加熱、冷却後の精秤を繰り返し、前の精秤結果と同じ値になるまで繰り返した。こうして得られた精秤結果を(A2)として、無機粒子含有量を下式で求めた。
無機粒子含有量(質量%)=(A2-A1)/S×100 。
 E.バイオベース炭素濃度
 繊維試料を、ASTM D6866法(20-B)に準じて、放射性炭素分析によりバイオベース炭素濃度(%)を分析した。
 F.貯蔵弾性率
 繊維試料を、AND社製動的粘弾性自動測定器 DDV-GP(レオバイブロン)を用い、35℃から100℃まで温度掃引した際の、動的粘弾性を評価した。ガイド等の機械接触部との通過時の糸温度を考慮し、50℃と80℃の2水準における粘弾性挙動について分析した。該温度領域では弾性挙動が支配的であるため、貯蔵弾性率を表示した。
 G.糸-金属間の動摩擦係数
 図2に示す、テンションカットリングガイド8、張力計測部9,10、テンションローラー11、駆動ユニット12、データ処理部、レコーダで構成された英光産業(株)製の走行糸摩擦係数測定装置を用い、測定糸の走行糸道を図2のごとく設定した。テンションローラー11に表面を金属クロムメッキで鏡面化した直径15mm、長さ100mmの固定した金属円筒を用いて、測定糸を該テンションローラー11(金属摩擦体d)に90°接触させ、糸の走行速度を2.5m/分とし、テンションローラー11(金属摩擦体d)へ接触する前の糸条張力(T1)を10cNに設定して60秒間走行させた。その時のテンションローラー11(金属摩擦体d)へ接触する前の糸条張力(T1、張力計測部9)と接触後の糸条張力(T2、張力計測部10)を連続測定してレコーダに記録した。レコーダ記録のそれぞれの平均値を(T1)および(T2)として、下式を用いて糸-金属間の動摩擦係数(μd)を算出した。
動摩擦係数(μd)=1/(0.5×π)×log(T2/T1)
 H.毛羽タルミ個数
 繊維試料を600m/分の速度で40分巻き返し、巻き返し中の走行糸から15mm離れた箇所に東レエンジニアリング社製MFC-200レーザー式毛羽検知機を設置し、検知された欠点個数を10000mあたりの個数に換算した。
 I.織物製品の評価
 (a)通気度
 実施例・比較例で得られた織物について、通気度を評価した。通気度はJIS L1096(2010)、通気性フラジール法(A法)に準じて測定した。同織物に対して3回測定し、その平均値により、次の基準で4段階評価した。
A:0.7cc未満
B:0.7cc以上1.0cc未満、
C:1.0cc以上1.3cc未満、
D:1.3cc以上
 A、Bを合格とした。
 (b)製品品位
 織物50mあたりのムラやスジの発生状態を目視検査して、次の基準で評価した。
A:スジやムラがなく、優れた品位を有する。
B:わずかなスジやムラが発生しているが、製品として使用するには問題ない。
C:スジやムラが発生しており、製品として使用できない。
A、Bを合格とした。
 (c)高次工程通過性(表中では、高次通過性と略記する。)
 ウォータージェットルーム織機にて、織機回転数750rpm、緯糸長1620mmで平織物を10疋(1000m/疋)製織した際の糸切れによる停台回数を、次の基準で評価した。
A:2回未満
B:2回以上4回未満
C:4回以上6回未満
D:6回以上
 A、Bを合格とした。
 〔実施例1〕
 (ポリアミドマルチフィラメントの製造)
 アミド結合間に炭素数C8の脂肪族炭化水素鎖を有するポリアミド610(硫酸相対粘度2.7、融点:225℃、280℃での溶融粘度700poise、比重1.07g/cm、溶融密度0.92g/cm)を用いて、酸化チタン20質量%含有のポリアミド610のマスターチップを製造した。糸中の酸化チタン含有量が0.3質量%になるように、該マスターチップを1.5質量%添加したポリアミド610チップを得た。該チップの水分率を0.14質量%に調整して、図1に示す紡糸機に投入し、紡糸温度280℃にて溶融し、SAS製の不織布で、孔径10ミクロンフィルターで濾過し、吐出孔径0.20mm、孔長0.70mmの丸孔を96ホール有する紡糸口金1から吐出量39.6g/min(吐出線速度19.8m/min)で紡出させた。紡出糸条に冷却装置2で冷風を吹き付けて冷却固化し、給油装置3で給油した後、流体交絡ノズル装置4で交絡を付与し、引き取りローラー5の周速度(引取速度)を3460m/分(設定値、ドラフト比175.1)として引き取った。続いて、引き取りローラー5にて引き取った糸条を、表面温度170℃の延伸ローラー6で引き取ることにより、ローラー間(ローラー5とローラー6の間)で延伸倍率1.30倍に延伸し、巻取速度を4500m/分(設定値)としたワインダー7で巻き取り、22dtex-24フィラメントのポリアミド610マルチフィラメントを4本得た。得られたポリアミドマルチフィラメントについて、繊度、強伸度、10000m当たりの毛羽タルミ個数を評価した。結果を表1に示す。なお繊維長手方向の灰分量バラツキCV値は0.1であった。
 (織物の製造)
 得られたマルチフィラメント1000本に、整経を行いビームに巻き、ビームに巻き付けた糸を糊付け・乾燥して経糸準備を行った。続いて、ウオータージェット織機のオサに通し、得られたマルチフィラメントを緯糸に打ち込んで平織物を製織した。製織した織物を、精練、170℃で熱セット(中間セット)、染色、170℃でカレンダー加工することでアウトドアジャケット用織物を得た。得られた織物について評価した結果を表1に示す。
 織物製造の工程通過性は極めて良好であった。通気度特性も優れており、製品品位も優れていた。
Figure JPOXMLDOC01-appb-T000001
 〔実施例2〕
 添加する無機粒子を硫酸バリウムとし、糸中の含有量が0.5質量%になるように変更した以外は実施例1と同様の方法で、22dtex-24フィラメントのポリアミド610マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表1に示す。
 〔実施例3〕
 添加する無機粒子を酸化マグネシウムとし、糸中の含有量が0.04質量%になるように変更した以外は実施例1と同様の方法で、22dtex-24フィラメントのポリアミド610マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表1に示す。
 〔実施例4、5、比較例1、2〕
 酸化チタンの含有量を表1に記載のように変更した以外は実施例1と同様の方法で、22dtex-24フィラメントのポリアミド610マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表1に示す。
 〔実施例6〕
 吐出孔径0.20mm、孔長0.70mmの丸孔を144ホール有する紡糸口金を用い、延伸せず(延伸倍率1.0倍)、巻取速度を3500m/分に変更した以外は実施例1と同様の方法で、44dtex-72フィラメントのポリアミド610マルチフィラメントを高配向未延伸糸として得た。
 (糸加工)
 得られた高配向未延伸糸を3軸摩擦型フリクションディスクタイプの延伸摩擦仮撚装置にて延伸摩擦仮撚加工を行った。周速550m/分の供給ローラーから、170℃に加熱された接触型仮撚りヒーターに供給し、1.5倍に延伸、ディスク回転数7500rpm、ディスク径φ51、D/Y比2.18、仮撚り係数30000にて延伸同時仮撚り加工を行い、35dtex-72フィラメントのポリアミド610仮撚り加工糸を得た(D:供給ローラー速度(m/分)、Y:ディスク回転速度(m/分))。得られた仮撚り加工糸を用い、実施例1と同様の方法で織物を作製した。結果を表1に示す。
 〔実施例7〕
 吐出孔径0.20mm、孔長0.70mmの丸孔を60ホール有する紡糸口金を用い、延伸せず(延伸倍率1.0倍)、巻取速度を4000m/分に変更した以外は実施例1と同様の方法で、26dtex-20フィラメントのポリアミド610マルチフィラメントを高配向未延伸糸として得た。実施例6と同様の方法で糸加工を行い、22dtex-20フィラメントのポリアミド610仮撚り加工糸を得た。得られた仮撚り加工糸を用い、実施例1と同様の方法で織物を作製した。結果を表1に示す。
 〔比較例3〕
 吐出孔径0.30mm、孔長0.75mmの丸孔を28ホール有する紡糸口金を用い、延伸倍率を1.5倍、巻取速度を4500m/分に変更した以外は実施例1と同様の方法で、22dtex-7フィラメントのポリアミド610マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表1に示す。
 〔実施例8〕
 アミド結合間に炭素数C8の脂肪族炭化水素鎖を有するポリアミド510(硫酸相対粘度2.8、融点:225℃、280℃での溶融粘度800poise、比重1.07g/cm、溶融密度0.92g/cm)を用いて、延伸倍率を1.4倍に変更した以外は実施例1と同様の方法で、22dtex-24フィラメントのポリアミド510マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 〔比較例4、5〕
 酸化チタンの含有量を表2に記載のように変更した以外は実施例8と同様の方法で、22dtex-24フィラメントのポリアミド510マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表2に示す。
 〔実施例9〕
 アミド結合間に炭素数C8の脂肪族炭化水素鎖を有するポリアミド410(硫酸相対粘度2.8、融点:250℃、280℃での溶融粘度1100poise、比重1.09g/cm、溶融密度0.94g/cm)を用いて、延伸倍率を1.3倍に変更した以外は実施例1と同様の方法で、22dtex-24フィラメントのポリアミド410マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表2に示す。
 〔比較例6、7〕
 酸化チタンの含有量を表2に記載のように変更した以外は実施例9と同様の方法で、22dtex-24フィラメントのポリアミド410マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表2に示す。
 〔実施例10〕
 アミド結合間に炭素数C10の脂肪族炭化水素鎖を有するポリアミド11(硫酸相対粘度2.0、融点:187℃、235℃での溶融粘度1000poise、比重1.03g/cm、溶融密度0.89g/cm)を用いて、溶融温度を235℃、延伸倍率を1.5倍、に変更した以外は実施例1と同様の方法で、22dtex-24フィラメントのポリアミド11マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表2に示す。
 〔比較例8、9〕
 酸化チタンの含有量を表2に記載のように変更した以外は実施例10と同様の方法で、22dtex-24フィラメントのポリアミド11マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表2に示す。
 〔参考例11〕
 アミド結合間に炭素数C5の脂肪族炭化水素鎖を有するポリアミド6(硫酸相対粘度2.7、融点:220℃、280℃での溶融粘度1100poise、比重1.14g/cm、溶融密度0.98g/cm)を用いて、酸化チタンを含有せず、延伸倍率を1.7倍に変更した以外は実施例1と同様の方法で、22dtex-24フィラメントのポリアミド6マルチフィラメントを得て、実施例1と同様の方法で織物を作製した。評価結果を表2に示す。
 本発明のポリアミドマルチフィラメントにより、毛羽タルミ発生を抑制した、高次工程通過性に優れ、低通気性、製品品位に優れたアウトドアジャケット等に好適な織物を提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2022年1月13日出願の日本特許出願(特願2022-003499)に基づくものであり、その内容はここに参照として取り込まれる。
1:紡糸口金
2:冷却装置
3:給油装置
4:流体交絡ノズル装置
5:引き取りローラー
6:延伸ローラー
7:巻取装置(ワインダー)
8:テンションカットリングガイド
9:張力計測部
10:張力計測部
11:テンションローラー
12:駆動ユニット

Claims (3)

  1.  単糸繊度が2.2dtex以下、10000m当たりの毛羽タルミ個数が1個以下、糸-金属間の動摩擦係数が0.8μd以下である、アミド結合間に炭素数C7以上の脂肪族炭化水素鎖を有するポリアミドマルチフィラメント。
  2.  無機粒子を0.01~5.0質量%含有する請求項1に記載のポリアミドマルチフィラメント。
  3.  請求項1または請求項2に記載のポリアミドマルチフィラメントを一部に含む織物。
     
PCT/JP2023/000668 2022-01-13 2023-01-12 ポリアミドマルチフィラメントおよび織物 WO2023136307A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-003499 2022-01-13
JP2022003499 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023136307A1 true WO2023136307A1 (ja) 2023-07-20

Family

ID=87279213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000668 WO2023136307A1 (ja) 2022-01-13 2023-01-12 ポリアミドマルチフィラメントおよび織物

Country Status (2)

Country Link
TW (1) TW202340557A (ja)
WO (1) WO2023136307A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214920A (ja) * 2011-03-31 2012-11-08 Gunze Ltd 繊維、生地及び衣料
JP2013245423A (ja) * 2012-05-28 2013-12-09 Toyobo Specialties Trading Co Ltd 透明性に優れた織物、及びダウンジャケット
WO2014021013A1 (ja) * 2012-08-02 2014-02-06 東レ株式会社 扁平多葉形断面繊維を用いた織物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214920A (ja) * 2011-03-31 2012-11-08 Gunze Ltd 繊維、生地及び衣料
JP2013245423A (ja) * 2012-05-28 2013-12-09 Toyobo Specialties Trading Co Ltd 透明性に優れた織物、及びダウンジャケット
WO2014021013A1 (ja) * 2012-08-02 2014-02-06 東レ株式会社 扁平多葉形断面繊維を用いた織物

Also Published As

Publication number Publication date
TW202340557A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
RU2514757C2 (ru) Найлоновое штапельное волокно с высокой несущей способностью и изготовленные из него смешанные найлоновые пряжи и материалы
KR20130141484A (ko) 폴리아미드 극세 섬유 및 그 용융 방사 방법과 장치
JP3966043B2 (ja) 耐熱性に優れたポリ乳酸繊維の製造方法
EP3744876A1 (en) Polyamide multifilament and knitted lace manufactured using same
CN104562250B (zh) 一种多孔微细旦尼龙6三异纤维及其制备方法与应用
WO2023136307A1 (ja) ポリアミドマルチフィラメントおよび織物
KR102575877B1 (ko) 흡습성, 주름방지성이 우수한 심초 복합 단면섬유
US20120009418A1 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
JP6627572B2 (ja) ポリアミド繊維およびそれよりなる布帛
JP2014095167A (ja) ポリフェニレンサルファイドモノフィラメントおよび工業用織物
JP2020158906A (ja) 高強度ポリアミドモノフィラメント
JP5964437B2 (ja) ポリ(トリメチレンアリーレート)繊維、その作製方法、およびそれから作製された布地
US20140234623A1 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
US8753741B2 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
JP2018162531A (ja) カチオン可染性ポリエステル太細マルチフィラメント
KR100206201B1 (ko) 나일론46 섬유 및 그의 제조방법
JP7117710B2 (ja) 芯鞘型ポリエステル複合繊維、芯鞘型ポリエステル複合繊維の仮撚糸、織編物、および芯鞘型ポリエステル複合繊維の製造方法
JP2021095647A (ja) ポリヘキサメチレンアジパミド原着糸
US20110263171A1 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
JP2024051376A (ja) ポリアミドマルチフィラメントおよびポリアミド仮撚り加工糸
JP2022156186A (ja) 溶融紡糸装置および溶融紡糸方法
US8540912B2 (en) Process of making poly(trimethylene arylate) fibers
WO2024043287A1 (ja) 合成繊維
JPH0819565B2 (ja) ファインデニールポリエステル繊維の製造方法
JPS61108744A (ja) 耐熱性にすぐれたスパンミシン糸

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023503006

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740315

Country of ref document: EP

Kind code of ref document: A1