WO2023135888A1 - 分注器の吐出量測定方法 - Google Patents
分注器の吐出量測定方法 Download PDFInfo
- Publication number
- WO2023135888A1 WO2023135888A1 PCT/JP2022/039737 JP2022039737W WO2023135888A1 WO 2023135888 A1 WO2023135888 A1 WO 2023135888A1 JP 2022039737 W JP2022039737 W JP 2022039737W WO 2023135888 A1 WO2023135888 A1 WO 2023135888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- dye
- volatile liquid
- measurement
- amount
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 32
- 239000007788 liquid Substances 0.000 claims abstract description 180
- 238000005259 measurement Methods 0.000 claims abstract description 65
- 230000003287 optical effect Effects 0.000 claims abstract description 21
- 238000001035 drying Methods 0.000 claims abstract description 16
- 238000007599 discharging Methods 0.000 claims abstract description 6
- 238000011088 calibration curve Methods 0.000 claims description 37
- 238000011156 evaluation Methods 0.000 claims description 32
- 239000000049 pigment Substances 0.000 claims description 17
- 238000002360 preparation method Methods 0.000 claims description 12
- 238000002835 absorbance Methods 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 238000011481 absorbance measurement Methods 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- UJMBCXLDXJUMFB-GLCFPVLVSA-K tartrazine Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-GLCFPVLVSA-K 0.000 description 8
- 229960000943 tartrazine Drugs 0.000 description 8
- 235000012756 tartrazine Nutrition 0.000 description 8
- 239000004149 tartrazine Substances 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
Definitions
- the present invention relates to a method for measuring the discharge amount of a dispenser.
- piston-type pipettors such as micropipettes and automatic pipettors (hereinafter simply referred to as "pilotters") are widely used in order to accurately dispense liquid samples, reagents, and the like.
- pilotters piston-type pipettors
- an error in the amount dispensed by such a pipettor may greatly affect subsequent experimental results, it is necessary to periodically check whether the pipettor is functioning correctly.
- measurement of ejection volume by a gravimetric method has been widely adopted for inspection of micropipettes (see, for example, Non-Patent Document 1).
- a micropipette to be inspected is used to suck and discharge a standard liquid (for example, water), and the mass of the discharged standard liquid is measured by an electronic balance. Then, the volume of the standard liquid ejected from the micropipette is calculated based on the measured value at that time and the density of the standard liquid under the temperature at the time of measurement. This makes it possible to confirm whether or not the micropipette can eject the intended amount of the standard liquid (that is, the accuracy of dispensing by the micropipette).
- a standard liquid for example, water
- Non-Patent Document 2 When inspecting such a pipettor having a plurality of channels, discharge volume measurement using absorbance measurement is performed (see, for example, Non-Patent Document 2). Specifically, a standard liquid in which a dye is dissolved at a predetermined concentration is aspirated from each channel of an automatic pipetting device to be tested, and the standard liquid aspirated to each channel is discharged to different wells of a microtiter plate. do. After that, a certain amount of water is added to each well and mixed with the standard liquid, and the absorbance of the liquid in each well is measured using a microplate reader.
- the concentration of the dye in the liquid in each well is obtained, and the concentration, the amount of water added, and the standard liquid , the amount of the standard liquid to be ejected from each channel is calculated based on the concentration of the dye in .
- Water is generally used as a standard substance in measuring the amount of discharge by the above-mentioned conventional method.
- the accuracy of the dispensing confirmed by the above method may not be guaranteed when dispensing a liquid whose properties are significantly different from those of water.
- a highly volatile liquid such as acetonitrile or acetone with a pipettor
- the vapor generated from the liquid after the liquid is aspirated changes the internal pressure of the pipettor, resulting in a decrease in the pipetted amount.
- the present invention has been made in view of the above points, and its purpose is to enable accurate measurement of the amount of volatile liquid to be dispensed by a dispenser.
- a method for measuring the discharge amount of a dispenser according to the present invention comprises: preparing a pigmented volatile liquid containing a predetermined concentration of the pigment by dissolving the pigment in the volatile liquid; Aspirating the volatile liquid containing the dye with a pipettor and discharging it into the measurement container, Drying the dye-containing volatile liquid discharged into the measurement container, After the drying, an evaluation liquid is prepared by adding a predetermined amount of a low-volatility liquid having a lower volatility than the volatile liquid to the measurement container to dissolve the dye, Optical measurement is performed on the evaluation liquid, Based on the measured value of the evaluation liquid by the optical measurement, the added amount of the low-volatility liquid, and the concentration of the dye in the dye-containing volatile liquid, the dye-containing liquid discharged into the measurement container is determined. A discharge amount, which is the volume of the volatile liquid, is obtained.
- FIG. 4 is a flow chart showing an execution procedure of a calibration method for a dispenser according to an embodiment of the present invention.
- FIG. 1 is a flow chart showing the execution procedure of a calibration method for a dispenser according to this embodiment.
- a volatile liquid is sucked and discharged by a micropipette at a predetermined set volume, the discharge volume at that time is measured, and the discharge volume and the set volume are compared. By doing so, the accuracy of the ejection volume by the micropipette is evaluated. Further, if necessary, the micropipette is adjusted so that the volatile liquid can be dispensed with sufficient accuracy.
- the volatile liquid in the present invention is a substance that has a boiling point in the range of 50 to 95° C. at 1 atm and is liquid at room temperature (20° C. ⁇ 15° C.), or contains 10% or more of such a substance. means liquid.
- Substances that have a boiling point in the range of 50 to 95° C. at 1 atm and are liquid at room temperature (20° C. ⁇ 15° C.) include, for example, acetonitrile, methanol, ethanol, acetone, toluene, isopropanol, hexane, and butanol.
- cyclohexane ethylene glycol, benzene, chloroform, acetaldehyde, triethylamine, phenol, naphthalene, formaldehyde, tetrahydrofuran, or ethyl acetate.
- a liquid containing a predetermined concentration of a dye is prepared by adding and dissolving the dye in a volatile liquid (step 11).
- this liquid will be referred to as "volatile liquid containing pigment”.
- the dye include tartrazine and Coomassie Brilliant Blue (CBB), but the dye in the present invention is not limited thereto.
- the dye it is desirable to use a dye having a viscosity similar to that of the volatile liquid used for measuring the discharge amount. Specifically, the viscosity is ⁇ 30% (preferably ⁇ 15%) of that of the volatile liquid. Although it is desirable to use a thing, it is not limited to this.
- the volatile liquid containing the dye is aspirated at a predetermined volume and discharged into the measurement container (step 12).
- the measurement container for example, a cuvette for spectroscopic measurement, a microtiter plate, or the like can be used, but any container that can be used for optical measurement may be used.
- the dye-containing volatile liquid discharged into the measurement container is completely dried (step 13).
- the drying method is not particularly limited, natural drying is desirable in order to eliminate the possibility of sublimation of the dye due to heating.
- evaluation liquid aqueous solution of dye thus obtained is hereinafter referred to as "evaluation liquid”.
- the measurement container is set in a spectrophotometer, and the absorbance of the evaluation liquid at the absorption wavelength of the dye is measured (step 15).
- a microtiter plate is used as the measurement container, a microplate reader is used as the spectrophotometer.
- a plurality of liquids for creating a calibration curve which are aqueous solutions each containing the same dye as the dye contained in the liquid for evaluation, at different concentrations, are prepared (step 21), and the absorbance of each liquid for creating a calibration curve is measured in the same manner. Measure (step 22).
- the evaluation liquid and the plurality of calibration curve preparation liquids are set in the spectrophotometer, and the absorbance measurement of the evaluation liquid and the absorbance measurement of the plurality of calibration curve preparation liquids are continuously performed. You can also do it on purpose.
- a calibration curve showing the relationship between the concentration of the dye and the absorbance is created, and the concentration of the dye in the volatile liquid containing the dye and the step Based on the amount of water added in 14, the concentration of the dye in the calibration curve is converted to the volume of the volatile liquid containing dye (i.e., the theoretical value of the discharge amount of the volatile liquid containing dye from a micropipette). .
- a calibration curve showing the relationship between the absorbance and the discharge amount (theoretical value) is obtained (step 23).
- step 16 the discharge amount of the dye-containing volatile liquid by the micropipette is specified (step 16).
- step 23 a calibration curve showing the relationship between absorbance and dye concentration is created, and the calibration curve is converted into a calibration curve showing the relationship between absorbance and ejection volume.
- step 23 only a calibration curve showing the relationship between absorbance and dye concentration may be created.
- the concentration of the dye in the evaluation liquid is specified based on the calibration curve and the absorbance of the evaluation liquid measured in step 15, and the value and the dye-containing volatile liquid and the amount of water added in step 14, the discharge amount of the dye-containing volatile liquid is calculated.
- the method according to the present embodiment includes the step of drying the pigment-containing volatile liquid discharged by the dispenser, thereby eliminating fluctuations in the measured value due to the degree of volatilization of the volatile liquid. . Therefore, according to the method according to the present embodiment, even if the amount of volatile liquid is very small, the ejection amount can always be accurately measured.
- step 17 the set volume of the micropipette in step 12 is compared with the discharge amount obtained in step 16, and it is determined whether or not the difference between the two is equal to or greater than a predetermined threshold (step 17). If the difference between the two is smaller than the threshold (that is, if No in step 17), the series of operations is terminated.
- step 18 the micropipette is prepared so that the difference becomes small. Specifically, steps 12 to 18 are repeatedly executed while finely adjusting an adjustment dial or the like provided on the micropipette.
- the discharge amount of the micropipette is measured, but instead of this, the discharge amount may be measured by another pipetting device, for example, an automatic pipetting device.
- the pipettor may be of single channel type having only one set of a cylinder, a piston operating within the cylinder, and a tip mounting portion provided at the tip of the cylinder; There is a multi-channel type with a plurality of sets of chip mounting portions, but the present invention can be applied to any of them.
- the dispenser includes a manual type in which the piston is operated by the user, an automatic type in which the piston is driven by a motor, an air replacement type in which a certain amount of air exists between the piston and the liquid, and a piston
- a forced displacement type that directly contacts the liquid
- a fixed volume type in which the dispensing amount (set volume) is constant
- a variable volume type in which the dispensing amount can be changed.
- the ejection amount measuring method and the calibration method according to the present invention can be applied to any of them.
- the set volume and the The dispenser shall be adjusted by changing the relationship with the drive amount of the motor.
- the absorbance of the evaluation liquid is measured in step 15, but the "optical measurement” in the present invention is not limited to absorbance measurement, fluorescence measurement, transmittance measurement, or the like. , can be anything.
- a dye that emits fluorescence is used as the dye.
- "absorbance" should be read as "fluorescence intensity”.
- water is used as the low volatility liquid in the present invention (that is, water is added to the evaluation container in step 14 to dissolve the dye), but instead of water, other A low volatility liquid may be used.
- the low volatility liquid in the present invention means a substance that has a boiling point higher than 95° C. at 1 atmosphere and is liquid at room temperature (20° C. ⁇ 15° C.).
- Such low volatility liquids include water as well as, for example, dimethylsulfoxide, glycerin, or phenol.
- the discharge amount in each channel (48 channels) of the multi-channel automatic pipetting device was measured.
- the microtiter plate was set in a microplate reader, and the absorbance at the absorption wavelength (426 nm) of the dye was measured. (6) The average value of the blank measurements was subtracted from the measured values (absorbance) for each well obtained by the absorbance measurement. (7) Based on the dye concentration (mg/L) in each calibration curve preparation liquid and the values obtained in (6) above, a calibration curve showing the relationship between absorbance and dye concentration (Fig. 2) was created. (8) By converting the dye concentration (mg/L) into theoretical ejection volume ( ⁇ L) using the following formula, the calibration curve is converted into a calibration curve (Fig. 3) showing the relationship between absorbance and theoretical ejection volume. Converted.
- Theoretical ejection volume ( ⁇ L) ⁇ Dye concentration (mg/L) x Liquid volume in well (100 ⁇ L) ⁇ / Dye concentration in dye-containing volatile liquid (6000 mg/L) (9) From the measured value (absorbance) of the evaluation liquid in the absorbance measurement, the theoretical discharge amount of the dye-containing volatile liquid from each channel was calculated using the calibration curve of (8) above.
- Table 1 shows the measured values (absorbances N1 and N2) for each of the calibration curve preparation liquids described above, and the inverse regression values and accuracy calculated from the calibration curve (FIG. 2) prepared based on the measured values.
- Table 2 shows the measured absorbance of the liquid for evaluation in each well of the microtiter plate ("Ch number" in the table is the channel number of the automatic dispensing device that ejects the dye-containing volatile liquid into each well. ).
- Table 3 shows the result of converting each absorbance measurement value in Table 2 into a theoretical dispensing amount using the calibration curve in FIG.
- the numerical value in each cell of this table corresponds to the theoretical discharge amount of the dye-containing volatile liquid from each channel of the automatic pipetting device (that is, the discharge amount measured by the method according to the present invention).
- a method for measuring a discharge amount of a dispenser comprises: preparing a pigmented volatile liquid containing a predetermined concentration of the pigment by dissolving the pigment in the volatile liquid; Aspirating the volatile liquid containing the dye with a pipettor and discharging it into the measurement container, Drying the dye-containing volatile liquid discharged into the measurement container, After the drying, an evaluation liquid is prepared by adding a predetermined amount of a low-volatility liquid having a lower volatility than the volatile liquid to the measurement container to dissolve the dye, Optical measurement is performed on the evaluation liquid, Based on the measured value of the evaluation liquid by the optical measurement, the added amount of the low-volatility liquid, and the concentration of the dye in the dye-containing volatile liquid, the dye-containing liquid discharged into the measurement container is determined. A discharge amount, which is the volume of the volatile liquid, is obtained.
- (Section 2) The method for measuring the discharge amount of the dispenser according to Section 1, preparing a plurality of calibration curve preparation liquids by dissolving the dye at different concentrations in the low volatility liquid; performing the optical measurement for each of the plurality of calibration curve preparation liquids; creating a calibration curve based on the measurement results of the plurality of calibration curve creation liquids by the optical measurement; Using the calibration curve, the discharge amount may be obtained from the measured value of the liquid for evaluation in the optical measurement.
- the dispenser may be a multi-channel dispenser.
- the discharge amount of a pipetter since the discharge amount can be measured for each channel of the multi-channel pipettor at once, it takes time and effort to measure the discharge amount. can be reduced.
- a calibration method for a dispenser comprises: preparing a pigmented volatile liquid containing a predetermined concentration of the pigment by dissolving the pigment in the volatile liquid; Aspirating the pigment-containing volatile liquid at a predetermined set volume with a pipetting device and discharging it into the measurement container; Drying the dye-containing volatile liquid discharged into the measurement container, After the drying, an evaluation liquid is prepared by adding a predetermined amount of a low-volatility liquid having a lower volatility than the volatile liquid to the measurement container to dissolve the dye, Optical measurement is performed on the evaluation liquid, Based on the measured value of the evaluation liquid by the optical measurement, the added amount of the low-volatility liquid, and the concentration of the dye in the dye-containing volatile liquid, the dye-containing liquid discharged into the measurement container is determined. Obtain the discharge amount, which is the volume of the volatile liquid, Identifying the difference between the calculated discharge amount and the set volume, The dispenser is adjusted so that the difference becomes small.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
揮発性液体に色素を溶解することによって、前記色素を予め定められた濃度で含有する色素入り揮発性液体を調製し、
分注器によって前記色素入り揮発性液体を吸引して測定用容器内に吐出し、
前記測定用容器内に吐出された前記色素入り揮発性液体の乾燥を行い、
前記乾燥後に、該測定用容器に予め定められた量の、前記揮発性液体よりも揮発性の低い低揮発性液体を添加して前記色素を溶解させることで評価用液体を調製し、
前記評価用液体に対して光学測定を行い、
該光学測定による前記評価用液体の測定値と、前記低揮発性液体の添加量と、前記色素入り揮発性液体における前記色素の濃度とに基づいて、前記測定用容器に吐出された前記色素入り揮発性液体の体積である吐出量を求めるものである。
水25mLに色素としてタートラジン0.5gを添加して溶解することにより、20 g/Lのタートラジン水溶液を調製し、更に、該タートラジン水溶液とアセトニトリルとを3:7の割合で混合した。これにより得られた混合液(タートラジン濃度:6000 mg/L)を、以下「色素入り揮発性液体」とよぶ。
20 g/Lのタートラジン水溶液と水とを3:7の割合で混合することにより、6 g/Lのタートラジン水溶液を調製した。更に、該タートラジン水溶液を水で30倍~360倍に希釈することにより、タートラジン(以下「色素」とよぶ)の濃度が異なる6種類の水溶液を調製した。これら6種類の水溶液を、以下、「検量線作成用液体」とよぶ。
(1)マルチチャンネル型の自動分注装置を使用し、色素入り揮発性液体を各チャンネルから吸光度測定用マイクロタイタープレートの各ウェルに同時分注し、その後、乾燥させた。
(2)乾燥後の前記各ウェルに水を100μL添加して、シェイカーで撹拌した。これにより得られた色素の水溶液を、以下「評価用液体」とよぶ。
(3)各検量線作成用液体を、前記評価用液体が入っているウェルとは別のウェルに100μLずつ、各2ウェルに分注した。
(4)更に別の2つのウェルに、ブランクとして水を100μLずつ分注した。
(5)前記マイクロタイタープレートをマイクロプレートリーダにセットして、前記色素の吸収波長(426nm)における吸光度を測定した。
(6)前記吸光度測定により得られた各ウェルについての測定値(吸光度)から、ブランクの測定値の平均値を差し引いた。
(7)各検量線作成用液体における色素濃度(mg/L)と、前記 (6) で得られた値とに基づいて、最小二乗法により、吸光度と色素濃度の関係を示す検量線(図2)を作成した。
(8)以下の式により、前記色素濃度(mg/L)を理論吐出量(μL)に変換することによって、前記検量線を、吸光度と理論吐出量の関係を示す検量線(図3)に変換した。
理論吐出量(μL)={色素濃度(mg/L)×ウェル中の液量(100μL)}/色素入り揮発性液体における色素濃度(6000 mg/L)
(9)前記吸光度測定における評価用液体の測定値(吸光度)から、前記 (8)の検量線を用いて各チャンネルによる色素入り揮発性液体の理論吐出量を算出した。
上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
揮発性液体に色素を溶解することによって、前記色素を予め定められた濃度で含有する色素入り揮発性液体を調製し、
分注器によって前記色素入り揮発性液体を吸引して測定用容器内に吐出し、
前記測定用容器内に吐出された前記色素入り揮発性液体の乾燥を行い、
前記乾燥後に、該測定用容器に予め定められた量の、前記揮発性液体よりも揮発性の低い低揮発性液体を添加して前記色素を溶解させることで評価用液体を調製し、
前記評価用液体に対して光学測定を行い、
該光学測定による前記評価用液体の測定値と、前記低揮発性液体の添加量と、前記色素入り揮発性液体における前記色素の濃度とに基づいて、前記測定用容器に吐出された前記色素入り揮発性液体の体積である吐出量を求めるものである。
前記色素を各々異なる濃度で前記低揮発性液体に溶解して成る複数の検量線作成用液体を調製し、
前記複数の検量線作成用液体の各々に対して前記光学測定を行い、
前記光学測定による前記複数の検量線作成用液体の測定結果に基づいて検量線を作成し、
該検量線を用いて、前記評価用液体の前記光学測定における測定値から前記吐出量を求めるものであってもよい。
前記分注器が、マルチチャンネル型の分注器であってもよい。
揮発性液体に色素を溶解することによって、前記色素を予め定められた濃度で含有する色素入り揮発性液体を調製し、
分注器によって前記色素入り揮発性液体を予め定められた設定容量で吸引して測定用容器内に吐出し、
前記測定用容器内に吐出された前記色素入り揮発性液体の乾燥を行い、
前記乾燥後に、該測定用容器に予め定められた量の、前記揮発性液体よりも揮発性の低い低揮発性液体を添加して前記色素を溶解させることで評価用液体を調製し、
前記評価用液体に対して光学測定を行い、
該光学測定による前記評価用液体の測定値と、前記低揮発性液体の添加量と、前記色素入り揮発性液体における前記色素の濃度とに基づいて、前記測定用容器に吐出された前記色素入り揮発性液体の体積である吐出量を求め、
算出された該吐出量と、前記設定容量との差を特定し、
当該差が小さくなるように前記分注器を調整するものである。
Claims (4)
- 揮発性液体に色素を溶解することによって、前記色素を予め定められた濃度で含有する色素入り揮発性液体を調製し、
分注器によって前記色素入り揮発性液体を吸引して測定用容器内に吐出し、
前記測定用容器内に吐出された前記色素入り揮発性液体の乾燥を行い、
前記乾燥後に、該測定用容器に予め定められた量の、前記揮発性液体よりも揮発性の低い低揮発性液体を添加して前記色素を溶解させることで評価用液体を調製し、
前記評価用液体に対して光学測定を行い、
該光学測定による前記評価用液体の測定値と、前記低揮発性液体の添加量と、前記色素入り揮発性液体における前記色素の濃度とに基づいて、前記測定用容器に吐出された前記色素入り揮発性液体の体積である吐出量を求める、
分注器の吐出量測定方法。 - 前記色素を各々異なる濃度で前記低揮発性液体に溶解して成る複数の検量線作成用液体を調製し、
前記複数の検量線作成用液体の各々に対して前記光学測定を行い、
前記光学測定による前記複数の検量線作成用液体の測定結果に基づいて検量線を作成し、
該検量線を用いて、前記評価用液体の前記光学測定における測定値から前記吐出量を求める、
請求項1に記載の分注器の吐出量測定方法。 - 前記分注器が、マルチチャンネル型の分注器である請求項1に記載の分注器の吐出量測定方法。
- 揮発性液体に色素を溶解することによって、前記色素を予め定められた濃度で含有する色素入り揮発性液体を調製し、
分注器によって前記色素入り揮発性液体を予め定められた設定容量で吸引して測定用容器内に吐出し、
前記測定用容器内に吐出された前記色素入り揮発性液体の乾燥を行い、
前記乾燥後に、該測定用容器に予め定められた量の、前記揮発性液体よりも揮発性の低い低揮発性液体を添加して前記色素を溶解させることで評価用液体を調製し、
前記評価用液体に対して光学測定を行い、
該光学測定による前記評価用液体の測定値と、前記低揮発性液体の添加量と、前記色素入り揮発性液体における前記色素の濃度とに基づいて、前記測定用容器に吐出された前記色素入り揮発性液体の体積である吐出量を求め、
算出された該吐出量と、前記設定容量との差を特定し、
当該差が小さくなるように前記分注器を調整する、
分注器のキャリブレーション方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280085491.7A CN118489065A (zh) | 2022-01-14 | 2022-10-25 | 分注器的排出量测定方法 |
JP2023573849A JPWO2023135888A1 (ja) | 2022-01-14 | 2022-10-25 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022004492 | 2022-01-14 | ||
JP2022-004492 | 2022-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023135888A1 true WO2023135888A1 (ja) | 2023-07-20 |
Family
ID=87278788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/039737 WO2023135888A1 (ja) | 2022-01-14 | 2022-10-25 | 分注器の吐出量測定方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023135888A1 (ja) |
CN (1) | CN118489065A (ja) |
WO (1) | WO2023135888A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007017412A (ja) * | 2005-07-11 | 2007-01-25 | Olympus Corp | 自動分析装置 |
JP2010261788A (ja) * | 2009-05-01 | 2010-11-18 | Unie Flex:Kk | 分注器具の検定方法及び装置 |
JP2011524514A (ja) * | 2008-04-07 | 2011-09-01 | アルテル、インコーポレイテッド | 多数の吸光度スペクトル特性を有する溶液を用いた液体供給量評価のためのシステム及び方法 |
JP2021165657A (ja) * | 2020-04-06 | 2021-10-14 | 日本電子株式会社 | 微粒子測定方法、微粒子測定システム及び試料前処理装置 |
-
2022
- 2022-10-25 WO PCT/JP2022/039737 patent/WO2023135888A1/ja active Application Filing
- 2022-10-25 JP JP2023573849A patent/JPWO2023135888A1/ja active Pending
- 2022-10-25 CN CN202280085491.7A patent/CN118489065A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007017412A (ja) * | 2005-07-11 | 2007-01-25 | Olympus Corp | 自動分析装置 |
JP2011524514A (ja) * | 2008-04-07 | 2011-09-01 | アルテル、インコーポレイテッド | 多数の吸光度スペクトル特性を有する溶液を用いた液体供給量評価のためのシステム及び方法 |
JP2010261788A (ja) * | 2009-05-01 | 2010-11-18 | Unie Flex:Kk | 分注器具の検定方法及び装置 |
JP2021165657A (ja) * | 2020-04-06 | 2021-10-14 | 日本電子株式会社 | 微粒子測定方法、微粒子測定システム及び試料前処理装置 |
Non-Patent Citations (1)
Title |
---|
AKIHISA TAKAO: "Case example of calibration and uncertainty evaluation of micropipette", 5 September 2018, JAPAN QUALITY ASSURANCE ORGANIZATION |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023135888A1 (ja) | 2023-07-20 |
CN118489065A (zh) | 2024-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4303594B2 (ja) | 液体容量の光度検量 | |
EP2069746B1 (en) | Quantitative dual-dye photometric method for determining dilution impact | |
US7247483B2 (en) | Method for determining the volume of a liquid sample | |
US8563326B2 (en) | Sample holder and method of using the same | |
JP5635971B2 (ja) | 多数の吸光度スペクトル特性を有する溶液を用いた液体供給量評価のためのシステム及び方法 | |
US8012766B2 (en) | Prediction of aspirated volume of a liquid | |
US11719566B2 (en) | Devices and methods for measurement of liquid volumes | |
US20100167412A1 (en) | Sensor system for determining concentration of chemical and biological analytes | |
JP2004101381A (ja) | 自動分析装置用の複光路セル及びこの複光路セルを用いた分析方法 | |
WO1995002166A1 (en) | Reagent system for calibration of pipettes and other volumetric measuring devices | |
EP0628157A1 (en) | Pipette calibration system | |
US11525772B2 (en) | Apparatus and methods for handling and spectrophotometry of small liquid samples | |
Rhode et al. | An improved method for checking HTS/uHTS liquid-handling systems | |
US9588132B2 (en) | Validation method for automated analyzers | |
WO2023135888A1 (ja) | 分注器の吐出量測定方法 | |
US8928884B2 (en) | Validation method for automated analyzers | |
US7504264B2 (en) | Method for characterizing a highly parallelized liquid handling technique using microplates and test kit for carrying out the method | |
JP2011058985A (ja) | 分析装置および分注機構の性能評価方法 | |
JP5297262B2 (ja) | 分注器具の検定方法及び装置 | |
Semac et al. | Pipetting performances by means of the Andrew robot | |
Bach et al. | Automated Optic Calibration to Optimize Pipetting Accuracy and Precision in a Liquid Handling System | |
JP5461389B2 (ja) | 試薬表面への診断液のピエゾ計量分配 | |
Rodríguez-Puente et al. | A simple and effective calibration method to determine the accuracy of liquid-handling nano-dispenser devices | |
WO2024144798A1 (en) | Hybrid fluorescence-absorbance measurement system and method for sub-microliter and sub-nanoliter volume measurement | |
Samples | Liquid Handling Application Notes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22920411 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023573849 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022920411 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022920411 Country of ref document: EP Effective date: 20240814 |