WO2023135860A1 - Laser welding device and laser welding method - Google Patents

Laser welding device and laser welding method Download PDF

Info

Publication number
WO2023135860A1
WO2023135860A1 PCT/JP2022/033392 JP2022033392W WO2023135860A1 WO 2023135860 A1 WO2023135860 A1 WO 2023135860A1 JP 2022033392 W JP2022033392 W JP 2022033392W WO 2023135860 A1 WO2023135860 A1 WO 2023135860A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
optical element
welding device
workpiece
Prior art date
Application number
PCT/JP2022/033392
Other languages
French (fr)
Japanese (ja)
Inventor
光宏 吉永
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023135860A1 publication Critical patent/WO2023135860A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding

Definitions

  • the present invention relates to a laser welding device and a laser welding method.
  • a metal material having a high reflectance at near-infrared wavelengths such as copper, is used as an object to be processed by a rotating electric machine.
  • Patent Literature 1 discloses a welding apparatus that includes two laser oscillators and an optical system that integrates laser beams of different wavelengths oscillated by the laser oscillators, and that irradiates a workpiece with the laser beams. there is In this manner, while preheating the object to be processed with the laser beam of the blue wavelength, the object to be processed is melted by the laser beam of the near-infrared wavelength.
  • the present invention has been made in view of this point, and its object is to enable laser welding while bringing the condensing positions of laser beams of different wavelengths closer together.
  • the present invention is a laser welding apparatus that irradiates a laser beam to a work to laser weld the work, wherein a first laser oscillator that oscillates a first laser beam and the first laser beam have different wavelengths. a second laser oscillator that oscillates a second laser beam; a first laser beam scanning system that changes irradiation positions of the first laser beam and the second laser beam with respect to the work; and a diffractive optical element that changes a focal distance to substantially match the focal position of the second laser beam on the work with the focal position of the first laser beam.
  • the focal distance of the second laser beam emitted from the second laser oscillator is changed by the diffractive optical element, and the second laser beam is brought closer to the focal position of the first laser beam.
  • the condensing positions of the beam and the second laser beam are made substantially coincident.
  • a laser welding apparatus for irradiating a laser beam to a work to laser weld the work, wherein a first laser oscillator for oscillating a first laser beam and the first laser beam have a wavelength of a second laser oscillator that oscillates a second laser beam different from the above; a first laser beam scanning system that changes irradiation positions of the first laser beam and the second laser beam on the workpiece; and the first laser beam scanning system and a second laser beam scanning system for changing the irradiation position of the second laser beam on the workpiece and substantially matching the condensing position of the second laser beam on the workpiece with the condensing position of the first laser beam.
  • the irradiation position of the second laser beam with respect to the first laser beam scanning system is changed by the second laser beam scanning system, and the condensing position of the second laser beam is brought closer to the condensing position of the first laser beam.
  • the condensing positions of the first laser beam and the second laser beam are substantially matched.
  • laser welding can be performed while bringing the condensing positions of the first laser beam and the second laser beam having different wavelengths closer to each other.
  • laser welding can be performed while bringing the focal positions of the first laser beam and the second laser beam having different wavelengths closer to each other.
  • FIG. 3 is a plan view showing the configuration of a plurality of electrical conductors in the stator of the rotary electric machine;
  • FIG. 4 is a perspective view showing the configuration of a first electrical conductor and a second electrical conductor;
  • FIG. 4B is a plan view showing another configuration of the first electrical conductor and the second electrical conductor; It is a figure explaining the procedure which joins the edge part of a 1st electrical conductor and a 2nd electrical conductor.
  • 4 is a plan view showing scanning shapes of a first laser beam and a second laser beam;
  • FIG. 4 is a conceptual diagram illustrating axial chromatic aberration that occurs in the first laser beam and the second laser beam;
  • FIG. 4 is a conceptual diagram illustrating lateral chromatic aberration that occurs in the first laser beam and the second laser beam;
  • FIG. 4 is a graph showing the relationship between the wavelength of a laser beam and the focal length difference;
  • FIG. 4 is a graph showing the relationship between mirror swing angle and scanning position;
  • FIG. 5 is a graph showing the relationship between mirror swing angle and scanning position difference; It is a figure explaining the condensing position of a 1st laser beam.
  • FIG. 4 is a diagram illustrating a function of branching a laser beam in a branching optical element;
  • FIG. 4 is a diagram illustrating a function of branching a laser beam in a branching optical element;
  • FIG. 4 is a diagram for explaining a function of splitting a laser beam and a function of changing a condensing distance in a three-dimensional diffraction grating;
  • FIG. 4 is a diagram showing a state in which axial chromatic aberration generated in the first laser beam and the second laser beam is reduced;
  • FIG. 5 is a diagram showing a state in which chromatic aberration of magnification occurs in the first laser beam and the second laser beam; It is a figure which shows the state which changed the mirror angle of the 1st correction
  • FIG. 5 is a side view showing the configuration of a laser welding device according to Embodiment 2;
  • FIG. 5 is a side view showing the configuration of a laser welding device according to Embodiment 2;
  • FIG. 10 is a diagram illustrating a state in which longitudinal chromatic aberration occurs when the first laser beam is branched but the second laser beam is not branched;
  • FIG. 5 is a diagram for explaining a state in which axial chromatic aberration occurs when the first laser beam and the second laser beam are split; It is a figure which shows the state which reduced longitudinal chromatic aberration.
  • FIG. 11 is a side view showing the configuration of a laser welding device according to Embodiment 3;
  • FIG. 11 is a side view showing the configuration of a laser welding device according to Embodiment 4;
  • FIG. 4 is a conceptual diagram illustrating axial chromatic aberration that occurs in the first laser beam, the second laser beam, and the third laser beam;
  • FIG. 4 is a conceptual diagram illustrating lateral chromatic aberration that occurs in the first laser beam, the second laser beam, and the third laser beam;
  • the laser welding device 1 emits a first laser beam LB1 and a second laser beam LB2 to a welding target portion 13 of a rotary electric machine 10 as a work.
  • the parts to be welded 13 are ends of the first electrical conductor 11 and the second electrical conductor 12 .
  • the ends of the first electrical conductor 11 and the ends of the second electrical conductor 12 are joined together by laser welding.
  • the first electrical conductor 11 and the second electrical conductor 12 are, for example, the coils 17 of the stator 15 of the rotating electrical machine 10 .
  • the laser welding device 1 manufactures the rotating electric machine 10 by laser-welding the first electrical conductor 11 and the second electrical conductor 12 .
  • the rotary electric machine 10 of this embodiment can be applied to, for example, a motor for driving a vehicle, a generator, and the like. Although the rotary electric machine 10 is described as an example of the work, the work is not limited to this.
  • the rotating electric machine 10 has a stator 15 and a rotor (not shown).
  • the stator 15 has a stator core 16 and coils 17 .
  • Stator core 16 is formed in a cylindrical shape.
  • the rotor is arranged inside the stator core 16 .
  • a plurality of slots 18 are provided in the stator core 16 .
  • the slots 18 extend axially through the stator core 16 along a central axis C (see FIG. 1).
  • a plurality of slots 18 are provided at equal intervals in the circumferential direction around the central axis C of the stator core 16 .
  • the coil 17 is inserted through the slot 18.
  • the coil 17 is configured by bundling a plurality of electrical conductors made of copper, for example.
  • the coil 17 has a first electrical conductor 11 and a second electrical conductor 12 .
  • the first electrical conductor 11 and the second electrical conductor 12 are arranged adjacent to each other.
  • the ends of the first electrical conductor 11 and the ends of the second electrical conductor 12 protrude from the slot 18 .
  • the first electrical conductor 11 and the second electrical conductor 12 have end face shapes with a thickness t of 2 mm and an end face width W of 4 mm, for example. Also, the gap between the first electrical conductor 11 and the second electrical conductor 12 is, for example, about 0.2 to 0.5 mm.
  • first electrical conductor 11 and the second electrical conductor 12 are covered with a coating 19 made of resin or the like over the entire surface. It is assumed that the covering portion 19 is removed.
  • the ends of the first electrical conductor 11 and the second electrical conductor 12 do not necessarily have to be in contact with each other, but only need to be close to each other with a slight gap. That is, at the start of laser emission, there is no need to use some mechanism to apply an external force to the ends of the first electrical conductor 11 and the second electrical conductor 12 to keep them in close contact with each other.
  • the ends of the first electrical conductor 11 and the second electrical conductor 12 are arranged so as to line up in the thickness direction, but it is not limited to this form.
  • the tip portions of the first electrical conductor 11 and the second electrical conductor 12 may be butted against each other.
  • the laser welding apparatus 1 includes a first laser oscillator 21, a second laser oscillator 22, a laser head 25, a first diffractive optical element 32, a rotary table 34, and a first folding mirror 35. , a first correction mirror 36 as a second laser beam scanning system, and a controller 40 .
  • the first laser oscillator 21 emits a first laser beam LB1.
  • the output of the first laser oscillator 21 is, for example, 1 to 5 kW.
  • the wavelength of the first laser beam LB1 is 800-1200 nm, preferably around 1070 nm (particularly 1060-1080 nm), and is called the IR wavelength. Since the first laser beam LB1 can increase the laser output, it is used as a laser beam mainly for melting and joining workpieces during laser welding.
  • the first laser beam LB1 emitted from the first laser oscillator 21 is transmitted to the laser head 25 through space.
  • the first laser beam LB1 may be transmitted via an optical fiber or the like.
  • the second laser oscillator 22 oscillates the second laser beam LB2.
  • the output of the second laser oscillator 22 is, for example, about several hundred W to 1 kW.
  • the wavelength of the second laser beam LB2 is different from the wavelength of the first laser beam LB1.
  • the wavelength of the second laser beam LB2 is near 450 nm (particularly 400 to 460 nm) or near 532 nm (particularly 520 to 550 nm), and is called a blue wavelength.
  • the laser output of the second laser beam LB2 It is difficult to increase the laser output of the second laser beam LB2, so it is used for preheating the workpiece at the start of laser processing, starting welding, and improving welding quality. However, if the laser output and beam quality of the second laser beam LB2 are improved in the future, it may be used instead of the first laser oscillator 21 .
  • the second laser beam LB2 emitted from the second laser oscillator 22 is transmitted to the laser head 25 through space.
  • the second laser beam LB2 may be transmitted via an optical fiber or the like.
  • the combination of the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2 is not limited to this.
  • the laser head 25 has a galvanomirror 26 as a first laser beam scanning system and an f ⁇ lens 28 .
  • the galvanomirror 26 controls the direction of travel of the first laser beam LB1 emitted from the first laser oscillator 21 and the second laser beam LB2 emitted from the second laser oscillator 22 by changing the mirror angle.
  • the galvanomirror 26 is composed of two mirrors for the X-axis and the Y-axis, but since the drawing is complicated, only one mirror will be illustrated and explained.
  • the f ⁇ lens 28 converges the first laser beam LB1 and the second laser beam LB2 reflected by the galvanomirror 26 .
  • the first electrical conductor 11 and the second electrical conductor 12 are irradiated with the first laser beam LB1 and the second laser beam LB2 condensed by the f ⁇ lens 28 .
  • the first diffractive optical element 32 changes the focal length of the second laser beam LB2 emitted from the second laser oscillator 22.
  • the condensing distance that changes at this time is determined by the design of the first diffractive optical element 32 .
  • the first diffractive optical element 32 is composed of, for example, a three-dimensional diffraction grating (3D-DOE).
  • the first diffractive optical element 32 is used to correct longitudinal chromatic aberration caused by the difference between the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2.
  • the first diffractive optical element 32 is used in order to have the function of changing the focal distance of the second laser beam LB2.
  • the first diffractive optical element 32 may be used to provide .
  • the branching angle at this time is determined by the design of the first diffractive optical element 32 .
  • the first folding mirror 35 reflects the first laser beam LB1 and transmits the second laser beam LB2.
  • the first laser beam LB1 is guided to the laser head 25 after being reflected by the first folding mirror 35 .
  • the second laser beam LB2 is guided to the laser head 25 after passing through the first folding mirror 35 .
  • the first correction mirror 36 is composed of, for example, a piezo mirror.
  • the first correction mirror 36 controls the traveling direction of the second laser beam LB2 emitted from the second laser oscillator 22 by changing the mirror angle.
  • the first correction mirror 36 is used to correct the chromatic aberration of magnification caused by the difference between the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2.
  • the first laser beam LB1 and the second laser beam LB2 are emitted to the ends of the first electrical conductor 11 .
  • a melted portion 7 is formed by partially melting the first electrical conductor 11 .
  • the melting range of the melting portion 7 increases.
  • the first electrical conductor 11 and the second electrical conductor 12 are connected to each other via the fusion zone 7 .
  • the first laser beam LB1 and the second laser beam LB2 are emitted to the end of the first electrical conductor 11, but it is not limited to this form.
  • the first laser beam LB1 and the second laser beam LB2 may be emitted to the end portion of the second electrical conductor 12, or to the intermediate portion of the first electrical conductor 11 and the second electrical conductor 12, or the like.
  • the first laser beam LB1 and the second laser beam LB2 are applied in a spiral shape so as to straddle the end of the first electrical conductor 11 and the end of the second electrical conductor 12. It is sufficient to scan along a trajectory of a shape.
  • the scanning shape of the first laser beam LB1 and the second laser beam LB2 is not limited to this, and may be spiral, for example.
  • the controller 40 includes a first laser oscillator controller 41, a second laser oscillator controller 42, a laser head controller 50, a first correction mirror controller 51, and a rotary table controller. 55 and
  • the first laser oscillator control unit 41 controls the operation of the first laser oscillator 21 to adjust the output of the first laser beam LB1.
  • the second laser oscillator control unit 42 controls the operation of the second laser oscillator 22 to adjust the output of the second laser beam LB2.
  • a laser head control unit 50 controls the operation of the laser head 25 . Specifically, the laser head control unit 50 changes the irradiation positions of the first laser beam LB ⁇ b>1 and the second laser beam LB ⁇ b>2 with respect to the rotary electric machine 10 by changing the mirror angle of the galvanomirror 26 .
  • the galvanomirror 26 changes the irradiation positions of the first laser beam LB1 and the second laser beam LB2 with respect to the f ⁇ lens 28 so that the first laser beam LB1 and the second laser beam LB1 with respect to the first electrical conductor 11 and the second electrical conductor 12 Change the irradiation position of LB2.
  • the first correction mirror control unit 51 changes the irradiation position of the second laser beam LB2 on the galvanomirror 26 by changing the mirror angle of the first correction mirror 36 .
  • the first correction mirror control unit 51 operates the first correction mirror 36 so as to correct the irradiation position of the second laser beam LB2 based on the first laser beam LB1 emitted from the first laser oscillator 21. Control.
  • the rotary table control unit 55 controls the operation of the rotary table 34 . Specifically, the rotary table control unit 55 continuously rotates the rotary electric machine 10 about the central axis C, thereby adjusting the relative positions of the first electrical conductor 11 and the second electrical conductor 12 and the laser head 25. change.
  • the first laser beam LB1 emitted from the first laser oscillator 21 is reflected by the first folding mirror 35, then reflected by the galvanomirror 26 inclined at an angle of 45°, and is reflected by the f ⁇ lens.
  • the light passes through the central portion of 28 and irradiates the welding target portion 13 .
  • the second laser beam LB2 emitted from the second laser oscillator 22 is reflected by the galvanomirror 26 inclined at an angle of 45° after being folded by the first correction mirror 36, and transmitted through the central portion of the f ⁇ lens 28.
  • the welding object 13 is irradiated with the light.
  • the first laser beam LB1 and the second laser beam LB2 are coaxially irradiated.
  • Axial chromatic aberration is chromatic aberration that occurs on the optical axis, and is a phenomenon in which the position of the focal point differs on the optical axis.
  • a focus position shift of about 10 to 20 mm occurs.
  • FIG. 7 illustrates an image in which the focal point 62 of the second laser beam LB2 is shorter than the focal point 61 of the first laser beam LB1.
  • the longitudinal chromatic aberration amount is a.
  • the condensing position of the first laser beam LB1 shifts from the center position of the f ⁇ lens 28 in the XY directions. change to At this time, the focal position of the second laser beam LB2 changes to a position shifted in the XY directions from the center position of the f ⁇ lens 28, like the first laser beam LB1.
  • the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2 are different, chromatic aberration of magnification occurs, and the deviation amount of the focus position of the first laser beam LB1 and the second laser beam The amount of deviation of the condensing position of LB2 is different.
  • Laser chromatic aberration is an aberration that occurs when laser scanning is performed, and occurs in the XY directions in which laser scanning is performed.
  • the amount of deviation of the focal point 62 of the second laser beam LB2 is larger than the amount of deviation of the focal point 61 of the first laser beam LB1 with respect to the center position of the f ⁇ lens 28. is illustrated.
  • a be the amount of axial chromatic aberration
  • b be the amount of lateral chromatic aberration.
  • FIG. 9 is a graph showing how much aberration (condensing position deviation) actually occurs between the first laser beam LB1 having an IR wavelength and the second laser beam LB2 having a blue wavelength. shown in the figure.
  • an axial chromatic aberration amount a of about 17 mm is generated.
  • the degree of chromatic aberration of magnification caused by the difference in wavelength between the first laser beam LB1 and the second laser beam LB2 is calculated and shown in a graph.
  • the amount of chromatic aberration of magnification b occurs in the vicinity of the mirror swing angle of 5° of the galvanomirror 26.
  • the lateral chromatic aberration amount b of about 1.6 mm occurs near the mirror swing angle of 5°.
  • the amount of axial chromatic aberration and the amount of chromatic aberration of magnification increase. Therefore, in order to ensure welding quality, it is necessary to reduce axial chromatic aberration and lateral chromatic aberration. .
  • the first diffractive optical element 32 is often used to split the second laser beam LB2.
  • a three-dimensional diffractive optical element (3D-DOE) is used that also has the ability to modify.
  • the second laser beam LB2 is divided into a condensing point 62a and a condensing point 62a. It is bifurcated at point 62b.
  • the focal point 62a and the focal point 62b have the same focal length.
  • the first diffractive optical element 32 having not only the function of branching the second laser beam LB2 but also the function of changing the condensing distance as in this embodiment is introduced, as shown in FIG.
  • the two-branched laser beams can be condensed at condensing points 62a and 62b having different condensing distances.
  • the surface including the condensing point 62a is defined as the A surface
  • the surface including the condensing point 62b is defined as the B surface.
  • the condensed point 62a is condensed, but the condensed point 62b' is not condensed and is blurred.
  • the condensed point 62b is condensed, but the condensed point 62a' is not condensed and is blurred.
  • the first diffractive optical element 32 is arranged between the second laser oscillator 22 and the first correction mirror 36 so that the focal point of the first laser beam LB1 is 61 and the focal point 62 of the second laser beam LB2 can be set at the same coaxial position. Thereby, longitudinal chromatic aberration can be reduced.
  • the second laser beam LB2 emitted from the second laser oscillator 22 is applied to the welding target portion 13 via the first correction mirror 36, the galvanomirror 26, and the f ⁇ lens 28.
  • the first correction mirror 36 by moving the first correction mirror 36 by a very small amount (for example, 10 ⁇ rad or less), the second laser beam LB2 whose position is displaced in the XY direction with respect to the condensing point 61 of the first laser beam LB1 is focused.
  • the light spot 62 can be brought closer to the condensing point 61 .
  • the chromatic aberration of magnification can be reduced. That is, the first correction mirror 36 changes the irradiation position of the second laser beam LB2 on the galvanomirror 26 so that the converging point 62 of the second laser beam LB2 on the rotary electric machine 10 is changed to the converging point 61 of the first laser beam LB1. approximately match.
  • substantially coincident means that the distance between the two focal points is within 2 mm.
  • the first correction mirror 36 adjusts the irradiation position of the second laser beam LB2 so that the focal point 62 of the second laser beam LB2 is within 0.05 mm from the focal point 61 of the first laser beam LB1. change. This makes it possible to bring the condensing positions of the first laser beam LB1 and the second laser beam LB2 closer together.
  • the first correction mirror 36 changes the irradiation position of the second laser beam LB2 so that the converging point 62 of the second laser beam LB2 is within 0.01 mm from the converging point 61 of the first laser beam LB1. good too.
  • the amount of movement of the first correction mirror 36 is particularly small, it is desirable to use a piezo mirror using a piezo element in the drive section as a configuration that enables highly accurate position adjustment.
  • a general galvanomirror or the like may be used.
  • the laser welding apparatus 1 includes a first laser oscillator 21, a second laser oscillator 22, a laser head 25, a branching optical element 31, a first diffraction optical element 32, a rotary table 34, and a , a first folding mirror 35 , a first correction mirror 36 , and a controller 40 .
  • the branching optical element 31 branches the first laser beam LB1 emitted from the first laser oscillator 21 into two branched beams.
  • the branching angle at this time is determined by the design of the branching optical element 31 .
  • the branching optical element 31 is mounted on the first angle changing portion 31a.
  • the first angle changer 31a changes the angle of the branching optical element 31 by rotating the branching optical element 31 in the circumferential direction when viewed from the optical axis direction of the first laser beam LB1. Thereby, the branching directions of the two branched beams can be changed.
  • the branching optical element 31 is composed of, for example, a DOE (diffractive optical element). If the first laser beam LB1 is simply split, the splitting optical element 31 may be composed of other optical elements such as a triangular prism.
  • the first diffractive optical element 32 is mounted on the second angle changer 32a.
  • the second angle changing section 32a changes the angle of the first diffractive optical element 32 by rotating the first diffractive optical element 32 in the circumferential direction when viewed from the optical axis direction of the second laser beam LB2. Thereby, the branching directions of the two branched beams can be changed.
  • the control unit 40 includes a first laser oscillator control unit 41, a second laser oscillator control unit 42, a first angle change control unit 45, a second angle change control unit 46, a laser head control unit 50, a first It has a correction mirror controller 51 and a rotary table controller 55 .
  • the first angle change control section 45 controls the operation of the first angle change section 31a so as to change the angle of the branching optical element 31.
  • the second angle change control section 46 controls the operation of the second angle change section 32a so as to change the angle of the first diffractive optical element 32.
  • the first laser beam LB1 is split while the second laser beam LB2 is not split.
  • the branching optical element 31 is arranged between the first laser oscillator 21 and the first folding mirror 35 .
  • the branching optical element 31 has a function of branching the first laser beam LB1.
  • the first laser beam LB1 is split into two split beams by passing through the splitting optical element 31 .
  • the first laser beam LB1 is split and condensed at a condensing point 61a and a condensing point 61b at the condensing position.
  • the first diffractive optical element 32 having a laser splitting function is not arranged between the second laser oscillator 22 and the first correction mirror 36 . Therefore, the second laser beam LB2 is condensed at one condensing point 62 at the condensing position.
  • the focal point 62 has a shorter focal distance than the focal points 61a and 61b. Therefore, the first laser beam LB1 and the second laser beam LB2 are condensed at positions separated in the optical axis direction, making it difficult to perform high-quality laser processing.
  • the first laser beam LB1 and the second laser beam LB2 are split.
  • a branching optical element 101 having a laser branching function is arranged between the second laser oscillator 22 and the first correction mirror 36 .
  • the branching optical element 101 has a function of branching the second laser beam LB2.
  • the second laser beam LB2 is split into two split beams by passing through the splitting optical element 101.
  • the second laser beam LB2 is split and condensed at a condensing point 62a and a condensing point 62b at the condensing position.
  • the wavelength of the second laser beam LB2 is shorter than the wavelength of the first laser beam LB1
  • the focal point 62a and the focal point 62b have a longer focal distance than the focal point 61a and the focal point 61b. Shorten. Therefore, the first laser beam LB1 and the second laser beam LB2 are condensed at positions separated in the optical axis direction, making it difficult to perform high-quality laser processing.
  • a function of branching the second laser beam LB2 and a function of changing the focal distance are provided between the second laser oscillator 22 and the first correction mirror 36.
  • the first diffractive optical element 32 is arranged.
  • the condensing points 61a and 61b of the branched beams of the first laser beam LB1 and the condensing points 62a and 62b of the branched beams of the second laser beam LB2 can be substantially aligned.
  • substantially coincident means that the distance between the two focal points is within 2 mm.
  • the first diffractive optical element 32 is such that the condensing points 62a and 62b of the second laser beam LB2 are within 0.05 mm from the condensing points 61a and 61b of the first laser beam LB1, respectively.
  • the condensing distance of the second laser beam LB2 is changed so that .
  • the first diffractive optical element 32 is arranged so that the converging points 62a and 62b of the second laser beam LB2 are within 0.01 mm from the converging points 61a and 61b of the first laser beam LB1, respectively. Additionally, the focal distance of the second laser beam LB2 may be changed. However, it is also possible to move one of the first laser beam LB1 and the second laser beam LB2 in advance within the above numerical range from the processing conditions. In efforts to improve welding quality by preheating and the like, the second laser beam LB2 is often preceded.
  • the mirror angle of the galvano mirror 26 when the mirror angle of the galvano mirror 26 is changed, chromatic aberration of magnification occurs between the first laser beam LB1 and the second laser beam LB2.
  • the mirror angle of the first correction mirror 36 may be changed to reduce the chromatic aberration of magnification.
  • the first correction mirror 36 is composed of a piezo mirror mounted with a mirror having a lens function.
  • the surface of the first correction mirror 36 is formed concave.
  • both the axial chromatic aberration and the chromatic aberration of magnification generated between the first laser beam LB1 and the second laser beam LB2 having different wavelengths can be reduced.
  • the first diffractive optical element 32 When such an advanced optical system is used, there is no need to provide the first diffractive optical element 32 to reduce longitudinal chromatic aberration. Therefore, in the example shown in FIG. 22, the first diffractive optical element 32 is not provided, and a simpler configuration can be adopted.
  • the laser welding apparatus 1 includes a first laser oscillator 21, a second laser oscillator 22, a third laser oscillator 23, a laser head 25, a branching optical element 31, and a first diffractive optical element.
  • the third laser oscillator 23 oscillates the third laser beam LB3.
  • the wavelength of the third laser beam LB3 is different from the wavelengths of the first laser beam LB1 and the second laser beam LB2.
  • the wavelength of the third laser oscillator 23 is, for example, around 1300 nm (especially 1250 to 1350 nm).
  • the third laser beam LB3 is assumed to be a measurement light for measuring the penetration depth of the welding target portion 13, but may be used as a processing laser beam.
  • the wavelengths of the first laser beam LB1, the second laser beam LB2, and the third laser beam LB3 are all different, the present invention is not limited to this.
  • the wavelength of the third laser beam LB3 may be the same as the wavelength of the first laser beam LB1, and the laser output of the first laser beam LB1 may be increased.
  • the configuration may be such that the second laser oscillator 22 and the second laser oscillator control section 42 are not mounted. That is, the penetration depth of the first electrical conductor 11 and the second electrical conductor 12 melted by the first laser beam LB1 can be measured by the third laser beam LB3.
  • longitudinal chromatic aberration occurs between the first laser beam LB1, the second laser beam LB2, and the third laser beam LB3 having different wavelengths.
  • the focal point 61 of the first medium-wavelength laser beam LB1 converges on the focal point 62 of the short-wavelength second laser beam LB2 by a predetermined longitudinal chromatic aberration amount a1 in the optical axis direction. Distance is getting longer.
  • the focal point 63 of the long-wavelength third laser beam LB3 is located at a focal distance a2 in the optical axis direction with respect to the focal point 62 of the short-wavelength second laser beam LB2. getting longer.
  • the focal point 61 of the first laser beam LB1 of medium wavelength is located at a focal point 62 of the second laser beam LB2 of short wavelength by a predetermined amount of chromatic aberration of magnification b1 in the X direction. out of alignment.
  • the condensing point 63 of the long-wavelength third laser beam LB3 is displaced from the condensing point 62 of the short-wavelength second laser beam LB2 by a predetermined amount of chromatic aberration of magnification b2 in the X direction.
  • the second diffractive optical element 33 changes the focal length of the third laser beam LB3 emitted from the third laser oscillator .
  • the condensing distance that changes at this time is determined by the design of the second diffractive optical element 33 .
  • the second diffractive optical element 33 is composed of, for example, a three-dimensional diffraction grating (3D-DOE).
  • the second diffractive optical element 33 is used in order to change the condensing distance of the third laser beam LB3.
  • the second diffractive optical element 33 may be used in order to provide the .
  • the branching angle at this time is determined by the design of the second diffractive optical element 33 .
  • the second diffractive optical element 33 is mounted on the third angle changer 33a.
  • the third angle changer 33a changes the angle of the second diffractive optical element 33 by rotating the second diffractive optical element 33 in the circumferential direction when viewed from the optical axis direction of the third laser beam LB3. Thereby, the branching direction of the third laser beam LB3 can be changed.
  • the second correction mirror 37 is composed of, for example, a piezo mirror.
  • the second correction mirror 37 controls the traveling direction of the third laser beam LB3 emitted from the third laser oscillator 23 by changing the mirror angle.
  • the second correction mirror 37 is used to correct the chromatic aberration of magnification caused by the wavelengths of the first laser beam LB1 and the second laser beam LB2 being different from the wavelength of the third laser beam LB3.
  • the second folding mirror 38 transmits the second laser beam LB2 and reflects the third laser beam LB3.
  • the second laser beam LB2 is guided to the laser head 25 after passing through the second folding mirror 38 and the first folding mirror 35 .
  • the third laser beam LB ⁇ b>3 is reflected by the second folding mirror 38 , passes through the first folding mirror 35 , and is guided to the laser head 25 .
  • the control unit 40 includes a first laser oscillator control unit 41, a second laser oscillator control unit 42, a third laser oscillator control unit 43, a first angle change control unit 45, a second angle change control unit 46, It has a third angle change control section 47 , a laser head control section 50 , a first correction mirror control section 51 , a second correction mirror control section 52 and a rotary table control section 55 .
  • the third laser oscillator controller 43 controls the operation of the third laser oscillator 23 to adjust the output of the third laser beam LB3.
  • the third angle change control section 47 controls the operation of the third angle change section 33a so as to change the angle of the second diffractive optical element 33.
  • the second correction mirror control unit 52 changes the irradiation position of the third laser beam LB3 on the galvanomirror 26 by changing the mirror angle of the second correction mirror 37 .
  • the second correction mirror control unit 52 controls the second correction mirror 37 so as to correct the irradiation position of the third laser beam LB3 based on the first laser beam LB1 emitted from the first laser oscillator 21. control behavior.
  • the coil 17 is made of copper in this embodiment, it may be made of aluminum or other materials.
  • the branching optical element 31 and the first diffraction optical element 32 are of a type that simply branches the first laser beam LB1 and the second laser beam LB2 into two, but they are limited to this form. not a thing
  • the beam may be multi-branched or modified into a ring-shaped or concentric point-branched shape around the bifurcated main laser beam. You may make it use the optical element which forms.
  • the output of the first laser beam LB1 may be adjusted based on the irradiation position of the first laser beam LB1 on the welding target portion 13. For example, when irradiating the first laser beam LB1 along the helical trajectory, the laser output may be controlled during processing, such as lowering the laser output at the end of processing.
  • a revolver-type replacement system When changing the type of the branching optical element 31 or the first diffractive optical element 32, a revolver-type replacement system may be used. As a result, it is possible to reduce labor for position adjustment and the like when exchanging the branching optical element 31 .
  • the present invention has a highly practical effect that laser welding can be performed while bringing the focusing positions of laser beams having different wavelengths closer together. expensive.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

This laser welding device performs laser welding on a workpiece by irradiating the workpiece with a laser beam. The laser welding device comprises: a first laser oscillator that emits a first laser beam; a second laser oscillator that emits a second laser beam different in wavelength from the first laser beam; a first laser beam scanning system that changes the irradiation positions of the first laser beam and the second laser beam with respect to the workpiece; and a first diffraction optical element that changes the light condensing distance of the second laser beam with respect to the workpiece so as to cause the light condensing position of the second laser beam on the workpiece to substantially coincide with the light condensing position of the first laser beam.

Description

レーザ溶接装置及びレーザ溶接方法LASER WELDING APPARATUS AND LASER WELDING METHOD
 本発明は、レーザ溶接装置及びレーザ溶接方法に関するものである。 The present invention relates to a laser welding device and a laser welding method.
 近年、環境配慮の観点から電気自動車が増加しており、電気自動車に用いられる回転電機の生産工程において、安定した品質の溶接を最小の設備管理の中で実現して生産性を高めるために、レーザ溶接が用いられている。回転電機の加工対象には、近赤外波長における反射率が高い金属材料、例えば、銅が用いられている。 In recent years, the number of electric vehicles has been increasing from the viewpoint of environmental consideration. Laser welding is used. A metal material having a high reflectance at near-infrared wavelengths, such as copper, is used as an object to be processed by a rotating electric machine.
 特許文献1には、2つのレーザ発振器と、各レーザ発振器で発振された波長の異なるレーザ光を1つにまとめる光学系と、を備え、レーザ光を加工対象に照射する溶接装置が開示されている。このように、青色波長のレーザ光で加工対象を予熱しつつ、近赤外波長のレーザ光で加工対象を溶融させるようにしている。 Patent Literature 1 discloses a welding apparatus that includes two laser oscillators and an optical system that integrates laser beams of different wavelengths oscillated by the laser oscillators, and that irradiates a workpiece with the laser beams. there is In this manner, while preheating the object to be processed with the laser beam of the blue wavelength, the object to be processed is melted by the laser beam of the near-infrared wavelength.
特許第6935484号公報Japanese Patent No. 6935484
 ところで、特許文献1の発明のように、波長の異なる2つのレーザ光を光学系に通した場合、色収差が発生してしまい、2つのレーザ光の集光位置がずれてしまうという問題がある。 By the way, as in the invention of Patent Document 1, when two laser beams with different wavelengths are passed through an optical system, there is a problem that chromatic aberration occurs and the focal positions of the two laser beams are shifted.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、波長の異なるレーザビームの集光位置を近づけながらレーザ溶接できるようにすることにある。 The present invention has been made in view of this point, and its object is to enable laser welding while bringing the condensing positions of laser beams of different wavelengths closer together.
 本発明は、ワークに対してレーザビームを照射して前記ワークをレーザ溶接するレーザ溶接装置であって、第1レーザビームを発振する第1レーザ発振器と、前記第1レーザビームとは波長の異なる第2レーザビームを発振する第2レーザ発振器と、前記ワークに対する前記第1レーザビーム及び前記第2レーザビームの照射位置を変更する第1レーザビーム走査系と、前記ワークに対する前記第2レーザビームの集光距離を変化させ、前記ワークにおける前記第2レーザビームの集光位置を前記第1レーザビームの集光位置に略一致させる回折光学素子と、を備える。 The present invention is a laser welding apparatus that irradiates a laser beam to a work to laser weld the work, wherein a first laser oscillator that oscillates a first laser beam and the first laser beam have different wavelengths. a second laser oscillator that oscillates a second laser beam; a first laser beam scanning system that changes irradiation positions of the first laser beam and the second laser beam with respect to the work; and a diffractive optical element that changes a focal distance to substantially match the focal position of the second laser beam on the work with the focal position of the first laser beam.
 本発明では、回折光学素子によって、第2レーザ発振器から出射された第2レーザビームの集光距離を変化させ、第2レーザビームを第1レーザビームの集光位置に近づけることで、第1レーザビーム及び第2レーザビームの集光位置を略一致させるようにしている。 In the present invention, the focal distance of the second laser beam emitted from the second laser oscillator is changed by the diffractive optical element, and the second laser beam is brought closer to the focal position of the first laser beam. The condensing positions of the beam and the second laser beam are made substantially coincident.
 このような構成とすれば、波長の異なる第1レーザビーム及び第2レーザビームの集光位置を近づけながらレーザ溶接することができる。これにより、銅などの溶接困難な材料のワークであっても、ワークを溶融させ易くなり、溶接時間の短縮化、溶接品質の向上、溶接品質の管理による生産性、歩留まり改善を実現することができる。 With such a configuration, laser welding can be performed while bringing the condensing positions of the first laser beam and the second laser beam having different wavelengths closer to each other. As a result, even workpieces made of difficult-to-weld materials such as copper can be easily melted, shortening welding time, improving welding quality, and improving productivity and yield through welding quality control. can.
 また、本発明では、ワークに対してレーザビームを照射して前記ワークをレーザ溶接するレーザ溶接装置であって、第1レーザビームを発振する第1レーザ発振器と、前記第1レーザビームとは波長の異なる第2レーザビームを発振する第2レーザ発振器と、前記ワークに対する前記第1レーザビーム及び前記第2レーザビームの照射位置を変更する第1レーザビーム走査系と、前記第1レーザビーム走査系に対する前記第2レーザビームの照射位置を変化させ、前記ワークにおける前記第2レーザビームの集光位置を前記第1レーザビームの集光位置に略一致させる第2レーザビーム走査系と、を備える。 Further, in the present invention, there is provided a laser welding apparatus for irradiating a laser beam to a work to laser weld the work, wherein a first laser oscillator for oscillating a first laser beam and the first laser beam have a wavelength of a second laser oscillator that oscillates a second laser beam different from the above; a first laser beam scanning system that changes irradiation positions of the first laser beam and the second laser beam on the workpiece; and the first laser beam scanning system and a second laser beam scanning system for changing the irradiation position of the second laser beam on the workpiece and substantially matching the condensing position of the second laser beam on the workpiece with the condensing position of the first laser beam.
 本発明では、第2レーザビーム走査系によって、第1レーザビーム走査系に対する第2レーザビームの照射位置を変化させ、第2レーザビームの集光位置を第1レーザビームの集光位置に近づけることで、第1レーザビーム及び第2レーザビームの集光位置を略一致させるようにしている。 In the present invention, the irradiation position of the second laser beam with respect to the first laser beam scanning system is changed by the second laser beam scanning system, and the condensing position of the second laser beam is brought closer to the condensing position of the first laser beam. , the condensing positions of the first laser beam and the second laser beam are substantially matched.
 このような構成とすれば、波長の異なる第1レーザビーム及び第2レーザビームの集光位置を近づけながらレーザ溶接することができる。 With such a configuration, laser welding can be performed while bringing the condensing positions of the first laser beam and the second laser beam having different wavelengths closer to each other.
 本発明によれば、波長の異なる第1レーザビーム及び第2レーザビームの集光位置を近づけながらレーザ溶接することができる。 According to the present invention, laser welding can be performed while bringing the focal positions of the first laser beam and the second laser beam having different wavelengths closer to each other.
本実施形態1に係るレーザ溶接装置の構成を示す側面図である。It is a side view which shows the structure of the laser welding apparatus which concerns on this Embodiment 1. FIG. 回転電機のステータにおける複数の電気導体の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a plurality of electrical conductors in the stator of the rotary electric machine; 第1電気導体及び第2電気導体の構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of a first electrical conductor and a second electrical conductor; 第1電気導体及び第2電気導体の別の構成を示す平面図である。FIG. 4B is a plan view showing another configuration of the first electrical conductor and the second electrical conductor; 第1電気導体及び第2電気導体の端部同士を接合する手順を説明する図である。It is a figure explaining the procedure which joins the edge part of a 1st electrical conductor and a 2nd electrical conductor. 第1レーザビーム及び第2レーザビームの走査形状を示す平面図である。4 is a plan view showing scanning shapes of a first laser beam and a second laser beam; FIG. 第1レーザビーム及び第2レーザビームにおいて発生する軸上色収差を説明する概念図である。FIG. 4 is a conceptual diagram illustrating axial chromatic aberration that occurs in the first laser beam and the second laser beam; 第1レーザビーム及び第2レーザビームにおいて発生する倍率色収差を説明する概念図である。FIG. 4 is a conceptual diagram illustrating lateral chromatic aberration that occurs in the first laser beam and the second laser beam; レーザビームの波長と焦点距離差との関係を示すグラフ図である。FIG. 4 is a graph showing the relationship between the wavelength of a laser beam and the focal length difference; ミラー振り角と走査位置との関係を示すグラフ図である。FIG. 4 is a graph showing the relationship between mirror swing angle and scanning position; ミラー振り角と走査位置差との関係を示すグラフ図である。FIG. 5 is a graph showing the relationship between mirror swing angle and scanning position difference; 第1レーザビームの集光位置を説明する図である。It is a figure explaining the condensing position of a 1st laser beam. 分岐用光学素子におけるレーザビームを分岐させる機能を説明する図である。FIG. 4 is a diagram illustrating a function of branching a laser beam in a branching optical element; 三次元回折格子における、レーザビームを分岐させる機能と、集光距離を変化させる機能とを説明する図である。FIG. 4 is a diagram for explaining a function of splitting a laser beam and a function of changing a condensing distance in a three-dimensional diffraction grating; 第1レーザビーム及び第2レーザビームにおいて発生する軸上色収差を低減させた状態を示す図である。FIG. 4 is a diagram showing a state in which axial chromatic aberration generated in the first laser beam and the second laser beam is reduced; 第1レーザビーム及び第2レーザビームにおいて倍率色収差が発生した状態を示す図である。FIG. 5 is a diagram showing a state in which chromatic aberration of magnification occurs in the first laser beam and the second laser beam; 第1補正ミラーのミラー角度を変更して倍率色収差を低減させた状態を示す図である。It is a figure which shows the state which changed the mirror angle of the 1st correction|amendment mirror, and reduced the chromatic aberration of magnification. 本実施形態2に係るレーザ溶接装置の構成を示す側面図である。FIG. 5 is a side view showing the configuration of a laser welding device according to Embodiment 2; 第1レーザビームを分岐させる一方、第2レーザビームを分岐させない状態で軸上色収差が発生した状態を説明する図である。FIG. 10 is a diagram illustrating a state in which longitudinal chromatic aberration occurs when the first laser beam is branched but the second laser beam is not branched; 第1レーザビーム及び第2レーザビームを分岐させた状態で軸上色収差が発生した状態を説明する図である。FIG. 5 is a diagram for explaining a state in which axial chromatic aberration occurs when the first laser beam and the second laser beam are split; 軸上色収差を低減させた状態を示す図である。It is a figure which shows the state which reduced longitudinal chromatic aberration. 本実施形態3に係るレーザ溶接装置の構成を示す側面図である。FIG. 11 is a side view showing the configuration of a laser welding device according to Embodiment 3; 本実施形態4に係るレーザ溶接装置の構成を示す側面図である。FIG. 11 is a side view showing the configuration of a laser welding device according to Embodiment 4; 第1レーザビーム、第2レーザビーム、及び第3レーザビームにおいて発生する軸上色収差を説明する概念図である。FIG. 4 is a conceptual diagram illustrating axial chromatic aberration that occurs in the first laser beam, the second laser beam, and the third laser beam; 第1レーザビーム、第2レーザビーム、及び第3レーザビームにおいて発生する倍率色収差を説明する概念図である。FIG. 4 is a conceptual diagram illustrating lateral chromatic aberration that occurs in the first laser beam, the second laser beam, and the third laser beam;
 以下、本発明の一実施形態について、図面を参照しながら詳しく説明する。ただし、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。各図には、X方向、Y方向、及びZ方向を矢印で示している。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. Also, for clarity of explanation, the following description and drawings are simplified as appropriate. In each figure, the X direction, Y direction, and Z direction are indicated by arrows.
 《実施形態1》
 図1に示すように、レーザ溶接装置1は、ワークとしての回転電機10の溶接対象部13に対して、第1レーザビームLB1及び第2レーザビームLB2を出射する。溶接対象部13は、第1電気導体11及び第2電気導体12の端部である。第1電気導体11の端部と、第2電気導体12の端部とは、レーザ溶接によって互いに接合される。第1電気導体11及び第2電気導体12は、例えば、回転電機10のステータ15のコイル17である。レーザ溶接装置1は、第1電気導体11及び第2電気導体12をレーザ溶接することで、回転電機10を製造する。本実施形態の回転電機10は、例えば、車両駆動用のモータや、発電機等に適用が可能である。なお、ワークとして回転電機10を例示して説明しているが、これに限定するものではない。
<<Embodiment 1>>
As shown in FIG. 1, the laser welding device 1 emits a first laser beam LB1 and a second laser beam LB2 to a welding target portion 13 of a rotary electric machine 10 as a work. The parts to be welded 13 are ends of the first electrical conductor 11 and the second electrical conductor 12 . The ends of the first electrical conductor 11 and the ends of the second electrical conductor 12 are joined together by laser welding. The first electrical conductor 11 and the second electrical conductor 12 are, for example, the coils 17 of the stator 15 of the rotating electrical machine 10 . The laser welding device 1 manufactures the rotating electric machine 10 by laser-welding the first electrical conductor 11 and the second electrical conductor 12 . The rotary electric machine 10 of this embodiment can be applied to, for example, a motor for driving a vehicle, a generator, and the like. Although the rotary electric machine 10 is described as an example of the work, the work is not limited to this.
 以下の説明では、互いに波長の異なる第1レーザビームLB1及び第2レーザビームLB2を同時に照射することを前提としているが、例えば、第1レーザビームLB1及び第2レーザビームLB2の照射タイミングをずらすようにしてもよい。 In the following description, it is assumed that the first laser beam LB1 and the second laser beam LB2 having different wavelengths are emitted simultaneously. can be
 〈回転電機〉
 図2に示すように、回転電機10は、ステータ15と、図示しないロータと、を有する。ステータ15は、ステータコア16と、コイル17と、を有する。ステータコア16は、円筒状に形成される。ロータは、ステータコア16の内側に配置される。ステータコア16には、複数のスロット18が設けられる。スロット18は、ステータコア16の中心軸C(図1参照)に沿って軸方向に貫通して延びる。スロット18は、ステータコア16の中心軸Cを中心に、周方向に等間隔に複数設けられる。
<Rotating electric machine>
As shown in FIG. 2, the rotating electric machine 10 has a stator 15 and a rotor (not shown). The stator 15 has a stator core 16 and coils 17 . Stator core 16 is formed in a cylindrical shape. The rotor is arranged inside the stator core 16 . A plurality of slots 18 are provided in the stator core 16 . The slots 18 extend axially through the stator core 16 along a central axis C (see FIG. 1). A plurality of slots 18 are provided at equal intervals in the circumferential direction around the central axis C of the stator core 16 .
 コイル17は、スロット18に挿通される。コイル17は、例えば、銅で形成された複数の電気導体を束ねて構成される。コイル17は、第1電気導体11と、第2電気導体12と、を有する。第1電気導体11と第2電気導体12とは、互いに隣り合うように配置される。第1電気導体11の端部と、第2電気導体12の端部とは、スロット18から突出している。 The coil 17 is inserted through the slot 18. The coil 17 is configured by bundling a plurality of electrical conductors made of copper, for example. The coil 17 has a first electrical conductor 11 and a second electrical conductor 12 . The first electrical conductor 11 and the second electrical conductor 12 are arranged adjacent to each other. The ends of the first electrical conductor 11 and the ends of the second electrical conductor 12 protrude from the slot 18 .
 図3に示すように、第1電気導体11及び第2電気導体12は、例えば、厚さtが2mm、端面幅Wが4mmの端面形状を有する。また、第1電気導体11と第2電気導体12との隙間は、例えば、0.2~0.5mm程度である。 As shown in FIG. 3, the first electrical conductor 11 and the second electrical conductor 12 have end face shapes with a thickness t of 2 mm and an end face width W of 4 mm, for example. Also, the gap between the first electrical conductor 11 and the second electrical conductor 12 is, for example, about 0.2 to 0.5 mm.
 通常、第1電気導体11及び第2電気導体12には、樹脂等の被覆部19が全面に存在しているが、レーザ溶接時には、第1電気導体11及び第2電気導体12の端部の被覆部19を除去した状態とする。 Generally, the first electrical conductor 11 and the second electrical conductor 12 are covered with a coating 19 made of resin or the like over the entire surface. It is assumed that the covering portion 19 is removed.
 第1電気導体11及び第2電気導体12の端部同士は、必ずしも接触している必要は無く、わずかに隙間をあけて近接しているだけでよい。すなわち、レーザ出射開始時において、何らかの機構を用いて、第1電気導体11及び第2電気導体12の端部に外力を付与する等して、互いに密着させた状態で突き合わせておく必要は無い。 The ends of the first electrical conductor 11 and the second electrical conductor 12 do not necessarily have to be in contact with each other, but only need to be close to each other with a slight gap. That is, at the start of laser emission, there is no need to use some mechanism to apply an external force to the ends of the first electrical conductor 11 and the second electrical conductor 12 to keep them in close contact with each other.
 なお、本実施形態では、第1電気導体11及び第2電気導体12の端部同士が厚み方向に並ぶように配置されているが、この形態に限定するものではない。例えば、図4に示すように、第1電気導体11及び第2電気導体12の先端部同士を突き合わせた配置としてもよい。 In the present embodiment, the ends of the first electrical conductor 11 and the second electrical conductor 12 are arranged so as to line up in the thickness direction, but it is not limited to this form. For example, as shown in FIG. 4, the tip portions of the first electrical conductor 11 and the second electrical conductor 12 may be butted against each other.
 〈レーザ溶接装置〉
 図1に示すように、レーザ溶接装置1は、第1レーザ発振器21と、第2レーザ発振器22と、レーザヘッド25と、第1回折光学素子32と、回転テーブル34と、第1折返しミラー35と、第2レーザビーム走査系としての第1補正ミラー36と、制御部40と、を備える。
<Laser welding equipment>
As shown in FIG. 1, the laser welding apparatus 1 includes a first laser oscillator 21, a second laser oscillator 22, a laser head 25, a first diffractive optical element 32, a rotary table 34, and a first folding mirror 35. , a first correction mirror 36 as a second laser beam scanning system, and a controller 40 .
 第1レーザ発振器21は、第1レーザビームLB1を出射する。第1レーザ発振器21の出力は、例えば、1~5kWである。第1レーザビームLB1の波長は、800~1200nm、好ましくは、1070nm近傍(特に1060~1080nm)であり、IR波長と呼ばれる。第1レーザビームLB1は、レーザ出力を高めることができるので、レーザ溶接時には、ワークの溶融及び接合をメインで行うレーザビームとして用いられる。 The first laser oscillator 21 emits a first laser beam LB1. The output of the first laser oscillator 21 is, for example, 1 to 5 kW. The wavelength of the first laser beam LB1 is 800-1200 nm, preferably around 1070 nm (particularly 1060-1080 nm), and is called the IR wavelength. Since the first laser beam LB1 can increase the laser output, it is used as a laser beam mainly for melting and joining workpieces during laser welding.
 第1レーザ発振器21から出射された第1レーザビームLB1は、空間を介してレーザヘッド25に伝送される。なお、第1レーザビームLB1は、光ファイバ等を介して伝送されるようにしてもよい。 The first laser beam LB1 emitted from the first laser oscillator 21 is transmitted to the laser head 25 through space. Note that the first laser beam LB1 may be transmitted via an optical fiber or the like.
 第2レーザ発振器22は、第2レーザビームLB2を発振する。第2レーザ発振器22の出力は、例えば、数百W~1kW程度である。第2レーザビームLB2の波長は、第1レーザビームLB1の波長とは異なる。第2レーザビームLB2の波長は、450nm近傍(特に400~460nm)や、532nm近傍(特に520~550nm)であり、青色波長と呼ばれる。 The second laser oscillator 22 oscillates the second laser beam LB2. The output of the second laser oscillator 22 is, for example, about several hundred W to 1 kW. The wavelength of the second laser beam LB2 is different from the wavelength of the first laser beam LB1. The wavelength of the second laser beam LB2 is near 450 nm (particularly 400 to 460 nm) or near 532 nm (particularly 520 to 550 nm), and is called a blue wavelength.
 第2レーザビームLB2は、レーザ出力を高めることが難しく、レーザ加工開始時のワークの予熱、溶接きっかけ、溶接品質改善の用途として用いられる。しかしながら、今後、第2レーザビームLB2のレーザ出力やビーム品質が向上した場合には、第1レーザ発振器21の代わりとして用いるようにしてもよい。 It is difficult to increase the laser output of the second laser beam LB2, so it is used for preheating the workpiece at the start of laser processing, starting welding, and improving welding quality. However, if the laser output and beam quality of the second laser beam LB2 are improved in the future, it may be used instead of the first laser oscillator 21 .
 第2レーザ発振器22から出射された第2レーザビームLB2は、空間を介してレーザヘッド25に伝送される。なお、第2レーザビームLB2は、光ファイバ等を介して伝送されるようにしてもよい。 The second laser beam LB2 emitted from the second laser oscillator 22 is transmitted to the laser head 25 through space. Note that the second laser beam LB2 may be transmitted via an optical fiber or the like.
 なお、第1レーザビームLB1の波長及び第2レーザビームLB2の波長の組み合わせは、これに限定するものではない。 The combination of the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2 is not limited to this.
 レーザヘッド25は、第1レーザビーム走査系としてのガルバノミラー26と、fθレンズ28と、を有する。ガルバノミラー26は、ミラー角度を変更することで、第1レーザ発振器21から出射された第1レーザビームLB1と、第2レーザ発振器22から出射された第2レーザビームLB2との進行方向を制御する。なお、一般的に、ガルバノミラー26は、X軸用とY軸用の2枚のミラーで構成されるが、図が複雑となるため、1枚のみを図示して説明する。 The laser head 25 has a galvanomirror 26 as a first laser beam scanning system and an fθ lens 28 . The galvanomirror 26 controls the direction of travel of the first laser beam LB1 emitted from the first laser oscillator 21 and the second laser beam LB2 emitted from the second laser oscillator 22 by changing the mirror angle. . In general, the galvanomirror 26 is composed of two mirrors for the X-axis and the Y-axis, but since the drawing is complicated, only one mirror will be illustrated and explained.
 fθレンズ28は、ガルバノミラー26で反射された第1レーザビームLB1及び第2レーザビームLB2を集光する。fθレンズ28で集光された第1レーザビームLB1及び第2レーザビームLB2は、第1電気導体11及び第2電気導体12に照射される。 The fθ lens 28 converges the first laser beam LB1 and the second laser beam LB2 reflected by the galvanomirror 26 . The first electrical conductor 11 and the second electrical conductor 12 are irradiated with the first laser beam LB1 and the second laser beam LB2 condensed by the fθ lens 28 .
 第1回折光学素子32は、第2レーザ発振器22から出射された第2レーザビームLB2の集光距離を変化させる。このときに変化する集光距離は、第1回折光学素子32の設計によって決定される。第1回折光学素子32は、例えば、三次元回折格子(3D-DOE)で構成される。第1回折光学素子32は、第1レーザビームLB1の波長と第2レーザビームLB2の波長とが異なることで発生する軸上色収差を補正するために用いられる。 The first diffractive optical element 32 changes the focal length of the second laser beam LB2 emitted from the second laser oscillator 22. The condensing distance that changes at this time is determined by the design of the first diffractive optical element 32 . The first diffractive optical element 32 is composed of, for example, a three-dimensional diffraction grating (3D-DOE). The first diffractive optical element 32 is used to correct longitudinal chromatic aberration caused by the difference between the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2.
 なお、本実施形態では、第2レーザビームLB2の集光距離を変化させる機能を持たせるために、第1回折光学素子32を用いるようにしたが、例えば、第2レーザビームLB2を分岐させる機能を持たせるために、第1回折光学素子32を用いるようにしてもよい。このときに分岐される角度は、第1回折光学素子32の設計によって決定される。 In this embodiment, the first diffractive optical element 32 is used in order to have the function of changing the focal distance of the second laser beam LB2. The first diffractive optical element 32 may be used to provide . The branching angle at this time is determined by the design of the first diffractive optical element 32 .
 第1折返しミラー35は、第1レーザビームLB1を反射させる一方、第2レーザビームLB2を透過させる。第1レーザビームLB1は、第1折返しミラー35で反射された後、レーザヘッド25に導光される。第2レーザビームLB2は、第1折返しミラー35を透過した後、レーザヘッド25に導光される。 The first folding mirror 35 reflects the first laser beam LB1 and transmits the second laser beam LB2. The first laser beam LB1 is guided to the laser head 25 after being reflected by the first folding mirror 35 . The second laser beam LB2 is guided to the laser head 25 after passing through the first folding mirror 35 .
 第1補正ミラー36は、例えば、ピエゾミラーで構成される。第1補正ミラー36は、ミラー角度を変更することで、第2レーザ発振器22から出射された第2レーザビームLB2の進行方向を制御する。第1補正ミラー36は、第1レーザビームLB1の波長と第2レーザビームLB2の波長とが異なることで発生する倍率色収差を補正するために用いられる。 The first correction mirror 36 is composed of, for example, a piezo mirror. The first correction mirror 36 controls the traveling direction of the second laser beam LB2 emitted from the second laser oscillator 22 by changing the mirror angle. The first correction mirror 36 is used to correct the chromatic aberration of magnification caused by the difference between the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2.
 〈第1電気導体及び第2電気導体のレーザ溶接時の挙動〉
 図5に示すように、第1レーザビームLB1及び第2レーザビームLB2は、第1電気導体11の端部に出射される。第1電気導体11の一部が溶融することで、溶融部7が形成される。
<Behavior during laser welding of the first electric conductor and the second electric conductor>
As shown in FIG. 5 , the first laser beam LB1 and the second laser beam LB2 are emitted to the ends of the first electrical conductor 11 . A melted portion 7 is formed by partially melting the first electrical conductor 11 .
 第1レーザビームLB1及び第2レーザビームLB2を走査しながら出射を継続すると、溶融部7の溶融範囲が大きくなる。第1電気導体11及び第2電気導体12は、溶融部7を介して、互いに繋がった形状となる。 If the first laser beam LB1 and the second laser beam LB2 continue to be emitted while scanning, the melting range of the melting portion 7 increases. The first electrical conductor 11 and the second electrical conductor 12 are connected to each other via the fusion zone 7 .
 第1レーザビームLB1及び第2レーザビームLB2の出射を停止して、溶融部7を固化させると、第1電気導体11の端部と、第2電気導体12の端部とは、完全に接合された状態となる。 When the emission of the first laser beam LB1 and the second laser beam LB2 is stopped and the melted portion 7 is solidified, the end of the first electrical conductor 11 and the end of the second electrical conductor 12 are completely joined. state.
 なお、本実施形態では、第1レーザビームLB1及び第2レーザビームLB2を第1電気導体11の端部に出射しているが、この形態に限定するものではない。例えば、第1レーザビームLB1及び第2レーザビームLB2を第2電気導体12の端部に出射したり、第1電気導体11及び第2電気導体12の中間部分に出射する等してもよい。 In addition, in the present embodiment, the first laser beam LB1 and the second laser beam LB2 are emitted to the end of the first electrical conductor 11, but it is not limited to this form. For example, the first laser beam LB1 and the second laser beam LB2 may be emitted to the end portion of the second electrical conductor 12, or to the intermediate portion of the first electrical conductor 11 and the second electrical conductor 12, or the like.
 また、図6に示すように、レーザ溶接時には、第1レーザビームLB1及び第2レーザビームLB2を、第1電気導体11の端部と第2電気導体12の端部とを跨ぐように、螺旋状の軌跡に沿って走査させるようにすればよい。なお、第1レーザビームLB1及び第2レーザビームLB2の走査形状は、これに限定するものではなく、例えば、渦巻状であってもよい。 Further, as shown in FIG. 6, during laser welding, the first laser beam LB1 and the second laser beam LB2 are applied in a spiral shape so as to straddle the end of the first electrical conductor 11 and the end of the second electrical conductor 12. It is sufficient to scan along a trajectory of a shape. The scanning shape of the first laser beam LB1 and the second laser beam LB2 is not limited to this, and may be spiral, for example.
 〈制御部〉
 図1に示すように、制御部40は、第1レーザ発振器制御部41と、第2レーザ発振器制御部42と、レーザヘッド制御部50と、第1補正ミラー制御部51と、回転テーブル制御部55と、を有する。
<Control unit>
As shown in FIG. 1, the controller 40 includes a first laser oscillator controller 41, a second laser oscillator controller 42, a laser head controller 50, a first correction mirror controller 51, and a rotary table controller. 55 and
 第1レーザ発振器制御部41は、第1レーザ発振器21の動作を制御して、第1レーザビームLB1の出力を調整する。 The first laser oscillator control unit 41 controls the operation of the first laser oscillator 21 to adjust the output of the first laser beam LB1.
 第2レーザ発振器制御部42は、第2レーザ発振器22の動作を制御して、第2レーザビームLB2の出力を調整する。 The second laser oscillator control unit 42 controls the operation of the second laser oscillator 22 to adjust the output of the second laser beam LB2.
 レーザヘッド制御部50は、レーザヘッド25の動作を制御する。具体的に、レーザヘッド制御部50は、ガルバノミラー26のミラー角度を変更することで、回転電機10に対する第1レーザビームLB1及び第2レーザビームLB2の照射位置を変更する。 A laser head control unit 50 controls the operation of the laser head 25 . Specifically, the laser head control unit 50 changes the irradiation positions of the first laser beam LB<b>1 and the second laser beam LB<b>2 with respect to the rotary electric machine 10 by changing the mirror angle of the galvanomirror 26 .
 ガルバノミラー26は、fθレンズ28に対する第1レーザビームLB1及び第2レーザビームLB2の照射位置を変更することで、第1電気導体11及び第2電気導体12に対する第1レーザビームLB1第2レーザビームLB2の照射位置を変更する。 The galvanomirror 26 changes the irradiation positions of the first laser beam LB1 and the second laser beam LB2 with respect to the fθ lens 28 so that the first laser beam LB1 and the second laser beam LB1 with respect to the first electrical conductor 11 and the second electrical conductor 12 Change the irradiation position of LB2.
 第1補正ミラー制御部51は、第1補正ミラー36のミラー角度を変更することで、ガルバノミラー26に対する第2レーザビームLB2の照射位置を変更する。第1補正ミラー制御部51は、第1レーザ発振器21から出射された第1レーザビームLB1を基準にして、第2レーザビームLB2の照射位置を補正するように、第1補正ミラー36の動作を制御する。 The first correction mirror control unit 51 changes the irradiation position of the second laser beam LB2 on the galvanomirror 26 by changing the mirror angle of the first correction mirror 36 . The first correction mirror control unit 51 operates the first correction mirror 36 so as to correct the irradiation position of the second laser beam LB2 based on the first laser beam LB1 emitted from the first laser oscillator 21. Control.
 回転テーブル制御部55は、回転テーブル34の動作を制御する。具体的に、回転テーブル制御部55は、中心軸Cを中心に回転電機10を連続的に回転移動させることで、第1電気導体11及び第2電気導体12とレーザヘッド25との相対位置を変更する。 The rotary table control unit 55 controls the operation of the rotary table 34 . Specifically, the rotary table control unit 55 continuously rotates the rotary electric machine 10 about the central axis C, thereby adjusting the relative positions of the first electrical conductor 11 and the second electrical conductor 12 and the laser head 25. change.
 〈色収差について〉
 次に、互いに波長の異なる第1レーザビームLB1及び第2レーザビームLB2を、1つの光学系に用いた場合に発生する色収差について説明する。図7及び図8では、第1回折光学素子32が設けられていない状態を示す。
<About chromatic aberration>
Next, chromatic aberration that occurs when the first laser beam LB1 and the second laser beam LB2 having different wavelengths are used in one optical system will be described. 7 and 8 show a state in which the first diffractive optical element 32 is not provided.
 図7に示すように、第1レーザ発振器21から出射された第1レーザビームLB1は、第1折返しミラー35で折り返された後、45°の角度で傾斜したガルバノミラー26で反射され、fθレンズ28の中央部を透過して溶接対象部13に照射される。 As shown in FIG. 7, the first laser beam LB1 emitted from the first laser oscillator 21 is reflected by the first folding mirror 35, then reflected by the galvanomirror 26 inclined at an angle of 45°, and is reflected by the fθ lens. The light passes through the central portion of 28 and irradiates the welding target portion 13 .
 第2レーザ発振器22から出射された第2レーザビームLB2は、第1補正ミラー36で折り返された後、45°の角度で傾斜したガルバノミラー26で反射され、fθレンズ28の中央部を透過して溶接対象部13に照射される。第1レーザビームLB1と第2レーザビームLB2とは、同軸上に照射される。 The second laser beam LB2 emitted from the second laser oscillator 22 is reflected by the galvanomirror 26 inclined at an angle of 45° after being folded by the first correction mirror 36, and transmitted through the central portion of the fθ lens 28. The welding object 13 is irradiated with the light. The first laser beam LB1 and the second laser beam LB2 are coaxially irradiated.
 ここで、第1レーザビームLB1の波長と第2レーザビームLB2の波長とが異なっている場合、軸上色収差が発生して、第1レーザビームLB1の集光位置と、第2レーザビームLB2の集光位置とが異なる状態となる。 Here, when the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2 are different, axial chromatic aberration occurs, and the focal position of the first laser beam LB1 and the wavelength of the second laser beam LB2 are different. It becomes a state different from the condensing position.
 軸上色収差とは、光軸上に発生する色収差であり、光軸上で集光点の位置が異なる現象である。近赤外レーザと青色レーザを同じ光学系上に用いた場合、10~20mm程度の集光位置ずれが生じる。 Axial chromatic aberration is chromatic aberration that occurs on the optical axis, and is a phenomenon in which the position of the focal point differs on the optical axis. When a near-infrared laser and a blue laser are used on the same optical system, a focus position shift of about 10 to 20 mm occurs.
 通常、波長の短いレーザビームの方が、集光位置が短くなる。そのため、図7に示す例では、第1レーザビームLB1の集光点61よりも第2レーザビームLB2の集光点62が短い焦点位置となるイメージを図示している。ここで、軸上色収差量をaとする。 Normally, the shorter the wavelength of the laser beam, the shorter the focus position. Therefore, the example shown in FIG. 7 illustrates an image in which the focal point 62 of the second laser beam LB2 is shorter than the focal point 61 of the first laser beam LB1. Here, the longitudinal chromatic aberration amount is a.
 次に、図8に示すように、ガルバノミラー26の角度を45°から所定角度に変更した場合、第1レーザビームLB1の集光位置は、fθレンズ28のセンター位置からXY方向にずれた位置に変化する。このとき、第2レーザビームLB2の集光位置は、第1レーザビームLB1と同様に、fθレンズ28のセンター位置からXY方向にずれた位置に変化する。 Next, as shown in FIG. 8, when the angle of the galvanomirror 26 is changed from 45° to a predetermined angle, the condensing position of the first laser beam LB1 shifts from the center position of the fθ lens 28 in the XY directions. change to At this time, the focal position of the second laser beam LB2 changes to a position shifted in the XY directions from the center position of the fθ lens 28, like the first laser beam LB1.
 ここで、第1レーザビームLB1の波長と第2レーザビームLB2の波長とが異なっている場合、倍率色収差が発生して、第1レーザビームLB1の集光位置のずれ量と、第2レーザビームLB2の集光位置のずれ量とが異なることとなる。 Here, when the wavelength of the first laser beam LB1 and the wavelength of the second laser beam LB2 are different, chromatic aberration of magnification occurs, and the deviation amount of the focus position of the first laser beam LB1 and the second laser beam The amount of deviation of the condensing position of LB2 is different.
 倍率色収差とは、レーザ走査を行った場合に発生する収差であり、レーザ走査を行うXY方向に発生する。 "Lateral chromatic aberration" is an aberration that occurs when laser scanning is performed, and occurs in the XY directions in which laser scanning is performed.
 図8に示す例では、fθレンズ28のセンター位置に対する第1レーザビームLB1の集光点61のずれ量に比べて、第2レーザビームLB2の集光点62のずれ量が大きくなっているイメージを図示している。ここで、軸上色収差量をa、倍率色収差量をbとする。 In the example shown in FIG. 8, the amount of deviation of the focal point 62 of the second laser beam LB2 is larger than the amount of deviation of the focal point 61 of the first laser beam LB1 with respect to the center position of the fθ lens 28. is illustrated. Here, let a be the amount of axial chromatic aberration and b be the amount of lateral chromatic aberration.
 図9では、IR波長である第1レーザビームLB1と、青色波長である第2レーザビームLB2との間で、実際にはどれくらいの収差(集光位置ずれ)が発生するかを計算してグラフ図に示している。 FIG. 9 is a graph showing how much aberration (condensing position deviation) actually occurs between the first laser beam LB1 having an IR wavelength and the second laser beam LB2 having a blue wavelength. shown in the figure.
 図9に示すように、波長1070nmの第1レーザビームLB1と、波長450nmの第2レーザビームLB2との間では、軸上色収差量aが約17mm発生していることが分かる。 As shown in FIG. 9, between the first laser beam LB1 with a wavelength of 1070 nm and the second laser beam LB2 with a wavelength of 450 nm, an axial chromatic aberration amount a of about 17 mm is generated.
 図10では、第1レーザビームLB1と第2レーザビームLB2との波長の違いによって、どれくらいの倍率色収差が発生するかを計算してグラフ図に示している。 In FIG. 10, the degree of chromatic aberration of magnification caused by the difference in wavelength between the first laser beam LB1 and the second laser beam LB2 is calculated and shown in a graph.
 図10に示すように、1070nmの第1レーザビームLB1と、450nmの第2レーザビームLB2との間では、ガルバノミラー26のミラー振り角5°近辺において、倍率色収差量bが発生している。具体的に、図11に示すように、ミラー振り角5°近辺では、倍率色収差量bが約1.6mm発生していることが分かる。 As shown in FIG. 10, between the first laser beam LB1 of 1070 nm and the second laser beam LB2 of 450 nm, the amount of chromatic aberration of magnification b occurs in the vicinity of the mirror swing angle of 5° of the galvanomirror 26. Specifically, as shown in FIG. 11, it can be seen that the lateral chromatic aberration amount b of about 1.6 mm occurs near the mirror swing angle of 5°.
 このように、波長1070nmの第1レーザビームLB1と、波長450nmの第2レーザビームLB2とを用いてレーザ溶接を行う場合、軸上色収差量及び倍率色収差量が大きくなる。そのため、溶接品質を確保するためには、軸上色収差及び倍率色収差を低減する必要があり、例えば、実運用の目標値として、軸上色収差及び倍率色収差を、両方とも50μm以下とすることが望ましい。 Thus, when laser welding is performed using the first laser beam LB1 with a wavelength of 1070 nm and the second laser beam LB2 with a wavelength of 450 nm, the amount of axial chromatic aberration and the amount of chromatic aberration of magnification increase. Therefore, in order to ensure welding quality, it is necessary to reduce axial chromatic aberration and lateral chromatic aberration. .
 〈軸上色収差の低減について〉
 以下、軸上色収差を低減する方法について説明する。軸上色収差により発生した集光位置の違いを補正するには、第1レーザビームLB1の集光位置を基準とする場合、第2レーザビームLB2の集光距離を伸ばす必要がある。そのため、fθレンズ28に入光する第2レーザビームLB2の広がり角を変化させる方法が考えられる。
<Reduction of longitudinal chromatic aberration>
A method for reducing axial chromatic aberration will be described below. In order to correct the difference in the focal position caused by the longitudinal chromatic aberration, it is necessary to increase the focal distance of the second laser beam LB2 when the focal position of the first laser beam LB1 is used as a reference. Therefore, a method of changing the spread angle of the second laser beam LB2 incident on the fθ lens 28 is conceivable.
 本実施形態では、第1回折光学素子32を用いる方法について説明を行うが、第2レーザビームLB2の光路内に単レンズなどを追加するようにしてもよい。 In this embodiment, a method using the first diffractive optical element 32 will be described, but a single lens or the like may be added in the optical path of the second laser beam LB2.
 第1回折光学素子32は、一般的には、第2レーザビームLB2を分岐するために用いられる場合が多いが、本実施形態では、第2レーザビームLB2の分岐機能だけではなく、焦点距離を変更する機能も有する三次元回折光学素子(3D-DOE)を用いる。 Generally, the first diffractive optical element 32 is often used to split the second laser beam LB2. A three-dimensional diffractive optical element (3D-DOE) is used that also has the ability to modify.
 図12に示すように、第1回折光学素子32を設けない状態で、第2レーザビームLB2をfθレンズ28に導入した場合、第2レーザビームLB2は、集光点62において集光する。 As shown in FIG. 12, when the second laser beam LB2 is introduced into the f.theta.
 次に、図13に示すように、第2レーザビームLB2を二分岐する機能を有する分岐用光学素子101を光軸上に導入した場合、第2レーザビームLB2は、集光点62aと集光点62bとに二分岐される。図13に示す例では、集光点62aと集光点62bは、集光距離が同じである。 Next, as shown in FIG. 13, when a branching optical element 101 having a function of branching the second laser beam LB2 into two is introduced on the optical axis, the second laser beam LB2 is divided into a condensing point 62a and a condensing point 62a. It is bifurcated at point 62b. In the example shown in FIG. 13, the focal point 62a and the focal point 62b have the same focal length.
 ここで、本実施形態のような、第2レーザビームLB2の分岐機能だけではなく集光距離を変更する機能を有する第1回折光学素子32を導入した場合には、図14に示すように、2つに分岐させたレーザビームを、集光距離が異なる集光点62aと集光点62bに集光させることができる。 Here, when the first diffractive optical element 32 having not only the function of branching the second laser beam LB2 but also the function of changing the condensing distance as in this embodiment is introduced, as shown in FIG. The two-branched laser beams can be condensed at condensing points 62a and 62b having different condensing distances.
 ここで、集光点62aを含む面をA面、集光点62bを含む面をB面とする。各集光点の状態をビームプロファイラ等で観察すると、A面においては、集光点62aは集光しているが、集光点62b’は集光しておらず、ぼやけている。一方、B面においては、集光点62bは集光しているが、集光点62a’は集光しておらず、ぼやけている。このように、三次元回折格子としての第1回折光学素子32を用いることで、第2レーザビームLB2を分岐させるとともに、焦点距離を変更させることができる。 Here, the surface including the condensing point 62a is defined as the A surface, and the surface including the condensing point 62b is defined as the B surface. Observing the state of each condensed point with a beam profiler or the like, on the A plane, the condensed point 62a is condensed, but the condensed point 62b' is not condensed and is blurred. On the other hand, on the surface B, the condensed point 62b is condensed, but the condensed point 62a' is not condensed and is blurred. Thus, by using the first diffraction optical element 32 as a three-dimensional diffraction grating, it is possible to branch the second laser beam LB2 and change the focal length.
 そこで、本実施形態では、図15に示すように、第2レーザ発振器22と第1補正ミラー36との間に第1回折光学素子32を配置することで、第1レーザビームLB1の集光点61と、第2レーザビームLB2の集光点62とを、同軸上の同じ位置に設定することができるようにした。これにより、軸上色収差を低減することができる。 Therefore, in this embodiment, as shown in FIG. 15, the first diffractive optical element 32 is arranged between the second laser oscillator 22 and the first correction mirror 36 so that the focal point of the first laser beam LB1 is 61 and the focal point 62 of the second laser beam LB2 can be set at the same coaxial position. Thereby, longitudinal chromatic aberration can be reduced.
 〈倍率色収差の低減について〉
 ところで、図16に示すように、ガルバノミラー26のミラー角度を変更した場合には、第1レーザビームLB1の集光点61と第2レーザビームLB2の集光点62とが異なる位置になり、倍率色収差が発生することとなる。以下、倍率色収差を低減する方法について説明する。
<Reduction of lateral chromatic aberration>
By the way, as shown in FIG. 16, when the mirror angle of the galvanomirror 26 is changed, the focal point 61 of the first laser beam LB1 and the focal point 62 of the second laser beam LB2 are positioned at different positions. Lateral chromatic aberration occurs. A method for reducing the chromatic aberration of magnification will be described below.
 図17に示すように、第2レーザ発振器22から出射された第2レーザビームLB2は、第1補正ミラー36、ガルバノミラー26、fθレンズ28を介して溶接対象部13へ照射される。 As shown in FIG. 17, the second laser beam LB2 emitted from the second laser oscillator 22 is applied to the welding target portion 13 via the first correction mirror 36, the galvanomirror 26, and the fθ lens 28.
 ここで、第1補正ミラー36を微少量(例えば、10μrad以下)だけ動かすことで、第1レーザビームLB1の集光点61に対してXY方向に位置がずれていた第2レーザビームLB2の集光点62を、集光点61に近づけることができる。これにより、倍率色収差を低減することができる。すなわち、第1補正ミラー36は、ガルバノミラー26に対する第2レーザビームLB2の照射位置を変化させ、回転電機10における第2レーザビームLB2の集光点62を第1レーザビームLB1の集光点61に略一致させる。本実施形態において、「略一致」とは、2つの集光点の距離が2mm以内であることを意味する。一例において、第1補正ミラー36は、第2レーザビームLB2の集光点62が第1レーザビームLB1の集光点61から0.05mm以内になるように、第2レーザビームLB2の照射位置を変化させる。これにより、第1レーザビームLB1及び第2レーザビームLB2の集光位置をさらに近づけることができる。第1補正ミラー36は、第2レーザビームLB2の集光点62が第1レーザビームLB1の集光点61から0.01mm以内になるように、第2レーザビームLB2の照射位置を変化させてもよい。 Here, by moving the first correction mirror 36 by a very small amount (for example, 10 μrad or less), the second laser beam LB2 whose position is displaced in the XY direction with respect to the condensing point 61 of the first laser beam LB1 is focused. The light spot 62 can be brought closer to the condensing point 61 . Thereby, the chromatic aberration of magnification can be reduced. That is, the first correction mirror 36 changes the irradiation position of the second laser beam LB2 on the galvanomirror 26 so that the converging point 62 of the second laser beam LB2 on the rotary electric machine 10 is changed to the converging point 61 of the first laser beam LB1. approximately match. In this embodiment, "substantially coincident" means that the distance between the two focal points is within 2 mm. In one example, the first correction mirror 36 adjusts the irradiation position of the second laser beam LB2 so that the focal point 62 of the second laser beam LB2 is within 0.05 mm from the focal point 61 of the first laser beam LB1. change. This makes it possible to bring the condensing positions of the first laser beam LB1 and the second laser beam LB2 closer together. The first correction mirror 36 changes the irradiation position of the second laser beam LB2 so that the converging point 62 of the second laser beam LB2 is within 0.01 mm from the converging point 61 of the first laser beam LB1. good too.
 本実施形態では、特に、第1補正ミラー36の動作量が小さいため、高精度に位置調整ができる構成として、駆動部にピエゾ素子を用いたピエゾミラーを使用することが望ましい。なお、一般的なガルバノミラーなどを用いるようにしてもよい。 In this embodiment, since the amount of movement of the first correction mirror 36 is particularly small, it is desirable to use a piezo mirror using a piezo element in the drive section as a configuration that enables highly accurate position adjustment. Note that a general galvanomirror or the like may be used.
 《実施形態2》
 以下、前記実施形態1と同じ部分については同じ符号を付し、相違点についてのみ説明する。
<<Embodiment 2>>
In the following, the same reference numerals are given to the same parts as in the first embodiment, and only the points of difference will be described.
 図18に示すように、レーザ溶接装置1は、第1レーザ発振器21と、第2レーザ発振器22と、レーザヘッド25と、分岐用光学素子31と、第1回折光学素子32と、回転テーブル34と、第1折返しミラー35と、第1補正ミラー36と、制御部40と、を備える。 As shown in FIG. 18, the laser welding apparatus 1 includes a first laser oscillator 21, a second laser oscillator 22, a laser head 25, a branching optical element 31, a first diffraction optical element 32, a rotary table 34, and a , a first folding mirror 35 , a first correction mirror 36 , and a controller 40 .
 分岐用光学素子31は、第1レーザ発振器21から出射された第1レーザビームLB1を、2つの分岐ビームに分岐させる。このときに分岐される角度は、分岐用光学素子31の設計によって決定される。 The branching optical element 31 branches the first laser beam LB1 emitted from the first laser oscillator 21 into two branched beams. The branching angle at this time is determined by the design of the branching optical element 31 .
 分岐用光学素子31は、第1角度変更部31aに搭載される。第1角度変更部31aは、第1レーザビームLB1の光軸方向から見て、分岐用光学素子31を周方向に回転させることで、分岐用光学素子31の角度を変更する。これにより、2つの分岐ビームの分岐方向を変更することができる。 The branching optical element 31 is mounted on the first angle changing portion 31a. The first angle changer 31a changes the angle of the branching optical element 31 by rotating the branching optical element 31 in the circumferential direction when viewed from the optical axis direction of the first laser beam LB1. Thereby, the branching directions of the two branched beams can be changed.
 分岐用光学素子31は、例えば、DOE(回折光学素子)で構成される。なお、第1レーザビームLB1を単純に分岐させるだけであれば、分岐用光学素子31を三角プリズム等のその他の光学素子で構成してもよい。 The branching optical element 31 is composed of, for example, a DOE (diffractive optical element). If the first laser beam LB1 is simply split, the splitting optical element 31 may be composed of other optical elements such as a triangular prism.
 第1回折光学素子32は、第2角度変更部32aに搭載される。第2角度変更部32aは、第2レーザビームLB2の光軸方向から見て、第1回折光学素子32を周方向に回転させることで、第1回折光学素子32の角度を変更する。これにより、2つの分岐ビームの分岐方向を変更することができる。 The first diffractive optical element 32 is mounted on the second angle changer 32a. The second angle changing section 32a changes the angle of the first diffractive optical element 32 by rotating the first diffractive optical element 32 in the circumferential direction when viewed from the optical axis direction of the second laser beam LB2. Thereby, the branching directions of the two branched beams can be changed.
 制御部40は、第1レーザ発振器制御部41と、第2レーザ発振器制御部42と、第1角度変更制御部45と、第2角度変更制御部46と、レーザヘッド制御部50と、第1補正ミラー制御部51と、回転テーブル制御部55と、を有する。 The control unit 40 includes a first laser oscillator control unit 41, a second laser oscillator control unit 42, a first angle change control unit 45, a second angle change control unit 46, a laser head control unit 50, a first It has a correction mirror controller 51 and a rotary table controller 55 .
 第1角度変更制御部45は、分岐用光学素子31の角度を変更するように、第1角度変更部31aの動作を制御する。 The first angle change control section 45 controls the operation of the first angle change section 31a so as to change the angle of the branching optical element 31.
 第2角度変更制御部46は、第1回折光学素子32の角度を変更するように、第2角度変更部32aの動作を制御する。 The second angle change control section 46 controls the operation of the second angle change section 32a so as to change the angle of the first diffractive optical element 32.
 〈分岐ビームの色収差の低減について〉
 以下、第1レーザビームLB1を分岐させた場合に、第2レーザビームLB2との間で発生する色収差について説明する。
<Reduction of Chromatic Aberration of Branched Beams>
The chromatic aberration that occurs between the first laser beam LB1 and the second laser beam LB2 when the first laser beam LB1 is split will be described below.
 図19に示す例では、第1レーザビームLB1を分岐させる一方、第2レーザビームLB2を分岐させないようにしている。具体的に、第1レーザ発振器21と第1折返しミラー35との間には、分岐用光学素子31が配置される。分岐用光学素子31は、第1レーザビームLB1を分岐させる機能を有する。 In the example shown in FIG. 19, the first laser beam LB1 is split while the second laser beam LB2 is not split. Specifically, the branching optical element 31 is arranged between the first laser oscillator 21 and the first folding mirror 35 . The branching optical element 31 has a function of branching the first laser beam LB1.
 第1レーザビームLB1は、分岐用光学素子31を透過することで2つの分岐ビームに分岐される。第1レーザビームLB1は、集光位置において、集光点61aと集光点61bに分岐して集光する。 The first laser beam LB1 is split into two split beams by passing through the splitting optical element 31 . The first laser beam LB1 is split and condensed at a condensing point 61a and a condensing point 61b at the condensing position.
 図19に示す例では、第2レーザ発振器22と第1補正ミラー36との間には、レーザ分岐機能を有する第1回折光学素子32が配置されていない。そのため、第2レーザビームLB2は、集光位置において、一点の集光点62で集光する。 In the example shown in FIG. 19, the first diffractive optical element 32 having a laser splitting function is not arranged between the second laser oscillator 22 and the first correction mirror 36 . Therefore, the second laser beam LB2 is condensed at one condensing point 62 at the condensing position.
 ここで、第2レーザビームLB2の波長は、第1レーザビームLB1の波長よりも短いため、集光点62は、集光点61a及び集光点61bよりも集光距離が短くなる。そのため、第1レーザビームLB1と第2レーザビームLB2は、光軸方向に離れた位置で集光することになり、高品質なレーザ加工を行い難くなる。 Here, since the wavelength of the second laser beam LB2 is shorter than the wavelength of the first laser beam LB1, the focal point 62 has a shorter focal distance than the focal points 61a and 61b. Therefore, the first laser beam LB1 and the second laser beam LB2 are condensed at positions separated in the optical axis direction, making it difficult to perform high-quality laser processing.
 次に、図20に示す例では、第1レーザビームLB1及び第2レーザビームLB2を分岐させるようにしている。具体的に、第2レーザ発振器22と第1補正ミラー36との間には、レーザ分岐機能を有する分岐用光学素子101が配置される。分岐用光学素子101は、第2レーザビームLB2を分岐させる機能を有する。 Next, in the example shown in FIG. 20, the first laser beam LB1 and the second laser beam LB2 are split. Specifically, a branching optical element 101 having a laser branching function is arranged between the second laser oscillator 22 and the first correction mirror 36 . The branching optical element 101 has a function of branching the second laser beam LB2.
 第2レーザビームLB2は、分岐用光学素子101を透過することで2つの分岐ビームに分岐される。第2レーザビームLB2は、集光位置において、集光点62aと集光点62bに分岐して集光する。 The second laser beam LB2 is split into two split beams by passing through the splitting optical element 101. The second laser beam LB2 is split and condensed at a condensing point 62a and a condensing point 62b at the condensing position.
 ここで、第2レーザビームLB2の波長は、第1レーザビームLB1の波長よりも短いため、集光点62a及び集光点62bは、集光点61a及び集光点61bよりも集光距離が短くなる。そのため、第1レーザビームLB1と第2レーザビームLB2は、光軸方向に離れた位置で集光することになり、高品質なレーザ加工を行い難くなる。 Here, since the wavelength of the second laser beam LB2 is shorter than the wavelength of the first laser beam LB1, the focal point 62a and the focal point 62b have a longer focal distance than the focal point 61a and the focal point 61b. Shorten. Therefore, the first laser beam LB1 and the second laser beam LB2 are condensed at positions separated in the optical axis direction, making it difficult to perform high-quality laser processing.
 そこで、本実施形態では、図21に示すように、第2レーザ発振器22と第1補正ミラー36との間に、第2レーザビームLB2を分岐させる機能と集光距離を変化させる機能とを有する第1回折光学素子32を配置するようにした。 Therefore, in this embodiment, as shown in FIG. 21, a function of branching the second laser beam LB2 and a function of changing the focal distance are provided between the second laser oscillator 22 and the first correction mirror 36. The first diffractive optical element 32 is arranged.
 これにより、第1レーザビームLB1の分岐ビームの集光点61a及び集光点61bと、第2レーザビームLB2の分岐ビームの集光点62a及び集光点62bとを略一致させることができる。本実施形態において、「略一致」とは、2つの集光点の距離が2mm以内であることを意味する。一例において、第1回折光学素子32は、第2レーザビームLB2の集光点62a及び集光点62bが、それぞれ、第1レーザビームLB1の集光点61a及び集光点61bから0.05mm以内になるように、第2レーザビームLB2の集光距離を変化させる。これにより、第1レーザビームLB1及び第2レーザビームLB2の集光位置をさらに近づけることができる。第1回折光学素子32は、第2レーザビームLB2の集光点62a及び集光点62bが、それぞれ、第1レーザビームLB1の集光点61a及び集光点61bから0.01mm以内になるように、第2レーザビームLB2の集光距離を変化させてもよい。但し、加工条件から上記数値範囲内で第1レーザビームLB1及び第2レーザビームLB2の一方を先行させて動かすことも可能である。プレ加熱などによる溶接品質を向上させる取り組みでは、主に第2レーザビームLB2を先行させる場合が多い。 As a result, the condensing points 61a and 61b of the branched beams of the first laser beam LB1 and the condensing points 62a and 62b of the branched beams of the second laser beam LB2 can be substantially aligned. In this embodiment, "substantially coincident" means that the distance between the two focal points is within 2 mm. In one example, the first diffractive optical element 32 is such that the condensing points 62a and 62b of the second laser beam LB2 are within 0.05 mm from the condensing points 61a and 61b of the first laser beam LB1, respectively. The condensing distance of the second laser beam LB2 is changed so that . This makes it possible to bring the condensing positions of the first laser beam LB1 and the second laser beam LB2 closer together. The first diffractive optical element 32 is arranged so that the converging points 62a and 62b of the second laser beam LB2 are within 0.01 mm from the converging points 61a and 61b of the first laser beam LB1, respectively. Additionally, the focal distance of the second laser beam LB2 may be changed. However, it is also possible to move one of the first laser beam LB1 and the second laser beam LB2 in advance within the above numerical range from the processing conditions. In efforts to improve welding quality by preheating and the like, the second laser beam LB2 is often preceded.
 なお、前記実施形態1において説明したように、ガルバノミラー26のミラー角度を変更した場合、第1レーザビームLB1と第2レーザビームLB2との間で倍率色収差が発生する。この場合、第1補正ミラー36のミラー角度を変更して、倍率色収差を低減するようにすればよい。 As described in the first embodiment, when the mirror angle of the galvano mirror 26 is changed, chromatic aberration of magnification occurs between the first laser beam LB1 and the second laser beam LB2. In this case, the mirror angle of the first correction mirror 36 may be changed to reduce the chromatic aberration of magnification.
 《実施形態3》
 図22に示すように、第1補正ミラー36は、レンズ機能を有するミラーが搭載されたピエゾミラーで構成される。第1補正ミラー36の表面は、凹面状に形成される。
<<Embodiment 3>>
As shown in FIG. 22, the first correction mirror 36 is composed of a piezo mirror mounted with a mirror having a lens function. The surface of the first correction mirror 36 is formed concave.
 そして、第1補正ミラー36のミラー角度を変更することで、波長の異なる第1レーザビームLB1と第2レーザビームLB2の間で発生する軸上色収差及び倍率色収差を、両方とも低減することができる。 By changing the mirror angle of the first correction mirror 36, both the axial chromatic aberration and the chromatic aberration of magnification generated between the first laser beam LB1 and the second laser beam LB2 having different wavelengths can be reduced. .
 このような高度な光学系を用いた場合には、軸上色収差を低減するために第1回折光学素子32を設ける必要は無い。そのため、図22に示す例では、第1回折光学素子32が設けられておらず、よりシンプルな構成を採用することができる。 When such an advanced optical system is used, there is no need to provide the first diffractive optical element 32 to reduce longitudinal chromatic aberration. Therefore, in the example shown in FIG. 22, the first diffractive optical element 32 is not provided, and a simpler configuration can be adopted.
 《実施形態4》
 図23に示すように、レーザ溶接装置1は、第1レーザ発振器21と、第2レーザ発振器22と、第3レーザ発振器23と、レーザヘッド25と、分岐用光学素子31と、第1回折光学素子32と、第2回折光学素子33と、回転テーブル34と、第1折返しミラー35と、第1補正ミラー36と、第3レーザビーム走査系としての第2補正ミラー37と、第2折返しミラー38と、制御部40と、を備える。
<<Embodiment 4>>
As shown in FIG. 23, the laser welding apparatus 1 includes a first laser oscillator 21, a second laser oscillator 22, a third laser oscillator 23, a laser head 25, a branching optical element 31, and a first diffractive optical element. Element 32, second diffractive optical element 33, rotary table 34, first folding mirror 35, first correction mirror 36, second correction mirror 37 as a third laser beam scanning system, and second folding mirror 38 and a control unit 40 .
 第3レーザ発振器23は、第3レーザビームLB3を発振する。第3レーザビームLB3の波長は、第1レーザビームLB1及び第2レーザビームLB2の波長とは異なる。第3レーザ発振器23の波長は、例えば、1300nm近傍(特に1250~1350nm)である。 The third laser oscillator 23 oscillates the third laser beam LB3. The wavelength of the third laser beam LB3 is different from the wavelengths of the first laser beam LB1 and the second laser beam LB2. The wavelength of the third laser oscillator 23 is, for example, around 1300 nm (especially 1250 to 1350 nm).
 本実施形態では、第3レーザビームLB3は、溶接対象部13の溶込み深さを測定するための測定光を想定しているが、加工用レーザビームとして用いてもよい。 In this embodiment, the third laser beam LB3 is assumed to be a measurement light for measuring the penetration depth of the welding target portion 13, but may be used as a processing laser beam.
 また、第1レーザビームLB1、第2レーザビームLB2、第3レーザビームLB3の波長を全て異なるものとしているが、これに限定するものではない。例えば、第3レーザビームLB3の波長を、第1レーザビームLB1の波長と同じとして、第1レーザビームLB1のレーザ出力を高めるようにしてもよい。 Also, although the wavelengths of the first laser beam LB1, the second laser beam LB2, and the third laser beam LB3 are all different, the present invention is not limited to this. For example, the wavelength of the third laser beam LB3 may be the same as the wavelength of the first laser beam LB1, and the laser output of the first laser beam LB1 may be increased.
 また、第3レーザ発振器23から発振される第3レーザビームLB3を測定用に用いる場合、第2レーザ発振器22や第2レーザ発振器制御部42が搭載されていない構成としてもよい。つまり、第1レーザビームLB1で溶融された第1電気導体11及び第2電気導体12の溶込み深さを、第3レーザビームLB3で測定すればよい。 Further, when the third laser beam LB3 emitted from the third laser oscillator 23 is used for measurement, the configuration may be such that the second laser oscillator 22 and the second laser oscillator control section 42 are not mounted. That is, the penetration depth of the first electrical conductor 11 and the second electrical conductor 12 melted by the first laser beam LB1 can be measured by the third laser beam LB3.
 図24に示すように、波長の異なる第1レーザビームLB1、第2レーザビームLB2、及び第3レーザビームLB3の間では、軸上色収差が発生する。具体的に、中波長の第1レーザビームLB1の集光点61は、短波長の第2レーザビームLB2の集光点62に対して、光軸方向に所定の軸上色収差量a1だけ集光距離が長くなっている。また、長波長の第3レーザビームLB3の集光点63は、短波長の第2レーザビームLB2の集光点62に対して、光軸方向に所定の軸上色収差量a2だけ集光距離が長くなっている。 As shown in FIG. 24, longitudinal chromatic aberration occurs between the first laser beam LB1, the second laser beam LB2, and the third laser beam LB3 having different wavelengths. Specifically, the focal point 61 of the first medium-wavelength laser beam LB1 converges on the focal point 62 of the short-wavelength second laser beam LB2 by a predetermined longitudinal chromatic aberration amount a1 in the optical axis direction. Distance is getting longer. Further, the focal point 63 of the long-wavelength third laser beam LB3 is located at a focal distance a2 in the optical axis direction with respect to the focal point 62 of the short-wavelength second laser beam LB2. getting longer.
 図25に示すように、ガルバノミラー26のミラー角度を変更して、fθレンズ28へのレーザビームの入射角度を変化させると、波長の異なる第1レーザビームLB1、第2レーザビームLB2、及び第3レーザビームLB3の間では、倍率色収差が発生する。 As shown in FIG. 25, when the mirror angle of the galvanomirror 26 is changed to change the angle of incidence of the laser beams on the fθ lens 28, a first laser beam LB1, a second laser beam LB2, and a second laser beam LB2 having different wavelengths are obtained. A chromatic aberration of magnification occurs between the three laser beams LB3.
 具体的に、中波長の第1レーザビームLB1の集光点61は、短波長の第2レーザビームLB2の集光点62に対して、X方向に所定の倍率色収差量b1だけ集光位置がずれている。また、長波長の第3レーザビームLB3の集光点63は、短波長の第2レーザビームLB2の集光点62に対して、X方向に所定の倍率色収差量b2だけ集光位置がずれている。 Specifically, the focal point 61 of the first laser beam LB1 of medium wavelength is located at a focal point 62 of the second laser beam LB2 of short wavelength by a predetermined amount of chromatic aberration of magnification b1 in the X direction. out of alignment. Further, the condensing point 63 of the long-wavelength third laser beam LB3 is displaced from the condensing point 62 of the short-wavelength second laser beam LB2 by a predetermined amount of chromatic aberration of magnification b2 in the X direction. there is
 図23に示すように、第2回折光学素子33は、第3レーザ発振器23から出射された第3レーザビームLB3の集光距離を変化させる。このときに変化する集光距離は、第2回折光学素子33の設計によって決定される。第2回折光学素子33は、例えば、三次元回折格子(3D-DOE)で構成される。 As shown in FIG. 23, the second diffractive optical element 33 changes the focal length of the third laser beam LB3 emitted from the third laser oscillator . The condensing distance that changes at this time is determined by the design of the second diffractive optical element 33 . The second diffractive optical element 33 is composed of, for example, a three-dimensional diffraction grating (3D-DOE).
 なお、本実施形態では、第3レーザビームLB3の集光距離を変化させる機能を持たせるために、第2回折光学素子33を用いるようにしたが、例えば、第3レーザビームLB3を分岐させる機能を持たせるために、第2回折光学素子33を用いるようにしてもよい。このときに分岐される角度は、第2回折光学素子33の設計によって決定される。 In this embodiment, the second diffractive optical element 33 is used in order to change the condensing distance of the third laser beam LB3. The second diffractive optical element 33 may be used in order to provide the . The branching angle at this time is determined by the design of the second diffractive optical element 33 .
 第2回折光学素子33は、第3角度変更部33aに搭載される。第3角度変更部33aは、第3レーザビームLB3の光軸方向から見て、第2回折光学素子33を周方向に回転させることで、第2回折光学素子33の角度を変更する。これにより、第3レーザビームLB3の分岐方向を変更することができる。 The second diffractive optical element 33 is mounted on the third angle changer 33a. The third angle changer 33a changes the angle of the second diffractive optical element 33 by rotating the second diffractive optical element 33 in the circumferential direction when viewed from the optical axis direction of the third laser beam LB3. Thereby, the branching direction of the third laser beam LB3 can be changed.
 第2補正ミラー37は、例えば、ピエゾミラーで構成される。第2補正ミラー37は、ミラー角度を変更することで、第3レーザ発振器23から出射された第3レーザビームLB3の進行方向を制御する。第2補正ミラー37は、第1レーザビームLB1及び第2レーザビームLB2の波長と、第3レーザビームLB3の波長とが異なることで発生する倍率色収差を補正するために用いられる。 The second correction mirror 37 is composed of, for example, a piezo mirror. The second correction mirror 37 controls the traveling direction of the third laser beam LB3 emitted from the third laser oscillator 23 by changing the mirror angle. The second correction mirror 37 is used to correct the chromatic aberration of magnification caused by the wavelengths of the first laser beam LB1 and the second laser beam LB2 being different from the wavelength of the third laser beam LB3.
 第2折返しミラー38は、第2レーザビームLB2を透過させる一方、第3レーザビームLB3を反射させる。第2レーザビームLB2は、第2折返しミラー38及び第1折返しミラー35を透過した後、レーザヘッド25に導光される。第3レーザビームLB3は、第2折返しミラー38で反射された後、第1折返しミラー35を透過して、レーザヘッド25に導光される。 The second folding mirror 38 transmits the second laser beam LB2 and reflects the third laser beam LB3. The second laser beam LB2 is guided to the laser head 25 after passing through the second folding mirror 38 and the first folding mirror 35 . The third laser beam LB<b>3 is reflected by the second folding mirror 38 , passes through the first folding mirror 35 , and is guided to the laser head 25 .
 制御部40は、第1レーザ発振器制御部41と、第2レーザ発振器制御部42と、第3レーザ発振器制御部43と、第1角度変更制御部45と、第2角度変更制御部46と、第3角度変更制御部47と、レーザヘッド制御部50と、第1補正ミラー制御部51と、第2補正ミラー制御部52と、回転テーブル制御部55と、を有する。 The control unit 40 includes a first laser oscillator control unit 41, a second laser oscillator control unit 42, a third laser oscillator control unit 43, a first angle change control unit 45, a second angle change control unit 46, It has a third angle change control section 47 , a laser head control section 50 , a first correction mirror control section 51 , a second correction mirror control section 52 and a rotary table control section 55 .
 第3レーザ発振器制御部43は、第3レーザ発振器23の動作を制御して、第3レーザビームLB3の出力を調整する。 The third laser oscillator controller 43 controls the operation of the third laser oscillator 23 to adjust the output of the third laser beam LB3.
 第3角度変更制御部47は、第2回折光学素子33の角度を変更するように、第3角度変更部33aの動作を制御する。 The third angle change control section 47 controls the operation of the third angle change section 33a so as to change the angle of the second diffractive optical element 33.
 第2補正ミラー制御部52は、第2補正ミラー37のミラー角度を変更することで、ガルバノミラー26に対する第3レーザビームLB3の照射位置を変更する。ここで、第2補正ミラー制御部52は、第1レーザ発振器21から出射された第1レーザビームLB1を基準として、第3レーザビームLB3の照射位置を補正するように、第2補正ミラー37の動作を制御する。 The second correction mirror control unit 52 changes the irradiation position of the third laser beam LB3 on the galvanomirror 26 by changing the mirror angle of the second correction mirror 37 . Here, the second correction mirror control unit 52 controls the second correction mirror 37 so as to correct the irradiation position of the third laser beam LB3 based on the first laser beam LB1 emitted from the first laser oscillator 21. control behavior.
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
<<Other embodiments>>
The above embodiment may be configured as follows.
 本実施形態では、コイル17を銅で形成した構成について説明したが、例えば、アルミニウムやその他の材料で形成するようにしてもよい。 Although the coil 17 is made of copper in this embodiment, it may be made of aluminum or other materials.
 前記実施形態では、分岐用光学素子31や第1回折光学素子32は、第1レーザビームLB1や第2レーザビームLB2を単純に二分岐するタイプのものを用いているが、この形態に限定するものではない。例えば、スパッタやブローホールなどの発生をさらに抑制するために、二分岐されたメインのレーザビームの周りに、リング状、又は同心円の点分岐を加えたような形状に多分岐や異形状にビームを形成する光学素子を用いるようにしてもよい。 In the above-described embodiment, the branching optical element 31 and the first diffraction optical element 32 are of a type that simply branches the first laser beam LB1 and the second laser beam LB2 into two, but they are limited to this form. not a thing For example, in order to further suppress the occurrence of spatters and blowholes, the beam may be multi-branched or modified into a ring-shaped or concentric point-branched shape around the bifurcated main laser beam. You may make it use the optical element which forms.
 また、スパッタやブローホールを減らす対策の1つとして、溶接対象部13における第1レーザビームLB1の照射位置に基づいて、第1レーザビームLB1の出力を調整するようにしてもよい。例えば、螺旋状の軌跡に沿って第1レーザビームLB1を照射する際に、加工終端部でレーザ出力を下げるなど、加工中のレーザ出力制御なども行うようにしてもよい。 Further, as one measure for reducing spatters and blowholes, the output of the first laser beam LB1 may be adjusted based on the irradiation position of the first laser beam LB1 on the welding target portion 13. For example, when irradiating the first laser beam LB1 along the helical trajectory, the laser output may be controlled during processing, such as lowering the laser output at the end of processing.
 なお、分岐用光学素子31や第1回折光学素子32などの種類を変更する際には、レボルバー式の交換システムを用いるようにしてもよい。これにより、分岐用光学素子31の交換時の位置調整などの手間を軽減することができる。 When changing the type of the branching optical element 31 or the first diffractive optical element 32, a revolver-type replacement system may be used. As a result, it is possible to reduce labor for position adjustment and the like when exchanging the branching optical element 31 .
 以上説明したように、本発明は、波長の異なるレーザビームの集光位置を近づけながらレーザ溶接することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 INDUSTRIAL APPLICABILITY As described above, the present invention has a highly practical effect that laser welding can be performed while bringing the focusing positions of laser beams having different wavelengths closer together. expensive.
  1  レーザ溶接装置
 10  回転電機(ワーク)
 21  第1レーザ発振器
 22  第2レーザ発振器
 23  第3レーザ発振器
 26  ガルバノミラー(第1レーザビーム走査系)
 32  第1回折光学素子
 33  第2回折光学素子
 36  第1補正ミラー(第2レーザビーム走査系)
 37  第2補正ミラー(第3レーザビーム走査系)
 LB1 第1レーザビーム
 LB2 第2レーザビーム
 LB3 第3レーザビーム
1 laser welding device 10 rotating electric machine (work)
21 first laser oscillator 22 second laser oscillator 23 third laser oscillator 26 galvanomirror (first laser beam scanning system)
32 First diffractive optical element 33 Second diffractive optical element 36 First correction mirror (second laser beam scanning system)
37 Second correction mirror (third laser beam scanning system)
LB1 First laser beam LB2 Second laser beam LB3 Third laser beam

Claims (12)

  1.  ワークに対してレーザビームを照射して前記ワークをレーザ溶接するレーザ溶接装置であって、
     第1レーザビームを発振する第1レーザ発振器と、
     前記第1レーザビームとは波長の異なる第2レーザビームを発振する第2レーザ発振器と、
     前記ワークに対する前記第1レーザビーム及び前記第2レーザビームの照射位置を変更する第1レーザビーム走査系と、
     前記ワークに対する前記第2レーザビームの集光距離を変化させ、前記ワークにおける前記第2レーザビームの集光位置を前記第1レーザビームの集光位置に略一致させる第1回折光学素子と、を備える
    レーザ溶接装置。
    A laser welding device that irradiates a laser beam to a work to laser weld the work,
    a first laser oscillator that oscillates a first laser beam;
    a second laser oscillator that oscillates a second laser beam having a wavelength different from that of the first laser beam;
    a first laser beam scanning system that changes irradiation positions of the first laser beam and the second laser beam with respect to the workpiece;
    a first diffractive optical element that changes the focal distance of the second laser beam with respect to the work, and causes the focal position of the second laser beam on the work to substantially coincide with the focal position of the first laser beam; laser welding equipment.
  2.  ワークに対してレーザビームを照射して前記ワークをレーザ溶接するレーザ溶接装置であって、
     第1レーザビームを発振する第1レーザ発振器と、
     前記第1レーザビームとは波長の異なる第2レーザビームを発振する第2レーザ発振器と、
     前記ワークに対する前記第1レーザビーム及び前記第2レーザビームの照射位置を変更する第1レーザビーム走査系と、
     前記第1レーザビーム走査系に対する前記第2レーザビームの照射位置を変化させ、前記ワークにおける前記第2レーザビームの集光位置を前記第1レーザビームの集光位置に略一致させる第2レーザビーム走査系と、を備える
    レーザ溶接装置。
    A laser welding device that irradiates a laser beam to a work to laser weld the work,
    a first laser oscillator that oscillates a first laser beam;
    a second laser oscillator that oscillates a second laser beam having a wavelength different from that of the first laser beam;
    a first laser beam scanning system that changes irradiation positions of the first laser beam and the second laser beam with respect to the workpiece;
    A second laser beam that changes the irradiation position of the second laser beam with respect to the first laser beam scanning system and causes the condensed position of the second laser beam on the workpiece to substantially match the condensed position of the first laser beam. and a scanning system.
  3.  請求項1のレーザ溶接装置において、
     前記第1レーザビーム走査系に対する前記第2レーザビームの照射位置を変化させ、前記ワークにおける前記第2レーザビームの集光位置を前記第1レーザビームの集光位置に略一致させる第2レーザビーム走査系をさらに備える
    レーザ溶接装置。
    The laser welding device of claim 1,
    A second laser beam that changes the irradiation position of the second laser beam with respect to the first laser beam scanning system and causes the condensed position of the second laser beam on the workpiece to substantially match the condensed position of the first laser beam. A laser welding device further comprising a scanning system.
  4.  請求項1のレーザ溶接装置において、
     前記第1回折光学素子は、前記第2レーザビームの焦点距離を変更する機能を有する三次元回折格子を含む
    レーザ溶接装置。
    The laser welding device of claim 1,
    The laser welding device, wherein the first diffractive optical element includes a three-dimensional diffraction grating having a function of changing the focal length of the second laser beam.
  5.  請求項2又は3のレーザ溶接装置において、
     前記第2レーザビーム走査系は、ピエゾミラーを含む
    レーザ溶接装置。
    In the laser welding device according to claim 2 or 3,
    The laser welding device, wherein the second laser beam scanning system includes a piezo mirror.
  6.  請求項3に記載のレーザ溶接装置において、
     前記第1回折光学素子は、前記第2レーザビームの焦点距離を変更する機能を有する三次元回折格子を含み、
     前記第2レーザビーム走査系は、ピエゾミラーを含む
    レーザ溶接装置。
    In the laser welding device according to claim 3,
    the first diffractive optical element includes a three-dimensional diffraction grating having a function of changing the focal length of the second laser beam;
    The laser welding device, wherein the second laser beam scanning system includes a piezo mirror.
  7.  請求項1~6の何れか1つに記載のレーザ溶接装置において、
     前記第1回折光学素子は、前記第2レーザビームを分岐させる機能を有する
    レーザ溶接装置。
    In the laser welding device according to any one of claims 1 to 6,
    The laser welding device, wherein the first diffractive optical element has a function of branching the second laser beam.
  8.  請求項1~7の何れか1つに記載のレーザ溶接装置において、
     前記第1レーザビームとは波長の異なる第3レーザビームを発振する第3レーザ発振器をさらに備え、
     前記ワークにおける前記第1レーザビームの集光位置、前記第2レーザビームの集光位置、及び前記第3レーザビームの集光位置を略一致させるために、前記ワークに対する前記第3レーザビームの集光距離を変化させる第2回折光学素子をさらに備える
    レーザ溶接装置。
    In the laser welding device according to any one of claims 1 to 7,
    further comprising a third laser oscillator that oscillates a third laser beam having a wavelength different from that of the first laser beam;
    The third laser beam is focused on the workpiece in order to substantially match the focused position of the first laser beam, the focused position of the second laser beam, and the focused position of the third laser beam on the workpiece. A laser welding device further comprising a second diffractive optical element that changes the optical distance.
  9.  請求項1~7の何れか1つに記載のレーザ溶接装置において、
     前記第1レーザビームとは波長の異なる第3レーザビームを発振する第3レーザ発振器をさらに備え、
     前記ワークにおける前記第1レーザビームの集光位置、前記第2レーザビームの集光位置、及び前記第3レーザビームの集光位置を略一致させるために、前記第1レーザビーム走査系に対する前記第3レーザビームの照射位置を変化させる第3レーザビーム走査系をさらに備える
    レーザ溶接装置。
    In the laser welding device according to any one of claims 1 to 7,
    further comprising a third laser oscillator that oscillates a third laser beam having a wavelength different from that of the first laser beam;
    In order to substantially match the condensing position of the first laser beam, the condensing position of the second laser beam, and the condensing position of the third laser beam on the workpiece, the first laser beam scanning system is provided with the first laser beam scanning system. A laser welding apparatus further comprising a third laser beam scanning system for changing irradiation positions of the three laser beams.
  10.  請求項1のレーザ溶接装置において、
     前記第1回折光学素子は、前記第2レーザビームの集光位置が前記第1レーザビームの集光位置から0.05mm以内になるように、前記第2レーザビームの集光距離を変化させる
    レーザ溶接装置。
    The laser welding device of claim 1,
    The first diffractive optical element changes the focal distance of the second laser beam so that the focal position of the second laser beam is within 0.05 mm from the focal position of the first laser beam. Welding equipment.
  11.  請求項2のレーザ溶接装置において、
     前記第2レーザビーム走査系は、前記第2レーザビームの集光位置が前記第1レーザビームの集光位置から0.05mm以内になるように、前記第2レーザビームの照射位置を変化させる
    レーザ溶接装置。
    In the laser welding device of claim 2,
    The second laser beam scanning system changes the irradiation position of the second laser beam so that the condensing position of the second laser beam is within 0.05 mm from the condensing position of the first laser beam. Welding equipment.
  12.  ワークに対してレーザビームを照射して前記ワークをレーザ溶接するレーザ溶接方法であって、
     第1レーザビームを発振する工程と、
     前記第1レーザビームとは波長の異なる第2レーザビームを発振する工程と、
     前記ワークに対する前記第1レーザビーム及び前記第2レーザビームの照射位置を変更する工程と、
     前記ワークにおける前記第2レーザビームの集光位置を前記第1レーザビームの集光位置に略一致させる工程と、を備え、
     前記第2レーザビームの集光位置を略一致させる工程では、前記ワークに対する前記第2レーザビームの集光距離を変化させる工程、及び前記第2レーザビームの照射位置を変化させる工程のうち少なくとも一方を行う
    レーザ溶接方法。
    A laser welding method for laser welding the work by irradiating the work with a laser beam,
    oscillating a first laser beam;
    oscillating a second laser beam having a wavelength different from that of the first laser beam;
    changing irradiation positions of the first laser beam and the second laser beam with respect to the workpiece;
    a step of substantially matching the condensing position of the second laser beam on the workpiece with the condensing position of the first laser beam;
    In the step of substantially matching the focal position of the second laser beam, at least one of the step of changing the focal distance of the second laser beam with respect to the workpiece and the step of changing the irradiation position of the second laser beam. laser welding method.
PCT/JP2022/033392 2022-01-14 2022-09-06 Laser welding device and laser welding method WO2023135860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022004409 2022-01-14
JP2022-004409 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023135860A1 true WO2023135860A1 (en) 2023-07-20

Family

ID=87278810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033392 WO2023135860A1 (en) 2022-01-14 2022-09-06 Laser welding device and laser welding method

Country Status (1)

Country Link
WO (1) WO2023135860A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063670A1 (en) * 2007-11-14 2009-05-22 Hamamatsu Photonics K.K. Laser machining device and laser machining method
JP2010082672A (en) * 2008-10-01 2010-04-15 Hamamatsu Photonics Kk Laser processing apparatus and laser processing method
JP2014024105A (en) * 2012-07-30 2014-02-06 Miyachi Technos Corp Laser processing system, and laser processing method
JP2019536635A (en) * 2016-11-21 2019-12-19 ゼネラル・エレクトリック・カンパニイ In-line laser scanner for cooling rate control of direct metal laser welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063670A1 (en) * 2007-11-14 2009-05-22 Hamamatsu Photonics K.K. Laser machining device and laser machining method
JP2010082672A (en) * 2008-10-01 2010-04-15 Hamamatsu Photonics Kk Laser processing apparatus and laser processing method
JP2014024105A (en) * 2012-07-30 2014-02-06 Miyachi Technos Corp Laser processing system, and laser processing method
JP2019536635A (en) * 2016-11-21 2019-12-19 ゼネラル・エレクトリック・カンパニイ In-line laser scanner for cooling rate control of direct metal laser welding

Similar Documents

Publication Publication Date Title
CN112469526B (en) Systems and methods for monitoring and/or controlling wobble processing using in-line coherent imaging (ICI)
JP7013413B2 (en) Laser processing equipment and laser processing method
JP7154132B2 (en) Laser cutting head with dual moveable mirrors to provide beam alignment and/or wobble movement
KR102536222B1 (en) Laser welding head with dual movable mirrors providing beam movement
EP3395490B1 (en) Laser welding method and laser welding apparatus
WO2019198442A1 (en) Laser welding method, and laser welding device
JP5446334B2 (en) Laser welding apparatus and laser welding method
JP4687243B2 (en) Laser welding method and laser welding apparatus
WO2022004610A1 (en) Laser welding device and laser welding method
WO2023135860A1 (en) Laser welding device and laser welding method
JP7060335B2 (en) Welding equipment and welding method
WO2023135859A1 (en) Laser welding device
JP6780544B2 (en) Laser welding equipment
WO2023281930A1 (en) Laser welding device, laser welding method, and method for manufacturing rotary electric machine
JP7113315B2 (en) Laser welding method
JP7262081B2 (en) LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
JP2022011883A (en) Welding method, welding equipment and welding structure of metal conductor
JP2023112735A (en) Laser weld method
US20230278139A1 (en) Welding method and laser device
US20230330776A1 (en) Method of manufacturing metal component and laser welding apparatus
JPH04322892A (en) Laser beam machine and laser beam machining method
US20220395925A1 (en) Method for laser machining a workpiece and associated laser machining system
US20180361515A1 (en) Method for detecting hole in laser-welded portion and laser welding device
WO2021107042A1 (en) Laser oscillator
JP2024052264A (en) Laser welding method and laser welding apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920384

Country of ref document: EP

Kind code of ref document: A1