WO2021107042A1 - Laser oscillator - Google Patents

Laser oscillator Download PDF

Info

Publication number
WO2021107042A1
WO2021107042A1 PCT/JP2020/044088 JP2020044088W WO2021107042A1 WO 2021107042 A1 WO2021107042 A1 WO 2021107042A1 JP 2020044088 W JP2020044088 W JP 2020044088W WO 2021107042 A1 WO2021107042 A1 WO 2021107042A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
diffraction grating
wavelength band
laser beam
optical path
Prior art date
Application number
PCT/JP2020/044088
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 江泉
山下 隆之
諒 石川
加藤 直也
元希 森岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021107042A1 publication Critical patent/WO2021107042A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to a laser oscillator.
  • Patent Document 1 discloses a laser processing apparatus in which laser light emitted from a plurality of fiber lasers having different wavelengths is beam-synthesized on the same optical axis by using a WDM coupler as a wavelength-synthesizing element for beam synthesis. Has been done.
  • Patent Document 1 since a plurality of fiber lasers are provided in order to emit laser light having different wavelengths, there is a problem that the number of parts increases, the cost increases, and the device becomes large. Further, since the WDM coupler is used for beam synthesis, there is a problem that the optical axis adjustment work becomes complicated.
  • the present invention has been made in view of this point, and an object of the present invention is to enable the wavelength of a laser beam to be changed according to a processing purpose with a relatively simple configuration.
  • the first aspect is a laser oscillator capable of emitting laser light having different wavelength bands, which emits a plurality of first emitting portions for emitting laser light in the first wavelength band and laser light in the second wavelength band.
  • a first diffraction grating that combines a plurality of second emission units, a plurality of laser beams in the first wavelength band, a second diffraction grating that combines a plurality of laser beams in the second wavelength band, and the first emission.
  • the control unit includes a unit, a second emission unit, and a control unit that controls the operation of the switching mechanism, and the control unit emits laser light in the first wavelength band and puts the first diffraction grating on the optical path.
  • the first operation of arranging the grating and the second operation of emitting the laser beam of the second wavelength band and arranging the second diffraction grating on the optical path are alternately executed at a predetermined cycle. ..
  • the switching mechanism switches the first diffraction grating or the second diffraction grating arranged on the optical path of the laser light according to the wavelength band of the laser light. Specifically, when the laser beam of the first wavelength band is emitted from the first emission unit, the first diffraction grating is arranged on the optical path of the laser beam. On the other hand, when the laser beam of the second wavelength band is emitted from the second emission unit, the second diffraction grating is arranged on the optical path of the laser beam.
  • the optical axis of the laser light coupled by the first diffraction grating or the second diffraction grating becomes the same. can do. Therefore, it is possible to transmit the laser beam while keeping the optical system after the diffraction grating in common.
  • control unit alternately executes the first operation and the second operation at a predetermined cycle.
  • first operation the laser beam of the first wavelength band is emitted and the first diffraction grating is arranged on the optical path.
  • second operation the laser beam of the second wavelength band is emitted and the second diffraction grating is arranged on the optical path.
  • the laser beam in the first wavelength band and the laser beam in the second wavelength band are alternately emitted at a predetermined period, so that the laser beam in the first wavelength band and the laser beam in the second wavelength band are combined.
  • the shape allows processing of the object to be processed.
  • the laser beam in the first wavelength band has a narrowed beam diameter by alternately emitting the laser beam in the first wavelength band and the laser beam in the second wavelength band while focusing on the laser beam in the first wavelength band.
  • the laser beam of the second wavelength band is emitted ahead of the laser beam of the first wavelength band in the processing direction, it is possible to preheat the object to be processed.
  • the second aspect is characterized in that, in the first aspect, the control unit changes the execution time of the first operation and the execution time of the second operation.
  • the execution time of the first operation and the second operation can be changed according to the purpose of laser machining.
  • a third aspect is characterized in that, in the first or second aspect, the control unit makes the execution time of the second operation longer than the execution time of the first operation.
  • the execution time of the second operation is made longer than the execution time of the first operation.
  • the time for emitting the laser light (blue laser light) in the second wavelength band is set to the laser in the first wavelength band. Make it longer than the time to emit light (infrared laser light).
  • a fourth aspect is characterized in that, in the first or second aspect, the control unit makes the execution time of the first operation longer than the execution time of the second operation.
  • the execution time of the first operation is made longer than the execution time of the second operation.
  • the object to be processed is made of iron, which is a low-reflection material having a high laser absorption rate
  • the time for emitting the laser beam (red laser beam) in the first wavelength band is set to the laser beam in the second wavelength band (red laser beam). Make it longer than the time to emit the blue laser beam).
  • a fifth aspect is, in any one of the first to fourth aspects, the switching mechanism comprises a support shaft on which the first diffraction grating and the second diffraction grating are supported at intervals in the circumferential direction. It is characterized by having a rotating portion for arranging the first diffraction grating or the second diffraction grating on the optical path of the laser beam by rotating the support shaft.
  • the first diffraction grating or the second diffraction grating is arranged on the optical path of the laser beam by rotating the support shaft by the rotating portion. Thereby, the first diffraction grating or the second diffraction grating can be switched according to the wavelength band of the laser light.
  • a sixth aspect is that in any one of the first to fourth aspects, the switching mechanism causes one of the first diffraction grating and the second diffraction grating to advance onto the optical path of the laser beam, and at the same time, It is characterized by having an advancing / retreating portion for retracting the first diffraction grating or the other of the second diffraction grating from the optical path.
  • one of the first diffraction grating or the second diffraction grating is advanced to the optical path of the laser beam, and the other of the first diffraction grating or the second diffraction grating is retracted from the optical path by the advancing / retreating portion. ing.
  • the first diffraction grating or the second diffraction grating can be switched according to the wavelength band of the laser light.
  • a seventh aspect includes, in any one of the first to sixth aspects, an input unit for inputting information about the material of the object to be processed by the laser beam, and the switching mechanism is the input unit. It is characterized in that the first diffraction grating or the second diffraction grating is switched based on the input information.
  • the first diffraction grating or the second diffraction grating is switched based on the information regarding the material of the processing object input in the input unit.
  • the first diffraction grating or the second diffraction grating can be switched according to the laser beam in the wavelength band most suitable for processing the object to be processed.
  • the wavelength of the laser beam can be changed according to the processing purpose with a relatively simple configuration.
  • FIG. 1 is a schematic view showing a configuration of a laser processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration of a laser oscillator when a laser beam of the first wavelength band is emitted.
  • FIG. 3 is a diagram showing a configuration of a laser oscillator when a laser beam in the second wavelength band is emitted.
  • FIG. 4 is a diagram showing the configuration of the first diffraction grating.
  • FIG. 5 is a diagram showing the configuration of the second diffraction grating.
  • FIG. 6 is a diagram showing switching timing of laser light in the first wavelength band and the second wavelength band.
  • FIG. 7 is a diagram showing a beam profile in which laser beams of the first wavelength band and the second wavelength band are superimposed.
  • FIG. 1 is a schematic view showing a configuration of a laser processing apparatus according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration of a laser oscillator when a laser beam of the first wavelength
  • FIG. 8 is a side sectional view showing a state in which the laser beam L1 in the first wavelength band is emitted to the object to be processed.
  • FIG. 9 is a side sectional view showing a state in which the laser beam L2 in the second wavelength band is emitted to the object to be processed.
  • FIG. 10 is a diagram showing a configuration of a laser oscillator when a laser beam of the first wavelength band is emitted in the second embodiment.
  • FIG. 11 is a diagram showing a configuration of a laser oscillator when a laser beam of a second wavelength band is emitted.
  • FIG. 12 is a diagram showing a configuration of a laser oscillator when a laser beam of the first wavelength band is emitted in the third embodiment.
  • FIG. 13 is a diagram showing a configuration of a laser oscillator when a laser beam in the second wavelength band is emitted.
  • FIG. 14 is a diagram showing switching timing of laser light in the first wavelength band and the second wavelength band in other embodiments.
  • FIG. 15 is a diagram showing switching timing of laser light in the first wavelength band, the second wavelength band, and the third wavelength band in other embodiments.
  • FIG. 16 is a diagram showing a beam profile in which laser beams in the first wavelength band, the second wavelength band, and the third wavelength band are superimposed.
  • the laser processing device 1 includes a laser oscillator 10, an optical fiber 2, a laser processing head 3, an assist gas supply device 4, a manipulator 5, a control unit 6, and an input unit 7. I have.
  • the laser oscillator 10 outputs laser light and incidents on the optical fiber 2.
  • the optical fiber 2 transmits the laser light output by the laser oscillator 10 to the laser processing head 3.
  • the laser processing head 3 has a collimator lens (not shown) and a condenser lens (not shown).
  • the collimator lens parallelizes the first laser beam L1 in the first wavelength band and the second laser beam L2 in the second wavelength band emitted from the emission end of the optical fiber 2.
  • the condenser lens collects the first laser beam L1 and the second laser beam L2 parallelized by the collimator lens.
  • the laser processing head 3 emits the laser light transmitted by the optical fiber 2 and condensed by a condenser lens (not shown) to the processing object W.
  • a condenser lens (not shown)
  • the material of the object W to be processed mild steel, stainless steel, aluminum alloy, copper and the like are used.
  • the assist gas supply device 4 is connected to the laser processing head 3.
  • the assist gas supply device 4 supplies the assist gas to the laser processing head 3.
  • the manipulator 5 changes the position and angle of the laser processing head 3 with a high degree of freedom. As a result, the laser beam emitted from the laser processing head 3 can be emitted to the processing position of the processing object W.
  • the control unit 6 is connected to the laser oscillator 10, the assist gas supply device 4, and the manipulator 5.
  • the control unit 6 controls the output of the laser beam from the laser oscillator 10, the amount of assist gas supplied from the assist gas supply device 4, and the operation of the manipulator 5.
  • the input unit 7 inputs various set values related to the operation of the laser oscillator 10. For example, information about the material of the processing object W to be processed by the laser beam is input to the input unit 7. In the example shown in FIG. 1, the input unit 7 is connected to the laser oscillator 10, but the input unit 6 may be connected to the control unit 6.
  • the laser oscillator 10 includes a first semiconductor laser device 20, a second semiconductor laser device 25, a first diffraction grating 11, a second diffraction grating 12, a switching mechanism 30, and an output coupler 15. And a condenser lens 16.
  • the operations of the first semiconductor laser device 20, the second semiconductor laser device 25, and the switching mechanism 30 are controlled by the control unit 6.
  • the first semiconductor laser device 20 has a plurality of first laser diodes 21 (first emission unit).
  • the first laser diode 21 has a plurality of emitters (not shown).
  • the first laser diode 21 emits the first laser beam L1 by synthesizing the outputs of a plurality of emitters.
  • a plurality of condenser lenses are arranged on the exit side of the plurality of first laser diodes 21 (not shown).
  • the first laser beam L1 emitted from the plurality of first laser diodes 21 may be focused by one condenser lens.
  • the first laser diode 21 is composed of laser diodes LD11 to LD1n (n is a natural number) that emits the first laser beam L1 in the same wavelength band.
  • the first wavelength band of the first laser beam L1 emitted from the first laser diode 21 is 900 nm.
  • the first laser beam L1 is an infrared laser beam.
  • the second semiconductor laser device 25 has a plurality of second laser diodes 26 (second emitting portions).
  • the second laser diode 26 has a plurality of emitters (not shown).
  • the second laser diode 26 emits the second laser beam L2 by combining the outputs of the plurality of emitters.
  • a plurality of condenser lenses are arranged on the exit side of the plurality of second laser diodes 26 (not shown).
  • the second laser beam L2 emitted from the plurality of second laser diodes 26 may be focused by one condenser lens.
  • the second laser diode 26 is composed of laser diodes LD21 to LD2n (n is a natural number) that emits the second laser beam L2 in the same wavelength band.
  • n is a natural number
  • the second wavelength band of the second laser beam L2 emitted from the second laser diode 26 is 450 nm.
  • the second laser beam L2 is a blue laser beam.
  • the first wavelength band of the first laser beam L1 emitted from the first laser diode 21 and the second wavelength band of the second laser beam L2 emitted from the second laser diode 26 are different.
  • the first diffraction grating 11 combines a plurality of first laser beams L1 in the first wavelength band.
  • the second diffraction grating 12 couples a plurality of second laser beams L2 in the second wavelength band.
  • the switching mechanism 30 has a support shaft 31 and a rotating portion 32.
  • the first diffraction grating 11 and the second diffraction grating 12 are supported on the support shaft 31 at intervals in the circumferential direction.
  • the support shaft 31 can be rotated by the rotating portion 32.
  • the rotating unit 32 is composed of, for example, a motor and a speed reducer. By rotating the support shaft 31 by the rotating unit 32, the first diffraction grating 11 or the second diffraction grating 12 arranged on the optical path of the laser beam can be switched.
  • the first laser beam L1 in the first wavelength band is emitted from the plurality of first laser diodes 21. Therefore, the rotating unit 32 rotates the support shaft 31 so that the first diffraction grating 11 is arranged on the optical path of the laser beam.
  • the rotating unit 32 rotates the support shaft 31 so that the second diffraction grating 12 is arranged on the optical path of the laser beam.
  • the end portion of the first semiconductor laser device 20 on the first diffraction grating 11 side is the laser emission end.
  • the end of the first semiconductor laser device 20 opposite to the laser emitting end is a total reflection end that totally reflects the laser light.
  • the first laser beam L1 emitted from the laser emission end of the first semiconductor laser device 20 passes through the first diffraction grating 11 and is partially reflected by the output coupler 15.
  • the first laser beam L1 reflected by the output coupler 15 passes through the first diffraction grating 11 and returns to the emitted first semiconductor laser device 20.
  • the first laser beam L1 returned to the first semiconductor laser device 20 is reflected at the total reflection end of the first semiconductor laser device 20.
  • the laser oscillator 10 is configured between the total reflection end of the first semiconductor laser device 20 and the output coupler 15 via the first diffraction grating 11. This configuration is called an external resonator because the laser beam is oscillated including the region outside the first semiconductor laser device 20. Since the second semiconductor laser device 25 has the same configuration, the description thereof will be omitted.
  • the first laser light L1 emitted from the plurality of first laser diodes 21 is incident on the first diffraction grating 11 from different directions when viewed from the first diffraction grating 11.
  • the first diffraction grating 11 has a feature that a plurality of first laser beams L1 having different incident angles are emitted at a common emission angle.
  • the first semiconductor laser device 20 and the output coupler 15 form an external cavity via the first diffraction grating 11, so that the beam quality of each first laser beam L1 is not deteriorated. It is possible to obtain the first laser beam L1 having a higher output, which is the sum of the outputs.
  • the rotating unit 32 switches between the first diffraction grating 11 and the second diffraction grating 12 based on the information regarding the material of the processing object W input by the input unit 7.
  • the longer the wavelength band of the laser beam 800 to 900 nm
  • the shorter the wavelength band of the laser beam for example, 400 to 450 nm
  • the laser beam of the first wavelength band or the second wavelength band is selected according to the material of the object W to be processed, and the first diffraction grating 11 or the first diffraction grating 11 or the second wavelength band corresponding to the first wavelength band or the second wavelength band is selected. It is switched to the second diffraction grating 12.
  • the focal length of the condenser lens 16 may shift by the wavelength difference. Therefore, after switching the wavelength of the laser light, the distance between the optical fiber 2 and the condenser lens 16 may be finely adjusted, or the chromatic aberration of the condenser lens 16 may be corrected.
  • the laser beam emitted to the workpiece W is switched at a predetermined cycle.
  • control unit 6 alternately executes the first operation and the second operation at a predetermined cycle.
  • first operation the first laser beam L1 in the first wavelength band is emitted and the first diffraction grating 11 is arranged on the optical path (see FIG. 2).
  • second operation the second laser beam L2 in the second wavelength band is emitted and the second diffraction grating 12 is arranged on the optical path (see FIG. 3).
  • the control unit 6 changes the execution time of the first operation and the second operation according to the purpose of laser machining.
  • the execution time T2 of the second operation is made longer than the execution time T1 of the first operation.
  • it is set in the range of 0.1 ⁇ T1 / T2 ⁇ 1.
  • the first laser beam L1 in the first wavelength band and the second laser beam L2 in the second wavelength band are alternately emitted at a predetermined cycle to obtain the first wavelength band and the second wavelength band.
  • the object W to be processed can be processed with a beam shape in which laser beams are combined (see FIG. 7).
  • the laser light of the first wavelength band and the laser light of the second wavelength band are alternately emitted while focusing on the first laser light L1 of the first wavelength band.
  • the center of the beam required for processing the processing target object W is centered.
  • the molten pool 41 can be formed by securing sufficient energy.
  • the opening area of the keyhole 42 is widened and generated in the vicinity of the opening. It is possible to suppress the occurrence of easy spatter. Further, by widening the opening area of the keyhole 42, the collapse of the keyhole 42 can be suppressed. As a result, spatter generated by the collapse of the keyhole 42 can be suppressed.
  • the second laser beam L2 in the second wavelength band in which the beam diameter is widened in front of the first laser beam L1 in the first wavelength band in the processing direction (direction of the white arrow in the figure). Is emitted, so that the object W to be processed can be preheated.
  • the lap ratio of the first laser beam L1 in the first wavelength band is set, for example, in the range of 60% to 80%.
  • the lap ratio is preferably set to 60%.
  • the lap ratio is an index indicating the degree of overlap between the first laser beam L1 emitted at the current position and the first laser beam L1 emitted at the position one pulse before in pulse welding.
  • the lap ratio is a beam of laser light of the first laser beam L1 emitted at the current position in the processing direction and the first laser beam L1 emitted at the position one pulse before in pulse welding. It is an index showing the degree of overlap of the diameter (spot diameter) or the nugget diameter of the laser beam (the degree of overlap of the diameter (nugget diameter) of the circularly melted welded portion by the laser beam of pulse welding).
  • the lap ratio is represented by b / a.
  • the lap ratio of the laser light in the first wavelength band and the second wavelength band is set in the range of 60% to 80%.
  • the lap ratio is preferably set to 60%.
  • the lap ratio is the degree of overlap between the first laser beam L1 in the first wavelength band emitted at the current position and the second laser beam L2 in the second wavelength band emitted at the position one pulse before in pulse welding. It is an index showing.
  • the lap ratio is the first laser beam L1 in the first wavelength band emitted at the current position in the processing direction and the second laser beam L1 in the second wavelength band emitted at the position one pulse before.
  • Embodiment 2 >> Hereinafter, the same parts as those in the first embodiment are designated by the same reference numerals, and only the differences will be described.
  • the first diffraction grating 11 and the second diffraction grating 12 are arranged so as to be lined up on the same plane.
  • the first diffraction grating 11 and the second diffraction grating 12 advance and retreat on the optical path of the laser beam by the switching mechanism 30.
  • the switching mechanism 30 has an advancing / retreating portion 35.
  • the advancing / retreating portion 35 is composed of, for example, a linear actuator.
  • the advancing / retreating portion 35 advances the first diffraction grating 11 onto the optical path of the laser beam (see FIG. 10).
  • the second diffraction grating 12 is retracted from the optical path of the laser beam.
  • the advancing / retreating portion 35 advances the second diffraction grating 12 onto the optical path of the laser beam (see FIG. 11). At this time, the first diffraction grating 11 is retracted from the optical path of the laser beam.
  • the first diffraction grating 11 or the second diffraction grating 12 can be switched according to the wavelength band of the laser light.
  • Embodiment 3 As shown in FIG. 12, the first diffraction grating 11 and the second diffraction grating 12 are arranged so as to be arranged in the thickness direction. The first diffraction grating 11 and the second diffraction grating 12 advance and retreat on the optical path of the laser beam by the switching mechanism 30.
  • the switching mechanism 30 has an advancing / retreating portion 35.
  • the advancing / retreating portion 35 is composed of, for example, a linear actuator.
  • the advancing / retreating portion 35 advances the first diffraction grating 11 onto the optical path of the laser beam (see FIG. 12).
  • the second diffraction grating 12 is retracted from the optical path of the laser beam.
  • the advancing / retreating portion 35 advances the second diffraction grating 12 onto the optical path of the laser beam (see FIG. 13). At this time, the first diffraction grating 11 is retracted from the optical path of the laser beam.
  • the first diffraction grating 11 or the second diffraction grating 12 can be switched according to the wavelength band of the laser light.
  • the embodiment may have the following configuration.
  • the execution time T2 of the second operation is made longer than the execution time T1 of the first operation, but the present embodiment is not limited to this mode.
  • the execution time T1 of the first operation may be made longer than the execution time T2 of the second operation. In this case, it may be set in the range of 1 ⁇ T1 / T2 ⁇ 10.
  • the first laser beam L1 in the first wavelength band and the second laser beam L2 in the second wavelength band are alternately emitted at a predetermined period, but the present embodiment is limited to this embodiment. It is also possible to emit a laser beam of a different wavelength band instead of the one.
  • the laser oscillator 10 is a third diffraction grating (not shown) that combines a third laser diode (not shown) that emits a third laser beam L3 in the third wavelength band and a plurality of third laser beams L3 in the third wavelength band.
  • the first laser beam L1 in the first wavelength band, the second laser beam L2 in the second wavelength band, and the third laser beam in the third wavelength band are provided.
  • L3 and L3 may be emitted alternately at a predetermined cycle.
  • the third wavelength band may be, for example, 500 to 580 nm.
  • the third laser beam L3 in the third wavelength band is a green laser beam.
  • the object W to be processed can be processed in a beam shape in which the laser beams of the first wavelength band, the second wavelength band, and the third wavelength band are combined (see FIG. 16).
  • the opening area of the key hole 42 of the object W to be processed can be expanded more stably, and the generation of spatter that tends to occur near the opening can be suppressed. Further, by expanding the opening area of the keyhole 42 more stably, the collapse of the keyhole 42 can be suppressed. As a result, spatter generated by the collapse of the keyhole 42 can be suppressed.
  • the execution time T1 for emitting the first laser beam L1, the execution time T2 for emitting the second laser beam L2, and the execution time T3 for emitting the third laser beam L3 have the same length. Although it is set to laser, it may be set to different lengths.
  • the beam diameter of the first laser beam L1 in the first wavelength band is narrowed by focusing on the first laser beam L1 in the first wavelength band, while the beam diameter of the first laser beam L1 in the first wavelength band is narrowed down.
  • the beam wavelength of the second laser beam L2 is widened, but the present invention is not limited to this form.
  • the beam diameter of the second laser beam L2 in the second wavelength band is narrowed, while, for example, the second laser in the second wavelength band. Adjusting the distance between the optical fiber 2 and a condenser lens (not shown) provided in the laser processing head 3 when switching the wavelength of the laser beam from the light L2 to the first laser beam L1 in the first wavelength band. Therefore, the beam diameter of the first laser beam L1 in the first wavelength band may be widened.
  • the first semiconductor laser device 20 and the second semiconductor laser device 25 may be configured by a semiconductor laser bar having a plurality of emitters or a semiconductor stack in which a plurality of semiconductor laser bars are stacked.
  • the first semiconductor laser device 20 and the second semiconductor laser device 25 are provided, but the present invention is not particularly limited to this.
  • the number of semiconductor laser devices can be appropriately changed depending on the output specifications required for the laser processing apparatus 1 and the output specifications of the individual semiconductor laser devices.
  • the present invention is extremely useful and industrial because it has a highly practical effect that the wavelength of the laser beam can be changed according to the processing purpose with a relatively simple configuration. High availability.
  • Input section 10 Laser oscillator 11 First diffraction grating 12 Second diffraction grating 21 First laser diode (first exit section) 26 Second laser diode (second exit) 30 Switching mechanism 31 Support shaft 32 Rotating part 35 Advance / retreat part L1 First laser beam (laser beam in the first wavelength band) L2 2nd laser beam (2nd wavelength band laser beam) L3 3rd laser beam (laser beam in the 3rd wavelength band) W Machining object

Abstract

In the present invention, a control unit 6 alternatingly executes, in a prescribed cycle, a first operation and a second operation. In the first operation, first laser light L1 of a first wavelength range is emitted, and a first diffraction grating 11 is disposed on a light path. In the second operation, second laser light L2 of a second wavelength range is emitted, and a second diffraction grating 12 is disposed on a light path.

Description

レーザ発振器Laser oscillator
 本発明は、レーザ発振器に関するものである。 The present invention relates to a laser oscillator.
 特許文献1には、波長の異なる複数のファイバレーザから出射したレーザ光を、ビーム合成のため波長合成素子としてのWDMカプラーを用いて同一光軸上にビーム合成するようにしたレーザ加工装置が開示されている。 Patent Document 1 discloses a laser processing apparatus in which laser light emitted from a plurality of fiber lasers having different wavelengths is beam-synthesized on the same optical axis by using a WDM coupler as a wavelength-synthesizing element for beam synthesis. Has been done.
特開2008-44000号公報Japanese Unexamined Patent Publication No. 2008-44000
 しかしながら、特許文献1の発明では、波長の異なるレーザ光を出射するために、複数のファイバレーザを設けているから、部品点数が増えてコストがかかるとともに、装置が大型化するという問題がある。また、ビーム合成を行うためにWDMカプラーを用いているから、光軸調整作業が煩雑となるという問題がある。 However, in the invention of Patent Document 1, since a plurality of fiber lasers are provided in order to emit laser light having different wavelengths, there is a problem that the number of parts increases, the cost increases, and the device becomes large. Further, since the WDM coupler is used for beam synthesis, there is a problem that the optical axis adjustment work becomes complicated.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、比較的簡単な構成で、加工目的に応じてレーザ光の波長を変更できるようにすることにある。 The present invention has been made in view of this point, and an object of the present invention is to enable the wavelength of a laser beam to be changed according to a processing purpose with a relatively simple configuration.
 第1の態様は、波長帯の異なるレーザ光を出射可能なレーザ発振器であって、第1波長帯のレーザ光を出射する複数の第1出射部と、第2波長帯のレーザ光を出射する複数の第2出射部と、前記第1波長帯の複数のレーザ光を結合する第1回折格子と、前記第2波長帯の複数のレーザ光を結合する第2回折格子と、前記第1出射部又は前記第2出射部から出射されたレーザ光の波長帯に応じて、該レーザ光の光路上に配置する前記第1回折格子又は前記第2回折格子を切り替える切替機構と、前記第1出射部、前記第2出射部、及び前記切替機構の動作を制御する制御部とを備え、前記制御部は、前記第1波長帯のレーザ光を出射し且つ前記第1回折格子を前記光路上に配置する第1動作と、前記第2波長帯のレーザ光を出射し且つ前記第2回折格子を該光路上に配置する第2動作とを、所定の周期で交互に実行することを特徴とする。 The first aspect is a laser oscillator capable of emitting laser light having different wavelength bands, which emits a plurality of first emitting portions for emitting laser light in the first wavelength band and laser light in the second wavelength band. A first diffraction grating that combines a plurality of second emission units, a plurality of laser beams in the first wavelength band, a second diffraction grating that combines a plurality of laser beams in the second wavelength band, and the first emission. A switching mechanism for switching the first diffraction grating or the second diffraction grating arranged on the optical path of the laser beam according to the wavelength band of the laser beam emitted from the unit or the second emission unit, and the first emission. The control unit includes a unit, a second emission unit, and a control unit that controls the operation of the switching mechanism, and the control unit emits laser light in the first wavelength band and puts the first diffraction grating on the optical path. The first operation of arranging the grating and the second operation of emitting the laser beam of the second wavelength band and arranging the second diffraction grating on the optical path are alternately executed at a predetermined cycle. ..
 第1の態様では、切替機構は、レーザ光の波長帯に応じて、レーザ光の光路上に配置する第1回折格子又は第2回折格子を切り替える。具体的に、第1出射部から第1波長帯のレーザ光を出射する場合、レーザ光の光路上に第1回折格子を配置する。一方、第2出射部から第2波長帯のレーザ光を出射する場合、レーザ光の光路上に第2回折格子を配置する。 In the first aspect, the switching mechanism switches the first diffraction grating or the second diffraction grating arranged on the optical path of the laser light according to the wavelength band of the laser light. Specifically, when the laser beam of the first wavelength band is emitted from the first emission unit, the first diffraction grating is arranged on the optical path of the laser beam. On the other hand, when the laser beam of the second wavelength band is emitted from the second emission unit, the second diffraction grating is arranged on the optical path of the laser beam.
 このように、第1回折格子又は第2回折格子を切り替えることで、レーザ光の波長帯を変更しても、第1回折格子又は第2回折格子によって結合されたレーザ光の光軸を同一にすることができる。そのため、回折格子以降の光学系を共通としたままで、レーザ光の伝送が可能となる。 In this way, by switching the first diffraction grating or the second diffraction grating, even if the wavelength band of the laser light is changed, the optical axis of the laser light coupled by the first diffraction grating or the second diffraction grating becomes the same. can do. Therefore, it is possible to transmit the laser beam while keeping the optical system after the diffraction grating in common.
 これにより、従来のように複数のファイバレーザやWDMカプラーを設ける必要が無く、比較的簡単な構成で、加工目的に応じてレーザ光の波長を変更することができる。 As a result, it is not necessary to provide a plurality of fiber lasers or WDM couplers as in the conventional case, and the wavelength of the laser beam can be changed according to the processing purpose with a relatively simple configuration.
 また、制御部は、第1動作と、第2動作とを、所定の周期で交互に実行する。第1動作では、第1波長帯のレーザ光が出射され且つ第1回折格子が光路上に配置される。第2動作では、第2波長帯のレーザ光が出射され且つ第2回折格子が光路上に配置される。 Further, the control unit alternately executes the first operation and the second operation at a predetermined cycle. In the first operation, the laser beam of the first wavelength band is emitted and the first diffraction grating is arranged on the optical path. In the second operation, the laser beam of the second wavelength band is emitted and the second diffraction grating is arranged on the optical path.
 このように、第1波長帯のレーザ光と、第2波長帯のレーザ光とを、所定の周期で交互に出射することで、第1波長帯及び第2波長帯のレーザ光が合わさったビーム形状で、加工対象物を加工することができる。 In this way, the laser beam in the first wavelength band and the laser beam in the second wavelength band are alternately emitted at a predetermined period, so that the laser beam in the first wavelength band and the laser beam in the second wavelength band are combined. The shape allows processing of the object to be processed.
 例えば、第1波長帯のレーザ光に焦点を合わせた状態で、第1波長帯及び第2波長帯のレーザ光を交互に出射することで、ビーム径が絞られた第1波長帯のレーザ光によって、加工対象物の加工に必要なビーム中心のエネルギーを十分に確保する一方、ビーム径が広がった第2波長帯のレーザ光によって、キーホールの開口面積を広げてスパッタの発生を抑えることができる。また、キーホールの開口面積を広げることで、キーホールの崩壊を抑えることができる。 For example, the laser beam in the first wavelength band has a narrowed beam diameter by alternately emitting the laser beam in the first wavelength band and the laser beam in the second wavelength band while focusing on the laser beam in the first wavelength band. This allows the laser beam in the second wavelength band, which has a wider beam diameter, to widen the opening area of the keyhole and suppress the occurrence of spatter, while ensuring sufficient energy at the center of the beam required for machining the object to be machined. it can. Further, by widening the opening area of the keyhole, the collapse of the keyhole can be suppressed.
 また、第1波長帯のレーザ光よりも加工方向の前方に第2波長帯のレーザ光が出射されるので、加工対象物の予熱を行うことができる。 Further, since the laser beam of the second wavelength band is emitted ahead of the laser beam of the first wavelength band in the processing direction, it is possible to preheat the object to be processed.
 第2の態様は、第1の態様において、前記制御部は、前記第1動作の実行時間と、前記第2動作の実行時間とを変更することを特徴とする。 The second aspect is characterized in that, in the first aspect, the control unit changes the execution time of the first operation and the execution time of the second operation.
 第2の態様では、レーザ加工の目的に応じて、第1動作及び第2動作の実行時間を変更できるようにしている。 In the second aspect, the execution time of the first operation and the second operation can be changed according to the purpose of laser machining.
 第3の態様は、第1又は2の態様において、前記制御部は、前記第2動作の実行時間を、前記第1動作の実行時間よりも長くすることを特徴とする。 A third aspect is characterized in that, in the first or second aspect, the control unit makes the execution time of the second operation longer than the execution time of the first operation.
 第3の態様では、第2動作の実行時間を、第1動作の実行時間よりも長くしている。例えば、加工対象物が、レーザ吸収率が低い高反射材料の銅やアルミニウムで構成されている場合、第2波長帯のレーザ光(青色レーザ光)を出射する時間を、第1波長帯のレーザ光(赤外レーザ光)を出射する時間よりも長くする。 In the third aspect, the execution time of the second operation is made longer than the execution time of the first operation. For example, when the object to be processed is made of copper or aluminum, which is a highly reflective material having a low laser absorption rate, the time for emitting the laser light (blue laser light) in the second wavelength band is set to the laser in the first wavelength band. Make it longer than the time to emit light (infrared laser light).
 これにより、第2波長帯のレーザ光で加工対象物の予熱を十分に行った後、第1波長帯のレーザ光で加工対象物を加工して、スパッタの発生を抑えることができる。 This makes it possible to sufficiently preheat the object to be processed with the laser beam of the second wavelength band and then process the object to be processed with the laser beam of the first wavelength band to suppress the occurrence of spatter.
 第4の態様は、第1又は2の態様において、前記制御部は、前記第1動作の実行時間を、前記第2動作の実行時間よりも長くすることを特徴とする。 A fourth aspect is characterized in that, in the first or second aspect, the control unit makes the execution time of the first operation longer than the execution time of the second operation.
 第4の態様では、第1動作の実行時間を、第2動作の実行時間よりも長くしている。例えば、加工対象物が、レーザ吸収率が高い低反射材料の鉄で構成されている場合、第1波長帯のレーザ光(赤色レーザ光)を出射する時間を、第2波長帯のレーザ光(青色レーザ光)を出射する時間よりも長くする。 In the fourth aspect, the execution time of the first operation is made longer than the execution time of the second operation. For example, when the object to be processed is made of iron, which is a low-reflection material having a high laser absorption rate, the time for emitting the laser beam (red laser beam) in the first wavelength band is set to the laser beam in the second wavelength band (red laser beam). Make it longer than the time to emit the blue laser beam).
 これにより、第1波長帯のレーザ光で加工対象物を加工して、加工対象物の加工品質を高めることができる。 This makes it possible to process the object to be processed with the laser beam of the first wavelength band and improve the processing quality of the object to be processed.
 第5の態様は、第1乃至4の態様のうち何れか1つにおいて、前記切替機構は、前記第1回折格子及び前記第2回折格子が周方向に間隔をあけて支持された支持軸と、該支持軸を回転させることで前記レーザ光の光路上に該第1回折格子又は該第2回折格子を配置させる回転部とを有することを特徴とする。 A fifth aspect is, in any one of the first to fourth aspects, the switching mechanism comprises a support shaft on which the first diffraction grating and the second diffraction grating are supported at intervals in the circumferential direction. It is characterized by having a rotating portion for arranging the first diffraction grating or the second diffraction grating on the optical path of the laser beam by rotating the support shaft.
 第5の態様では、回転部によって支持軸を回転させることで、第1回折格子又は第2回折格子をレーザ光の光路上に配置するようにしている。これにより、レーザ光の波長帯に応じて第1回折格子又は第2回折格子を切り替えることができる。 In the fifth aspect, the first diffraction grating or the second diffraction grating is arranged on the optical path of the laser beam by rotating the support shaft by the rotating portion. Thereby, the first diffraction grating or the second diffraction grating can be switched according to the wavelength band of the laser light.
 第6の態様は、第1乃至4の態様のうち何れか1つにおいて、前記切替機構は、前記第1回折格子又は前記第2回折格子の一方を前記レーザ光の光路上に進出させるとともに、該第1回折格子又は該第2回折格子の他方を該光路上から退避させる進退部を有することを特徴とする。 A sixth aspect is that in any one of the first to fourth aspects, the switching mechanism causes one of the first diffraction grating and the second diffraction grating to advance onto the optical path of the laser beam, and at the same time, It is characterized by having an advancing / retreating portion for retracting the first diffraction grating or the other of the second diffraction grating from the optical path.
 第6の態様では、進退部によって、第1回折格子又は第2回折格子の一方をレーザ光の光路上に進出させ、第1回折格子又は第2回折格子の他方を光路上から退避させるようにしている。これにより、レーザ光の波長帯に応じて第1回折格子又は第2回折格子を切り替えることができる。 In the sixth aspect, one of the first diffraction grating or the second diffraction grating is advanced to the optical path of the laser beam, and the other of the first diffraction grating or the second diffraction grating is retracted from the optical path by the advancing / retreating portion. ing. Thereby, the first diffraction grating or the second diffraction grating can be switched according to the wavelength band of the laser light.
 第7の態様は、第1乃至6の態様のうち何れか1つにおいて、前記レーザ光で加工する加工対象物の材料に関する情報を入力する入力部を備え、前記切替機構は、前記入力部で入力された情報に基づいて、前記第1回折格子又は前記第2回折格子を切り替えることを特徴とする。 A seventh aspect includes, in any one of the first to sixth aspects, an input unit for inputting information about the material of the object to be processed by the laser beam, and the switching mechanism is the input unit. It is characterized in that the first diffraction grating or the second diffraction grating is switched based on the input information.
 第7の態様では、入力部で入力された加工対象物の材料に関する情報に基づいて、第1回折格子又は第2回折格子を切り替えるようにしている。これにより、加工対象物の加工に最適な波長帯のレーザ光に応じて第1回折格子又は第2回折格子を切り替えることができる。 In the seventh aspect, the first diffraction grating or the second diffraction grating is switched based on the information regarding the material of the processing object input in the input unit. As a result, the first diffraction grating or the second diffraction grating can be switched according to the laser beam in the wavelength band most suitable for processing the object to be processed.
 本開示の態様によれば、比較的簡単な構成で、加工目的に応じてレーザ光の波長を変更することができる。 According to the aspect of the present disclosure, the wavelength of the laser beam can be changed according to the processing purpose with a relatively simple configuration.
図1は、本実施形態1に係るレーザ加工装置の構成を示す概略図である。FIG. 1 is a schematic view showing a configuration of a laser processing apparatus according to the first embodiment. 図2は、第1波長帯のレーザ光を出射したときのレーザ発振器の構成を示す図である。FIG. 2 is a diagram showing a configuration of a laser oscillator when a laser beam of the first wavelength band is emitted. 図3は、第2波長帯のレーザ光を出射したときのレーザ発振器の構成を示す図である。FIG. 3 is a diagram showing a configuration of a laser oscillator when a laser beam in the second wavelength band is emitted. 図4は、第1回折格子の構成を示す図である。FIG. 4 is a diagram showing the configuration of the first diffraction grating. 図5は、第2回折格子の構成を示す図である。FIG. 5 is a diagram showing the configuration of the second diffraction grating. 図6は、第1波長帯及び第2波長帯のレーザ光の切り替えタイミングを示す図である。FIG. 6 is a diagram showing switching timing of laser light in the first wavelength band and the second wavelength band. 図7は、第1波長帯及び第2波長帯のレーザ光を重ね合わせたビームプロファイルを示す図である。FIG. 7 is a diagram showing a beam profile in which laser beams of the first wavelength band and the second wavelength band are superimposed. 図8は、第1波長帯のレーザ光L1を加工対象物に出射した状態を示す側面断面図である。FIG. 8 is a side sectional view showing a state in which the laser beam L1 in the first wavelength band is emitted to the object to be processed. 図9は、第2波長帯のレーザ光L2を加工対象物に出射した状態を示す側面断面図である。FIG. 9 is a side sectional view showing a state in which the laser beam L2 in the second wavelength band is emitted to the object to be processed. 図10は、本実施形態2における、第1波長帯のレーザ光を出射したときのレーザ発振器の構成を示す図である。FIG. 10 is a diagram showing a configuration of a laser oscillator when a laser beam of the first wavelength band is emitted in the second embodiment. 図11は、第2波長帯のレーザ光を出射したときのレーザ発振器の構成を示す図である。FIG. 11 is a diagram showing a configuration of a laser oscillator when a laser beam of a second wavelength band is emitted. 図12は、本実施形態3における、第1波長帯のレーザ光を出射したときのレーザ発振器の構成を示す図である。FIG. 12 is a diagram showing a configuration of a laser oscillator when a laser beam of the first wavelength band is emitted in the third embodiment. 図13は、第2波長帯のレーザ光を出射したときのレーザ発振器の構成を示す図である。FIG. 13 is a diagram showing a configuration of a laser oscillator when a laser beam in the second wavelength band is emitted. 図14は、その他の実施形態における、第1波長帯及び第2波長帯のレーザ光の切り替えタイミングを示す図である。FIG. 14 is a diagram showing switching timing of laser light in the first wavelength band and the second wavelength band in other embodiments. 図15は、その他の実施形態における、第1波長帯、第2波長帯、及び第3波長帯のレーザ光の切り替えタイミングを示す図である。FIG. 15 is a diagram showing switching timing of laser light in the first wavelength band, the second wavelength band, and the third wavelength band in other embodiments. 図16は、第1波長帯、第2波長帯、及び第3波長帯のレーザ光を重ね合わせたビームプロファイルを示す図である。FIG. 16 is a diagram showing a beam profile in which laser beams in the first wavelength band, the second wavelength band, and the third wavelength band are superimposed.
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is essentially merely an example and is not intended to limit the present invention, its application or its use.
 《実施形態1》
 図1に示すように、レーザ加工装置1は、レーザ発振器10と、光ファイバ2と、レーザ加工ヘッド3と、アシストガス供給装置4と、マニピュレータ5と、制御部6と、入力部7とを備えている。
<< Embodiment 1 >>
As shown in FIG. 1, the laser processing device 1 includes a laser oscillator 10, an optical fiber 2, a laser processing head 3, an assist gas supply device 4, a manipulator 5, a control unit 6, and an input unit 7. I have.
 レーザ発振器10は、レーザ光を出力し、光ファイバ2に入射する。 The laser oscillator 10 outputs laser light and incidents on the optical fiber 2.
 光ファイバ2は、レーザ発振器10で出力されたレーザ光をレーザ加工ヘッド3に伝送する。 The optical fiber 2 transmits the laser light output by the laser oscillator 10 to the laser processing head 3.
 レーザ加工ヘッド3は、図示しないコリメータレンズと、図示しない集光レンズとを有する。コリメータレンズは、光ファイバ2の出射端から出射された第1波長帯の第1レーザ光L1及び第2波長帯の第2レーザ光L2を平行化する。集光レンズは、コリメータレンズで平行化された第1レーザ光L1及び第2レーザ光L2を集光する。 The laser processing head 3 has a collimator lens (not shown) and a condenser lens (not shown). The collimator lens parallelizes the first laser beam L1 in the first wavelength band and the second laser beam L2 in the second wavelength band emitted from the emission end of the optical fiber 2. The condenser lens collects the first laser beam L1 and the second laser beam L2 parallelized by the collimator lens.
 レーザ加工ヘッド3は、光ファイバ2によって伝送され、図示しない集光レンズで集光されたレーザ光を加工対象物Wに出射する。なお、加工対象物Wの材質としては、軟鋼、ステンレス鋼、アルミニウム合金、銅などが用いられる。 The laser processing head 3 emits the laser light transmitted by the optical fiber 2 and condensed by a condenser lens (not shown) to the processing object W. As the material of the object W to be processed, mild steel, stainless steel, aluminum alloy, copper and the like are used.
 アシストガス供給装置4は、レーザ加工ヘッド3に接続されている。アシストガス供給装置4は、アシストガスをレーザ加工ヘッド3に供給する。 The assist gas supply device 4 is connected to the laser processing head 3. The assist gas supply device 4 supplies the assist gas to the laser processing head 3.
 マニピュレータ5は、レーザ加工ヘッド3の位置及び角度を高い自由度で変更する。これにより、レーザ加工ヘッド3から出射されるレーザ光を、加工対象物Wの加工位置に出射することができる。 The manipulator 5 changes the position and angle of the laser processing head 3 with a high degree of freedom. As a result, the laser beam emitted from the laser processing head 3 can be emitted to the processing position of the processing object W.
 制御部6は、レーザ発振器10、アシストガス供給装置4、及びマニピュレータ5に接続されている。制御部6は、レーザ発振器10からのレーザ光の出力と、アシストガス供給装置4からのアシストガス供給量と、マニピュレータ5の動作とを制御する。 The control unit 6 is connected to the laser oscillator 10, the assist gas supply device 4, and the manipulator 5. The control unit 6 controls the output of the laser beam from the laser oscillator 10, the amount of assist gas supplied from the assist gas supply device 4, and the operation of the manipulator 5.
 入力部7は、レーザ発振器10の動作に関する各種の設定値を入力するものである。入力部7には、例えば、レーザ光で加工する加工対象物Wの材料に関する情報が入力される。なお、図1に示す例では、レーザ発振器10に入力部7を接続しているが、制御部6に入力部6を接続してもよい。 The input unit 7 inputs various set values related to the operation of the laser oscillator 10. For example, information about the material of the processing object W to be processed by the laser beam is input to the input unit 7. In the example shown in FIG. 1, the input unit 7 is connected to the laser oscillator 10, but the input unit 6 may be connected to the control unit 6.
 〈レーザ発振器について〉
 図2に示すように、レーザ発振器10は、第1半導体レーザデバイス20と、第2半導体レーザデバイス25と、第1回折格子11と、第2回折格子12と、切替機構30と、出力カプラ15と、集光レンズ16とを有する。
<About laser oscillator>
As shown in FIG. 2, the laser oscillator 10 includes a first semiconductor laser device 20, a second semiconductor laser device 25, a first diffraction grating 11, a second diffraction grating 12, a switching mechanism 30, and an output coupler 15. And a condenser lens 16.
 第1半導体レーザデバイス20、第2半導体レーザデバイス25、及び切替機構30の動作は、制御部6によって制御される。 The operations of the first semiconductor laser device 20, the second semiconductor laser device 25, and the switching mechanism 30 are controlled by the control unit 6.
 第1半導体レーザデバイス20は、複数の第1レーザダイオード21(第1出射部)を有する。第1レーザダイオード21は、複数のエミッタ(図示省略)を有する。第1レーザダイオード21は、複数のエミッタの出力を合成することで、第1レーザ光L1を出射する。 The first semiconductor laser device 20 has a plurality of first laser diodes 21 (first emission unit). The first laser diode 21 has a plurality of emitters (not shown). The first laser diode 21 emits the first laser beam L1 by synthesizing the outputs of a plurality of emitters.
 複数の第1レーザダイオード21の出射側には、複数の集光レンズがそれぞれ配置されている(図示省略)。なお、複数の第1レーザダイオード21から出射される第1レーザ光L1を、1つの集光レンズで集光するようにしてもよい。 A plurality of condenser lenses are arranged on the exit side of the plurality of first laser diodes 21 (not shown). The first laser beam L1 emitted from the plurality of first laser diodes 21 may be focused by one condenser lens.
 第1レーザダイオード21は、同じ波長帯の第1レーザ光L1を出射するレーザダイオードLD11~LD1n(nは自然数)で構成されている。例えば、第1レーザダイオード21から出射される第1レーザ光L1の第1波長帯は、900nmである。第1レーザ光L1は、赤外レーザ光である。 The first laser diode 21 is composed of laser diodes LD11 to LD1n (n is a natural number) that emits the first laser beam L1 in the same wavelength band. For example, the first wavelength band of the first laser beam L1 emitted from the first laser diode 21 is 900 nm. The first laser beam L1 is an infrared laser beam.
 第2半導体レーザデバイス25は、複数の第2レーザダイオード26(第2出射部)を有する。第2レーザダイオード26は、複数のエミッタ(図示省略)を有する。第2レーザダイオード26は、複数のエミッタの出力を合成することで、第2レーザ光L2を出射する。 The second semiconductor laser device 25 has a plurality of second laser diodes 26 (second emitting portions). The second laser diode 26 has a plurality of emitters (not shown). The second laser diode 26 emits the second laser beam L2 by combining the outputs of the plurality of emitters.
 複数の第2レーザダイオード26の出射側には、複数の集光レンズがそれぞれ配置されている(図示省略)。なお、複数の第2レーザダイオード26から出射される第2レーザ光L2を、1つの集光レンズで集光するようにしてもよい。 A plurality of condenser lenses are arranged on the exit side of the plurality of second laser diodes 26 (not shown). The second laser beam L2 emitted from the plurality of second laser diodes 26 may be focused by one condenser lens.
 第2レーザダイオード26は、同じ波長帯の第2レーザ光L2を出射するレーザダイオードLD21~LD2n(nは自然数)で構成されている。例えば、第2レーザダイオード26から出射される第2レーザ光L2の第2波長帯は、450nmである。第2レーザ光L2は、青色レーザ光である。 The second laser diode 26 is composed of laser diodes LD21 to LD2n (n is a natural number) that emits the second laser beam L2 in the same wavelength band. For example, the second wavelength band of the second laser beam L2 emitted from the second laser diode 26 is 450 nm. The second laser beam L2 is a blue laser beam.
 このように、第1レーザダイオード21から出射される第1レーザ光L1の第1波長帯と、第2レーザダイオード26から出射される第2レーザ光L2の第2波長帯とが異なっている。 As described above, the first wavelength band of the first laser beam L1 emitted from the first laser diode 21 and the second wavelength band of the second laser beam L2 emitted from the second laser diode 26 are different.
 第1回折格子11は、第1波長帯の複数の第1レーザ光L1を結合する。第2回折格子12は、第2波長帯の複数の第2レーザ光L2を結合する。 The first diffraction grating 11 combines a plurality of first laser beams L1 in the first wavelength band. The second diffraction grating 12 couples a plurality of second laser beams L2 in the second wavelength band.
 切替機構30は、支持軸31と、回転部32とを有する。支持軸31には、第1回折格子11及び第2回折格子12が周方向に間隔をあけて支持されている。支持軸31は、回転部32によって回転可能となっている。 The switching mechanism 30 has a support shaft 31 and a rotating portion 32. The first diffraction grating 11 and the second diffraction grating 12 are supported on the support shaft 31 at intervals in the circumferential direction. The support shaft 31 can be rotated by the rotating portion 32.
 回転部32は、例えば、モータと減速機とで構成されている。回転部32によって支持軸31を回転させることで、レーザ光の光路上に配置する第1回折格子11又は第2回折格子12を切り替えることができる。 The rotating unit 32 is composed of, for example, a motor and a speed reducer. By rotating the support shaft 31 by the rotating unit 32, the first diffraction grating 11 or the second diffraction grating 12 arranged on the optical path of the laser beam can be switched.
 図2に示す例では、複数の第1レーザダイオード21から第1波長帯の第1レーザ光L1が出射している。そのため、回転部32は、レーザ光の光路上に第1回折格子11が配置されるように支持軸31を回転する。 In the example shown in FIG. 2, the first laser beam L1 in the first wavelength band is emitted from the plurality of first laser diodes 21. Therefore, the rotating unit 32 rotates the support shaft 31 so that the first diffraction grating 11 is arranged on the optical path of the laser beam.
 一方、図3に示す例では、複数の第2レーザダイオード26から第2波長帯の第2レーザ光L2が出射している。そのため、回転部32は、レーザ光の光路上に第2回折格子12が配置されるように支持軸31を回転する。 On the other hand, in the example shown in FIG. 3, the second laser light L2 in the second wavelength band is emitted from the plurality of second laser diodes 26. Therefore, the rotating unit 32 rotates the support shaft 31 so that the second diffraction grating 12 is arranged on the optical path of the laser beam.
 図2に示すように、第1半導体レーザデバイス20における第1回折格子11側の端部は、レーザ出射端である。第1半導体レーザデバイス20におけるレーザ出射端と反対側の端部は、レーザ光を全反射する全反射端である。 As shown in FIG. 2, the end portion of the first semiconductor laser device 20 on the first diffraction grating 11 side is the laser emission end. The end of the first semiconductor laser device 20 opposite to the laser emitting end is a total reflection end that totally reflects the laser light.
 第1半導体レーザデバイス20のレーザ出射端から出射された第1レーザ光L1は、第1回折格子11を通過し、出力カプラ15で一部が反射される。 The first laser beam L1 emitted from the laser emission end of the first semiconductor laser device 20 passes through the first diffraction grating 11 and is partially reflected by the output coupler 15.
 出力カプラ15で反射された第1レーザ光L1は、第1回折格子11を通過し、出射された第1半導体レーザデバイス20に戻る。第1半導体レーザデバイス20に戻った第1レーザ光L1は、第1半導体レーザデバイス20の全反射端で反射される。 The first laser beam L1 reflected by the output coupler 15 passes through the first diffraction grating 11 and returns to the emitted first semiconductor laser device 20. The first laser beam L1 returned to the first semiconductor laser device 20 is reflected at the total reflection end of the first semiconductor laser device 20.
 このように、出力カプラ15と、第1半導体レーザデバイス20の全反射端との間で共振が起こり、第1半導体レーザデバイス20からの第1レーザ光L1が発振される。これにより、光ファイバ2には、第1レーザ光L1が入射される。 In this way, resonance occurs between the output coupler 15 and the total reflection end of the first semiconductor laser device 20, and the first laser light L1 from the first semiconductor laser device 20 is oscillated. As a result, the first laser beam L1 is incident on the optical fiber 2.
 以上のように、第1半導体レーザデバイス20の全反射端と出力カプラ15との間で、第1回折格子11を介してレーザ発振器10が構成される。この構成は、第1半導体レーザデバイス20の外部の領域を含めてレーザ光が発振されるため、外部共振器と呼ばれる。なお、第2半導体レーザデバイス25についても同様の構成であるため、説明を省略する。 As described above, the laser oscillator 10 is configured between the total reflection end of the first semiconductor laser device 20 and the output coupler 15 via the first diffraction grating 11. This configuration is called an external resonator because the laser beam is oscillated including the region outside the first semiconductor laser device 20. Since the second semiconductor laser device 25 has the same configuration, the description thereof will be omitted.
 ここで、複数の第1レーザダイオード21から出射された第1レーザ光L1は、第1回折格子11から見て異なる方向から第1回折格子11に入射されている。第1回折格子11は、入射角が互いに異なる複数の第1レーザ光L1を、共通の出射角で出射させる特徴を有している。 Here, the first laser light L1 emitted from the plurality of first laser diodes 21 is incident on the first diffraction grating 11 from different directions when viewed from the first diffraction grating 11. The first diffraction grating 11 has a feature that a plurality of first laser beams L1 having different incident angles are emitted at a common emission angle.
 図4に示すように、第1回折格子11の開口の間隔d、第1レーザ光L1の第1回折格子11への入射角α、散乱角β、回折次数m(m=0,±1,・・・)、第1レーザ光L1の波長λ1とすると、光路差は、d×(sinα-sinβ)である。そのため、以下の(1)式が成り立つ。 As shown in FIG. 4, the interval d of the openings of the first diffraction grating 11, the angle of incidence α of the first laser beam L1 on the first diffraction grating 11, the scattering angle β, and the diffraction order m (m = 0, ± 1, ...), Assuming that the wavelength λ1 of the first laser beam L1, the optical path difference is d × (sinα-sinβ). Therefore, the following equation (1) holds.
 d×(sinα-sinβ)=m×λ1 ・・・(1)
 ここで、複数の第1レーザダイオード21を第1回折格子11に対して異なる方向に配置することにより、複数の第1レーザダイオード21から出射される複数の第1レーザ光L1の出射方向を同一にできる。そして、複数の第1レーザダイオード21から出射される第1レーザ光L1の出力を合算することができる。
d × (sinα-sinβ) = m × λ1 ・ ・ ・ (1)
Here, by arranging the plurality of first laser diodes 21 in different directions with respect to the first diffraction grating 11, the emission directions of the plurality of first laser beams L1 emitted from the plurality of first laser diodes 21 are the same. Can be done. Then, the outputs of the first laser beam L1 emitted from the plurality of first laser diodes 21 can be added up.
 すなわち、第1半導体レーザデバイス20と出力カプラ15とが、第1回折格子11を介して外部共振器を構成することで、それぞれの第1レーザ光L1のビーム品質を悪化させることなく、全ての出力が合算された、より高い出力の第1レーザ光L1を得ることができる。 That is, the first semiconductor laser device 20 and the output coupler 15 form an external cavity via the first diffraction grating 11, so that the beam quality of each first laser beam L1 is not deteriorated. It is possible to obtain the first laser beam L1 having a higher output, which is the sum of the outputs.
 また、図5に示すように、第2回折格子12の開口の間隔d/2、第2レーザ光L2の第1回折格子11への入射角α、散乱角β、回折次数m(m=0,±1,・・・)、第2レーザ光L2の波長λ2とすると、光路差は、(d/2)×(sinα-sinβ)である。そのため、以下の(1)式が成り立つ。 Further, as shown in FIG. 5, the interval d / 2 of the openings of the second diffraction grating 12, the incident angle α of the second laser beam L2 on the first diffraction grating 11, the scattering angle β, and the diffraction order m (m = 0). , ± 1, ...), And assuming that the wavelength λ2 of the second laser beam L2, the optical path difference is (d / 2) × (sinα-sinβ). Therefore, the following equation (1) holds.
 (d/2)×(sinα-sinβ)=m×λ2 ・・・(2)
 そして、第2半導体レーザデバイス25についても同様に、複数の第2レーザダイオード26を第2回折格子12に対して異なる方向に配置することにより、複数の第2レーザダイオード26から出射される複数の第2レーザ光L2の出射方向を同一にできる。そして、複数の第2レーザダイオード26から出射される第2レーザ光L2の出力を合算することができる。
(D / 2) × (sinα-sinβ) = m × λ2 ・ ・ ・ (2)
Similarly, for the second semiconductor laser device 25, by arranging the plurality of second laser diodes 26 in different directions with respect to the second diffraction grating 12, a plurality of second laser diode 26s emitted from the plurality of second laser diodes 26 are emitted. The emission direction of the second laser beam L2 can be the same. Then, the outputs of the second laser beams L2 emitted from the plurality of second laser diodes 26 can be added up.
 ここで、回転部32は、入力部7で入力された加工対象物Wの材料に関する情報に基づいて、第1回折格子11又は第2回折格子12を切り替える。具体的に、加工対象物Wが軟鋼、ステンレス、アルミニウム合金等の場合、レーザ光の波長帯が長い(800~900nm)方が、光吸収率が高い。一方、加工対象物Wが銅の場合、レーザ光の波長帯が短い(例えば、400~450nm)方が、光吸収率が高い。 Here, the rotating unit 32 switches between the first diffraction grating 11 and the second diffraction grating 12 based on the information regarding the material of the processing object W input by the input unit 7. Specifically, when the object W to be processed is mild steel, stainless steel, an aluminum alloy, or the like, the longer the wavelength band of the laser beam (800 to 900 nm), the higher the light absorption rate. On the other hand, when the object W to be processed is copper, the shorter the wavelength band of the laser beam (for example, 400 to 450 nm), the higher the light absorption rate.
 そのため、本実施形態では、加工対象物Wの材質に応じて第1波長帯又は第2波長帯のレーザ光を選択し、第1波長帯又は第2波長帯に応じた第1回折格子11又は第2回折格子12に切り替えるようにしている。 Therefore, in the present embodiment, the laser beam of the first wavelength band or the second wavelength band is selected according to the material of the object W to be processed, and the first diffraction grating 11 or the first diffraction grating 11 or the second wavelength band corresponding to the first wavelength band or the second wavelength band is selected. It is switched to the second diffraction grating 12.
 これにより、加工対象物Wに合わせた最適な条件でレーザ加工をすることができる。 As a result, laser machining can be performed under the optimum conditions according to the object W to be machined.
 なお、本実施形態のように、レーザ光を第1波長帯又は第2波長帯に切り替えると、波長差の分だけ集光レンズ16の焦点距離がずれるおそれがある。そのため、レーザ光の波長切替後は、光ファイバ2から集光レンズ16の間の距離を微調整したり、集光レンズ16の色収差補正を行なっても良い。 If the laser beam is switched to the first wavelength band or the second wavelength band as in the present embodiment, the focal length of the condenser lens 16 may shift by the wavelength difference. Therefore, after switching the wavelength of the laser light, the distance between the optical fiber 2 and the condenser lens 16 may be finely adjusted, or the chromatic aberration of the condenser lens 16 may be corrected.
 〈レーザ光の切り替えについて〉
 本実施形態では、図6に示すように、加工対象物Wに出射するレーザ光を、所定の周期で切り替えるようにしている。
<About switching laser light>
In the present embodiment, as shown in FIG. 6, the laser beam emitted to the workpiece W is switched at a predetermined cycle.
 具体的に、制御部6は、第1動作と、第2動作とを、所定の周期で交互に実行する。第1動作では、第1波長帯の第1レーザ光L1が出射され且つ第1回折格子11が光路上に配置される(図2参照)。第2動作では、第2波長帯の第2レーザ光L2が出射され且つ第2回折格子12が光路上に配置される(図3参照)。 Specifically, the control unit 6 alternately executes the first operation and the second operation at a predetermined cycle. In the first operation, the first laser beam L1 in the first wavelength band is emitted and the first diffraction grating 11 is arranged on the optical path (see FIG. 2). In the second operation, the second laser beam L2 in the second wavelength band is emitted and the second diffraction grating 12 is arranged on the optical path (see FIG. 3).
 制御部6は、レーザ加工の目的に応じて、第1動作及び第2動作の実行時間を変更する。図6に示す例では、第2動作の実行時間T2を、第1動作の実行時間T1よりも長くしている。例えば、0.1≦T1/T2<1の範囲で設定する。なお、第1動作の実行時間T1と、第2動作の実行時間T2とを同じ(T1/T2=1)に設定してもよい。 The control unit 6 changes the execution time of the first operation and the second operation according to the purpose of laser machining. In the example shown in FIG. 6, the execution time T2 of the second operation is made longer than the execution time T1 of the first operation. For example, it is set in the range of 0.1 ≦ T1 / T2 <1. The execution time T1 of the first operation and the execution time T2 of the second operation may be set to be the same (T1 / T2 = 1).
 このように、第1波長帯の第1レーザ光L1と、第2波長帯の第2レーザ光L2とを、所定の周期で交互に出射することで、第1波長帯及び第2波長帯のレーザ光が合わさったビーム形状で、加工対象物Wを加工することができる(図7参照)。 In this way, the first laser beam L1 in the first wavelength band and the second laser beam L2 in the second wavelength band are alternately emitted at a predetermined cycle to obtain the first wavelength band and the second wavelength band. The object W to be processed can be processed with a beam shape in which laser beams are combined (see FIG. 7).
 図8及び図9に示すように、第1波長帯の第1レーザ光L1に焦点を合わせた状態で、第1波長帯及び第2波長帯のレーザ光を交互に出射する。具体的に、図8に示すように、ビーム径が絞られた第1波長帯の第1レーザ光L1を加工対象物Wに出射することで、加工対象物Wの加工に必要なビーム中心のエネルギーを十分に確保して溶融池41を形成することができる。 As shown in FIGS. 8 and 9, the laser light of the first wavelength band and the laser light of the second wavelength band are alternately emitted while focusing on the first laser light L1 of the first wavelength band. Specifically, as shown in FIG. 8, by emitting the first laser beam L1 in the first wavelength band in which the beam diameter is narrowed to the processing target object W, the center of the beam required for processing the processing target object W is centered. The molten pool 41 can be formed by securing sufficient energy.
 一方、図9に示すように、ビーム径が広がった第2波長帯の第2レーザ光L2を加工対象物Wに出射することで、キーホール42の開口面積を広げて、開口付近で発生しやすいスパッタの発生を抑えることができる。また、キーホール42の開口面積を広げることで、キーホール42の崩壊を抑えることができる。これにより、キーホール42の崩壊により発生するスパッタを抑制することができる。 On the other hand, as shown in FIG. 9, by emitting the second laser beam L2 in the second wavelength band having a widened beam diameter to the object W to be processed, the opening area of the keyhole 42 is widened and generated in the vicinity of the opening. It is possible to suppress the occurrence of easy spatter. Further, by widening the opening area of the keyhole 42, the collapse of the keyhole 42 can be suppressed. As a result, spatter generated by the collapse of the keyhole 42 can be suppressed.
 また、図9に示すように、第1波長帯の第1レーザ光L1よりも加工方向(図示白抜き矢印の方向)の前方に、ビーム径が広がった第2波長帯の第2レーザ光L2が出射されるので、加工対象物Wの予熱を行うことができる。 Further, as shown in FIG. 9, the second laser beam L2 in the second wavelength band in which the beam diameter is widened in front of the first laser beam L1 in the first wavelength band in the processing direction (direction of the white arrow in the figure). Is emitted, so that the object W to be processed can be preheated.
 第1波長帯の第1レーザ光L1のラップ率は、例えば、60%~80%の範囲に設定される。ラップ率は、好ましくは60%に設定される。ラップ率とは、パルス溶接において、現在位置で出射された第1レーザ光L1と、1パルス前の位置で出射された第1レーザ光L1との重なり度合を示す指標である。 The lap ratio of the first laser beam L1 in the first wavelength band is set, for example, in the range of 60% to 80%. The lap ratio is preferably set to 60%. The lap ratio is an index indicating the degree of overlap between the first laser beam L1 emitted at the current position and the first laser beam L1 emitted at the position one pulse before in pulse welding.
 言い換えると、ラップ率とは、パルス溶接において、加工方向における、現在位置で出射された第1レーザ光L1と、1パルス前の位置で出射された第1レーザ光L1との、レーザ光のビーム径(スポット径)の重なり度合またはレーザ光のナゲット径(パルス溶接のレーザ光による円状の溶融された溶接部の径(ナゲット径)の重なり度合を示す指標である。 In other words, the lap ratio is a beam of laser light of the first laser beam L1 emitted at the current position in the processing direction and the first laser beam L1 emitted at the position one pulse before in pulse welding. It is an index showing the degree of overlap of the diameter (spot diameter) or the nugget diameter of the laser beam (the degree of overlap of the diameter (nugget diameter) of the circularly melted welded portion by the laser beam of pulse welding).
 第1レーザ光L1のビーム径をa、1パルス前の第1レーザ光L1との加工方向の重なり幅をbとすると、ラップ率は、b/aで表される。 Assuming that the beam diameter of the first laser beam L1 is a and the overlap width with the first laser beam L1 one pulse before in the processing direction is b, the lap ratio is represented by b / a.
 ここで、第1波長帯と第2波長帯のレーザ光のラップ率とした場合を説明する。例えば、第1波長帯と第2波長帯のレーザ光のラップ率は、60%~80%の範囲に設定される。ラップ率は、好ましくは60%に設定される。ラップ率とは、パルス溶接において、現在位置で出射された第1波長帯の第1レーザ光L1と、1パルス前の位置で出射された第2波長帯の第2レーザ光L2との重なり度合を示す指標である。 Here, the case where the lap ratio of the laser light in the first wavelength band and the second wavelength band is used will be described. For example, the lap ratio of the laser light in the first wavelength band and the second wavelength band is set in the range of 60% to 80%. The lap ratio is preferably set to 60%. The lap ratio is the degree of overlap between the first laser beam L1 in the first wavelength band emitted at the current position and the second laser beam L2 in the second wavelength band emitted at the position one pulse before in pulse welding. It is an index showing.
 言い換えると、ラップ率とは、パルス溶接において、加工方向における、現在位置で出射された第1波長帯の第1レーザ光L1と、1パルス前の位置で出射された第2波長帯の第2レーザ光L2との、レーザ光のビーム径(スポット径)の重なり度合またはレーザ光によるナゲット径(パルス溶接のレーザ光による円状の溶融された溶接部の径(ナゲット径)の重なり度合を示す指標である。 In other words, in pulse welding, the lap ratio is the first laser beam L1 in the first wavelength band emitted at the current position in the processing direction and the second laser beam L1 in the second wavelength band emitted at the position one pulse before. Indicates the degree of overlap of the beam diameter (spot diameter) of the laser light with the laser light L2 or the degree of overlap of the nugget diameter (the diameter of the circular molten welded portion (nugget diameter) due to the laser light of pulse welding). It is an index.
 《実施形態2》
 以下、前記実施形態1と同じ部分については同じ符号を付し、相違点についてのみ説明する。
<< Embodiment 2 >>
Hereinafter, the same parts as those in the first embodiment are designated by the same reference numerals, and only the differences will be described.
 図10に示すように、第1回折格子11と第2回折格子12は、同一平面上に一列に並ぶように配置されている。第1回折格子11及び第2回折格子12は、切替機構30によって、レーザ光の光路上に進退する。 As shown in FIG. 10, the first diffraction grating 11 and the second diffraction grating 12 are arranged so as to be lined up on the same plane. The first diffraction grating 11 and the second diffraction grating 12 advance and retreat on the optical path of the laser beam by the switching mechanism 30.
 切替機構30は、進退部35を有する。進退部35は、例えば、直動アクチュエータで構成されている。第1レーザダイオード21から第1波長帯の第1レーザ光L1が出射された場合に、進退部35は、第1回折格子11をレーザ光の光路上に進出させる(図10参照)。このとき、第2回折格子12は、レーザ光の光路上から退避している。 The switching mechanism 30 has an advancing / retreating portion 35. The advancing / retreating portion 35 is composed of, for example, a linear actuator. When the first laser beam L1 in the first wavelength band is emitted from the first laser diode 21, the advancing / retreating portion 35 advances the first diffraction grating 11 onto the optical path of the laser beam (see FIG. 10). At this time, the second diffraction grating 12 is retracted from the optical path of the laser beam.
 一方、第2レーザダイオード26から第2波長帯の第2レーザ光L2が出射された場合に、進退部35は、第2回折格子12をレーザ光の光路上に進出させる(図11参照)。このとき、第1回折格子11は、レーザ光の光路上から退避している。 On the other hand, when the second laser beam L2 in the second wavelength band is emitted from the second laser diode 26, the advancing / retreating portion 35 advances the second diffraction grating 12 onto the optical path of the laser beam (see FIG. 11). At this time, the first diffraction grating 11 is retracted from the optical path of the laser beam.
 このような構成とすれば、レーザ光の波長帯に応じて、第1回折格子11又は第2回折格子12を切り替えることができる。 With such a configuration, the first diffraction grating 11 or the second diffraction grating 12 can be switched according to the wavelength band of the laser light.
 《実施形態3》
 図12に示すように、第1回折格子11と第2回折格子12は、厚み方向に並ぶように配置されている。第1回折格子11及び第2回折格子12は、切替機構30によって、レーザ光の光路上に進退する。
<< Embodiment 3 >>
As shown in FIG. 12, the first diffraction grating 11 and the second diffraction grating 12 are arranged so as to be arranged in the thickness direction. The first diffraction grating 11 and the second diffraction grating 12 advance and retreat on the optical path of the laser beam by the switching mechanism 30.
 切替機構30は、進退部35を有する。進退部35は、例えば、直動アクチュエータで構成されている。第1レーザダイオード21から第1波長帯の第1レーザ光L1が出射された場合に、進退部35は、第1回折格子11をレーザ光の光路上に進出させる(図12参照)。このとき、第2回折格子12は、レーザ光の光路上から退避している。 The switching mechanism 30 has an advancing / retreating portion 35. The advancing / retreating portion 35 is composed of, for example, a linear actuator. When the first laser beam L1 in the first wavelength band is emitted from the first laser diode 21, the advancing / retreating portion 35 advances the first diffraction grating 11 onto the optical path of the laser beam (see FIG. 12). At this time, the second diffraction grating 12 is retracted from the optical path of the laser beam.
 一方、第2レーザダイオード26から第2波長帯の第2レーザ光L2が出射された場合に、進退部35は、第2回折格子12をレーザ光の光路上に進出させる(図13参照)。このとき、第1回折格子11は、レーザ光の光路上から退避している。 On the other hand, when the second laser beam L2 in the second wavelength band is emitted from the second laser diode 26, the advancing / retreating portion 35 advances the second diffraction grating 12 onto the optical path of the laser beam (see FIG. 13). At this time, the first diffraction grating 11 is retracted from the optical path of the laser beam.
 このような構成とすれば、レーザ光の波長帯に応じて、第1回折格子11又は第2回折格子12を切り替えることができる。 With such a configuration, the first diffraction grating 11 or the second diffraction grating 12 can be switched according to the wavelength band of the laser light.
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
The embodiment may have the following configuration.
 本実施形態では、第2動作の実行時間T2を、第1動作の実行時間T1よりも長くするようにしたが、この形態に限定するものではない。例えば、図14に示すように、第1動作の実行時間T1を、第2動作の実行時間T2よりも長くするようにしてもよい。この場合、1<T1/T2≦10の範囲で設定すればよい。 In the present embodiment, the execution time T2 of the second operation is made longer than the execution time T1 of the first operation, but the present embodiment is not limited to this mode. For example, as shown in FIG. 14, the execution time T1 of the first operation may be made longer than the execution time T2 of the second operation. In this case, it may be set in the range of 1 <T1 / T2 ≦ 10.
 また、本実施形態では、第1波長帯の第1レーザ光L1と、第2波長帯の第2レーザ光L2とを、所定の周期で交互に出射するようにしたが、この形態に限定するものではなく、さらに別の波長帯のレーザ光を出射するようにしてもよい。 Further, in the present embodiment, the first laser beam L1 in the first wavelength band and the second laser beam L2 in the second wavelength band are alternately emitted at a predetermined period, but the present embodiment is limited to this embodiment. It is also possible to emit a laser beam of a different wavelength band instead of the one.
 例えば、レーザ発振器10を、第3波長帯の第3レーザ光L3を出射する第3レーザダイオード(図示省略)と、第3波長帯の複数の第3レーザ光L3を結合する第3回折格子(図示省略)とを備えた構成とし、図15に示すように、第1波長帯の第1レーザ光L1と、第2波長帯の第2レーザ光L2と、第3波長帯の第3レーザ光L3とを、所定の周期で交互に出射するようにしてもよい。 For example, the laser oscillator 10 is a third diffraction grating (not shown) that combines a third laser diode (not shown) that emits a third laser beam L3 in the third wavelength band and a plurality of third laser beams L3 in the third wavelength band. As shown in FIG. 15, the first laser beam L1 in the first wavelength band, the second laser beam L2 in the second wavelength band, and the third laser beam in the third wavelength band are provided. L3 and L3 may be emitted alternately at a predetermined cycle.
 ここで、第3波長帯は、例えば、500~580nmとすればよい。第3波長帯の第3レーザ光L3は、緑色レーザ光である。 Here, the third wavelength band may be, for example, 500 to 580 nm. The third laser beam L3 in the third wavelength band is a green laser beam.
 このように、第1波長帯の第1レーザ光L1と、第2波長帯の第2レーザ光L2と、第3波長帯の第3レーザ光L3とを、所定の周期で交互に出射することで、第1波長帯、第2波長帯、第3波長帯のレーザ光が合わさったビーム形状で、加工対象物Wを加工することができる(図16参照)。 In this way, the first laser beam L1 in the first wavelength band, the second laser beam L2 in the second wavelength band, and the third laser beam L3 in the third wavelength band are alternately emitted at a predetermined cycle. Therefore, the object W to be processed can be processed in a beam shape in which the laser beams of the first wavelength band, the second wavelength band, and the third wavelength band are combined (see FIG. 16).
 これにより、加工対象物Wのキーホール42の開口面積をより安定して広げて、開口付近で発生しやすいスパッタの発生を抑えることができる。また、キーホール42の開口面積をより安定して広げることで、キーホール42の崩壊を抑えることができる。これにより、キーホール42の崩壊により発生するスパッタを抑制することができる。 As a result, the opening area of the key hole 42 of the object W to be processed can be expanded more stably, and the generation of spatter that tends to occur near the opening can be suppressed. Further, by expanding the opening area of the keyhole 42 more stably, the collapse of the keyhole 42 can be suppressed. As a result, spatter generated by the collapse of the keyhole 42 can be suppressed.
 なお、図15に示す例では、第1レーザ光L1を出射する実行時間T1と、第2レーザ光L2を出射する実行時間T2と、第3レーザ光L3を出射する実行時間T3とを同じ長さに設定しているが、それぞれ異なる長さに設定してもよい。 In the example shown in FIG. 15, the execution time T1 for emitting the first laser beam L1, the execution time T2 for emitting the second laser beam L2, and the execution time T3 for emitting the third laser beam L3 have the same length. Although it is set to laser, it may be set to different lengths.
 また、本実施形態では、第1波長帯の第1レーザ光L1に焦点を合わせた状態とすることで、第1波長帯の第1レーザ光L1のビーム径を絞る一方、第2波長帯の第2レーザ光L2のビーム径を広げるようにしたが、この形態に限定するものではない。 Further, in the present embodiment, the beam diameter of the first laser beam L1 in the first wavelength band is narrowed by focusing on the first laser beam L1 in the first wavelength band, while the beam diameter of the first laser beam L1 in the first wavelength band is narrowed down. The beam wavelength of the second laser beam L2 is widened, but the present invention is not limited to this form.
 例えば、第2波長帯の第2レーザ光L2に焦点を合わせた状態とすることで、第2波長帯の第2レーザ光L2のビーム径を絞る一方、例えば、第2波長帯の第2レーザ光L2から第1波長帯の第1レーザ光L1へのレーザ光の波長切替時に、光ファイバ2と、レーザ加工ヘッド3に設けられた図示しない集光レンズとの間の距離の調整を行うことにより、第1波長帯の第1レーザ光L1のビーム径を広げるようにしてもよい。 For example, by focusing on the second laser beam L2 in the second wavelength band, the beam diameter of the second laser beam L2 in the second wavelength band is narrowed, while, for example, the second laser in the second wavelength band. Adjusting the distance between the optical fiber 2 and a condenser lens (not shown) provided in the laser processing head 3 when switching the wavelength of the laser beam from the light L2 to the first laser beam L1 in the first wavelength band. Therefore, the beam diameter of the first laser beam L1 in the first wavelength band may be widened.
 また、本実施形態では、第1半導体レーザデバイス20及び第2半導体レーザデバイス25を、複数のエミッタを有する半導体レーザバーや、複数の半導体レーザバーを積み重ねた半導体スタックで構成してもよい。 Further, in the present embodiment, the first semiconductor laser device 20 and the second semiconductor laser device 25 may be configured by a semiconductor laser bar having a plurality of emitters or a semiconductor stack in which a plurality of semiconductor laser bars are stacked.
 また、本実施形態では、第1半導体レーザデバイス20及び第2半導体レーザデバイス25を設けた構成としたが、特にこれに限定されない。半導体レーザデバイスの個数は、レーザ加工装置1に要求される出力仕様や、個々の半導体レーザデバイスの出力仕様によって適宜変更され得る。 Further, in the present embodiment, the first semiconductor laser device 20 and the second semiconductor laser device 25 are provided, but the present invention is not particularly limited to this. The number of semiconductor laser devices can be appropriately changed depending on the output specifications required for the laser processing apparatus 1 and the output specifications of the individual semiconductor laser devices.
 以上説明したように、本発明は、比較的簡単な構成で、加工目的に応じてレーザ光の波長を変更することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 As described above, the present invention is extremely useful and industrial because it has a highly practical effect that the wavelength of the laser beam can be changed according to the processing purpose with a relatively simple configuration. High availability.
  7  入力部
 10  レーザ発振器
 11  第1回折格子
 12  第2回折格子
 21  第1レーザダイオード(第1出射部)
 26  第2レーザダイオード(第2出射部)
 30  切替機構
 31  支持軸
 32  回転部
 35  進退部
 L1  第1レーザ光(第1波長帯のレーザ光)
 L2  第2レーザ光(第2波長帯のレーザ光)
 L3  第3レーザ光(第3波長帯のレーザ光)
  W  加工対象物
7 Input section 10 Laser oscillator 11 First diffraction grating 12 Second diffraction grating 21 First laser diode (first exit section)
26 Second laser diode (second exit)
30 Switching mechanism 31 Support shaft 32 Rotating part 35 Advance / retreat part L1 First laser beam (laser beam in the first wavelength band)
L2 2nd laser beam (2nd wavelength band laser beam)
L3 3rd laser beam (laser beam in the 3rd wavelength band)
W Machining object

Claims (7)

  1.  波長帯の異なるレーザ光を出射可能なレーザ発振器であって、
     第1波長帯のレーザ光を出射する複数の第1出射部と、
     第2波長帯のレーザ光を出射する複数の第2出射部と、
     前記第1波長帯の複数のレーザ光を結合する第1回折格子と、
     前記第2波長帯の複数のレーザ光を結合する第2回折格子と、
     前記第1出射部又は前記第2出射部から出射されたレーザ光の波長帯に応じて、該レーザ光の光路上に配置する前記第1回折格子又は前記第2回折格子を切り替える切替機構と、
     前記第1出射部、前記第2出射部、及び前記切替機構の動作を制御する制御部とを備え、
     前記制御部は、前記第1波長帯のレーザ光を出射し且つ前記第1回折格子を前記光路上に配置する第1動作と、前記第2波長帯のレーザ光を出射し且つ前記第2回折格子を該光路上に配置する第2動作とを、所定の周期で交互に実行する
    ことを特徴とするレーザ発振器。
    A laser oscillator capable of emitting laser light with different wavelength bands.
    A plurality of first emitting units that emit laser light in the first wavelength band,
    A plurality of second emission units that emit laser light in the second wavelength band,
    A first diffraction grating that combines a plurality of laser beams in the first wavelength band,
    A second diffraction grating that combines a plurality of laser beams in the second wavelength band,
    A switching mechanism for switching the first diffraction grating or the second diffraction grating arranged on the optical path of the laser light according to the wavelength band of the laser light emitted from the first emitting unit or the second emitting unit.
    The first emitting unit, the second emitting unit, and a control unit that controls the operation of the switching mechanism are provided.
    The control unit emits the laser light of the first wavelength band and emits the laser light of the second wavelength band and the second diffraction in the first operation of arranging the first diffraction grating on the optical path. A laser oscillator characterized in that a second operation of arranging a grating on the optical path is alternately executed at a predetermined cycle.
  2.  請求項1において、
     前記制御部は、前記第1動作の実行時間と、前記第2動作の実行時間とを変更する
    ことを特徴とするレーザ発振器。
    In claim 1,
    The control unit is a laser oscillator that changes the execution time of the first operation and the execution time of the second operation.
  3.  請求項1又は2において、
     前記制御部は、前記第2動作の実行時間を、前記第1動作の実行時間よりも長くする
    ことを特徴とするレーザ発振器。
    In claim 1 or 2,
    The control unit is a laser oscillator characterized in that the execution time of the second operation is made longer than the execution time of the first operation.
  4.  請求項1又は2において、
     前記制御部は、前記第1動作の実行時間を、前記第2動作の実行時間よりも長くする
    ことを特徴とするレーザ発振器。
    In claim 1 or 2,
    The control unit is a laser oscillator characterized in that the execution time of the first operation is made longer than the execution time of the second operation.
  5.  請求項1乃至4のうち何れか1つにおいて、
     前記切替機構は、前記第1回折格子及び前記第2回折格子が周方向に間隔をあけて支持された支持軸と、該支持軸を回転させることで前記レーザ光の光路上に該第1回折格子又は該第2回折格子を配置させる回転部とを有する
    ことを特徴とするレーザ発振器。
    In any one of claims 1 to 4,
    The switching mechanism includes a support shaft on which the first diffraction grating and the second diffraction grating are supported at intervals in the circumferential direction, and the first diffraction on the optical path of the laser beam by rotating the support shaft. A laser oscillator having a grating or a rotating portion on which the second diffraction grating is arranged.
  6.  請求項1乃至4のうち何れか1つにおいて、
     前記切替機構は、前記第1回折格子又は前記第2回折格子の一方を前記レーザ光の光路上に進出させるとともに、該第1回折格子又は該第2回折格子の他方を該光路上から退避させる進退部を有する
    ことを特徴とするレーザ発振器。
    In any one of claims 1 to 4,
    The switching mechanism causes one of the first diffraction grating or the second diffraction grating to advance into the optical path of the laser beam, and retracts the first diffraction grating or the other of the second diffraction grating from the optical path. A laser oscillator characterized by having an advancing / retreating portion.
  7.  請求項1乃至6のうち何れか1つにおいて、
     前記レーザ光で加工する加工対象物の材料に関する情報を入力する入力部を備え、
     前記切替機構は、前記入力部で入力された情報に基づいて、前記第1回折格子又は前記第2回折格子を切り替える
    ことを特徴とするレーザ発振器。
    In any one of claims 1 to 6,
    It is provided with an input unit for inputting information about the material of the object to be processed by the laser beam.
    The switching mechanism is a laser oscillator characterized by switching the first diffraction grating or the second diffraction grating based on the information input by the input unit.
PCT/JP2020/044088 2019-11-27 2020-11-26 Laser oscillator WO2021107042A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019214265 2019-11-27
JP2019-214265 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021107042A1 true WO2021107042A1 (en) 2021-06-03

Family

ID=76130561

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/044088 WO2021107042A1 (en) 2019-11-27 2020-11-26 Laser oscillator
PCT/JP2020/044089 WO2021107043A1 (en) 2019-11-27 2020-11-26 Laser processing device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044089 WO2021107043A1 (en) 2019-11-27 2020-11-26 Laser processing device

Country Status (1)

Country Link
WO (2) WO2021107042A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372822A (en) * 1991-06-24 1992-12-25 Shinko Electric Co Ltd Optical encoder
JPH09113316A (en) * 1995-05-08 1997-05-02 Matsushita Electric Ind Co Ltd Optical encoder
JP2002006510A (en) * 2000-06-19 2002-01-09 Ntn Corp Defect correcting apparatus
JP2002113711A (en) * 2000-10-11 2002-04-16 Murata Mfg Co Ltd Method for processing ceramic green sheet and apparatus for laser processing used in the method
JP2007516840A (en) * 2003-12-30 2007-06-28 アドヴァンスド レーザー セパレイション インターナショナル ベー ヴェー Method, apparatus and diffraction grating for separating semiconductor elements formed on a substrate by changing the diffraction grating
JP2010120039A (en) * 2008-11-18 2010-06-03 Hitachi Computer Peripherals Co Ltd Laser beam machining apparatus and method
JP2015010899A (en) * 2013-06-27 2015-01-19 キヤノン株式会社 Wavelength selection filter, wavelength variable light source using the same, optical interference fault meter using the wavelength variable light source, and photodetector using the wavelength selection filter
WO2015029466A1 (en) * 2013-08-28 2015-03-05 三菱重工業株式会社 Laser machining device
US9147990B2 (en) * 2012-02-07 2015-09-29 Robert H. Dueck Two-dimensional laser system employing two dispersive elements
JP2016181643A (en) * 2015-03-25 2016-10-13 株式会社アマダホールディングス Semiconductor laser oscillator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233741B2 (en) * 2000-09-27 2009-03-04 三菱重工業株式会社 Solar cell module and manufacturing method thereof
JP4209615B2 (en) * 2001-12-28 2009-01-14 株式会社ニデック Laser processing equipment
JP2012135808A (en) * 2010-12-27 2012-07-19 Omron Corp Laser beam machining apparatus and laser beam machining method
WO2013051245A1 (en) * 2011-10-07 2013-04-11 Canon Kabushiki Kaisha Method and apparatus for laser-beam processing and method for manufacturing ink jet head
US10751833B2 (en) * 2016-03-17 2020-08-25 Panasonic Intellectual Property Management Co., Ltd. Fiber coupling device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372822A (en) * 1991-06-24 1992-12-25 Shinko Electric Co Ltd Optical encoder
JPH09113316A (en) * 1995-05-08 1997-05-02 Matsushita Electric Ind Co Ltd Optical encoder
JP2002006510A (en) * 2000-06-19 2002-01-09 Ntn Corp Defect correcting apparatus
JP2002113711A (en) * 2000-10-11 2002-04-16 Murata Mfg Co Ltd Method for processing ceramic green sheet and apparatus for laser processing used in the method
JP2007516840A (en) * 2003-12-30 2007-06-28 アドヴァンスド レーザー セパレイション インターナショナル ベー ヴェー Method, apparatus and diffraction grating for separating semiconductor elements formed on a substrate by changing the diffraction grating
JP2010120039A (en) * 2008-11-18 2010-06-03 Hitachi Computer Peripherals Co Ltd Laser beam machining apparatus and method
US9147990B2 (en) * 2012-02-07 2015-09-29 Robert H. Dueck Two-dimensional laser system employing two dispersive elements
JP2015010899A (en) * 2013-06-27 2015-01-19 キヤノン株式会社 Wavelength selection filter, wavelength variable light source using the same, optical interference fault meter using the wavelength variable light source, and photodetector using the wavelength selection filter
WO2015029466A1 (en) * 2013-08-28 2015-03-05 三菱重工業株式会社 Laser machining device
JP2016181643A (en) * 2015-03-25 2016-10-13 株式会社アマダホールディングス Semiconductor laser oscillator

Also Published As

Publication number Publication date
WO2021107043A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US10283934B2 (en) Semiconductor laser oscillator
KR910009016B1 (en) Laser processing apparatus
JP4690967B2 (en) Laser processing equipment with increased processing depth
JP7100236B2 (en) Wavelength beam coupling device
JP2021511967A (en) Equipment and methods for laser machining materials
JP2016112609A (en) Laser cutting apparatus and laser cutting method
JP5965454B2 (en) Direct diode laser processing apparatus and sheet metal processing method using the same
WO2016199514A1 (en) Laser machining apparatus and laser cutting method
JP5446334B2 (en) Laser welding apparatus and laser welding method
WO2021107042A1 (en) Laser oscillator
JP2009195964A (en) Laser arc composite welding head
JPH01245992A (en) Multiwavelength laser beam machine
WO2016059937A1 (en) Sheet metal processing method using direct diode laser, and direct diode laser processing device for carrying out said method
JP2023015423A (en) Laser processing device
JP2016078051A (en) Direct diode laser processing device and processing method for metal plate using the same
JP6035304B2 (en) Direct diode laser processing apparatus and sheet metal processing method using the same
JP7060335B2 (en) Welding equipment and welding method
JP2016073983A (en) Laser welding device and laser welding method
WO2016059993A1 (en) Direct diode laser oscillator, direct diode laser processing device, and reflected light detection method
JP2021104518A (en) Laser processing device and laser processing method
US20230163550A1 (en) Laser system
JP2024009490A (en) Laser processing device
JP2019193944A (en) Laser processing device
JP7411851B1 (en) Polarization adjustment device and laser processing machine
JPH02284782A (en) Method for converging laser beams having different wavelengths

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20894360

Country of ref document: EP

Kind code of ref document: A1