JPH04322892A - Laser beam machine and laser beam machining method - Google Patents

Laser beam machine and laser beam machining method

Info

Publication number
JPH04322892A
JPH04322892A JP3090530A JP9053091A JPH04322892A JP H04322892 A JPH04322892 A JP H04322892A JP 3090530 A JP3090530 A JP 3090530A JP 9053091 A JP9053091 A JP 9053091A JP H04322892 A JPH04322892 A JP H04322892A
Authority
JP
Japan
Prior art keywords
laser
oscillation
processing
optical fiber
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3090530A
Other languages
Japanese (ja)
Other versions
JP2839741B2 (en
Inventor
Atsushi Sugibashi
杉 橋  敦 史
Katsuhiro Minamida
南 田  勝 宏
Yoshio Takahashi
高 橋  良 夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3090530A priority Critical patent/JP2839741B2/en
Publication of JPH04322892A publication Critical patent/JPH04322892A/en
Application granted granted Critical
Publication of JP2839741B2 publication Critical patent/JP2839741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

PURPOSE:To weld a metallic steel plate whose plate thickness extends over a wide range of about 0.1mm to 1.0mm plate thickness by one set of laser welding machine without generating a welding defect. CONSTITUTION:The machine is constituted of three kinds of laser oscillators of a continuous oscillation (CM oscillation) YAG laser oscillator 1, a Q switch oscillation YAG laser oscillator 2, and a pulse oscillation YAG laser oscillator 3, an incident optical system 6 for condensing their laser outputs to an optical fiber 7 and allowing them to be made incident thereon, and a working condensing system 8 for condensing an emitted light from the optical fiber 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は金属鋼板溶接用のレーザ
溶接装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser welding device for welding metal steel plates.

【0002】0002

【従来の技術】従来のレーザ溶接装置としては大出力用
のものとして、特開平2−67783号公報記載のよう
にレーザのロッドをカスケード型に連結したレーザ溶接
装置があった。しかし、カスケード型のレーザ発振器に
おいては低出力側でのレーザ出力に制限があるため、例
えば一つのラインで取り扱う事になる板厚0.1mmか
ら1.0mm程度の幅広い板厚にわたる金属鋼板におい
て、それら金属鋼板の溶接を一台のレーザ溶接装置にて
まかなう事は困難であった。これは、レーザの出力を安
定して取り出す場合、ある最低出力以上の出力を出す必
要があり、例えばレーザロッドがN段直列に並べられて
いるカスケード型のレーザ発振器においては、装置全体
の最低出力が一つのロッドの最低出力のN倍になってし
まうためである。またカスケード型レーザ発振器は、レ
ーザ発振系の光軸調整やメンテナンスに非常に手間がか
かり、ラインで使用する際には問題がある。
2. Description of the Related Art As a conventional laser welding device for high output, there is a laser welding device in which laser rods are connected in a cascade type, as described in Japanese Patent Laid-Open No. 2-67783. However, in a cascade type laser oscillator, there is a limit to the laser output on the low output side, so for example, for metal steel sheets with a wide range of thickness from 0.1 mm to 1.0 mm, which are handled on one line, It has been difficult to weld these metal steel plates using a single laser welding device. This means that in order to obtain stable output from the laser, it is necessary to output a certain minimum output.For example, in a cascade type laser oscillator in which N stages of laser rods are arranged in series, the minimum output of the entire device is This is because the output power becomes N times the minimum output of one rod. Furthermore, the cascade type laser oscillator requires a lot of effort to adjust the optical axis of the laser oscillation system and maintain it, which poses a problem when used on a line.

【0003】さらに、レーザ発振器を並列に並べ光ファ
イバーで結合し、高出力化を狙ったものとしては特開平
2−142695号公報記載のように、半導体レーザを
光ファイバで結合したものがある。この様な方法による
と、いかに結合により出力が増大できるとはいえ、それ
は限られたものであり、加工を行える範囲としては熱量
をあまり必要としないものに限られ、いわゆる金属鋼板
の溶接には、百個以上の半導体レーザを結合する必要が
あり、その光学系は非常に複雑なものとなる。さらに、
板厚の非常に薄い金属鋼板の溶接を行う場合、連続発振
(CW発振),パルス発振何れかの単独の発振にて溶接
を行うと、溶け落ちやハンピングが発生し、安定した溶
接を行う事ができず、従来のレーザ溶接機では困難であ
る。その理由を以下に簡単に説明する。
[0003] Furthermore, as a system which aims at increasing the output by arranging laser oscillators in parallel and coupling them through optical fibers, there is a system in which semiconductor lasers are coupled through optical fibers, as described in Japanese Patent Laid-Open No. 2-142695. Although this type of method can increase output through bonding, it is limited, and the range of processing that can be done is limited to those that do not require a large amount of heat, so it is difficult to weld metal steel plates. , it is necessary to combine more than 100 semiconductor lasers, and the optical system becomes extremely complex. moreover,
When welding very thin metal steel plates, if welding is performed using either continuous oscillation (CW oscillation) or pulse oscillation alone, burn-through and humping will occur, making it difficult to perform stable welding. This is difficult to do with conventional laser welding machines. The reason for this will be briefly explained below.

【0004】金属材料にレーザ光を照射した場合、通常
の金属表面でのレーザ光吸収率は、YAGレーザの場合
約40%である。しかし金属表面が溶融状態の場合、レ
ーザ光吸収率は急激に上昇しほぼ100%になる。従っ
て溶接を連続発振(CW発振)YAGレーザで行った場
合、金属表面の溶融,未溶融の状態にあわせてレーザ光
吸収率が変化し、その結果レーザによる投入熱量の変動
となり溶け落ちやハンピング等の溶接欠陥を引き起こす
ことになる。またパルス発振YAGレーザを用いて溶接
を行った場合、連続発振YAGレーザを用いる場合にく
らべ、鋼板に対する溶け落ち,ハンピング等の溶接欠陥
の発生は抑えられるが、レーザの照射時間が短く、急加
熱や急冷却を行うことになるので、溶接部の曲げ特性が
低下し溶接後の圧延や曲げ加工を行うことが難しくなる
。以上のような理由で従来のレーザ溶接装置は板厚の非
常に薄いものから1mm程度の板厚までの幅広い板厚に
わたる金属鋼板の溶接には不十分であった。
[0004] When a metal material is irradiated with laser light, the laser light absorption rate on the normal metal surface is about 40% in the case of a YAG laser. However, when the metal surface is in a molten state, the laser light absorption rate increases rapidly to almost 100%. Therefore, when welding is performed using a continuous wave (CW oscillation) YAG laser, the laser light absorption rate changes depending on whether the metal surface is molten or not, and as a result, the amount of heat input by the laser changes, resulting in burn-through, humping, etc. This will cause welding defects. Furthermore, when welding is performed using a pulsed YAG laser, welding defects such as burn-through and humping on the steel plate can be suppressed compared to when using a continuous wave YAG laser, but the laser irradiation time is short and rapid heating occurs. As a result, the bending properties of the welded part deteriorate and it becomes difficult to perform rolling or bending after welding. For the above-mentioned reasons, conventional laser welding apparatuses have been insufficient for welding metal steel plates over a wide range of thickness, from very thin plates to plate thicknesses of about 1 mm.

【0005】[0005]

【発明が解決しようとする課題】本発明は、通常一つの
ラインで取り扱う事になる幅広い板厚にわたる(例えば
板厚0.1mmから1.0mm程度の範囲)金属鋼板を
一台のレーザ溶接機で溶接欠陥なく溶接することを課題
としている。
[Problems to be Solved by the Invention] The present invention aims to weld metal steel plates with a wide range of thicknesses (for example, in the range of about 0.1 mm to 1.0 mm) that are normally handled on one line using a single laser welding machine. The challenge is to weld without welding defects.

【0006】[0006]

【課題を解決するための手段】本発明は、YAGレーザ
発振器とその出射レーザ光を集光し加工を行うための加
工集光系をもつレーザ加工装置において、CW発振,Q
スイッチ発振,パルス発振の発振方式の異なる複数のY
AGレーザ発振器と、それらのレーザ光を一本あるいは
複数本の光ファイバ束に入射する入射光学系と、一本あ
るいは複数本の光ファイバ束と、該光ファイバ束からの
出射光を集光し加工を行うための加工集光系とを持つ事
を特徴とするレーザ加工装置である。また、CW発振,
Qスイッチ発振,パルス発振の発振方式の異なる複数の
YAGレーザ発振器の二台以上のレーザ発振器を駆動す
る事により溶接を行うレーザ溶接方法である。
[Means for Solving the Problems] The present invention provides CW oscillation, Q
Multiple Ys with different oscillation methods for switch oscillation and pulse oscillation
An AG laser oscillator, an input optical system that inputs the laser beams into one or more optical fiber bundles, one or more optical fiber bundles, and condenses the output light from the optical fiber bundles. This is a laser processing device characterized by having a processing light focusing system for performing processing. Also, CW oscillation,
This is a laser welding method in which welding is performed by driving two or more laser oscillators of a plurality of YAG laser oscillators with different oscillation methods of Q-switch oscillation and pulse oscillation.

【0007】[0007]

【作用】本発明は、図1に示すように、連続発振(CW
発振)YAGレーザ発振器1,Qスイッチ発振YAGレ
ーザ発振器2,及びパルス発振YAGレーザ発振器3の
三種類のレーザ発振器と、それらのレーザ出力を光ファ
イバ束7に集光入射する入射光学系6と、光ファイバ束
7からの出射光を集光する加工集光系8により構成され
る。三種類のレーザ発振器を備える効果を以下に説明す
る。
[Operation] As shown in FIG.
oscillation) three types of laser oscillators: a YAG laser oscillator 1, a Q-switch oscillation YAG laser oscillator 2, and a pulse oscillation YAG laser oscillator 3; It is constituted by a processing condensing system 8 that condenses the light emitted from the optical fiber bundle 7. The effects of having three types of laser oscillators will be explained below.

【0008】一般的に金属薄板を突き合せ溶接する場合
、厚板を溶接する場合と異なり、溶接する金属鋼板のエ
ッジ部を金属薄板の厚さに対し相対的に見て幅広く溶融
し、溶接する必要がある。これは金属薄板突き合せ時の
突き合せギャップやオフセットがある程度存在しても溶
接を可能とするためであり、これにより金属薄板の溶接
治具への取付け精度が緩和され、ラフな取付けでも溶接
が可能となる。以上のように金属薄板の突き合せ溶接に
於いては、幅の広い溶融ビードを形成できる事が大きな
意味をもつ。ところが、非常に薄い金属鋼板の場合(例
えば板厚0.1mm程度)、前述のように溶け落ちやハ
ンピング等の溶接欠陥が発生し、幅広に溶融ビードを形
成できない。従って非常に薄い金属鋼板の突き合せ溶接
のためには高精度の取付け治具が必要となりその溶接は
非常に困難であった。
Generally, when butt welding thin metal plates, unlike when welding thick plates, the edges of the metal steel plates to be welded are melted and welded over a wide area relative to the thickness of the metal plate. There is a need. This is to enable welding even if there is a certain amount of butt gap or offset when butting thin metal sheets.This eases the precision of mounting the thin metal sheets to the welding jig, and allows welding even with rough installation. It becomes possible. As mentioned above, in butt welding of thin metal plates, it is of great significance to be able to form a wide molten bead. However, in the case of a very thin metal steel plate (eg, about 0.1 mm thick), welding defects such as burn-through and humping occur as described above, making it impossible to form a wide molten bead. Therefore, butt welding of very thin metal steel plates requires a high-precision mounting jig, and welding is extremely difficult.

【0009】しかし、発振方式の異なる三種類のレーザ
発振器を備える事により以下に述べるように非常に薄い
金属鋼板においての溶接欠陥の発生を防ぐ事ができる。 まず、高ピーク出力をもつQスイッチ発振YAGレーザ
により、金属表面のごく一部を瞬間的に溶融状態にする
、更にパルス発振YAGレーザによりその溶融部を拡大
する。このようにQスイッチレーザとパルスレーザを繰
り返し照射することにより、金属鋼板の表面は常時溶融
状態となり、レーザ光吸収率はほぼ100%で安定に保
たれる。こうしてレーザ光吸収率が安定した金属鋼板に
、連続発振(CW発振)レーザを照射することで、金属
鋼板の全板厚を溶融状態にするのに必要な熱量を供給す
る。金属鋼板のレーザ光吸収率が安定しているため、溶
け落ちやハンピング等の溶接欠陥のない溶接が可能とな
り、さらに溶融に必要な熱量は、連続発振(CW発振)
レーザにより供給するため、パルスレーザで溶接を行っ
た場合のような溶接部の曲げ特性の低下は発生しない。 この様に本発明によると、非常に板厚の薄い金属鋼板を
溶接欠陥なく溶接する事ができる。
However, by providing three types of laser oscillators with different oscillation methods, it is possible to prevent welding defects from occurring in very thin metal steel sheets, as described below. First, a Q-switch oscillation YAG laser with a high peak output is used to instantaneously melt a small portion of the metal surface, and then a pulse oscillation YAG laser is used to enlarge the molten portion. By repeatedly irradiating with the Q-switched laser and the pulsed laser in this manner, the surface of the metal steel plate is constantly in a molten state, and the laser light absorption rate is kept stable at approximately 100%. By irradiating a continuous wave (CW oscillation) laser onto a metal steel plate whose laser light absorption rate has been stabilized in this manner, the amount of heat necessary to bring the entire thickness of the metal steel plate into a molten state is supplied. Because the laser light absorption rate of metal steel sheets is stable, it is possible to weld without welding defects such as burn-through or humping, and the amount of heat required for melting is reduced by continuous wave (CW oscillation).
Since it is supplied using a laser, the bending properties of the welded part do not deteriorate as would occur when welding is performed using a pulsed laser. As described above, according to the present invention, very thin metal steel plates can be welded without welding defects.

【0010】さらに複数台のレーザ発振器を備える事に
より、最低出力の値はひとつのロッドの最低出力と同じ
にできるので、従来のレーザ溶接装置では得られない低
出力から制御可能なレーザ出力を得ることができる。ま
た図1では連続発振(CW発振)レーザ二台と、Qスイ
ッチ発振レーザ及びパルス発振レーザ各一台で構成され
ているが、それぞれのレーザを複数台ずつ用意すること
によって、レーザ出力の最大出力を大きくできる。この
様に本発明は、レーザ出力の可変範囲を非常に大きくで
き、一つのラインで取り扱う事となる幅広い範囲にわた
る板厚をもつ金属鋼板の溶接を一台のレーザ溶接装置に
より溶接する事が可能となる。
Furthermore, by providing multiple laser oscillators, the minimum output value can be made the same as the minimum output of one rod, so it is possible to obtain controllable laser output from a low output that cannot be obtained with conventional laser welding equipment. be able to. In addition, in Figure 1, the configuration consists of two continuous wave (CW oscillation) lasers, one each of a Q-switch oscillation laser and a pulse oscillation laser, but by preparing multiple units of each laser, the maximum laser output can be achieved. can be made larger. As described above, the present invention allows the variable range of the laser output to be extremely wide, making it possible to weld metal steel plates having a wide range of thickness that are handled on one line using a single laser welding device. becomes.

【0011】また本発明では、図2に示すように、加工
集光系8の手前の光ファイバ7に各レーザ発振器の出力
を導くのに、ベンディングミラー5を用いるかわりに光
ファイバ7を用いることも可能である。さらに図5に示
すように、パルスレーザ発振器を用いるかわりにYAG
レーザ光の透過率の異なる部分をもつものが高速で回転
あるいは往復運動させる事により、機械的にYAGレー
ザ光をチョッピングする方法や、AO,EO変調機、も
しくはPZT素子を裏につけたベンディングミラー等の
電気的方法で連続発振レーザの出力を周期的に遮断する
ことにより、疑似的にパルス出力を取り出すことも可能
である。
Furthermore, in the present invention, as shown in FIG. 2, an optical fiber 7 is used instead of the bending mirror 5 to guide the output of each laser oscillator to the optical fiber 7 in front of the processing condensing system 8. is also possible. Furthermore, as shown in Figure 5, instead of using a pulsed laser oscillator, YAG
A method of mechanically chopping YAG laser light by rotating or reciprocating parts with different laser light transmittances at high speed, an AO/EO modulator, or a bending mirror with a PZT element on the back, etc. It is also possible to extract pulsed output in a pseudo manner by periodically cutting off the output of the continuous wave laser using the electrical method described above.

【0012】0012

【実施例】以下、本発明によるレーザ加工装置の実施例
を説明する。
Embodiments Hereinafter, embodiments of the laser processing apparatus according to the present invention will be described.

【0013】(1)図1は本発明の実施例の構成図であ
る。二台の300W連続発振YAGレーザ発振器1と、
300W QスイッチYAGレーザ発振器2と、300
WパルスYAGレーザ発振器3から出射されたレーザは
、ベンディングミラー5によりファイバ入射光学系6に
導かれ、ファイバ7に入射される。ファイバ7は加工集
光系8に結合され、加工対象物にレーザ光10を照射す
る。本実施例では、ファイバ入射光学系6は図3に示す
ように45度全反射のプリズム型ベンディングミラー1
1と、有効径40mm,焦点距離50mmのレンズ12
により構成した。光ファイバ7は、開口数0.5,コア
径0.6mmのものを使用した。加工集光系8からのレ
ーザ出力を測定したところ、四台のレーザ発振器1のう
ち二台のみを駆動する、あるいは全てのレーザ発振器を
駆動することにより、50Wから1.2kWまでの幅広
い出力範囲にわたり、制御された安定した出力を得る事
ができた。これにより板厚0.1mmから1.0mmの
広範囲にわたるSUS304鋼板が溶接欠陥なく溶接で
きた。
(1) FIG. 1 is a block diagram of an embodiment of the present invention. Two 300W continuous wave YAG laser oscillators 1,
300W Q-switch YAG laser oscillator 2 and 300W
A laser beam emitted from the W-pulse YAG laser oscillator 3 is guided by a bending mirror 5 to a fiber input optical system 6, and is input into a fiber 7. The fiber 7 is coupled to a processing condensing system 8, and irradiates the workpiece with a laser beam 10. In this embodiment, the fiber input optical system 6 includes a prism-type bending mirror 1 with total reflection of 45 degrees, as shown in FIG.
1 and a lens 12 with an effective diameter of 40 mm and a focal length of 50 mm.
It was constructed by The optical fiber 7 used had a numerical aperture of 0.5 and a core diameter of 0.6 mm. When we measured the laser output from the processing focusing system 8, we found that by driving only two of the four laser oscillators 1 or by driving all laser oscillators, a wide output range from 50 W to 1.2 kW could be achieved. We were able to obtain controlled and stable output over a period of time. As a result, a wide range of SUS304 steel plates with a thickness of 0.1 mm to 1.0 mm could be welded without any welding defects.

【0014】(2)図1に示すように、四台のレーザ発
振器1をそれぞれCW発振,Qスイッチ発振,パルス発
振の異なる発振をおこなうレーザを用いることにより、
加工集光系8から出射されるレーザ光7に変調を掛ける
事ができた。四台のレーザ発振器により出力変調をかけ
たレーザ光を用いて、トータル出力95W(一定)にて
、図8におけるPCW=1/2Pp,周波数f=1kH
z,Qスイッチピーク出力PQ=50kWを重畳するこ
とにより、変調出力を作りだし、板厚100μmのSU
S304のビードオンプレートを行ったところ、変調時
のデューティB/Aを変化させる事により、上記三つの
発振方法のうち一種類のみの発振によるレーザ出力に於
いてより広いビードを形成する事ができた(図9)。こ
の事は前述のように、本発明は金属鋼板の溶接において
従来のレーザ溶接機を用いるのに比べ非常に優位性をも
つ事を示している。
(2) As shown in FIG. 1, by using four laser oscillators 1 that perform different oscillations such as CW oscillation, Q-switch oscillation, and pulse oscillation,
It was possible to modulate the laser beam 7 emitted from the processing condensing system 8. Using laser light whose output is modulated by four laser oscillators, the total output is 95W (constant), PCW in Figure 8 is 1/2Pp, frequency f is 1kHz.
By superimposing the z, Q switch peak output PQ = 50kW, a modulated output is created and
When S304 bead-on-plate was performed, by changing the duty B/A during modulation, it was possible to form a wider bead in the laser output by only one type of oscillation among the three oscillation methods mentioned above. (Figure 9). As mentioned above, this shows that the present invention has a great advantage over using a conventional laser welding machine in welding metal steel plates.

【0015】(3)上記実施例(2)において、一番広
いビード形成が可能なデューティ50%のところで、板
厚100μmのSUS304の突き合せ溶接を行った。 トータルレーザ出力100W,溶接速度2.5m/mi
n,突き合せギャップ巾30μm,オフセット20μm
の突き合せ精度において、溶け落ち欠陥のない溶接が得
られた。また、ビードの厚みは母材厚の120%以下で
あり、溶接部をサンプルとして切り出し、繰り返し曲げ
による被労破壊テストを行ったところ、破断回数が50
回以上であった。これはリファレンスにもちいた母材部
の破断回数70回よりは劣るものの、パルス発振のみで
溶接した場合の破断回数35回を大きく上回るものであ
り、溶接性の良い事を示している。
(3) In Example (2) above, butt welding of SUS304 plates having a thickness of 100 μm was carried out at a duty of 50%, where the widest bead could be formed. Total laser output 100W, welding speed 2.5m/mi
n, butt gap width 30μm, offset 20μm
Welding without burn-through defects was obtained with a butt accuracy of . In addition, the thickness of the bead is 120% or less of the base metal thickness, and when a welded part was cut out as a sample and subjected to a stress fracture test by repeated bending, the number of fractures was 50%.
It was more than once. Although this is inferior to the 70 times of failure of the base material used as a reference, it is much greater than the 35 times of failure when welding using only pulse oscillation, indicating good weldability.

【0016】[0016]

【効果】本発明により、30Wから1.2kWまでのレ
ーザ出力を安定的に得る事ができた。これにより広い範
囲の板厚(例えば板厚0.1mmから1.0mm程度)
の金属鋼板を一台のレーザ加工装置により溶接する事が
可能となる。さらに本発明は、それぞれCW出力,Qス
イッチ出力,パルス出力の異なる発振を行うレーザ発振
器を用いる事により、加工集光系から照射されるレーザ
出力を変調させる事ができ、これにより、従来のレーザ
溶接法では溶け落ち,ハンピング等がおきる溶接条件の
下でも、それらを起こす事なく溶接を行う事ができた。 加えて、本発明のCW出力,Qスイッチ出力,パルス出
力の異なるレーザ出力を光ファイバを用いて重畳し変調
出力により溶接を行うことで、金属鋼板に幅広いビード
を形成できた。これにより金属箔の溶接の際に問題とな
る厳しいオフセット条件(従来は板厚の10%以下)を
緩和する事ができ、溶接装置の金属鋼板のホルダーの制
約をゆるやかなものとすることができる。
[Effect] According to the present invention, laser output from 30 W to 1.2 kW could be stably obtained. This allows for a wide range of plate thicknesses (for example, plate thicknesses from 0.1 mm to 1.0 mm).
It becomes possible to weld metal steel plates with one laser processing device. Furthermore, by using laser oscillators that oscillate with different CW output, Q-switch output, and pulse output, the present invention can modulate the laser output irradiated from the processing focusing system. The welding method was able to perform welding without causing burn-through or humping, even under welding conditions that would cause such problems. In addition, by superimposing different laser outputs of the present invention, including CW output, Q-switch output, and pulse output, using an optical fiber and performing welding with the modulated output, a wide bead could be formed on the metal steel plate. This makes it possible to alleviate the severe offset conditions (conventionally 10% or less of the plate thickness) that are a problem when welding metal foil, and to ease the constraints on the holder of the metal steel plate in the welding equipment. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例の構成を示すブロック図である
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】レーザ発振器からの出力の結合を光ファイバを
用いて行った実施例の構成を示すブロック図である。
FIG. 2 is a block diagram showing the configuration of an embodiment in which outputs from laser oscillators are coupled using optical fibers.

【図3】複数のレーザ出力を光ファイバに入射する実施
例の入射光学系の構成を示すブロック図である。
FIG. 3 is a block diagram showing the configuration of an input optical system in an embodiment that inputs a plurality of laser outputs into an optical fiber.

【図4】レーザ出力に変調を掛ける実施例の構成を示す
ブロック図である。
FIG. 4 is a block diagram showing the configuration of an embodiment in which laser output is modulated.

【図5】レ−ザ出力変調装置の一実施例を示す斜視図で
ある。
FIG. 5 is a perspective view showing an embodiment of a laser output modulation device.

【図6】レ−ザ出力変調装置の他の一実施例を示す正面
図である。
FIG. 6 is a front view showing another embodiment of the laser output modulation device.

【図7】レーザ出力変調装置の他の一実施例を示すブロ
ック図である。
FIG. 7 is a block diagram showing another embodiment of the laser output modulation device.

【図8】変調レーザ出力レベルを概念的に示す波形図で
ある。
FIG. 8 is a waveform diagram conceptually showing a modulated laser output level.

【図9】レーザ出力変調のデューティとビード形成幅の
関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the duty of laser output modulation and the bead formation width.

【符号の説明】[Explanation of symbols]

1:CW発振レーザ発振器            2
:Qスイッチ発振レーザ発振器 3:パルス発振レーザ発振器          4:
レーザ光5:ベンディングミラー          
    6:入射光学系7:光ファイバ       
               8:加工集光系9:加
工対象物                    1
0:集光されたレーザ光 11:プリズム型ベンディングミラー  12:集光レ
ンズ 13:変調装置                  
    14:チョッパー 15:レーザ透過率大の部分          16
:レーザ透過率小の部分 17:スリット板,小孔 18:PZT素子付きミラー,ガルバノミラー19:A
O,EO変調素子            PCW:C
W発振レーザ出力値 Pp:パルス発振ピーク出力          PQ
:Qスイッチピーク出力
1: CW oscillation laser oscillator 2
: Q-switch oscillation laser oscillator 3: Pulse oscillation laser oscillator 4:
Laser beam 5: Bending mirror
6: Input optical system 7: Optical fiber
8: Processing light focusing system 9: Processing object 1
0: Focused laser beam 11: Prism-type bending mirror 12: Condensing lens 13: Modulator
14: Chopper 15: Part with high laser transmittance 16
: Part with low laser transmittance 17: Slit plate, small hole 18: Mirror with PZT element, galvano mirror 19: A
O, EO modulation element PCW:C
W oscillation laser output value Pp: Pulse oscillation peak output PQ
:Q switch peak output

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  YAGレーザ発振器とレーザ光を集光
し加工を行うための加工集光系をもつレーザ加工装置に
おいて、CW発振,Qスイッチ発振,パルス発振の発振
方式の異なる複数のYAGレーザ発振器と、それらのレ
ーザ光を一本あるいは複数本の光ファイバ束に入射する
入射光学系と、一本あるいは複数本の光ファイバ束と、
該光ファイバ束からの出射光を集光し加工を行うための
加工集光系とを持つ事を特徴とするレーザ加工装置。
Claim 1: A laser processing device having a YAG laser oscillator and a processing focusing system for focusing laser light and performing processing, including a plurality of YAG laser oscillators with different oscillation methods of CW oscillation, Q-switch oscillation, and pulse oscillation. , an input optical system that inputs the laser beams into one or more optical fiber bundles, one or more optical fiber bundles,
A laser processing apparatus characterized by having a processing condensing system for condensing the light emitted from the optical fiber bundle and performing processing.
【請求項2】  上記請求項1において、複数のレーザ
発振器から光ファイバにレーザ光を入射する手前におい
て複数のレーザ光のすべてあるいは一部を機械的あるい
は電気的方法で周期的に減衰させる変調器を持つ事を特
徴とするレーザ加工装置。
2. The modulator according to claim 1, which periodically attenuates all or part of the plurality of laser beams by a mechanical or electrical method before the laser beams enter the optical fiber from the plurality of laser oscillators. A laser processing device characterized by:
【請求項3】  YAGレーザ発振器とレーザ光を集光
し加工を行うための加工集光系をもち、CW発振,Qス
イッチ発振,パルス発振の発振方式の異なる複数のYA
Gレーザ発振器と、それらのレーザ光を一本あるいは複
数本の光ファイバ束に入射する入射光学系と、一本ある
いは複数本の光ファイバ束と、該光ファイバ束からの出
射光を集光し加工を行うための加工集光系とを持つレー
ザ加工装置を使用し、前記複数のYAGレーザ発振器の
二台以上のレーザ発振器を駆動する事により加工を行う
レーザ加工方法。
[Claim 3] A YAG laser oscillator and a processing focusing system for focusing laser light and processing, and a plurality of YAG lasers with different oscillation methods such as CW oscillation, Q-switch oscillation, and pulse oscillation.
A G laser oscillator, an input optical system that inputs the laser beams into one or more optical fiber bundles, one or more optical fiber bundles, and condenses the output light from the optical fiber bundles. A laser processing method in which processing is performed by driving two or more laser oscillators of the plurality of YAG laser oscillators using a laser processing device having a processing light focusing system for processing.
JP3090530A 1991-04-22 1991-04-22 Laser processing apparatus and laser processing method Expired - Fee Related JP2839741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3090530A JP2839741B2 (en) 1991-04-22 1991-04-22 Laser processing apparatus and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3090530A JP2839741B2 (en) 1991-04-22 1991-04-22 Laser processing apparatus and laser processing method

Publications (2)

Publication Number Publication Date
JPH04322892A true JPH04322892A (en) 1992-11-12
JP2839741B2 JP2839741B2 (en) 1998-12-16

Family

ID=14000971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3090530A Expired - Fee Related JP2839741B2 (en) 1991-04-22 1991-04-22 Laser processing apparatus and laser processing method

Country Status (1)

Country Link
JP (1) JP2839741B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676653A1 (en) * 1994-04-11 1995-10-11 Mitsui Petrochemical Industries, Ltd. Fiber optical coupler
JPH0875947A (en) * 1994-07-06 1996-03-22 Mitsubishi Heavy Ind Ltd Method for coupling optical fibers and its coupling system
JP2003039189A (en) * 2001-07-27 2003-02-12 Hamamatsu Photonics Kk Laser beam radiating device and surface treatment method
JP2003525124A (en) * 2000-02-15 2003-08-26 データカード・コーポレーション Method of processing workpiece with multiple laser beams
JP2006043248A (en) * 2004-08-06 2006-02-16 Pentax Corp Light source device
JP2007203330A (en) * 2006-02-01 2007-08-16 Jfe Steel Kk Laser welding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676653A1 (en) * 1994-04-11 1995-10-11 Mitsui Petrochemical Industries, Ltd. Fiber optical coupler
US5633967A (en) * 1994-04-11 1997-05-27 Mitsui Petrochemical Industries, Ltd. Waveguide fiber optical coupler
JPH0875947A (en) * 1994-07-06 1996-03-22 Mitsubishi Heavy Ind Ltd Method for coupling optical fibers and its coupling system
JP2003525124A (en) * 2000-02-15 2003-08-26 データカード・コーポレーション Method of processing workpiece with multiple laser beams
JP2003039189A (en) * 2001-07-27 2003-02-12 Hamamatsu Photonics Kk Laser beam radiating device and surface treatment method
JP2006043248A (en) * 2004-08-06 2006-02-16 Pentax Corp Light source device
JP2007203330A (en) * 2006-02-01 2007-08-16 Jfe Steel Kk Laser welding method

Also Published As

Publication number Publication date
JP2839741B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
US20230030159A1 (en) Methods and laser welding devices for deep welding a workpiece
KR102617598B1 (en) Method for laser welding of transparent workpieces and associated laser processing machine
JP2001030089A (en) Method of laser welding
JPH05104276A (en) Laser beam machine and machining method with laser beam
JP2002096187A (en) Laser beam machine and machining method
JP5446334B2 (en) Laser welding apparatus and laser welding method
JP2011224618A (en) Laser beam welding method
JPH04322892A (en) Laser beam machine and laser beam machining method
KR20230066080A (en) How to separate the workpiece
JPH02137687A (en) Laser light condensing device
JP4112745B2 (en) Laser line patterning method
JP6385622B1 (en) Laser processing method and laser processing apparatus
KR100787236B1 (en) Processing apparatus and mehtod of using ultrashort pulse laser
JPH11309594A (en) Laser beam machining device and its working parts
JP2003285186A (en) Laser beam machining device
JP2000292819A (en) Method of converting wavelength
JP2003154477A (en) Laser cutting method and device
Henn et al. Combining LPBF and ultrafast laser processing to produce parts with deep microstructures
JP2021030249A (en) Laser beam machining apparatus and laser beam machining method
JPH02284782A (en) Method for converging laser beams having different wavelengths
DE102019116803A1 (en) Method and device for machining a workpiece
JP2002210579A (en) Ripple-oscillated yag laser beam device and equipment for welding thin steel plate using the same
US20230150057A1 (en) Laser cutting method for metal foil
JPH03184687A (en) Laser beam machining apparatus
CN215698836U (en) Laser processing device capable of rapidly and providing higher processing quality

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980922

LAPS Cancellation because of no payment of annual fees