WO2023134687A1 - 导料机构和3d打印机 - Google Patents

导料机构和3d打印机 Download PDF

Info

Publication number
WO2023134687A1
WO2023134687A1 PCT/CN2023/071679 CN2023071679W WO2023134687A1 WO 2023134687 A1 WO2023134687 A1 WO 2023134687A1 CN 2023071679 W CN2023071679 W CN 2023071679W WO 2023134687 A1 WO2023134687 A1 WO 2023134687A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
guide mechanism
channels
curvature
housing
Prior art date
Application number
PCT/CN2023/071679
Other languages
English (en)
French (fr)
Inventor
田开望
Original Assignee
深圳拓竹科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳拓竹科技有限公司 filed Critical 深圳拓竹科技有限公司
Publication of WO2023134687A1 publication Critical patent/WO2023134687A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present disclosure relates to the technical field of 3D printing, in particular to a material guide mechanism and a 3D printer.
  • 3D printing technology also known as additive manufacturing technology, is a technology based on digital model files, using adhesive materials, and constructing objects by layer-by-layer printing. 3D printing is usually implemented using a 3D printer. 3D printers, also known as three-dimensional printers and three-dimensional printers, are a kind of process equipment for rapid prototyping. A typical 3D printing technology is fused deposition modeling (FDM).
  • FDM fused deposition modeling
  • a working principle of FDM is: under the control of the computer, the hot-melt spray head moves in the horizontal plane according to the cross-sectional profile information of the product parts, the thermoplastic linear material is sent to the hot-melt spray head by the feeding mechanism, and the molten material is sent from the spray head It is extruded and deposited on the printing platform, and forms a thin layer of outline after rapid cooling. After the cross-section of one layer is formed, the printing platform moves a certain distance in the vertical direction, and then cladding the next layer, and so on, and finally forms a three-dimensional product part.
  • a material guide mechanism which is used to communicate with a main material tube in a 3D printer to guide material lines from different trays to the main material tube.
  • the material guide mechanism includes: a housing, the housing defines a plurality of feed ports, a plurality of feed channels, a material outlet and a material discharge channel, wherein each feed channel in the multiple feed channels is connected to a plurality of feed channels respectively.
  • a corresponding feed port in the feed port is connected to receive a corresponding feed line wound on a corresponding feed tray, the discharge channel is communicated with the discharge port, and the discharge port is used to connect with the main feed pipe, and a plurality of feed
  • the channels are each communicated to the discharge port via the discharge channel, and wherein the housing is shaped to have a curvature of the housing such that each of the plurality of feed channels is combined with a corresponding combined channel of the discharge channel Has a curvature to accommodate the curvature of the corresponding wire after it has been released from the corresponding tray.
  • the number of the plurality of feeding ports is equal to the number of the plurality of feeding channels.
  • the shell has a shell curvature relative to a plane defined by the center of the discharge port and the respective centers of any two feed ports in the plurality of feed ports.
  • a 3D printer including a printing head, a main material tube, and the above-mentioned material guide mechanism.
  • Fig. 1 shows a schematic diagram of a material guide mechanism, a material tray, and a sub-material guide tube according to an embodiment of the present disclosure
  • Fig. 2 shows a schematic diagram of the material guiding mechanism of Fig. 1 according to an embodiment of the present disclosure
  • Fig. 3 shows a cross-sectional view of the material guide mechanism of Fig. 1 according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a material guiding mechanism according to an embodiment of the present disclosure
  • Fig. 5 shows a top view of the material guide mechanism of Fig. 4 according to an embodiment of the present disclosure
  • Figure 6 shows a cross-sectional view along section B-B' in Figure 5 of a material guiding mechanism according to an embodiment of the present disclosure
  • FIG. 7 illustrates a top view of a cross-section of the material guide mechanism of FIG. 4 according to an embodiment of the disclosure.
  • an embodiment of the present disclosure proposes a material guide mechanism, by shaping the housing of the material guide mechanism into a plane defined relative to the center of the discharge port and the respective centers of any two feed ports among the plurality of feed ports It has the curvature of the shell, so that the corresponding combined channel formed by the combination of multiple feed channels and discharge channels of the material guide mechanism adapts to the curvature of the material line released from the corresponding material tray, thereby reducing the material from multiple material trays.
  • the friction of the wire against the material guide mechanism improves the printing quality.
  • FIGS. 1 to 3 show a schematic diagram of a material guide mechanism 100, a material tray 200, and a sub-material guide tube 300 according to an embodiment of the present disclosure
  • Fig. 2 shows a schematic diagram of the material guide mechanism 100 of Fig. 1 according to an embodiment of the present disclosure
  • FIG. 3 shows a cross-sectional view of the material guide mechanism 100 of FIG. 1 according to an embodiment of the present disclosure.
  • the material guide mechanism 100 is connected with a sub-material guide pipe 300 , and the sub-material guide pipe 300 is used to deliver the material line from the material tray 200 to the material guide mechanism 100 .
  • the material guide mechanism 100 is used to communicate with the main material tube (not shown in the figure) in the 3D printer to guide the material lines from different material trays to the main material tube.
  • the main feed tube can communicate with the print head.
  • the material line is not shown in FIG. 1, but only the sub-material guide tube 300 for conveying the material line is shown, and only one material tray 200 and a corresponding sub-material guide tube 300 are shown. . It should be understood that there are multiple material trays and multiple sub-material guide tubes in use, and the multiple sub-material guide tubes respectively deliver material lines from corresponding material trays to the feeding mechanism 100, and the material guide mechanism 100 guides the material lines to the main Tubes to meet different printing needs.
  • the material guide mechanism 100 includes housings 110-1 and 110-2.
  • the housing 110-1, 110-2 defines a plurality of feed ports 120-1, 120-2, 120-3, 120-4; a feed port 130; a plurality of feed channels 140-1, 140-2, 140 -3, 140-4 and discharge channel 150.
  • Each of the plurality of feed channels 140-1, 140-2, 140-3, 140-4 is connected to the plurality of feed ports 120-1, 120-2, 120-3, 120-4 respectively.
  • a corresponding one of the feeding ports is communicated to receive a corresponding material line wound on a corresponding material tray (for example, the material tray 200), and the discharge channel 150 is communicated with the discharge port 130, and the discharge port 130 is used for connecting with the main feed pipe (not shown in the figure) are connected, and the plurality of feed channels 140 - 1 , 140 - 2 , 140 - 3 , 140 - 4 are all communicated to the discharge port 130 via the discharge channel 150 .
  • the casing 110-1, 110-2 is shaped to be relative to the center of the discharge port 130 and any two feed ports in the plurality of feed ports 120-1, 120-2, 120-3, 120-4.
  • the plane defined by the center of has a shell curvature, so that each feed channel in the plurality of feed channels 140-1, 140-2, 140-3, 140-4 is combined with the discharge channel 150 to form a corresponding
  • the combined channel adapts to the curvature of the corresponding wire being released from the corresponding tray. In this way, the frictional force of the material lines from multiple trays on the material guide mechanism 100 can be reduced, and the printing quality can be improved. Moreover, it can reduce the wire dust generated by friction, thereby reducing or avoiding the blocking of the parts of the 3D printer by the dust.
  • the center of the outlet 130 may be the geometric center of the planar shape of the outlet 130 .
  • the planar shape of the outlet 130 is circular, and the center of the outlet 130 may be the center of the circle.
  • the center of the feed port (eg, feed port 120-1) may be the geometric center of the planar shape of the feed port (eg, feed port 120-1).
  • Other definitions of "centre" are possible, such as centroid.
  • Any two feed ports in the plurality of feed ports 120-1, 120-2, 120-3, 120-4 can be, for example, feed ports 120-1 and 120-2, or feed ports 120-1 and 120 -3, or feed ports 120-2 and 120-4, which will not be described in detail here.
  • each of the plurality of feed channels 140-1, 140-2, 140-3, 140-4 also has a curvature that is approximately the same as the curvature of the housing.
  • the corresponding combined channel (ie the inner cavity) of each feed channel combined with the discharge channel adapts to the curvature of the corresponding material line being released from the corresponding tray.
  • the curvature of the wire released from the tray may not be a fixed value, but fall within a range of values.
  • the material wire undergoes plastic deformation and bends. After the material line is released from the corresponding material tray, the material line will also have a certain curvature under the elastic action of the material line itself.
  • the expression "combining channel adapts to the curvature of the wire” may mean that the combining channel has a curvature within the range of possible values for the curvature of the wire after it has been released from the tray.
  • the curvature may be the reciprocal of the radius of curvature, and generally the curvature of an arc is the average of the curvatures of the segments of the arc.
  • the value of the curvature of the housing may be not lower than 60% of the minimum curvature that the wires wound on different reels have after being released from each reel, and not higher than that of the wires wound on different reels. 140% of the maximum curvature that the wires have after being released from each tray.
  • the value of the curvature of the shell may be a statistical average of the curvatures of the wire wound on different reels after being released from each reel. Therefore, when the curvatures of the wires on different trays are different after being released from each tray, or the curvatures differ greatly, by setting the value of the curvature of the shell so that the wires wound on different trays are The statistical average of the curvatures of the trays after they are released makes the combination channel more adaptable to the different curvatures of the material wires being released from the corresponding trays, thereby minimizing the impact of the material wires from multiple trays on the material guide mechanism 100. Friction, to further improve the printing quality and reduce the material line dust generated by friction.
  • At least one feed channel of the plurality of feed channels 140-1, 140-2, 140-3, 140-4 may include arc-shaped segments extending along an arc, the at least one feed channel It communicates with the discharge channel 150 through an arc segment.
  • the feed channels 140-1, 140-4 include arc segments extending along the arc, and through their respective arc segments, the feed channels 140-1, 140-4 are connected to the discharge channels respectively.
  • Channel 150 communicates.
  • the plurality of feed channels 140-1, 140-2, 140-3, 140-4 and the discharge channel 150 may each include linear segments extending in a straight line, each feed
  • the included angle between the axis of the straight section of the channel and the axis of the straight section of the discharge channel is an obtuse angle.
  • obtuse angles can be as close to 180 degrees as possible.
  • the friction of the material line against the inner wall of the channel can be further reduced, thereby further improving the printing quality and reducing the material line dust generated by friction.
  • the axes of the linear segments of the plurality of feed channels 140 - 1 , 140 - 2 , 140 - 3 , 140 - 4 may lie on the same plane.
  • the line connecting the centers of the feed ports 120 - 1 , 120 - 2 , 120 - 3 , and 120 - 4 is an arc.
  • the line connecting the centers of the multiple feeding ports may be a straight line or other two-dimensional graphics.
  • the axes of the straight segments of the plurality of feed channels 140-1, 140-2, 140-3, 140-4 may not be coplanar.
  • the 3 feed ports can be arranged in the shape of "pin"; if there are 4 feed ports, the 4 feed ports can be arranged in a 2 ⁇ 2 grid.
  • the material guiding mechanism according to the embodiment of the present disclosure will be further described below with reference to FIG. 4 to FIG. 7 .
  • FIG. 4 shows a schematic diagram of a material guide mechanism 400 according to an embodiment of the present disclosure
  • FIG. 5 shows a top view of the material guide mechanism 400 of FIG. 4 according to an embodiment of the present disclosure
  • FIG. 7 shows a top view of a cross-section of the material guide mechanism 400 of FIG. 4 according to an embodiment of the present disclosure.
  • the material guiding mechanism 400 shown in FIGS. 4 to 7 includes housings 410 - 1 , 410 - 2 , and also includes a material inlet 420 , a material outlet 430 , a material inlet channel 440 , and a material outlet channel 450 .
  • the housings 410-1, 410-2, the feed port 420, the discharge port 430, the feed channel 440, and the discharge channel 450 are respectively the same as the housing of the material guide mechanism 100 described above with respect to FIGS. 1 to 3 .
  • feed port, feed port, feed channel and discharge channel are similar, and will not be repeated here.
  • the material guide mechanism 400 may also include at least one sensor (such as a sensor 480-1), the sensor 480-1 is arranged on the wall of the housing 410-1, and is used to detect that the material head of the material line is in the material guide mechanism. The location in 400.
  • a sensor 480-1 such as a sensor 480-1
  • the sensor 480-1 is arranged on the wall of the housing 410-1, and is used to detect that the material head of the material line is in the material guide mechanism. The location in 400.
  • a plurality of feed channels 420 and discharge channels 450 form the internal cavities of the housings 410-1, 410-2, and the walls of the housings 410-1, 410-2 are provided with At least one hole 460-1, 460-2, 460-3, 460-4, 460-5 in communication.
  • the material guiding mechanism 400 can also include at least one trigger 470-1, 470-2, 470-3, 470-4, 470-5, and these triggers are respectively arranged in the holes 460-1, 460-2, 460-3 , 460-4, 460-5, each trigger member is movably inserted into the inner cavity along the axial direction of a corresponding hole.
  • each trigger member 470-1, 470-2, 470-3, 470-4, 470-5 inserted into the inner cavity is shaped to have an end surface at an angle to the feeding direction, so that when the material line is in the inner cavity
  • the material head of the material line directly presses the end surface of the end, thereby pushing the trigger to move to the predetermined position in the corresponding hole (for example, at the position of 8 mm upward movement).
  • Each sensor is arranged to cooperate with a corresponding trigger member, so that when the corresponding trigger member moves to a predetermined position, the sensor is triggered to indicate that the material line in the inner cavity is moved along the feeding direction.
  • the sensor 480-1 is arranged to cooperate with the trigger 470-1, and when the trigger 470-1 moves to the predetermined position (for example, the position of moving up 8 mm) ), sensor 480-1 may be triggered.
  • the predetermined position for example, the position of moving up 8 mm
  • the feeding mechanism 400 may also include 1, 2, 3, 5 or more A plurality of feeding ports 420; correspondingly, the material guiding mechanism 400 may also include 1, 2, 3, 5 or more feeding channels 440.
  • the guide mechanism 400 can also include 1, 2, 3, 4, 6 or more triggers; correspondingly, the guide
  • the feeding mechanism 400 can also include 1, 2, 3, 4, 6 or more holes for arranging corresponding triggers; correspondingly, the feeding mechanism 400 can also include 1, 2 , 3, 4, 6 or more sensors.
  • the at least one sensor 480-1 may be at least one Hall sensor, and the at least one trigger may be at least one magnet.
  • the magnet Since the material line is not in direct contact with the Hall sensor, but by promoting the movement of the magnet, the magnet triggers the Hall sensor through the Hall effect, so that when the material line rubs against the inner cavity to generate powder, the powder will not stick Attached or accumulated on the Hall sensor, so the dust will not adversely affect the detection of the Hall sensor.
  • the accuracy and reliability of detecting the position of the head of the printing material line in the material guide mechanism can be improved.
  • the at least one sensor 480-1 may be at least one travel switch.
  • the at least one trigger member may be at least one pin, cylinder, or other shaped trigger member. This combination has a relatively simple structure, which is beneficial to the maintenance of the material guiding mechanism 400 .
  • At least one sensor 480-1 is a plurality of sensors, and the plurality of sensors may be respectively disposed on the wall of the housing at positions corresponding to the plurality of feed channels and discharge channels.
  • the corresponding control mechanism can be used to control the material lines in other feed channels to enter the discharge channel, so that the switching of material lines from multiple different material trays can be completed at the material guide mechanism 400 .
  • the material guide mechanism 400 can also include at least one stopper (not shown in the figure), and each stopper can be arranged in a corresponding hole in the at least one hole (for example, FIG. 6
  • a corresponding magnet in the at least one magnet such as the magnet 470-1 in FIG. 6
  • the corresponding magnet such as Magnet 470-1) in FIG. 6 acts to move toward the predetermined position.
  • the magnet 470-1 has a tendency to move upward under the action of the magnetic field generated by the magnet 470-2, since the stopper is provided, the magnet 470-1 will not move upward under the force of the stopper , so as not to cause the Hall sensor 480-1 to be triggered to generate a false detection result.
  • the force generated by the stopper can be sized to block this undesired movement of the magnet, but allow the movement of the magnet under the action of the driving force of the material line.
  • each stop may be a spring.
  • the spring may apply elastic force to the magnet 470-1, thereby preventing the corresponding magnet 470-1 from moving toward the predetermined position.
  • each stopper can be a magnet that is magnetically repulsive to the corresponding magnet 470-1, and the magnetically repulsive magnets can exert a repulsive magnetic force, thereby preventing the corresponding magnet 470-1 from moving toward the corresponding magnet 470-1. Move to the predetermined position.
  • a 3D printer which includes a print head, a main feed pipe communicating with the print head, and the above-mentioned feed guide mechanism 100 or 400 .
  • first”, “second”, “third”, etc. are used for descriptive purposes only, and should not be interpreted as indicating or implying relative importance or implicitly specifying the number of indicated technical features. Thus, a feature defined as “first”, “second” and “third” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种导料机构和一种3D打印机。导料机构用于与3D打印机中的主导料管连通以将来自不同料盘的料线引导至主导料管。导料机构包括:壳体,壳体限定多个进料口、多个进料通道、出料口以及出料通道。多个进料通道中的每个进料通道分别与多个进料口中的相应一个进料口连通,以接收绕设于一个相应料盘上的相应料线,出料通道与出料口连通,出料口用于与主导料管接合,并且多个进料通道均经由出料通道连通到出料口。壳体具有壳体曲率,以使得多个进料通道中的每个进料通道与出料通道组合而成的相应组合通道适应相应料线从相应料盘被释放而具有的曲率。

Description

导料机构和3D打印机
相关申请的交叉引用
本申请要求2022年1月17日提交的中国专利申请第2022100502229号的优先权,其内容通过引用的方式整体并入本文。
技术领域
本公开涉及3D打印技术领域,具体涉及导料机构和3D打印机。
背景技术
3D打印技术,又称为增材制造技术,它是一种以数字模型文件为基础,运用可粘合材料,通过逐层打印的方式来构造物体的技术。3D打印通常采用3D打印机来实现。3D打印机,又称三维打印机、立体打印机,是快速成型的一种工艺设备。一种典型的3D打印技术是熔融沉积成型(fused deposition modeling,FDM)。一种FDM的工作原理是:热熔喷头在计算机的控制下,根据产品零件的截面轮廓信息,在水平平面内运动,热塑性线状材料由供料机构送至热熔喷头,熔化材料被从喷头中挤压出并沉积在打印平台上,快速冷却后形成一层薄片轮廓。一层截面成型完成后,打印平台在垂直方向运动一定的距离,再进行下一层的熔覆,如此循环,最终形成三维产品零件。
在此部分中描述的方法不一定是之前已经设想到或采用的方法。除非另有指明,否则不应假定此部分中描述的任何方法仅因其包括在此部分中就被认为是现有技术。类似地,除非另有指明,否则此部分中提及的问题不应认为在任何现有技术中已被公认。
发明内容
根据本公开的一方面,提供了一种导料机构,用于与3D打印机中的主导料管连通以将来自不同料盘的料线引导至主导料管。导料机构包括:壳体,壳体限定多个进料口、多个进料通道、出料口以及出料通道,其中,多个进料通道中的每个进料通道分别与多个进料口中的相应一个进料口连通,以接收绕设于一个相应料盘上的相应料线,出料通道与出料口连通,出料口用于与主导料管接合,并且多个进料通道均经由出料通道连通到出料口,并且其中,壳体被成形为具有壳体曲率,以使得多个进料通道中的每个进料通 道与出料通道组合而成的相应组合通道具有曲率,以适应相应料线从相应料盘释放后而具有的曲率。
其中,所述多个进料口的数量与所述多个进料通道的数量相等。
其中,壳体相对于由出料口的中心和多个进料口中任意两个进料口各自的中心所限定的平面具有壳体曲率。
根据本公开的另一方面,提供了一种3D打印机,包括打印头、主导料管和上述的导料机构。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解。
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。
图1示出了根据本公开的实施例的导料机构以及料盘、子导料管的示意图;
图2示出了根据本公开的实施例的图1的导料机构的示意图;
图3示出了根据本公开的实施例的图1的导料机构的截面视图;
图4示出了根据本公开的实施例的导料机构的示意图;
图5示出了根据本公开的实施例的图4的导料机构的俯视图;
图6示出了根据本公开的实施例的导料机构的沿图5中的截面B-B’的截面视图;以及
图7示出了根据本公开的实施例的图4的导料机构的截面的俯视图。
具体实施方式
在下文中,仅简单地描述了某些示例实施例。这些描述被认为本质上是说明性的而非限制性的。
在3D打印过程中,可能存在对多种打印材料的需求。例如,在打印同一个物体时, 可能需要不同类型的打印材料来打印物体的不同部分。通常,不同种类的线状打印材料(或称为料线)被卷绕在不同的料盘中,需要分别从不同的料盘中抽取料线,来进行打印操作。申请人发现,从不同的料盘中抽取出的待打印料线通常存在一定程度的弯曲,这是由于卷绕到料盘中的料线发生塑性形变造成的,弯曲的料线在进入3D打印机后,会与3D打印机的各个部件接触而产生较大的摩擦力,过大的摩擦力会阻碍料线在部件内的运动,影响供应至打印头的供料量精度,降低打印质量。
基于此,本公开实施例提出一种导料机构,通过将导料机构的壳体成形为相对于出料口的中心和多个进料口中任意两个进料口各自的中心所限定的平面具有壳体曲率,以使得导料机构的多个进料通道与出料通道组合而成的相应组合通道适应料线从相应料盘被释放而具有的曲率,从而减少来自多个料盘的料线对导料机构的摩擦力,提升打印质量。
下面将结合附图详细描述本公开的实施例。
首先参考图1至图3。图1示出了根据本公开的实施例的导料机构100以及料盘200、子导料管300的示意图;图2示出了根据本公开的实施例的图1的导料机构100的示意图;以及图3示出了根据本公开的实施例的图1的导料机构100的截面视图。
参考图1,导料机构100与子导料管300连接,子导料管300用于从料盘200向导料机构100输送料线。导料机构100用于与3D打印机中的主导料管(图中未示出)连通以将来自不同料盘的料线引导至主导料管。主导料管可以与打印头连通。
这里,为了清楚起见,图1中未示出料线,而仅示出了用于输送料线的子导料管300,而且仅示出了一个料盘200和相应的一个子导料管300。应当理解的是,在使用中还有多个料盘和多个子导料管,多个子导料管分别从相应的料盘向导料机构100输送料线,导料机构100将料线引导至主导料管,从而满足不同的打印需求。
继续参考图1至图3,导料机构100包括壳体110-1、110-2。壳体110-1、110-2限定多个进料口120-1、120-2、120-3、120-4;出料口130;多个进料通道140-1、140-2、140-3、140-4以及出料通道150。
多个进料通道140-1、140-2、140-3、140-4中的每个进料通道分别与多个进料口120-1、120-2、120-3、120-4中的相应一个进料口连通,以接收绕设于一个相应料盘(例如料盘200)上的相应料线,出料通道150与出料口130连通,出料口130用于与主导料管(图中未示出)接合,并且多个进料通道140-1、140-2、140-3、140-4均经由出料通道 150连通到出料口130。
壳体110-1、110-2被成形为相对于由出料口130的中心和多个进料口120-1、120-2、120-3、120-4中任意两个进料口各自的中心所限定的平面具有壳体曲率,以使得多个进料通道140-1、140-2、140-3、140-4中的每个进料通道与出料通道150组合而成的相应组合通道适应相应料线从相应料盘被释放而具有的曲率。由此,能够减少来自多个料盘的料线对导料机构100的摩擦力,提升打印质量。并且,能够减少摩擦产生的线料粉屑,从而减少或避免粉屑对3D打印机的零部件的堵塞。
应当理解的是,出料口130的中心可以是出料口130的平面形状的几何中心。在一个示例中,出料口130的平面形状是圆形,则出料口130的中心可以是圆心。类似地,进料口(例如进料口120-1)的中心可以是进料口(例如进料口120-1)的平面形状的几何中心。其他关于“中心”的定义也是可能的,例如质心。多个进料口120-1、120-2、120-3、120-4中任意两个进料口可以例如是进料口120-1和120-2,或进料口120-1和120-3,或进料口120-2和120-4,在此不再赘述。
从图1和图3中能够清楚地看到上述壳体曲率。其中,图3示出的截面视图的截面方向是如图2所示的截面A-A’的方向,从图3中可以看到出料通道150具有与壳体曲率大致相同的曲率。此外,多个进料通道140-1、140-2、140-3、140-4中的每个进料通道也具有与壳体曲率大致相同的曲率。每个进料通道与出料通道组合而成的相应组合通道(即内部腔体)适应相应料线从相应料盘被释放而具有的曲率。应当理解的是,料线从料盘被释放而具有的曲率可以不是固定值,而是落入一个取值范围内。上文中提到,由于被卷绕到料盘中,料线发生塑性形变而产生弯曲。当料线从相应料盘被释放后,在料线自身弹性作用下,料线也将具有一定的曲率。因此,如本文中使用的,措辞“组合通道适应料线的曲率”可以是指组合通道所具有的曲率处于料线从料盘被释放后而具有的曲率的可能取值范围内。作为一种示例,曲率可以曲率半径的倒数,通常一条弧线的曲率为该条弧线各段曲率的平均值。
根据一些实施例,壳体曲率的值可以不低于绕设于不同料盘上的料线从各个料盘释放后所具有的最小曲率的60%,并且不高于绕设于不同料盘上的料线从各个料盘释放后所具有的最大曲率的140%。经过多次试验,申请人发现,通过将壳体曲率的值设定在上述范围内,能够大量减少来自多个料盘的料线对导料机构100的摩擦力,因此是有利的。
根据一些实施例,壳体曲率的值可以是绕设于不同料盘上的料线从各个料盘释放后 所具有的曲率的统计平均值。由此,当不同料盘上的料线从各个料盘释放后所具有的曲率不同或曲率相差较大时,通过将壳体曲率的值设置成绕设于不同料盘上的料线从各个料盘释放后所具有的曲率的统计平均值,使得组合通道能够更加适应料线从相应料盘被释放而具有的不同曲率,从而尽量减少来自多个料盘的料线对导料机构100的摩擦力,进一步提升打印质量和减少摩擦产生的料线粉屑。
根据一些实施例,多个进料通道140-1、140-2、140-3、140-4中的至少一个进料通道可以包括沿弧线延伸的弧形分段,该至少一个进料通道通过弧形分段与出料通道150连通。如图2所示,进料通道140-1、140-4包括沿弧线延伸的弧形分段,通过它们各自的弧形分段,进料通道140-1、140-4分别与出料通道150连通。由此,在保证了能够将来自不同料盘的料线引导至出料通道150,并进而引导至主导料管的前提下,弧形分段能够进一步减少从相应的进料通道进入导料机构100中的料线对通道内壁的摩擦,从而进一步提升打印质量和减少摩擦产生的料线粉屑。
根据一些实施例,继续参考图2,多个进料通道140-1、140-2、140-3、140-4和出料通道150均可以包括沿直线延伸的直线分段,每个进料通道的直线分段的轴线与出料通道的直线分段的轴线之间的夹角为钝角。在实践中,钝角可以尽量接近180度。由此,可以进一步减少料线对通道内壁的摩擦,从而进一步提升打印质量和减少摩擦产生的料线粉屑。
根据一些实施例,继续参考图2,多个进料通道140-1、140-2、140-3、140-4的直线分段的轴线可以位于同一平面。在图2的示例中,多个进料口120-1、120-2、120-3、120-4的中心的连线为一条弧线。在其他示例中,多个进料口的中心的连线可以为直线或其他二维图形。
根据一些实施例,多个进料通道140-1、140-2、140-3、140-4的直线分段的轴线可以不共面。例如,假设有3个进料口,则3个进料口可呈“品”字形布置;如果有4个进料口,则4个进料口可呈2×2栅格分布。
以下将结合图4至图7对根据本公开实施例的导料机构做进一步说明。
图4示出了根据本公开的实施例的导料机构400的示意图;图5示出了根据本公开的实施例的图4的导料机构400的俯视图;图6示出了根据本公开的实施例的导料机构400的沿图5中截面B-B’的截面视图;以及图7示出了根据本公开的实施例的图4的导料机构400的截面的俯视图。
图4至图7中示出的导料机构400包括壳体410-1、410-2,还包括进料口420、出料口430、进料通道440、出料通道450。这里,壳体410-1、410-2以及进料口420、出料口430、进料通道440、出料通道450分别与上文关于图1至图3描述的导料机构100的壳体、进料口、出料口、进料通道以及出料通道类似,在此不再赘述。
根据一些实施例,导料机构400还可以包括至少一个传感器(例如传感器480-1),传感器480-1设置在壳体410-1的壁上,用于检测料线的料头在导料机构400中的位置。
根据一些实施例,多个进料通道420和出料通道450形成壳体410-1、410-2的内部腔体,并且壳体410-1、410-2的壁中设置有与内部腔体连通的至少一个孔460-1、460-2、460-3、460-4、460-5。并且导料机构400还可以包括至少一个触发件470-1、470-2、470-3、470-4、470-5,这些触发件分别布置在孔460-1、460-2、460-3、460-4、460-5中,每个触发件沿一个相应的孔的轴线方向可移动地插入内部腔体中。每个触发件470-1、470-2、470-3、470-4、470-5插入内部腔体中的一端被成形为具有与送料方向成一角度的端面,以使得当料线在内部腔体内沿送料方向(图6中箭头所指示的方向)被引导至该触发件所在位置时,该料线的料头直接挤压该端的端面,从而推动该触发件在相应的孔中移动至预定位置(例如,向上运动8毫米的位置处)。每个传感器被布置为与一个相应的触发件相配合,以使得当该相应的触发件移动至预定位置时,该传感器被触发,用以指示在所述内部腔体内的料线沿送料方向被引导至该触发件所在位置。从图6所示的截面视图中可以看出,传感器480-1被布置为与触发件470-1相配合,当触发件470-1移动至所述预定位置(例如,向上运动8毫米的位置处)时,传感器480-1可以被触发。由此,能够高效率地检测料线的料头在导料机构400中的位置。
应当理解的是,虽然附图4至7中示出了4个进料口420和4个进料通道440,但是导料机构400还可以包括1个、2个、3个、5个或更多个进料口420;相应地,导料机构400还可以包括1个、2个、3个、5个或更多个进料通道440。
还应当理解的是,虽然图4至图7中示出了5个触发件(470-1、470-2、470-3、470-4、470-5)和5个孔(460-1、460-2、460-3、460-4、460-5),但是导料机构400还可以包括1个、2个、3个、4个、6个或更多个触发件;相应地,导料机构400还可以包括1个、2个、3个、4个、6个或更多个孔,以用于布置相应的触发件;相应地,导料机构400还可以包括1个、2个、3个、4个、6个或更多个传感器。
根据一些实施例,所述至少一个传感器480-1可以是至少一个霍尔传感器,并且所 述至少一个触发件可以是至少一个磁体。
由于料线不与霍尔传感器直接接触,而是通过促使磁体运动,磁体通过霍尔效应的作用来触发霍尔传感器,从而使得当料线摩擦内部腔体产生粉屑时,粉屑不会粘附或堆积到霍尔传感器上,因此粉屑不会对霍尔传感器的检测产生不利影响。由此,可以提高检测打印料线的料头在导料机构中的位置的准确性和可靠性。
根据一些实施例,所述至少一个传感器480-1可以是至少一个行程开关。相应地,所述至少一个触发件可以是至少一个销钉、圆柱、或其他形状的触发件。这种组合具有相对简单的构造,有利于对导料机构400进行维护。
根据一些实施例,至少一个传感器480-1是多个传感器,并且多个传感器可以分别设置在壳体的壁上的与多个进料通道和出料通道相对应的位置处。由此,如需要切换来自多个不同料盘的料线,则当设置在出料通道处的传感器以及设置在一个进料通道处的传感器检测到料线已从出料通道回退至一个进料通道时,可以通过相应的控制机构,控制其他进料通道中的料线进入出料通道,从而在导料机构400处完成来自多个不同料盘的料线的切换。
在使用霍尔传感器并使用磁体作为触发件的情况下,当导料机构400中布置了多个磁体,而且多个磁体之间的相对位置比较靠近时,如果一个磁体(例如图7中的磁体470-2)在料线的推动作用下发生移动,则例如由于磁体470-2所产生的磁场与磁体470-1所产生的磁场之间的相互作用,磁体470-1可能在磁场力的作用下也发生移动,尽管此时并没有料线经过并推动磁体470-1。这可能会导致错误的检测结果。
因此,在一些实施例中,导料机构400还可以包括至少一个止挡件(图中未示出),每个止挡件可以布置在所述至少一个孔中一个相应的孔(例如图6中的孔460-1)的远离所述内部腔体的一端,用于向所述至少一个磁体中的一个相应的磁体(例如图6中的磁体470-1)施加阻止该相应的磁体(例如图6中的磁体470-1)朝向所述预定位置移动的作用力。如果磁体470-1在磁体470-2所产生的磁场的作用下,存在向上运动的趋势,由于设置了止挡件,磁体470-1在止挡件的力的作用下,则不会向上运动,从而不会导致霍尔传感器480-1被触发而产生错误的检测结果。止挡件所产生的作用力的大小可以被设定为能够阻挡磁体的这种不期望的移动,但是允许磁体在料线推动力的作用下的移动。
在一些实施例中,每个止挡件可以是弹簧。弹簧可以向磁体470-1施加弹力,从而阻止相应的磁体470-1朝向所述预定位置移动。
在一些实施例中,每个止挡件可以是与该相应的磁体470-1磁性相斥的磁体,该磁性相斥的磁体可以施加相斥的磁力,从而阻止相应的磁体470-1朝向所述预定位置移动。
根据本公开的另一方面,还提供了一种3D打印机,该3D打印机包括打印头、与打印头连通的主导料管以及根据上述的导料机构100或400。
应当理解的是,在本说明书中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系或尺寸为基于附图所示的方位或位置关系或尺寸,使用这些术语仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,并且因此不能理解为对本申请的保护范围的限制。
此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。

Claims (13)

  1. 一种导料机构,用于与3D打印机中的主导料管连通以将来自不同料盘的料线引导至所述主导料管,所述导料机构包括:
    壳体,所述壳体限定出料口、出料通道、多个进料口以及多个进料通道,
    其中,所述多个进料通道中的每个进料通道分别与所述多个进料口中的相应一个进料口连通,以接收绕设于一个相应料盘上的相应料线,所述多个进料口的数量与所述多个进料通道的数量相等,所述出料通道与所述出料口连通,所述出料口用于与所述主导料管接合,并且所述多个进料通道均经由所述出料通道连通到所述出料口,并且
    其中,所述壳体具有壳体曲率,以使得所述多个进料通道中的每个进料通道与所述出料通道组合而成的相应组合通道具有曲率,以适应所述相应料线从所述相应料盘释放后所具有的曲率。
  2. 根据权利要求1所述的导料机构,其中,所述壳体曲率的值不低于绕设于所述不同料盘上的料线从各个料盘释放后所具有的最小曲率的60%,且不高于绕设于所述不同料盘上的料线从各个料盘释放后所具有的最大曲率的140%。
  3. 根据权利要求1或2所述的导料机构,其中,所述壳体曲率的值为绕设于所述不同料盘上的料线从各个料盘释放后所具有的曲率的统计平均值。
  4. 根据权利要求1至3任一项所述的导料机构,其中,所述多个进料通道中的至少一个进料通道包括沿弧线延伸的弧形分段,所述至少一个进料通道通过所述弧形分段与所述出料通道连通。
  5. 根据权利要求1至4任一项所述的导料机构,其中,所述多个进料通道和所述出料通道均包括沿直线延伸的直线分段,每个进料通道的直线分段的轴线与所述出料通道的直线分段的轴线之间的夹角为钝角。
  6. 根据权利要求5所述的导料机构,其中,所述多个进料通道的直线分段的轴线位于同一平面或者不共面。
  7. 根据权利要求1至6中任一项所述的导料机构,还包括至少一个传感器,所述至少一个传感器设置在所述壳体的壁上,用于检测在所述导料机构中料线的料头的位置。
  8. 根据权利要求7所述的导料机构,其中,所述多个进料通道和出料通道形成所述壳体的内部腔体,并且所述壳体的壁上设置有与所述内部腔体连通的至少一个孔,并且
    所述导料机构还包括至少一个触发件,所述至少一个触发件分别布置在所述至少一个孔中,每个触发件沿所述至少一个孔中一个相应的孔的轴线方向可移动地插入所述内部腔体中,其中,每个触发件插入所述内部腔体中的一端被成形为具有与送料方向成一角度的端面,以使得在所述内部腔体内的料线沿送料方向被引导至该触发件所在位置时,该料线的料头直接挤压该端的端面,从而推动该触发件在所述相应的孔中移动至预定位置,并且
    其中,每个传感器被布置为与所述至少一个触发件中一个相应的触发件相配合,以使得当该相应的触发件移动至所述预定位置时,该传感器被触发,用以指示在所述内部腔体内的料线沿送料方向被引导至所述触发件所在位置。
  9. 根据权利要求8所述的导料机构,其中,所述至少一个传感器是至少一个霍尔传感器,并且所述至少一个触发件是至少一个磁体。
  10. 根据权利要求8所述的导料机构,其中,所述至少一个传感器是至少一个行程开关。
  11. 根据权利要求7或8所述的导料机构,其中,所述至少一个传感器是多个传感器,并且所述多个传感器分别设置在所述壳体的壁上的与所述多个进料通道和所述出料通道相对应的位置处。
  12. 根据权利要求9所述的导料机构,还包括至少一个止挡件,每个止挡件布置在所述至少一个孔中一个相应的孔的远离所述内部腔体的一端,用于向所述至少一个磁体中的一个相应的磁体施加阻止该相应的磁体朝向所述预定位置移动的作用力。
  13. 一种3D打印机,包括:
    打印头;
    主导料管,所述主导料管与所述打印头连通;以及
    根据权利要求1至12中任一项所述的导料机构。
PCT/CN2023/071679 2022-01-17 2023-01-10 导料机构和3d打印机 WO2023134687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210050222.9 2022-01-17
CN202210050222.9A CN114179354A (zh) 2022-01-17 2022-01-17 导料机构和3d打印机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/599,132 Continuation US20240208146A1 (en) 2022-01-17 2024-03-07 Material guide mechanism and 3d printer

Publications (1)

Publication Number Publication Date
WO2023134687A1 true WO2023134687A1 (zh) 2023-07-20

Family

ID=80545713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071679 WO2023134687A1 (zh) 2022-01-17 2023-01-10 导料机构和3d打印机

Country Status (2)

Country Link
CN (1) CN114179354A (zh)
WO (1) WO2023134687A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104309130A (zh) * 2014-11-11 2015-01-28 西安非凡士机器人科技有限公司 3d打印机智能进料检测机构
US20150084222A1 (en) * 2013-09-24 2015-03-26 Fenner, U.S., Inc. Filament for fused deposit modeling
CN107225756A (zh) * 2017-08-02 2017-10-03 北京卫星制造厂 一种3d打印机进料检测装置及其方法
WO2018154277A1 (en) * 2017-02-27 2018-08-30 The University Of Sheffield Methods and systems for producing three dimensional objects
CN207808508U (zh) * 2018-01-20 2018-09-04 东莞市皇龙电子有限公司 一种FDM3d打印机上的自动送料储料机构
CN207954679U (zh) * 2017-12-30 2018-10-12 杭州先临三维云打印技术有限公司 一种料丝自动续接装置及装有该装置的3d打印机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105946233A (zh) * 2016-06-17 2016-09-21 季鹏凯 多喷嘴3d打印喷头及打印方法及3d打印机
CN207746417U (zh) * 2017-12-12 2018-08-21 珠海天威飞马打印耗材有限公司 三维打印挤出装置和三维打印机
CN107855530B (zh) * 2017-12-12 2023-08-15 珠海天威增材有限公司 三维打印挤出装置、三维打印机及其制造方法
EP3856496A1 (en) * 2018-09-26 2021-08-04 Stratasys Ltd. Automated 3d-printing of hollow objects
CN211591316U (zh) * 2019-11-22 2020-09-29 陈祺睿 一种用于大型增材制造的3d打印装置
CN113071102A (zh) * 2021-03-02 2021-07-06 深圳市创想三维科技有限公司 3d打印机耗材检测装置及检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150084222A1 (en) * 2013-09-24 2015-03-26 Fenner, U.S., Inc. Filament for fused deposit modeling
CN104309130A (zh) * 2014-11-11 2015-01-28 西安非凡士机器人科技有限公司 3d打印机智能进料检测机构
WO2018154277A1 (en) * 2017-02-27 2018-08-30 The University Of Sheffield Methods and systems for producing three dimensional objects
CN107225756A (zh) * 2017-08-02 2017-10-03 北京卫星制造厂 一种3d打印机进料检测装置及其方法
CN207954679U (zh) * 2017-12-30 2018-10-12 杭州先临三维云打印技术有限公司 一种料丝自动续接装置及装有该装置的3d打印机
CN207808508U (zh) * 2018-01-20 2018-09-04 东莞市皇龙电子有限公司 一种FDM3d打印机上的自动送料储料机构

Also Published As

Publication number Publication date
CN114179354A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
JP2017109495A5 (zh)
CN109247014B (zh) 3d打印头、3d打印设备和3d打印头的控制方法
WO2023134687A1 (zh) 导料机构和3d打印机
JP7232153B2 (ja) 付加製造システムにおいて使用される押出機ヘッド用の最適化されたノズル配置
CN217373256U (zh) 弯管模具
CN109622399A (zh) 管件长度一体式检测装置
CN114043723A (zh) 用于3d打印机的线料缓冲装置以及3d打印机
US20090025241A1 (en) Measuring device and method for using the same
US20240208146A1 (en) Material guide mechanism and 3d printer
CN218489130U (zh) 用于3d打印机的检测装置和3d打印机
US20220134663A1 (en) Filament Buffer
KR101441561B1 (ko) 쿠션 블록 타입의 압력센서로 제어되는 아웃 지그
CN210651907U (zh) 防断料检测装置和3d打印机
CN212378738U (zh) 线材变形检测机构
CN210126912U (zh) 一种同步转移导引机构
US6726079B2 (en) Wire feed device
CN210525724U (zh) 一种单行位多方向的模具抽芯结构
JP6047629B1 (ja) 3次元印刷装置
CN213176243U (zh) 一种阀组、液压缸组件及液压系统
CN114683490A (zh) 用于弯管模具的镶件组件及弯管模具
CN106694842A (zh) 具有压射位置检测装置的压铸机
CN111169000A (zh) 立体打印装置
CN214024071U (zh) 耳机前腔自动供料视觉定位打标机
JP2009008137A (ja) 直線案内装置および測定機
KR101727815B1 (ko) 피스톤로드 변위 측정용 실린더장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740029

Country of ref document: EP

Kind code of ref document: A1