WO2023134498A1 - 一种海上风力等级测量射频收发系统及其工作方法 - Google Patents

一种海上风力等级测量射频收发系统及其工作方法 Download PDF

Info

Publication number
WO2023134498A1
WO2023134498A1 PCT/CN2023/070084 CN2023070084W WO2023134498A1 WO 2023134498 A1 WO2023134498 A1 WO 2023134498A1 CN 2023070084 W CN2023070084 W CN 2023070084W WO 2023134498 A1 WO2023134498 A1 WO 2023134498A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
surface acoustic
frequency
transducer
wave sensor
Prior art date
Application number
PCT/CN2023/070084
Other languages
English (en)
French (fr)
Inventor
蒋华
蒋建伟
杨永杰
章国安
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Publication of WO2023134498A1 publication Critical patent/WO2023134498A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention belongs to the technical field of surface acoustic wave sensors, and in particular relates to a radio frequency transceiver system for measuring offshore wind force levels based on surface acoustic wave sensors and a working method thereof.
  • the purpose of the present invention is to provide a radio frequency transceiver system for offshore wind level measurement based on a surface acoustic wave sensor, which has the characteristics of stronger timeliness, more convenient measurement, and is suitable for various users, so as to solve the defects or question.
  • an embodiment of the present invention provides an offshore wind level measurement radio frequency transceiver system based on a surface acoustic wave sensor, which is characterized in that it includes a measurement path, a reference path, a wireless transmission module, a wireless receiving module and a data processing unit ;
  • the measurement path consists of a first surface acoustic wave sensor and peripheral circuits to form an oscillating circuit
  • the first surface acoustic wave sensor includes three substrates, the middle substrate is fixedly arranged, and the left substrate And the substrate on the right side is used to slide when feeling different offshore wind levels, which will cause the center frequency of the oscillator to change accordingly;
  • the reference path consists of a second surface acoustic wave sensor and peripheral circuits to form a reference oscillation circuit, the second surface acoustic wave sensor only contains a fixed substrate, and the rest of the structure is the same as that of the measurement path;
  • the wireless transmission module includes a MIX mixer, a PA power amplifier, a high-pass filter, an antenna switch, and an antenna;
  • Described wireless receiving module comprises high pass filter, LNA low noise amplifier, MIX mixer, low pass filter;
  • the fixed frequency of the measurement path and the reference path is mixed by the MIX mixer and high-pass filtered by the high-pass filter, and the high-frequency signal generated can be transmitted to the ground through the antenna switch and the antenna; the wireless receiving module on the ground
  • the received signal is high-pass filtered by the high-pass filter and mixed by the MIX mixer to restore the signal equal to the frequency of the measurement channel, and then the frequency and wind level conversion can be realized after passing through the data processing unit.
  • each substrate of the first surface acoustic wave sensor is arranged in a triangular structure, and the three substrates of the first surface acoustic wave sensor are arranged separately from the left, middle and right, and the three are placed close to each other.
  • the substrates are photoetched with output transducer 2, input transducer, and output transducer 1 respectively, the input transducer is arranged on the middle substrate, and the output transducer 2 is arranged on the left substrate On-chip, the output transducer 1 is arranged on the substrate on the right side, the input transducer 1 and the output transducer 1 constitute the surface acoustic wave delay line 1, and the input transducer 2 and the output transducer 2 constitute the Surface acoustic wave delay line two, the surface acoustic wave delay line one and the peripheral circuit together constitute the delay line oscillator one, the surface acoustic wave delay line two and the peripheral circuit together constitute the delay line oscillator two; the first acoustic wave
  • the surface wave sensor can select the delay line oscillator according to the wind force.
  • the delay line oscillator 1 When the wind force is small, the delay line oscillator 1 is used, and when the wind force is large, the delay line oscillator 2 is used; the details are as follows: when the wind force is small, the switch selects , turn off the output transducer 2 on the left, and only make the input transducer in the middle work together with the output transducer on the right, and the substrate on the right can slide. Transducer 1 only makes the input transducer in the middle and the output transducer 2 on the left work, and the substrate on the left can slide, so that the center frequency of the oscillator changes accordingly.
  • a weighting technique is adopted in the input transducer, and its weighting function is a Kaiser function.
  • the weighting technique adopts a combination weighting of apodization and finger extraction, that is, apodization is used for weighting in areas with large acoustic apertures. Fingertip weighting is used for areas with smaller apertures, and dummy fingers are used to fill the vacant space after apodization and after fingertip extraction to reduce sound wave diffraction; the output transducer is not weighted, and the number of finger strips is small. And the acoustic apertures are equal; the weighting function of the output transducer 2 is a Kaiser function, and its weighting technology adopts finger weighting.
  • the three substrates of the first surface acoustic wave sensor are arranged on one substrate, and silicone oil for damping and fixed rails for limiting left and right sliding are arranged between the substrate and the substrates.
  • the fixed substrate of the second surface acoustic wave sensor is provided with a left transducer, a right transducer and a middle transducer; the details are as follows: when the wind force is small, it is selected synchronously by the switch as in the measurement path , turn off the left transducer, and only make the middle and right transducers work. When the wind is strong, it is selected by the switch synchronously as in the measurement channel. Turn off the right transducer, and only the middle transducer Works with the left transducer.
  • the measurement path includes an oscillating circuit composed of a first surface acoustic wave sensor, a triode, a resistor, an inductance, and a capacitor; the piezoelectric substrate of the first surface acoustic wave sensor in the measurement path adopts an electromechanical coupling coefficient of 0.055.
  • the piezoelectric material is made of Y128°X-LiNbO 3 ;
  • the triode is a high-frequency low-power NPN tube, the resistor is an in-line resistor, the capacitor is a non-polar capacitor, and the inductance is a non-polar inductor.
  • the periphery of the reference oscillating circuit module in the reference path is covered with a layer of plastic protective cover to ensure that its oscillating frequency is not affected by wind force, so that it is at a fixed value and serves as a reference.
  • the MIX mixer is divided into up-conversion and down-conversion, and the mixing process of the MIX mixer is: the local reference oscillation circuit signal and the surface acoustic wave oscillation circuit signal are multiplied, if the frequencies of the two oscillation signals are respectively is f 0 , f 1 , according to the trigonometric formula:
  • the frequency of the up-conversion signal is around 2f 0
  • the frequency of the down-conversion signal is around 0 frequency
  • the center frequency of the high-pass filter of the wireless transmission module is twice that of the local reference signal, that is, 2f 0
  • the bandwidth is 1.5f 0 to 2.5f 0 , which can ensure that the up-converted signal generated by frequency mixing can be filtered out from the frequency band
  • the center frequency of the low-pass filter is 0.5f 0
  • the bandwidth is f 0 , which can restore the generated frequency signal.
  • the data processing unit includes a PWM modulator, an FPGA data processing system and an LCD screen
  • the PWM modulator is used to modulate the analog signal output through the low-pass filter into a digital signal
  • the processed PWM modulator The digital signal is subsequently processed by the digital circuit in the FPGA, and the wind power level can be directly displayed on the LCD screen.
  • a working method of an offshore wind level measurement radio frequency transceiver system based on a surface acoustic wave sensor characterized in that it includes the following steps: when the wind force is small, select by a switch, close the left output transducer two, and only make the middle input
  • the transducer works together with the output transducer on the right, and the substrate on the right can slide.
  • the switch selects by the switch, and the output transducer one on the right is closed, so that only the input transducer in the middle and the left transducer
  • the second output transducer works, and the substrate on the left can slide.
  • the substrate of the first surface acoustic wave sensor slides after being subjected to offshore wind, and the structure of the first surface acoustic wave sensor changes, so that the surface acoustic wave delay line oscillator A sine wave generated by a reference oscillation circuit with a frequency different from that of the reference path is generated.
  • the antenna switch and the antenna are transmitted to the ground at a long distance; the wireless receiving module on the ground passes the received signal through the high-pass filter for high-pass filtering again, and the MIX mixer performs mixing to restore the signal equal to the frequency of the measurement channel , and then through the data processing unit, the conversion of frequency and wind power level can be realized, and the output signal is modulated into a digital signal by the PWM modulator; the digital signal processed by the PWM modulator is subsequently processed by the digital circuit in the FPGA, and can be displayed on the LCD screen The wind level is directly displayed on the top.
  • the present invention can select the delay line oscillator according to the wind force. When the wind force is small, the delay line oscillator one is used. When the wind force is large, the delay line oscillator two is used. Due to the Q value of the surface acoustic wave delay line two The Q value is higher than that of the surface acoustic wave delay line 1, which makes the measurement accuracy and self-adaptive intelligence of the system higher.
  • the first surface acoustic wave sensor and the second surface acoustic wave sensor used in the present invention have the advantages of small size, high sensitivity, low price, can work in a passive state, and can be mass-produced.
  • the offshore wind level measurement radio frequency transceiver system based on the surface acoustic wave sensor of the present invention has the advantages of direct output frequency signal, remote real-time measurement, and high precision.
  • the present invention can directly restore the measurement data at the remote end through the signal processing circuit, and the signal processing circuit used in the processing process has low loss of the measurement signal, and the noise is suppressed through various filters and low-noise amplifiers. and other irrelevant factors interfere with the measurement signal.
  • the present invention is different from the traditional shaping circuit. It uses PWM modulation to make the analog signal directly into a digital signal, and uses FPGA processing, which has faster speed and higher precision. It uses fewer circuit components and saves cost.
  • This system has the characteristics of high measurement accuracy, can work in bad weather, and can realize long-distance transmission.
  • FIG. 1 is a structural diagram of a radio frequency transceiver system for offshore wind level measurement based on a surface acoustic wave sensor according to the present invention.
  • FIG. 2 is a schematic diagram of a surface acoustic wave sensor structure of a radio frequency transceiver system for measuring offshore wind levels based on a surface acoustic wave sensor according to the present invention.
  • FIG. 3 is a schematic diagram of an apodization-weighted input transducer and an unweighted output transducer adopted in the conventional technology.
  • Fig. 4 is a schematic diagram of a surface acoustic wave sensor-based offshore wind level measurement radio frequency transceiver system of the present invention in which the input transducer is combined weighted combined with apodization and finger extraction, and the output transducer is unweighted.
  • FIG. 5 is a schematic diagram of a surface acoustic wave sensor-based offshore wind level measurement radio frequency transceiver system of the present invention, in which the input transducer is combined weighting combined with apodization and finger extraction, and the output transducer is weighted with two finger extraction.
  • FIG. 6 is an oscillation circuit used in an offshore wind level measurement radio frequency transceiver system based on a surface acoustic wave sensor according to the present invention.
  • FIG. 7 is a second-order high-pass filter used in an offshore wind level measurement radio frequency transceiver system based on a surface acoustic wave sensor according to the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • an offshore wind level measurement radio frequency transceiver system based on a surface acoustic wave sensor includes a measurement channel, a reference channel, a wireless transmission module, a wireless receiving module and a data processing unit.
  • the measurement path consists of a first surface acoustic wave sensor and a peripheral circuit to form an oscillating circuit.
  • the surface acoustic wave sensor includes three substrates, one of which is fixedly arranged in the middle, and the other left and right The two substrates can slide when they are used to feel different offshore wind levels.
  • the wind force is small, it is selected by a switch to close the left transducer, and only the middle transducer and the right transducer work, and The right substrate can slide, and when the wind is strong, it is selected by the switch, and the right transducer is turned off, only the middle transducer and the left transducer work, and the left substrate can slide, so that the center frequency of the oscillator varies with of change.
  • Each substrate of the first surface acoustic wave sensor is arranged in a triangular structure, and the three substrates of the first surface acoustic wave sensor are arranged separately from the left, middle and right, and the three are placed close to each other.
  • the three substrates Output transducer 2, input transducer, and output transducer 1 are respectively photolithographically etched on the surface, the input transducer is arranged on the substrate in the middle, and the output transducer 2 is arranged on the substrate on the left side, so The output transducer 1 is arranged on the substrate on the right side, the input transducer 1 and the output transducer 1 form a surface acoustic wave delay line 1, and the input transducer 2 and the output transducer 2 form a surface acoustic wave delay line 1.
  • the delay line oscillator can be selected by the switch.
  • the delay line oscillator 1 is used, and when the wind is strong, the delay line oscillator 2 is used. Because the Q value of the SAW delay line 2 is higher than that of the SAW The Q value of delay line 1 is higher, which makes the measurement accuracy and self-adaptive intelligence of the system higher.
  • the piezoelectric substrate of the surface acoustic wave sensor of the measurement system is made of piezoelectric material Y128°X-LiNbO 3 with an electromechanical coupling coefficient of 0.055, and the surface acoustic wave voltage-controlled oscillation sensor with a center frequency of 80MHz.
  • FIG. 3 it is a schematic diagram of an apodization-weighted input transducer and an unweighted output transducer adopted in the conventional technology.
  • the input transducer of the present invention is a combined weighted, output transducer-unweighted schematic diagram of the combination of apodization and finger extraction
  • the weighting function of the input transducer is a Kaiser function
  • the weighting technology adopts a combined weighting of apodization and finger extraction, that is, apodization weighting is used in the area with a large acoustic aperture, and finger extraction weighting is used in the area with a small acoustic aperture.
  • the input transducer of the present invention is a combined weighted combination of apodization and finger extraction, and a schematic diagram of the output transducer two finger extraction weighting.
  • the weighting function of the input transducer is a Kaiser function, and the weighted
  • the technology adopts a combined weighting of apodization and finger extraction, that is, apodization weighting is used in the area with a large acoustic aperture, and finger extraction weighting is used in the area with a small acoustic aperture.
  • the vacant place is filled with fake fingers to reduce sound wave diffraction;
  • the weighting function of the output transducer 2 is a Kaiser function, and its weighting technology adopts finger weighting.
  • the three substrates are arranged on one substrate, and there is silicone oil for damping and a fixed rail that restricts left and right sliding between the substrates and the substrate. Offsets the center frequency of the delay line oscillator in the measurement path.
  • the reference path consists of a second surface acoustic wave sensor and a peripheral circuit to form a reference oscillation circuit.
  • the second surface acoustic wave sensor only contains a fixed substrate, and the rest of the structure is the same as the measurement path. When the wind force is small, it is the same as the measurement path. The same as in the middle, select synchronously by the switch, turn off the left transducer, and only make the middle transducer and the right transducer work.
  • the reference oscillation circuit module in the reference path is covered with a layer of plastic protective cover to ensure that its oscillation frequency is not affected by the wind, so that it is at a fixed value, which plays a role Reference role;
  • the circuit composition of the reference path is the same as that of the measurement path, but the difference from the measurement path is that the surface acoustic wave sensor in the reference path only contains a fixed substrate, and the reference oscillation circuit module in the reference path is covered with a
  • a plastic protective cover keeps the oscillation frequency from being affected by the wind and is at a fixed value, so it can serve as a reference.
  • the wireless transmission module includes a MIX mixer, a PA power amplifier, a high-pass filter, an antenna switch, and an antenna.
  • the wireless receiving module includes a high-pass filter, an LNA low-noise amplifier, a MIX mixer, and a low-pass filter.
  • the fixed frequency of the measurement path and the reference path is mixed by the MIX mixer and high-pass filtered by the high-pass filter, and the high-frequency signal generated can be transmitted to the ground through the antenna switch and the antenna; the wireless receiving module on the ground
  • the received signal is high-pass filtered by the high-pass filter and mixed by the MIX mixer to restore the signal equal to the frequency of the measurement channel, and then the frequency and wind level conversion can be realized after passing through the data processing unit.
  • the starting circuit of the measurement system adopts the Seiler circuit in the capacitive three-point oscillation circuit
  • SAW is the surface acoustic wave sensor
  • Q1 is the NPN transistor
  • R1, R2, R3, R4, and Q1 form the emitter bias circuit
  • C1, C2 are bypass capacitors
  • C3, C4, and L1 form a frequency selection network
  • the amplifier component Q1 uses a high-frequency low-power transistor 2N2222, and the center frequency of the surface acoustic wave sensor SAW is 80MHz.
  • Static operating point can make the oscillator circuit output 80MHz sine wave.
  • the center frequency of the frequency selection network is consistent with the center frequency of the surface acoustic wave sensor SAW.
  • the surface acoustic wave sensor is affected by the sea wind, the center frequency of the oscillating circuit has a small shift, while the frequency of the reference oscillating circuit is stable at 80MHz, resulting in a frequency difference, and the frequency and pressure have a certain correspondence Therefore, the pressure value can be obtained indirectly through the measurement of the frequency.
  • the MIX mixer of this measurement system selects AD835, a voltage output four-image multiplier produced by ADI Company, and the -3dB output bandwidth is 250MHz.
  • the full-scale input signal is ⁇ 1V, and the low-impedance output voltage can reach up to ⁇ 2.5V.
  • AD835 has outstanding speed performance, and can complete the frequency mixing of the oscillation circuit and the reference oscillation circuit excellently.
  • the mixer and high-pass filter play the role of up-conversion.
  • the frequency output by the high-pass filter is the sum of the oscillation circuit frequency and the reference oscillation frequency f 0 +f 1.
  • the frequency mixing The frequency converter and the low-pass filter play the role of down-conversion, and its output frequency is (f 0 +f 1 )-f 1 , it can be seen that the frequency f 0 output by the offshore wind oscillation circuit can be demodulated at the remote end , to achieve long-distance transmission.
  • AT2401C is a single-chip device implemented by CMOS technology. It integrates a power amplifier (PA) and a low-noise amplifier (LNA). This chip has very superior performance, high sensitivity and efficiency, low noise, small product size and low cost.
  • PA power amplifier
  • LNA low-noise amplifier
  • the AT2401C chip can amplify the power of this signal and then feed it to the antenna for radiation, so as to realize the remote measurement of the sea wind force; at the signal receiving end, the AT201C receives the extremely weak signal radiated by the antenna For unstable signals, the signal is amplified to 0.5V-1V, which is convenient for later digital processing and can suppress the interference of noise on the signal.
  • the high-pass filter of the measurement system is a typical second-order active high-pass filter. Compared with the RC high-pass filter, it has the advantages of small size and stable performance. High, the output impedance is very low, so it has the function of amplification and buffering, can highlight the signal of useful frequency, attenuate the signal of useless frequency, and suppress interference and noise.
  • the input frequency signal is Vi
  • the output frequency signal is Vo.
  • the frequency of Vo can be f 0 + f 1 , which is the sum of the oscillation circuit frequency f 0 and the reference oscillation circuit frequency f 1 .
  • the data processing unit includes a PWM modulator, an FPGA data processing system and an LCD screen, the PWM modulator is used to modulate the analog signal output through the low-pass filter into a digital signal, and the digital signal processed by the PWM modulator is subsequently Through the digital circuit processing in the FPGA, the wind power level can be directly displayed on the LCD screen.
  • traditional shaping circuits such as LM393
  • it can process signals more quickly and conveniently, and the frequency and amplitude of modulation signals can be changed, which can be more conveniently processed in FPGA data processing systems.
  • the PWM modulator in the measurement system can convert the analog signal output by the low-pass filter into a digital signal.
  • the output sine wave can be divided into 5 equal parts according to the equal width.
  • a square wave with equal area corresponds to it, so the sine wave output by the low-pass filter can be transformed into a square wave of the corresponding frequency.
  • FPGA field-programmable gate array
  • the FPGA of the measurement system uses Cyclone IV, which has low cost and low power consumption.
  • the Cyclone IV FPGA series is oriented to cost-sensitive high-volume applications to meet users' increasing bandwidth requirements, and can perform digital processing on the signal output by the low-pass filter to meet the requirements. According to the detailed parameters of the surface acoustic wave sensor, the relationship between pressure and frequency is determined, and different pressure ranges correspond to different wind levels.
  • a working method of an offshore wind level measuring radio frequency transceiver system based on a surface acoustic wave sensor comprising the following steps: when the wind force is small, the left transducer is selected by a switch, and only the middle transducer and the right transducer are activated.
  • the right substrate can slide, when the wind is strong, select by the switch, turn off the right transducer, only make the middle transducer and the left transducer work, and the left substrate can slide, the first acoustic surface
  • the substrate of the wave sensor slides after being affected by the sea wind, and the structure of the first surface acoustic wave sensor changes, so that the surface acoustic wave delay line oscillator produces a sine wave with a frequency different from that produced by the reference oscillation circuit of the reference channel.
  • the frequency band signal generated by the MIX mixer passes through the high-pass filter after power amplification, leaving a high-frequency signal, which can be transmitted to the ground through the antenna switch and the antenna; the wireless receiving module on the ground transmits the
  • the received signal is high-pass filtered by the high-pass filter and mixed by the MIX mixer to restore the signal equal to the frequency of the measurement channel.
  • the conversion of frequency and wind power level can be realized.
  • the output The signal is modulated into a digital signal by the PWM modulator; the digital signal processed by the PWM modulator is subsequently processed by the digital circuit in the FPGA, and the wind power level can be directly displayed on the LCD screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明属于声表面波传感器技术领域,公开了一种基于声表面波传感器的海上风力等级测量射频收发系统,包括测量通路、参考通路、无线传输模块、无线接收模块、数据处理单元;测量通路由一个声表面波传感器和外围电路构成振荡电路,其中声表面波传感器含有三个基片,一个固定,另两个由开关选择,当风力较小时,仅右边可滑动,当风力较大时,仅左边可滑动,从而导致振荡器中心频率发生改变;测量通路与参考通路经过混频和高通滤波后的高频信号通过天线远距离传输到地面,在接收端再通过混频和高通滤波可重新恢复出与测量通路频率相等的信号,再经过数据处理单元可实现频率和风力等级转换。具有测量精度高,能在恶劣天气下工作,可远距离传输的特点。

Description

一种海上风力等级测量射频收发系统及其工作方法 技术领域
本发明属于声表面波传感器技术领域,具体涉及一种基于声表面波传感器的海上风力等级测量射频收发系统及其工作方法。
背景技术
如今人们越来越重视海洋资源,海上作业与陆地不同,要考虑多种天气因素,知道海上实时风力大小对海上工作至关重要。现有的海上风力测量一般采用测风器,但是传统的测风器需要在海上露天操作,测量不仅受恶劣天气影响,且时效性低,测量精度差,测量结果难以远距离传输到陆地,查询不便。
发明内容
本发明的目的是提供一种基于声表面波传感器的海上风力等级测量射频收发系统,呈现出时效性更强,测量更方便,适合各种用户的特点,以解决背景技术中所提出的缺陷或问题。
为实现上述发明目的,本发明的实施例提供一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于,包括测量通路、参考通路、无线传输模块、无线接收模块和数据处理单元;
其中,所述测量通路由一第一声表面波传感器和外围电路构成振荡电路,所述第一声表面波传感器包括三个基片,中间的所述基片固定设置,左侧所述基片及右侧所述基片用于感受到不同的海上风力等级时发生滑动,从而导致振荡器中心频率随之发生改变;
所述参考通路由一第二声表面波传感器和外围电路构成参考振荡电路,所述第二声表面波传感器仅含有一个固定基片,其余结构与测量通路相同;
所述无线传输模块包括MIX混频器、PA功率放大器、高通滤波器、天线开关、天线;
所述无线接收模块包括高通滤波器、LNA低噪声放大器、MIX混频器、低通滤波器;
所述测量通路与参考通路的固定频率经过MIX混频器进行混频和高通滤波器进行高通滤波后产生的高频信号可通过天线开关及天线远距离传输到地面;地面的所述无线接收模块将所接收到的信号再次通过高通滤波器进行高通滤波、MIX混频器进行混频可重新恢复出与测量通路频率相等的信号,再经过数据处理单元后可实现频率和风力等级的转换。
进一步的,所述第一声表面波传感器的每块基片均设置为三角形结构,所述第一声表面波传感器的三块基片呈左中右分开设置且三者靠近放置,三块所述基片分别光刻有输出换能器二、输入换能器、输出换能器一,所述输入换能器设置在中间的基片上,所述输出换能器二设置在左侧的基片上,所述输出换能器一设置在右侧的基片上,所述输入换能器和输出换能器一构成声表面波延迟线一,所述输入换能器和输出换能器二构成声表面波延迟线二,所述声表面波延迟线一和外围电路一起构成延迟线振荡器一,所述声表面波延迟线二和外围电路一起构成延迟线振荡器二;所述第一声表面波传感器能够根据风力大 小,由开关选择延迟线振荡器,当风力较小时采用延迟线振荡器一,当风力较大时采用延迟线振荡器二;具体如下:当风力较小时,由开关选择,关闭左边的输出换能器二,仅使中间的换输入换能器和右边的输出换能器一起作用,且右边基片可滑动,当风力较大时,由开关选择,关闭右边的输出换能器一,仅使中间的输入换能器和左边的输出换能器二起作用,且左边基片可滑动,从而导致振荡器中心频率随之发生改变。
优选的,所述输入换能器中采用加权技术,其加权函数为Kaiser函数,加权技术采用切趾和抽指相结合的组合式加权,即在声孔径较大区域采用切趾加权,在声孔径较小区域采用抽指加权,并在切趾后的空余处和抽指后的空余处采用假指填充,以减小声波衍射;所述输出换能器一不加权,指条数量少,且声孔径相等;所述输出换能器二的加权函数为Kaiser函数,且其加权技术采用抽指加权。
进一步的,所述第一声表面波传感器的三块基片布置在一块基板上,所述基板与基片之间设置有起阻尼作用的硅油和限制左右滑动的固定轨道。
进一步的,所述第二声表面波传感器的固定基片上设置有左边换能器、右边换能器和中间换能器;具体如下:当风力较小时,与测量通路中一样,由开关同步选择,关闭左边换能器,仅使中间换能器和右边换能器起作用,当风力较大时,与测量通路中一样,由开关同步选择,关闭右边换能器,仅使中间换能器和左边换能器起作用。
进一步的,所述测量通路包括第一声表面波传感器、三极管、电阻、电感、电容组成的振荡电路;所述测量通路中第一声表面波传感器的压电基片采用机电耦合系数为0.055的压电材料Y128°X-LiNbO 3制作;所述三极管选择高频低功率NPN管,所述电阻采用直插电阻,所述电容采用非极性电容,所述电感采用非极性电感。
进一步的,所述参考通路中的参考振荡电路模块外围覆盖有一层塑料保护盖以保证其振荡频率不受风力影响,从而处于一个固定值,起到参考作用。
进一步的,所述MIX混频器分为上变频和下变频,所述MIX混频器的混频过程为:本地参考振荡电路信号和声表面波振荡电路信号相乘,若两振荡信号频率分别为f 0,f 1,根据三角公式:
cos f 0cos f 1=1/2[cos(f 0+f 1)+cos(f 1-f 0)]
可知,上变频信号频率在2f 0附近,下变频信号频率在0频率附近;令无线传输模块高通滤波器的中心频率是本地参考信号的2倍,即2f 0,带宽为1.5f 0至2.5f 0,可保证经过混频产生的上变频信号能够从频带中滤出;在无线接收模块中令低通滤波器的中心频率为0.5f 0,带宽为f 0,即可恢复出受到海上风力而产生的频率信号。
进一步的,所述数据处理单元包括PWM调制器、FPGA数据处理系统和LCD屏幕,所述PWM调制器用于将经过低通滤波器输出的模拟信号调制为数字信号,所述PWM调制器处理后的数字信号后续通过FPGA中的数字电路处理,可在LCD屏幕上直接显示出风力等级。
一种基于声表面波传感器的海上风力等级测量射频收发系统的工作方法,其特征在于,包括以下步骤:当风力较小时,由开关选择,关闭左边的输出换能器二,仅使中间的输入换能器和右边的输出换能器一起作用,且右边的基片可滑动,当风力较大时,由开关选择,关闭右边输出换能器一,仅使中间的输入换能器和左边的输出换能器二起作用,且左边基片可滑动,第一声表面波传感器的基片受海上风力后产生滑动,第一声表面波传感器的结构发生改变,使得声表面波延迟线振荡器产生一个频率不同于参考通路的参考振荡电路 所产生的正弦波,两者通过MIX混频器产生的频带信号经过功率放大后通过高通滤波器,留下高频信号,所述高频信号可通过天线开关及天线远距离传输到地面;地面的所述无线接收模块将所接收到的信号再次通过高通滤波器进行高通滤波、MIX混频器进行混频可重新恢复出与测量通路频率相等的信号,再经过数据处理单元后可实现频率和风力等级的转换,所输出的信号通过PWM调制器调制为数字信号;PWM调制器处理后的数字信号后续通过FPGA中的数字电路处理,可在LCD屏幕上直接显示出风力等级。
本发明的上述技术方案的有益效果如下:
1、本发明能够根据风力大小,由开关选择延迟线振荡器,当风力较小时采用延迟线振荡器一,当风力较大时采用延迟线振荡器二,由于声表面波延迟线二的Q值比声表面波延迟线一的Q值更高,使得本系统的测量精度和自适应的智能化程度更高。
2、本发明所采用的第一声表面波传感器和第二声表面波传感器,具有体积小、灵敏度高、价格低、可工作在无源状态、可大规模生产等优点。
3、本发明较传统的测量风力装置,本发明的基于声表面波传感器的海上风力等级测量射频收发系统具有直接输出频率信号、可实现远程实时测量、精度高等优点。
4、本发明通过信号处理电路,可远端直接恢复出测量端数据,且采用的信号处理电路在处理过程中对测量信号损耗低,通过各种滤波器和低噪声放大器等装置,抑制了噪声等不相关因素对测量信号的干扰。
5、本发明在信号接收端,不同于传统的整形电路,采用PWM调制使得模拟信号直接变为数字信号,且使用FPGA处理,速度更快,精度更高,采用的电路元件更少,节约了成本。
6、本系统具有测量精度高,能够在恶劣天气下工作,可实现远距离传输的特点。
附图说明
图1为本发明的一种基于声表面波传感器的海上风力等级测量射频收发系统的组成结构图。
图2为本发明的一种基于声表面波传感器的海上风力等级测量射频收发系统的声表面波传感器结构的示意图。
图3为传统技术采用的输入换能器为切趾加权、输出换能器不加权的示意图。
图4为本发明的一种基于声表面波传感器的海上风力等级测量射频收发系统的输入换能器为切趾和抽指相结合的组合式加权、输出换能器一不加权的示意图。
图5为本发明的一种基于声表面波传感器的海上风力等级测量射频收发系统的输入换能器为切趾和抽指相结合的组合式加权、输出换能器二抽指加权的示意图。
图6为本发明的一种基于声表面波传感器的海上风力等级测量射频收发系统的所采用的振荡电路。
图7为本发明的一种基于声表面波传感器的海上风力等级测量射频收发系统的所采用的二阶高通滤波器。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
在本发明的描述中,需要说明的是,术语“中心”、“上”“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作为广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1所示,一种基于声表面波传感器的海上风力等级测量射频收发系统,包括测量通路、参考通路、无线传输模块、无线接收模块和数据处理单元。
所述测量通路由一第一声表面波传感器和外围电路构成振荡电路,如图2所示,所述声表面波传感器包括三个基片,其中一所述中间的基片固定设置,另左右两个所述基片用于感受到不同的海上风力等级时可发生滑动,当风力较小时,由开关选择,关闭左边换能器,仅使中间换能器和右边换能器起作用,且右边基片可滑动,当风力较大时,由开关选择,关闭右边换能器,仅使中间换能器和左边换能器起作用,且左边基片可滑动,从而导致振荡器中心频率随之发生改变。所述第一声表面波传感器的每块基片均设置为三角形结构,所述第一声表面波传感器的三块基片呈左中右分开设置且三者靠近放置,所述三块基片表面分别光刻输出换能器二、输入换能器、输出换能器一,所述输入换能器设置在中间的基片上,所述输出换能器二设置在左侧的基片上,所述输出换能器一设置在右侧的基片上,所述输入换能器和输出换能器一构成声表面波延迟线一,所述输入换能器和输出换能器二构成声表面波延迟线二,所述声表面波延迟线一和外围电路一起构成延迟线振荡器一,所述声表面波延迟线二和外围电路一起构成延迟线振荡器二;所述第一声表面波传感器能够根据风力大小,由开关选择延迟线振荡器,当风力较小时采用延迟线振荡器一,当风力较大时采用延迟线振荡器二,由于声表面波延迟线二的Q值比声表面波延迟线一的Q值更高,使得本系统的测量精度和自适应的智能化程度更高。该测量系统的声表面波传感器压电基片采用机电耦合系数为0.055的压电材料Y128°X-LiNbO 3制作,中心频率为80MHz的声表面波压控振荡传感器。
如图3所示是传统技术采用的输入换能器为切趾加权、输出换能器不加权的示意图。优选的,如图4所示,本发明所述输入换能器为切趾和抽指相结合的组合式加权、输出换能器一不加权的示意图,输入换能器的加权函数为Kaiser函数,加权技术采用切趾和抽指相结合的组合式加权,即在声孔径较大区域采用切趾加权,在声孔径较小区域采用抽指加权,并在切趾后的空余处和抽指后的空余处采用假指填充,以减小声波衍射;所述输出换能器一不加权,指条数量少,且声孔径相等。如图5所示,本发明所述输入换能器为切趾和抽指相结合的组合式加权、输出换能器二抽指加权的示意图,输入换能器的加权函数为Kaiser函数,加权技术采用切趾和抽指相结合的组合式加权,即在声孔径较大区域采用切趾加权,在声孔径较小区域采用抽指加权,并在切趾后的空余处和抽指后的空余处采用假指填充,以减小声波衍射;所述输出换能器二的加权函数为Kaiser函数,且其加权技术采用抽指加 权。三块基片布置在一块基板上,基片与基板之间有起阻尼作用的硅油和限制左右滑动的固定轨道,上述结构的作用是使得右边的基片在受到风力作用时产生左右滑动,从而使测量通路中的延迟线振荡器的中心频率产生偏移。
所述参考通路由一第二声表面波传感器和外围电路构成参考振荡电路,所述第二声表面波传感器仅含有一个固定基片,其余结构与测量通路相同,当风力较小时,与测量通路中一样,由开关同步选择,关闭左边换能器,仅使中间换能器和右边换能器起作用,当风力较大时,与测量通路中一样,由开关同步选择,关闭右边换能器,仅使中间换能器和左边换能器起作用,所述参考通路中的参考振荡电路模块外围覆盖有一层塑料保护盖以保证其振荡频率不受风力影响,从而处于一个固定值,起到参考作用;所述参考通路的电路组成与测量通路相同,但与测量通路不同的是,参考通路中的声表面波传感器只含有一个固定基片,且参考通路中的参考振荡电路模块外围覆盖一层塑料保护盖,使其振荡频率不受风力影响,处于一个固定值,因而能起到参考作用。
所述无线传输模块包括MIX混频器、PA功率放大器、高通滤波器、天线开关、天线。所述无线接收模块包括高通滤波器、LNA低噪声放大器、MIX混频器、低通滤波器。
所述测量通路与参考通路的固定频率经过MIX混频器进行混频和高通滤波器进行高通滤波后产生的高频信号可通过天线开关及天线远距离传输到地面;地面的所述无线接收模块将所接收到的信号再次通过高通滤波器进行高通滤波、MIX混频器进行混频可重新恢复出与测量通路频率相等的信号,再经过数据处理单元后可实现频率和风力等级的转换。
如图6,该测量系统的起振电路采用电容三点式振荡电路中的Seiler电路,SAW为声表面波传感器;Q1为NPN型三极管;R1、R2、R3、R4、Q1组成射极偏置电路;C1、C2为旁路电容;C3、C4、L1组成选频网络;放大元器件Q1采用高频小功率三极管2N2222,声表面波传感器SAW的中心频率为80MHz,通过选择合适的射极偏置电路静态工作点可使得振荡电路输出80MHz的正弦波。在本实例中,射极偏置电路中:R1=71kΩ、R2=21kΩ、R3=2kΩ、R4=1kΩ;旁路电容:C1=400pF、C2=400pF;选频网络中:C4=45pF、C4=5pF、L1=0.1uH,上述参数使得三极管工作在线性区,满足C1、C2>>C3、C4,通过公式:
Figure PCTCN2023070084-appb-000001
计算得出选频网络的中心频率和声表面波传感器SAW的中心频率一致。此时声表面波传感器在受海上风力的作用下,振荡电路的中心频率有小幅度的偏移,而参考振荡电路的频率稳定在80MHz,从而产生了频率差,而频率和压力有一定的对应关系,因此可通过频率的测量间接得出压力数值。
该测量系统的MIX混频器选用ADI公司生产的一款电压输出四象乘法器AD835,-3dB输出带宽为250MHz。输入信号满量程为±1V,低阻抗输出电压最高可达±2.5V。AD835具有出众的速度性能,能够出色完成振荡电路和参考振荡电路的混频。在无线传输过程中的混频器和高通滤波器起着上变频的作用,高通滤波器输出的频率为振荡电路频率和参考振荡频率之和f 0+f 1,在无线接收过程中,混频器和低通滤波器起着下变频的作用,其输出频率为(f 0+f 1)-f 1,由此可知,因受海上风力振荡电路输出的频率f 0可在远端解调出,实现了远 距离传输。
该测量系统的PA功率放大器和LNA低噪声放大器采用AT2401C芯片,AT2401C是采用CMOS工艺实现的单芯片器件,其内部集成了功率放大器(PA)、低噪声放大器(LNA),该芯片有非常优越的性能,灵敏度和效率高、噪声低、产品尺寸小、成本低。由于混频输出的振荡信号功率比较低,使用AT2401C芯片能够将此信号的功率放大从而馈送到天线上辐射出去,从而实现远程测量海上风力;在信号接收端,AT201C接收到天线辐射的极其微弱的不稳定信号,将信号放大到0.5V-1V,便于后期的数字处理,同时能够抑制噪声对信号的干扰。
如图7,该测量系统的高通滤波器选用典型的二阶有源高通滤波器,相对于RC高通滤波器,具有体积小,性能稳定的优点,同时由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故具有放大和缓冲作用,能够突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声。输入频率信号为Vi,输出频率信号为Vo,通过设定R、C的值,即可使得Vo的频率为f 0+f 1即振荡电路频率f 0和参考振荡电路频率f 1之和。
所述数据处理单元包括PWM调制器、FPGA数据处理系统和LCD屏幕,所述PWM调制器用于将经过低通滤波器输出的模拟信号调制为数字信号,所述PWM调制器处理后的数字信号后续通过FPGA中的数字电路处理,可在LCD屏幕上直接显示出风力等级。与传统的整形电路例如LM393相比,能够更加快速方便地处理信号,且调制信号的频率和幅度可以改变,能够更方便在FPGA数据处理系统中处理。
该测量系统中PWM调制器可将低通滤波器输出的模拟信号转换为数字信号,根据冲量等效原理,可将输出的正弦波按等宽间距分为5等份,对于每一份都以一个面积相等的方波来对应,因此低通滤波器输出的正弦波可变为相应频率的方波。通过硬件描述语言,利用FPGA完成PWM调制过程。
该测量系统的FPGA选用Cyclone IV,其成本低、功耗低。Cyclone IV FPGA系列面向对成本敏感的大批量应用,以满足用户对越来越大的带宽需求,可对低通滤波器输出的信号进行数字处理,满足需求。根据声表面波传感器的详细参数确定压力与频率之间的关系,在不同的压力范围内对应不同的风力等级。
一种基于声表面波传感器的海上风力等级测量射频收发系统的工作方法,包括以下步骤:当风力较小时,由开关选择,关闭左边换能器,仅使中间换能器和右边换能器起作用,且右边基片可滑动,当风力较大时,由开关选择,关闭右边换能器,仅使中间换能器和左边换能器起作用,且左边基片可滑动,第一声表面波传感器的基片受海上风力后产生滑动,第一声表面波传感器的结构发生改变,使得声表面波延迟线振荡器产生一个频率不同于参考通路的参考振荡电路所产生的正弦波,两者通过MIX混频器产生的频带信号经过功率放大后通过高通滤波器,留下高频信号,所述高频信号可通过天线开关及天线远距离传输到地面;地面的所述无线接收模块将所接收到的信号再次通过高通滤波器进行高通滤波、MIX混频器进行混频可重新恢复出与测量通路频率相等的信号,再经过数据处理单元后可实现频率和风力等级的转换,所输出的信号通过PWM调制器调制为数字信号;PWM调制器处理后的数字信号后续通过FPGA中的数字电路处理,可在LCD屏幕上直接显示出风力等级。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于,包括测量通路、参考通路、无线传输模块、无线接收模块和数据处理单元;
    其中,所述测量通路由一第一声表面波传感器和外围电路构成振荡电路,所述第一声表面波传感器包括三个基片,中间的所述基片固定设置,左侧所述基片及右侧所述基片用于感受到不同的海上风力等级时发生滑动,从而导致振荡器中心频率随之发生改变;
    所述参考通路由一第二声表面波传感器和外围电路构成参考振荡电路,所述第二声表面波传感器仅含有一个固定基片,其余结构与测量通路相同;
    所述无线传输模块包括MIX混频器、PA功率放大器、高通滤波器、天线开关、天线;
    所述无线接收模块包括高通滤波器、LNA低噪声放大器、MIX混频器、低通滤波器;
    所述测量通路与参考通路的固定频率经过MIX混频器进行混频和高通滤波器进行高通滤波后产生的高频信号可通过天线开关及天线远距离传输到地面;地面的所述无线接收模块将所接收到的信号再次通过高通滤波器进行高通滤波、MIX混频器进行混频可重新恢复出与测量通路频率相等的信号,再经过数据处理单元后可实现频率和风力等级的转换。
  2. 根据权利要求1所述的一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于:所述第一声表面波传感器的每块基片均设置为三角形结构,所述第一声表面波传感器的三块基片呈左中右分开设置且三者靠近放置,三块所述基片分别光刻有输出换能器二、输入换能器、输出换能器一,所述输入换能器设置在中间的基片上,所述输出换能器二设置在左侧的基片上,所述输出换能器一设置在右侧的基片上,所述输入换能器和输出换能器一构成声表面波延迟线一,所述输入换能器和输出换能器二构成声表面波延迟线二,所述声表面波延迟线一和外围电路一起构成延迟线振荡器一,所述声表面波延迟线二和外围电路一起构成延迟线振荡器二;所述第一声表面波传感器能够根据风力大小,由开关选择延迟线振荡器,当风力较小时采用延迟线振荡器一,当风力较大时采用延迟线振荡器二;具体如下:当风力较小时,由开关选择,关闭左边的输出换能器二,仅使中间的换输入换能器和右边的输出换能器一起作用,且右边基片可滑动,当风力较大时,由开关选择,关闭右边的输出换能器一,仅使中间的输入换能器和左边的输出换能器二起作用,且左边基片可滑动,从而导致振荡器中心频率随之发生改变。
  3. 根据权利要求2所述的一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于:所述输入换能器中采用加权技术,其加权函数为Kaiser函数,加权技术采用切趾和抽指相结合的组合式加权,即在声孔径较大区域采用切趾加权,在声孔径较小区域采用抽指加权,并在切趾后的空余处和抽指后的空余处采用假指填充,以减小声波衍射;所述输出换能器一不加权,指条数量少,且声孔径相等;所述输出换能器二的加权函数为Kaiser函数,且其加权技术采用抽指加权。
  4. 根据权利要求1所述的一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于:所述第一声表面波传感器的三块基片布置在一块基板上,所述基板与基片之间设置有起阻尼作用的硅油和限制左右滑动的固定轨道。
  5. 根据权利要求1所述的一种基于声表面波传感器的海上风力等级测量射频收发系统,所述第二声表面波传感器的固定基片上设置有左边换能器、右边换能器和中间换能器;具体如下:当风力较小时,与测量通路中一样,由开关同步选择,关闭左边换能器,仅使中间换能器和右边换能器起作用,当风力较大时,与测量通路中一样,由开关同步选择,关闭右 边换能器,仅使中间换能器和左边换能器起作用。
  6. 根据权利要求1所述的一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于:所述测量通路包括第一声表面波传感器、三极管、电阻、电感、电容组成的振荡电路;所述测量通路中第一声表面波传感器的压电基片采用机电耦合系数为0.055的压电材料Y128°X-LiNbO 3制作;所述三极管选择高频低功率NPN管,所述电阻采用直插电阻,所述电容采用非极性电容,所述电感采用非极性电感。
  7. 根据权利要求1所述的一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于:所述参考通路中的参考振荡电路模块外围覆盖有一层塑料保护盖以保证其振荡频率不受风力影响,从而处于一个固定值,起到参考作用。
  8. 根据权利要求1所述的一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于:所述MIX混频器分为上变频和下变频,所述MIX混频器的混频过程为:本地参考振荡电路信号和声表面波振荡电路信号相乘,若两振荡信号频率分别为f 0,f 1,根据三角公式:
    cos f 0cos f 1=1/2[cos(f 0+f 1)+cos(f 1-f 0)]
    可知,上变频信号频率在2f 0附近,下变频信号频率在0频率附近;令无线传输模块高通滤波器的中心频率是本地参考信号的2倍,即2f 0,带宽为1.5f 0至2.5f 0,可保证经过混频产生的上变频信号能够从频带中滤出;在无线接收模块中令低通滤波器的中心频率为0.5f 0,带宽为f 0,即可恢复出受到海上风力而产生的频率信号。
  9. 根据权利要求1所述的一种基于声表面波传感器的海上风力等级测量射频收发系统,其特征在于:所述数据处理单元包括PWM调制器、FPGA数据处理系统和LCD屏幕,所述PWM调制器用于将经过低通滤波器输出的模拟信号调制为数字信号,所述PWM调制器处理后的数字信号后续通过FPGA中的数字电路处理,可在LCD屏幕上直接显示出风力等级。
  10. 一种根据权利要求1所述的基于声表面波传感器的海上风力等级测量射频收发系统的工作方法,其特征在于,包括以下步骤:当风力较小时,由开关选择,关闭左边的输出换能器二,仅使中间的输入换能器和右边的输出换能器一起作用,且右边的基片可滑动,当风力较大时,由开关选择,关闭右边输出换能器一,仅使中间的输入换能器和左边的输出换能器二起作用,且左边基片可滑动,第一声表面波传感器的基片受海上风力后产生滑动,第一声表面波传感器的结构发生改变,使得声表面波延迟线振荡器产生一个频率不同于参考通路的参考振荡电路所产生的正弦波,两者通过MIX混频器产生的频带信号经过功率放大后通过高通滤波器,留下高频信号,所述高频信号可通过天线开关及天线远距离传输到地面;地面的所述无线接收模块将所接收到的信号再次通过高通滤波器进行高通滤波、MIX混频器进行混频可重新恢复出与测量通路频率相等的信号,再经过数据处理单元后可实现频率和风力等级的转换,所输出的信号通过PWM调制器调制为数字信号;PWM调制器处理后的数字信号后续通过FPGA中的数字电路处理,可在LCD屏幕上直接显示出风力等级。
PCT/CN2023/070084 2022-01-12 2023-01-03 一种海上风力等级测量射频收发系统及其工作方法 WO2023134498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210029790.0A CN114050842B (zh) 2022-01-12 2022-01-12 一种海上风力等级测量射频收发系统及其工作方法
CN202210029790.0 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023134498A1 true WO2023134498A1 (zh) 2023-07-20

Family

ID=80196281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070084 WO2023134498A1 (zh) 2022-01-12 2023-01-03 一种海上风力等级测量射频收发系统及其工作方法

Country Status (2)

Country Link
CN (1) CN114050842B (zh)
WO (1) WO2023134498A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050842B (zh) * 2022-01-12 2022-05-03 南通大学 一种海上风力等级测量射频收发系统及其工作方法
CN114724454B (zh) * 2022-05-07 2024-05-28 北京智芯半导体科技有限公司 杆塔的标识设备和风力检测系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252475A1 (en) * 2003-10-31 2007-11-01 Kenjiro Okaguchi Oscillator Circuit Including Surface Acoustic Wave Sensor and Biosensor Apparatus
CN109990819A (zh) * 2019-03-29 2019-07-09 电子科技大学 一种基于声表面波传感器的频率信号检测系统及检测方法
CN111257803A (zh) * 2020-03-20 2020-06-09 西安交通大学 一种用于声表面波磁传感器的信号采集系统
CN114050842A (zh) * 2022-01-12 2022-02-15 南通大学 一种海上风力等级测量射频收发系统及其工作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100514854C (zh) * 2004-03-30 2009-07-15 中国科学院声学研究所 用于气体传感器的声表面波振荡器系统
CN101458230A (zh) * 2008-12-29 2009-06-17 南开大学 多通道声表面波化学传感系统
CN103873013A (zh) * 2014-03-24 2014-06-18 长安大学 一种声表面波传感器应用电路
CN104443126A (zh) * 2014-09-25 2015-03-25 成都锐奕信息技术有限公司 射频式电瓶车防盗报警器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252475A1 (en) * 2003-10-31 2007-11-01 Kenjiro Okaguchi Oscillator Circuit Including Surface Acoustic Wave Sensor and Biosensor Apparatus
CN109990819A (zh) * 2019-03-29 2019-07-09 电子科技大学 一种基于声表面波传感器的频率信号检测系统及检测方法
CN111257803A (zh) * 2020-03-20 2020-06-09 西安交通大学 一种用于声表面波磁传感器的信号采集系统
CN114050842A (zh) * 2022-01-12 2022-02-15 南通大学 一种海上风力等级测量射频收发系统及其工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JITONG LI, LI YUANYUAN, LU WENKE: "Design and Simulation of Signal Processing Circuit for SAW Micro-Force Sensor", CHINESE JOURNAL OF SENSORS AND ACTUATORS, vol. 31, no. 7, 15 July 2018 (2018-07-15), pages 1054 - 1060, XP093079321 *

Also Published As

Publication number Publication date
CN114050842B (zh) 2022-05-03
CN114050842A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2023134498A1 (zh) 一种海上风力等级测量射频收发系统及其工作方法
US5265267A (en) Integrated circuit including a surface acoustic wave transformer and a balanced mixer
US8620254B2 (en) Wireless communication device and system
EP2242183A3 (en) High dynamic range time-varying integrated receiver for elimination of off-chip filters
CN101331679A (zh) 混频器电路和方法
CN106990416B (zh) 卫星系统的抗干扰天线
JPH0468907A (ja) 周波数変換回路
US20040178938A1 (en) Circuit for direct digital delta-sigma conversion of variable electrical capacitance
US6272071B1 (en) Speed measuring apparatus
CN209961840U (zh) 实现无零频功能的频谱分析仪电路结构
JPH0969731A (ja) 周波数変換回路
CN106908809A (zh) 卫星系统的抗干扰天线
US7522017B1 (en) High-Q integrated RF filters
CN110995164B (zh) 集成了本振泄露补偿网络的毫米波双平衡混频器
CN206930923U (zh) 一种高频超声设备及射频信号处理装置
CN217770061U (zh) 一种抗干扰天线阵列的射频模块
JP5468312B2 (ja) 魚群探知機
CN210807238U (zh) 一种自动跟踪载波的fm解调系统
CN210157212U (zh) 一种调幅信号处理实验电路
CN109557370A (zh) 实现无零频功能的频谱分析仪电路结构
CN218514370U (zh) 一种蓝牙集中器的接收机
Lawton et al. The design of flexible receivers for communicating appliances
JPS62136112A (ja) トランジスタミキサ−回路
JP2001136051A (ja) 片相変換回路
JPH0799475A (ja) データ通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739842

Country of ref document: EP

Kind code of ref document: A1