WO2023134484A1 - 镀膜设备 - Google Patents

镀膜设备 Download PDF

Info

Publication number
WO2023134484A1
WO2023134484A1 PCT/CN2022/144267 CN2022144267W WO2023134484A1 WO 2023134484 A1 WO2023134484 A1 WO 2023134484A1 CN 2022144267 W CN2022144267 W CN 2022144267W WO 2023134484 A1 WO2023134484 A1 WO 2023134484A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
base film
roller
coating
coating device
Prior art date
Application number
PCT/CN2022/144267
Other languages
English (en)
French (fr)
Inventor
李克强
刘萧松
吴志阳
卢毅
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202290000315.4U priority Critical patent/CN221051971U/zh
Priority to EP22920114.0A priority patent/EP4382631A1/en
Publication of WO2023134484A1 publication Critical patent/WO2023134484A1/zh
Priority to US18/735,190 priority patent/US20240327972A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of coating, in particular to a coating equipment.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the current collector plays an extremely important role, and its performance affects the performance of the battery. Therefore, how to effectively improve the performance of current collectors is an urgent problem to be solved.
  • An embodiment of the present application provides a coating device capable of forming a high-precision pattern coating on a base film, thereby improving the performance of components (such as current collectors) including the base film.
  • a coating device including: a plating resist pattern unit, which is used to form a pattern composed of a plating resist substance on a partial area of the surface of the base film, and the plating resist substance is used to limit metal vapor to form a coating film;
  • the film coating unit is used for applying the metal vapor on the base film with the pattern, so as to form a metal coating film on the area of the base film surface where the plating resist substance is not provided.
  • the regional plating resist method is adopted, that is, the pattern unit of the resist plating forms a pattern composed of a plating resist substance on a part of the surface of the base film, and the coating unit is in the process of coating the base film.
  • the area of the resist material on the surface of the film cannot be coated, and the other areas except the area of the resist material are positively coated, so that a high-precision pattern coating can be formed, which is beneficial to improving the performance of components including the base film.
  • the pattern resisting plating unit includes: a heating roller, used to heat the resist substance; a pattern roller, provided with the pattern on the surface, used to When using a pattern roll, the heated plating resist material is printed on the base film in the shape of the pattern, so as to form the pattern on the partial area of the surface of the base film.
  • the plating resist pattern unit includes a heating roller for heating the plating resist substance, so that the heated plating resist substance can be more easily printed on the base film.
  • the resist pattern unit includes a pattern roller with a pattern on the surface, so that when the base film passes through the pattern roller, the heated resist material can be printed on the base film with the pattern on the pattern roller, so that the surface of the base film The pattern formed on a part of the area is the same as the required pattern, thereby improving the accuracy of the pattern formed on the surface of the base film.
  • the pattern resisting plating unit further includes: a bottom roller, arranged side by side with the pattern roller on both sides of the base film, and when the base film passes from the pattern roller and the bottom When passing between the rollers, under the pressure between the pattern roller and the bottom roller, the plating resist substance on the pattern roller is formed on a partial area of the surface of the base film in the shape of the pattern .
  • the pattern resisting plating unit includes a bottom roller arranged side by side with the pattern roller on both sides of the base film, so that the pattern roller and the bottom roller can exert pressure on each other.
  • the pressure between the pattern roll and the bottom roll can make the plating resist on the pattern roll form on the base film surface as much as possible, so as to ensure the accuracy of the coating.
  • the pattern resisting plating unit further includes: an anilox roller, arranged between the heating roller and the pattern roller, the surface of the anilox roller is provided with a plurality of concave holes, so The concave hole is used to store the heated plating resist substance, and the anilox roller is used to transfer the stored heated plating resist substance to the pattern roller.
  • the heated plating resist substance can be evenly stored in the plurality of concave holes on the surface of the anilox roller.
  • the anilox roller transmits the plating resist substance to the pattern roller, it can also transmit the plating resist substance to the pattern roller evenly, avoiding the fact that part of the surface of the pattern roller receives more plating resist substances and part of the surface receives the plating resist. In the case of little or no substance, the accuracy of the pattern printed on the base film is guaranteed.
  • the pattern roller is a roller made of rubber.
  • the pattern roller is provided as a roller made of rubber, which can improve the precision of the pattern on the pattern roller.
  • the method further includes: a cooling unit configured to cool the base film with the pattern after the pattern is formed on the partial area of the surface of the base film.
  • the cooling unit can cool the base film when the thickness of the metal coating is relatively thick and the heat borne by the base film is high, which avoids the deformation of the base film at high temperature and effectively guarantees the coating And the normal progress of subsequent processes.
  • the cooling unit includes: a cooling drum, configured to transport and cool the base film with the pattern, wherein the cooling drum is configured as a hollow structure, and the hollow structure houses There is a cooling liquid for cooling the base film having the pattern during circulating flow.
  • the above technical solution cools the base film through the cooling drum, which is simple to implement.
  • the cooling drum is provided with a circulating cooling liquid, and a better cooling effect can be achieved through the circulating cooling liquid. That is to say, the embodiment of the present application can achieve a better cooling effect in a relatively simple manner.
  • the surface of the cold drum is coated with an insulating material.
  • the insulating material has a thickness of 30um-200um.
  • the cooling unit further includes: a bias roller, arranged downstream of the cooling drum in the conveying direction of the base film, for absorbing the base film with the pattern on surface of the cold drum.
  • the above technical solution strengthens the attachment between the base film and the cold drum by setting the bias roller, thereby improving the cooling effect of the cooling liquid in the cold drum on the base film. That is to say, the above technical solution effectively enhances the cooling effect on the base film through the mutual cooperation of the cooling drum and the bias roller.
  • the cold drum is grounded and the bias roller is connected to a negative voltage.
  • the cooling unit further includes: an air cooling tube including a heat transfer medium, and the air cooling tube passes the heat transfer medium into the cooling drum and the base with the pattern through an air port. between the films, so that the thermally conductive medium cools the base film having the pattern.
  • an air-cooled pipe is further provided, that is, the base film is cooled under the joint action of the cold drum and the air-cooled pipe, which can further enhance the cooling effect on the base film.
  • the heat transfer medium is an inert gas.
  • the coating unit includes a vacuum coating mechanism configured to deliver metal vapor toward the base film on the cooling drum.
  • the plating resist substance is silicone oil.
  • the metal coating has a thickness of 1um-3um.
  • the thickness of the metal coating film is set to 1um-3um, so that the resistance of the components prepared by the coating equipment can be reduced.
  • the base film is a polyethylene terephthalate PET film.
  • the thermal stability of PET is relatively high, therefore, setting the base film as a PET film can improve the thermal stability of the base film. Further, the weight reduction is achieved by PET, thereby realizing the weight reduction of the components prepared by the coating equipment, thereby increasing the energy density.
  • the metal vapor is copper vapor or aluminum vapor.
  • the metal vapor is copper vapor or aluminum vapor, so that the component prepared by the coating equipment is a current collector, thereby achieving the purpose of improving the performance of the current collector, and further improving the performance of the battery including the current collector.
  • Fig. 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a coating device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view of another coating device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural view of another coating device according to the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of yet another coating device according to an embodiment of the present application.
  • batteries as a main power device, have been widely used in many fields such as electric vehicles, military equipment, and aerospace.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1, but also can be used as a driving power source for the vehicle 1, replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1.
  • a battery refers to a physical module including one or more battery cells to provide electric energy.
  • the batteries mentioned in this application may include battery modules or battery packs.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in this embodiment of the present application.
  • a battery cell may also be referred to as a battery cell.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a diaphragm.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the material of the isolation film may be polypropylene (polypropylene, PP) or polyethylene (polyethylene, PE).
  • the current collector plays an extremely important role, and its performance greatly affects the performance of the battery.
  • the embodiment of the present application proposes a coating device capable of forming a high-precision patterned coating on the base film, thereby improving the performance of the current collector.
  • FIG. 2 is a schematic structural diagram of a coating device 200 according to an embodiment of the present application.
  • the coating device 200 may include: a plating resist pattern unit 210 and a coating unit 220 .
  • the plating resist pattern unit 210 is used to form a pattern composed of a plating resist substance on a partial area of the surface of the base film 230, and the plating resist substance is used to restrict metal vapor to form a plating film.
  • the coating unit 220 is used for applying metal vapor on the base film 230 with the pattern, so as to form a metal coating film on the area of the base film 230 surface where no plating resist is provided.
  • the plating resist pattern unit 210 forms a pattern composed of a plating resist substance on a partial area of the base film 230 surface
  • the coating unit 220 forms a pattern composed of a plating resist material on a partial area of the base film 230 surface.
  • the area of the resist material on the surface of the base film 230 cannot be coated, and the other areas except the area of the resist material are positively coated, so that a high-precision pattern coating can be formed, which is conducive to improving the components comprising the base film 230. performance.
  • the metal vapor may be copper vapor or aluminum vapor.
  • the coating device 200 may be used to prepare a current collector. Therefore, the embodiment of the present application achieves the purpose of improving the performance of the current collector, and further improves the performance of the battery including the current collector.
  • the coating device 200 can also be used to prepare other components.
  • the following uses the coating device 200 to prepare the current collector as an example for illustration. However, it should be understood that the embodiment of the present application is not limited thereto.
  • the material of the traditional positive electrode current collector is aluminum foil
  • the material of the traditional negative electrode current collector is copper foil.
  • the density of copper is 8.9g/cm3
  • the density of aluminum is 2.79g/cm3
  • the total mass of the positive and negative current collectors accounts for about It is about 14%-18% of the mass, so it cannot meet the pursuit of high energy density and light weight of the battery.
  • the coating device 200 can be used to prepare a composite current collector.
  • the base film 230 of the composite current collector may be a plastic film, and the upper surface and the lower surface of the plastic film are respectively coated with a metal layer.
  • the weight reduction of the current collector is achieved through the plastic film, thereby effectively improving the energy density of the battery.
  • the plastic film as the base film 230 has a strong tensile strength, so that the window of tension and pressure in the preparation process will be larger, so that the coating equipment 200 can use higher pressure to achieve greater compaction density and improve the preparation process. ability.
  • the plastic film can be oriented polypropylene (oriented polypropylene, OPP) plastics, polyimide (polyimide, PI) plastics, polyethylene terephthalate (polyethylene glycol terephthalate, PET) plastics, casting Polypropylene (cast polypropylene, CPP) plastic or polyvinyl chloride (Polyvinyl chloride, PVC) plastic, and one or more of their derivatives, cross-linked products and copolymers.
  • the base film 230 in the embodiment of the present application may be PET to improve the thermal stability of the base film 230 .
  • the coating unit 220 may include a vacuum coating mechanism 221 for applying metal vapor on the base film 230 having the pattern in a vacuum environment.
  • the vacuum coating mechanism 221 can be set in the chamber, and then use a vacuum pump to evacuate the air in the chamber to make the chamber in a vacuum environment, so that the vacuum coating mechanism 221 can vacuum coat the base film 230 .
  • the degree of vacuum can be controlled by the amount of air pumped out by the vacuum pump, and can be adjusted according to requirements.
  • the degree of vacuum may be (1 ⁇ 7)*10 ⁇ 2 Pa.
  • the vacuum coating mechanism 221 may be an evaporation source.
  • the evaporation source when the coating equipment 200 is used to prepare a positive electrode collector, the evaporation source can be an aluminum evaporation source, and the metal vapor is an aluminum vapor; when the coating equipment 200 is used to prepare a negative electrode collector, the evaporation source can be a copper evaporation source, The metal vapor may be copper vapor.
  • the evaporation source may be a metal wire, or may also be a metal block or other structures, which are not specifically limited in this embodiment of the present application. If the evaporation source is a metal wire, such as an aluminum metal layer, as shown in FIG. 3 again, the coating unit 220 may further include a wire feeding mechanism 222 . That is, the coating unit 220 includes a vacuum coating mechanism 221 and a wire feeding mechanism 222 , and the wire feeding mechanism 222 is used to continuously feed the metal wire so that the vacuum coating mechanism 221 sends metal vapor to the base film 230 .
  • the metal wire when the evaporation source is a metal wire, the metal wire has a high material utilization rate and is easy to clean.
  • the thickness of the metal coating can be determined according to a specific application scenario. For example, if considering electrical properties, the resistance of the current collector needs to be smaller, the thickness of the metal coating can be slightly thicker, for example, the thickness of the metal coating is 1um-3um. In this way, the resistance of the current collector can be reduced.
  • the embodiment of the present application does not specifically limit the plating resist substance, as long as the substance that can be used to restrict metal vapor to form a coating film can be understood as the plating resist substance of the embodiment of the present application.
  • the resist material can be silicone oil.
  • the plating resist pattern unit 210 may include a heating roller 211 and a pattern roller 212 .
  • the heating roller 211 is used for heating the plating resist substance.
  • Pattern roll 212 surface is provided with pattern, is used for when base film 230 passes pattern roll 212, the plate resist material after the heating is printed on the base film 230 with the shape of this pattern, to form on the part area of base film 230 surface. The pattern.
  • the heating roller 211 can heat the plating resist substance under vacuum.
  • the heating roller 221 can heat the plating resist material to 80° C.-120° C. in a vacuum environment.
  • the heating roller 211 may transfer the heated plating resist substance to the pattern roller 212 by means of evaporation.
  • the heating roller 211 and the pattern roller 212 may be disposed on the same side of the base film 230 .
  • the heating roller 211 and the pattern roller 212 can be arranged side by side on the same side of the base film 230 , and of course, the heating roller 211 can also be arranged upstream of the pattern roller 212 .
  • the heating roller 211 and the pattern roller 212 may also be disposed on both sides of the base film 230 .
  • the pattern roller 212 may be a roller made of flexible material.
  • the flexible material may be rubber. Since the precision of the pattern processed on the surface of the rubber is high, the pattern roller 212 is provided as a roller made of rubber, which can improve the precision of the pattern on the pattern roller 212 .
  • the precision range of the pattern provided on the surface of the pattern roller 212 may be 10um-500um.
  • it can be 50um-500um.
  • the plating resist pattern unit 210 includes a heating roller 211 for heating the plating resist substance, so that the heated plating resist substance can be more easily printed on the base film 230 .
  • the resist pattern unit 210 includes a pattern roller 212 with a pattern on its surface, so that when the base film 230 passes through the pattern roller 212, the heated resist material can be printed on the base film 230 with the pattern on the pattern roller 212 Therefore, the pattern formed on the partial area of the surface of the base film 230 is the same as the desired pattern, thereby improving the precision of the pattern formed on the surface of the base film 230 .
  • the plating resist pattern unit 210 may further include a bottom roller 213 .
  • the bottom roll 213 and the pattern roll 212 are arranged side by side on both sides of the base film 230, and when the base film 230 passes between the pattern roll 212 and the bottom roll 213, under the pressure between the pattern roll 212 and the bottom roll 213, the pattern
  • the plating resist substance on the roller 212 is formed on a partial area of the surface of the base film 230 in the shape of the pattern.
  • the size of the bottom roll 213 may be larger than the size of the pattern roll 212 .
  • the bottom roller 213 can apply greater pressure to the pattern roller 212 , so that the plating resist substance on the pattern roller 212 can be more fully printed on the base film 230 .
  • the size of the bottom roll 213 can also be the same as that of the pattern roll 212 .
  • the bottom roll 213 may be smaller in size than the pattern roll 212 .
  • the number of bottom rollers 213 may be multiple.
  • the plurality of bottom rollers 213 are all in contact with the pattern roller 212 , and each bottom roller 213 may be in contact with a partial surface area of the pattern roller 212 .
  • the plating resist pattern unit 210 includes a bottom roller 213 arranged side by side with the pattern roller 212 on both sides of the base film 230, so that the pattern roller 212 and the bottom roller 213 can exert pressure on each other.
  • the pressure between the pattern roll 212 and the bottom roll 213 can make the plating resist material on the pattern roll 212 be formed on the base film 230 surface as much as possible, so that Guarantee the accuracy of coating.
  • the plating resist pattern unit 210 may further include an anilox roller 214 .
  • the anilox roller 214 is arranged between the heating roller 211 and the pattern roller 212, and the surface of the anilox roller 214 is provided with a plurality of concave holes, and the concave holes are used to store the heated plating resist substance, and the anilox roller 214 is used for The stored heated plating resist substance is delivered to the pattern roller 212 .
  • the heating roller 211 may transmit the heated plating resist substance to the anilox roller 214 by means of evaporation.
  • the anilox roller 214 also transmits the stored heated plating resist substance to the pattern roller 212 by means of evaporation.
  • anilox roller 214 For the specific structure of the anilox roller 214, reference may be made to the anilox roller in the related art, which will not be discussed in detail herein.
  • the heated plating resist substance can be evenly stored in the plurality of concave holes on the surface of the anilox roller 214 .
  • the anilox roller 214 transmits the plating resist substance to the pattern roller 212
  • the plating resist substance can also be uniformly conveyed to the pattern roller 212, avoiding that the pattern roller 212 part surface receives a lot of plating resist substance and part of the surface receives In the case that there is little or no plating resist material, the precision of the pattern printed on the base film 230 is ensured.
  • the thicker the metal coating the higher the heat that the base film 230 bears.
  • the temperature of the base film 230 may reach two to three hundred degrees, which may cause deformation of the base film 230 .
  • the coating device 200 of the embodiment of the present application may further include a cooling unit 240 .
  • the cooling unit 240 is used for cooling the patterned base film 230 after forming a pattern on a partial area of the surface of the base film 230 .
  • the cooling unit 240 can cool the base film 230 when the thickness of the metal coating film is relatively thick and the heat borne by the base film 230 is high, thereby avoiding the deformation of the base film 230 at high temperature. It effectively guarantees the normal progress of coating and subsequent processes.
  • the cooling unit 240 may include a cooling drum 241 for transferring and cooling the patterned base film 230 .
  • the cooling drum 241 is configured as a hollow structure, and the hollow structure contains a cooling liquid, and the cooling liquid is used to cool the base film 230 with the pattern during the circulating flow.
  • the cold drum 241 may be a carbon steel roll or a stainless steel roll, etc.
  • the diameter of the cold drum 241 may be in the range of 300mm-600mm.
  • the cooling liquid may be water, a mixed liquid of water and ethylene glycol, or the like, or the cooling liquid may be at least one of liquid nitrogen, liquid argon, and liquid carbon dioxide.
  • the cold drum 241 can be arranged on the top of the vacuum coating mechanism 221, and when the vacuum coating mechanism 221 is configured to transport the metal vapor towards the base film 230 on the cold drum 241, the cold drum 241 can be used for the substrate.
  • the film 230 is cooled to ensure that the temperature of the base film 230 is within a normal range.
  • the above technical solution uses the cooling drum 241 to cool the base film 230 , which is simple to implement. And the cooling drum 241 is provided with circulating cooling liquid, which can achieve a better cooling effect through the cooling liquid circulating flow. That is to say, the embodiment of the present application can achieve a better cooling effect in a relatively simple manner.
  • the base film 230 itself may be conductive, in order to avoid conduction between the base film 230 and the cold drum 241 . Further, the surface of the cold drum 241 may be coated with an insulating material.
  • the insulating material may be ceramics, rubber, insulating varnish, asbestos, etc.
  • the thickness of the insulating material may be in the range of 50um-2000um.
  • the cooling unit 240 may further include a bias roller 242 .
  • the bias roller 242 is disposed downstream of the base film 230 of the cooling drum 241 in the conveying direction, and is used for adsorbing the base film 230 with a pattern on the surface of the cooling drum 241 .
  • the cold drum 241 may be grounded and the bias roller 242 may be connected to a negative voltage.
  • the bias roller 242 can be connected to a negative voltage of 50V-500V.
  • the cold drum 241 may be connected to a negative voltage, and the bias roller 242 may be grounded.
  • the thickness of the insulating material may be 30um-200um. In this way, the heat conduction effect and the bias voltage effect can be balanced.
  • the above technical solution strengthens the attachment between the base film 230 and the cold drum 241 by setting the bias roller 242 , thereby improving the cooling effect of the cooling liquid in the cold drum 241 on the base film 230 . That is to say, the above technical solution effectively enhances the cooling effect on the base film 230 through the mutual cooperation of the cooling drum 241 and the bias roller 242 .
  • the cooling unit 240 may further include an air cooling tube 243 .
  • the air-cooling tube 243 includes a heat-conducting medium, and the air-cooling tube 243 passes the heat-conducting medium into between the cooling drum and the patterned base film 230 through the air port, so that the heat-conducting medium cools the patterned base film 230 .
  • a heat conduction medium may be passed between the cold drum 241 and the base film 230 in a vacuum environment as a heat conduction medium between the film and the cold drum 241 to cool the base film 230 .
  • the heat conducting medium may be an inert gas, such as argon, helium and the like.
  • the density of the inert gas can be 1-5 per 100 mm, and the flow range can be 10 standard liters per minute (sccm)-200 sccm.
  • the cooling of the base film 230 can be effectively realized at a lower cost by using the inert gas for cooling.
  • the air cooling tube 243 may include a plurality of air ports.
  • Each of the plurality of air ports may cover the width of the base film 230 , or the plurality of air ports may entirely cover the width of the base film 230 .
  • the width of the base film 230 may also be referred to as width.
  • the number of multiple air ports can be determined based on the width.
  • the air-cooling tube 243 can continuously spray out the heat transfer medium.
  • the film coating device 200 may include a control system.
  • the control system can control the air opening of the air cooling tube 243 to open, so that the air cooling tube 243 passes the heat transfer medium through the air opening between the cold drum 241 and the base film 230.
  • the control system may control the air port of the air-cooling pipe 243 to be closed, thereby saving heat transfer medium and reducing the cost of cooling the base film 230 .
  • the air-cooled pipe 243 is further provided, that is, the base film 230 is cooled under the joint action of the cold drum 241 and the air-cooled pipe 243, which can further enhance the protection of the base film 230. cooling effect.
  • the cooling unit 240 of the embodiment of the present application may include the air cooling tube 243 without the cooling drum 241 and the bias roll 242, or the cooling unit 240 may include the air cooling tube 243 and the bias roll 242, but not the bias roll. 242 plus negative voltage. In other words, in the embodiment of the present application, only the air cooling tube 243 can cool the base film 230 .
  • the coating equipment 200 in the embodiment of the present application may be a roll-to-roll coating equipment.
  • the film coating device 200 may further include an unwinding roll 250 and a winding roll 260 in addition to the plating resist pattern unit 210 and the film coating unit 220 .
  • the unwinding roller 250 is arranged at the most upstream in the conveying direction of the base film 230 for conveying the base film 230 along the conveying direction.
  • the take-up roller 260 is arranged at the most downstream in the conveying direction, and is used for collecting the coated base film 230 .
  • the coating device 200 may further include at least one conveying roller, which is used to convey the base film 230 to the plating resist pattern unit 210 and the cooling unit 24 along the conveying direction.
  • the coating device 200 includes a plurality of transfer rollers
  • the sizes of the plurality of transfer rollers may be the same or different, which is not limited in this embodiment of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本申请实施例提供一种镀膜设备,能够在基膜上形成高精度的图案镀层,从而提高包括该基膜的组件(如集流体)的性能。该镀膜设备包括:阻镀图案单元(210),用于在基膜(230)表面的部分区域上形成由阻镀物质构成的图案,所述阻镀物质用于限制金属蒸汽形成镀膜;镀膜单元(220),用于对具有所述图案的所述基膜(230)上施加所述金属蒸汽,以在所述基膜(230)表面的没有设置所述阻镀物质的区域上形成金属镀膜。

Description

镀膜设备
相关申请的交叉引用
本申请要求享有于2022年1月13日提交的名称为“镀膜设备”的中国专利申请202210037973.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及镀膜技术领域,特别是涉及一种镀膜设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
集流体作为电池中不可或缺的部分扮演了极其重要的角色,其性能的好坏影响着电池的性能。因此,如何有效提高集流体的性能,是一项亟待解决的问题。
发明内容
本申请实施例提供一种镀膜设备,能够在基膜上形成高精度的图案镀层,从而提高包括该基膜的组件(如集流体)的性能。
第一方面,提供了一种镀膜设备,包括:阻镀图案单元,用于在基膜表面的部分区域上形成由阻镀物质构成的图案,所述阻镀物质用于限制金属蒸汽形成镀膜;镀膜单元,用于对具有所述图案的所述基膜上施加所 述金属蒸汽,以在所述基膜表面的没有设置所述阻镀物质的区域上形成金属镀膜。
上述技术方案在制备包括基膜的组件时,通过区域性阻镀方式,即阻镀图案单元在基膜表面的部分区域上形成由阻镀物质构成的图案,镀膜单元在镀膜的过程中,基膜表面上阻镀物质区域无法镀膜,除阻镀物质区域之外的其他区域正度镀膜,从而可以形成高精度的图案镀层,有利于提高包括该基膜的组件的性能。
在一些可能的实现方式中,所述阻镀图案单元包括:加热辊,用于对所述阻镀物质进行加热;图案辊,表面设置有所述图案,用于当所述基膜经过所述图案辊时,将加热后的所述阻镀物质以所述图案的形状印在所述基膜上,以在所述基膜表面的所述部分区域上形成所述图案。
上述技术方案,阻镀图案单元包括用于对阻镀物质进行加热的加热辊,这样,经过加热的阻镀物质能够更容易地印在基膜上。此外,阻镀图案单元包括表面设置有图案的图案辊,这样,在基膜经过该图案辊时,加热后的阻镀物质就可以以图案辊上的图案印在基膜上,使得基膜表面的部分区域上形成的图案与所需的图案相同,进而提高了基膜表面上形成的图案的精度。
在一些可能的实现方式中,所述阻镀图案单元还包括:底辊,与所述图案辊并排设置在所述基膜的两侧,在所述基膜从所述图案辊和所述底辊之间穿过时,在所述图案辊和所述底辊之间的压力下,所述图案辊上的所述阻镀物质以所述图案的形状形成在所述基膜表面的部分区域上。
上述技术方案,阻镀图案单元包括与图案辊并排设置在基膜的两侧的底辊,使得图案辊和底辊之间能互相为对方施加压力。如此,在基膜从图案辊和底辊之间穿过时,图案辊和底辊之间的压力能够使图案辊上的阻镀物质尽可能地形成在基膜表面,以保证镀膜的精度。
在一些可能的实现方式中,所述阻镀图案单元还包括:网纹辊,设置在所述加热辊和所述图案辊之间,所述网纹辊的表面设置有多个凹孔,所述凹孔用于存储加热后的所述阻镀物质,所述网纹辊用于将存储的加热后的所述阻镀物质传送给所述图案辊。
上述技术方案,通过在加热辊和图案辊之间设置网纹辊,使得加热后的阻镀物质能够均匀地存储在网纹辊表面上的多个凹孔中。这样,在网纹辊将阻镀物质传送给图案辊时,也能够将阻镀物质均匀地传送给图案辊,避免了图案辊部分表面接收到的阻镀物质多而部分表面接收到的阻镀物质少甚至没有的情况,保证了印在基膜上的图案的精度。
在一些可能的实现方式中,所述图案辊为橡胶制成的辊。
由于在橡胶表面加工的图案的精度较高,因此,将图案辊设置为橡胶制成的辊,能够提高图案辊上的图案精度。
在一些可能的实现方式中,还包括:冷却单元,用于在所述基膜表面的所述部分区域上形成所述图案后,对具有所述图案的所述基膜进行冷却。
通过设置冷却单元,使得在金属镀膜的厚度较厚,基膜承受的热量较高的情况下,冷却单元能够对基膜进行冷却,避免了基膜在高温下变形的问题,有力地保证了镀膜以及后续工艺的正常进行。
在一些可能的实现方式中,所述冷却单元包括:冷鼓,用于传送和冷却具有所述图案的所述基膜,其中,所述冷鼓设置为中空结构,且所述中空结构内容纳有冷却液,所述冷却液用于在循环流动的过程中对具有所述图案的所述基膜进行冷却。
上述技术方案通过冷鼓对基膜进行冷却,实现简单。并且冷鼓内设置有循环流动的冷却液,通过冷却液循环流动能够达到更好的冷却效果。也就是说本申请实施例能够以较简单的方式实现更好的冷却效果。
在一些可能的实现方式中,所述冷鼓表面涂覆有绝缘材料。
上述技术方案,通过在冷鼓表面涂覆绝缘材料,能够避免冷鼓和基膜之间导电的问题,从而有效保证镀膜的正常进行。
在一些可能的实现方式中,所述绝缘材料的厚度为30um-200um。
在一些可能的实现方式中,所述冷却单元还包括:偏压辊,设置在所述冷鼓的所述基膜的传送方向的下游,用于将具有所述图案的所述基膜吸附在所述冷鼓的表面。
上述技术方案通过设置偏压辊,加强了基膜与冷鼓之间的贴附,进而提高了冷鼓中的冷却液对基膜的冷却效果。也就是说,上述技术方案通过冷鼓和偏压辊的相互配合有效增强了对基膜的冷却效果。
在一些可能的实现方式中,所述冷鼓接地且所述偏压辊接负电压。
在一些可能的实现方式中,所述冷却单元还包括:气冷管,包括导热介质,所述气冷管通过气口将所述导热介质通入所述冷鼓和具有所述图案的所述基膜之间,以使所述导热介质对具有所述图案的所述基膜进行冷却。
上述技术方案,在冷却单元包括冷鼓的基础上进一步设置气冷管,即在冷鼓和气冷管的共同作用下对基膜进行冷却,能够进一步增强对基膜的冷却效果。
在一些可能的实现方式中,所述导热介质为惰性气体。
上述技术方案,由于惰性气体相对比较便宜,因此利用惰性气体进行冷却,能够以较低的成本有效实现对基膜的冷却。
在一些可能的实现方式中,所述镀膜单元包括真空镀膜机构,所述真空镀膜机构被配置为朝所述冷鼓上的所述基膜输送金属蒸汽。
在一些可能的实现方式中,所述阻镀物质为硅油。
上述技术方案,当基膜处于高温状态时,若基膜表面涂有硅油,硅 油不会在高温状态下融化,基膜表面上涂有硅油的位置仍然不会形成金属镀膜。因此,将硅油作为阻镀物质有利于提高镀膜的精度。
在一些可能的实现方式中,所述金属镀膜的厚度为1um-3um。
上述技术方案,金属镀膜的厚度设置为1um-3um,如此,可以减小镀膜设备制备的组件的电阻。
在一些可能的实现方式中,所述基膜为聚对苯二甲酸乙二醇酯PET膜。
上述技术方案,PET的热稳定性较高,因此,将基膜设置为PET膜能够提高基膜的热稳定性。进一步地,通过PET实现减重,从而实现镀膜设备制备的组件的轻量化,进而提高了能量密度。
在一些可能的实现方式中,所述金属蒸汽为铜蒸汽或铝蒸汽。
上述技术方案,金属蒸汽为铜蒸汽或铝蒸汽,这样镀膜设备制备的组件为集流体,从而实现了提高集流体性能的目的,并进一步提高了包括该集流体的电池的性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的示意性结构图。
图2是本申请实施例的一种镀膜设备的示意性结构图。
图3是本申请实施例的另一种镀膜设备的示意性结构图。
图4是本申请实施例的又一种镀膜设备的示意性结构图。
图5是本申请实施例的再一种镀膜设备的示意性结构图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申 请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
近年来,电池作为一种主要的动力设备被广泛应用于电动汽车、军事装备、航空航天等多个领域。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在 本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
在本申请实施例中,电池是指包括一个或多个电池单体以提供电能的物理模块。例如,本申请所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
可选地,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。在一些实施方式中,电池单体也可称之为电芯。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。
目前,消费者对电池性能的要求越来越高,集流体作为电池中不可 或缺的部分扮演了极其重要的角色,其性能的好坏在很大程度上影响着电池的性能。
鉴于此,本申请实施例提出了一种镀膜设备,能够在基膜上形成高精度的图案镀层,从而提高集流体的性能。
图2为本申请实施例的一种镀膜设备200的结构示意图。如图2所示,该镀膜设备200可以包括:阻镀图案单元210和镀膜单元220。
其中,阻镀图案单元210用于在基膜230表面的部分区域上形成由阻镀物质构成的图案,该阻镀物质用于限制金属蒸汽形成镀膜。镀膜单元220用于对具有该图案的基膜230上施加金属蒸汽,以在基膜230表面的没有设置阻镀物质的区域上形成金属镀膜。
本申请实施例在制备包括基膜230的组件时,通过区域性阻镀方式,即阻镀图案单元210在基膜230表面的部分区域上形成由阻镀物质构成的图案,镀膜单元220在镀膜的过程中,基膜230表面上阻镀物质区域无法镀膜,除阻镀物质区域之外的其他区域正度镀膜,从而可以形成高精度的图案镀层,有利于提高包括该基膜230的组件的性能。
可选地,金属蒸汽可以为铜蒸汽或铝蒸汽。此时,镀膜设备200可以用于制备集流体。因此,本申请实施例实现了提高集流体性能的目的,并进一步提高了包括该集流体的电池的性能。
当然,镀膜设备200也可以用于制备其他组件。为了方便描述,下文以镀膜设备200用于制备集流体为例进行说明。但应理解,本申请实施例并不限于此。
如前文所述,传统正极集流体的材料为铝箔,传统负极集流体的材料为铜箔。考虑到电池的高能量密度和轻量化和柔性化日益成为人们的追求目标,铜的密度为8.9g/cm3,铝的密度为2.79g/cm3,正负极集流体的总质量约占电池总质量的14%-18%左右,因此不能满足电池的高能量密度 和轻量化的追求。
因此,镀膜设备200可以用于制备复合集流体。其中,复合集流体的基膜230可以为塑料薄膜,塑料薄膜的上表面和下表面分别镀有金属层。通过塑料薄膜实现了集流体的减重,进而有效提高了电池的能量密度。此外,塑料薄膜作为基膜230具有较强的拉伸强度,使得制备工序中的张力、压力等窗口会更大,从而镀膜设备200可以采用更高的压力实现更大的压实密度,提高制备能力。
可选地,塑料薄膜可以为定向聚丙烯(oriented polypropylene,OPP)塑料、聚酰亚胺(polyimide,PI)塑料、聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)塑料、流延聚丙烯(cast polypropylene,CPP)塑料或聚氯乙烯(Polyvinyl chloride,PVC)塑料,以及它们的衍生物、交联物及共聚物中的一种或多种。
相比于其他塑料薄膜,PET的热稳定性较高。因此,本申请实施例的基膜230可以为PET,以提高基膜230的热稳定性。
在一些实施例中,如图3所示,镀膜单元220可以包括真空镀膜机构221,该真空镀膜机构221用于在真空环境下对具有该图案的基膜230上施加金属蒸汽。示例性地,真空镀膜机构221可以设置于腔室内,然后使用真空泵将腔室内的空气抽空,使腔室内处于真空环境,以便使真空镀膜机构221对基膜230进行真空镀膜。其中,真空度可以通过真空泵抽出空气的量进行控制,可以根据需求进行调节。例如,真空度可以为(1~7)*10-2Pa。
可选地,真空镀膜机构221可以为蒸发源。具体而言,当镀膜设备200用于制备正极集流体时,蒸发源可为铝蒸发源,金属蒸汽为铝蒸汽;当镀膜设备200用于制备负极集流体时,蒸发源可为铜蒸发源,金属蒸汽可为铜蒸汽。
蒸发源可以为金属丝,或者也可以为金属块或其他结构,本申请实施例不做具体限定。如果蒸发源为金属丝,如铝金属层,再次如图3所示,镀膜单元220还可以包括送丝机构222。即镀膜单元220包括真空镀膜机构221和送丝机构222,送丝机构222用于持续输送金属丝,以使真空镀膜机构221朝基膜230输送金属蒸汽。
其中,在蒸发源为金属丝时,使得金属丝的材料利用率高,并且便于清洁。
需要说明的是,本申请实施例可以根据具体应用场景确定金属镀膜的厚度。比如,若从电性方面考虑,需要集流体的电阻小一些,则金属镀膜的厚度可以稍微厚一点,例如,金属镀膜的厚度为1um-3um。如此,可以减小集流体的电阻。
可选地,本申请实施例对阻镀物质不做具体限定,只要可用于限制金属蒸汽形成镀膜的物质均可以理解为本申请实施例的阻镀物质。例如,由于当基膜230处于高温状态时,若基膜230表面涂有硅油,硅油不会在高温状态下融化,基膜230表面上涂有硅油的位置仍然不会形成金属镀膜,有利于提高镀膜的精度。因此,阻镀物质可以为硅油。
在一些实施例中,再次参考如图3,阻镀图案单元210可以包括加热辊211和图案辊212。其中,加热辊211用于对阻镀物质进行加热。图案辊212表面设置有图案,用于当基膜230经过图案辊212时,将加热后的阻镀物质以该图案的形状印在基膜230上,以在基膜230表面的部分区域上形成该图案。
可选地,加热辊211可以在真空下对阻镀物质进行加热。例如,加热辊221可以在真空环境下将阻镀物质加热到80℃-120℃。
可选地,加热辊211在对阻镀物质进行加热后,可以利用蒸发的方式将加热后的阻镀物质转移至图案辊212。
可选地,加热辊211和图案辊212可以设置在基膜230的同一侧。例如,再次参考图3,加热辊211和图案辊212可以并排设置在基膜230的同侧,当然,加热辊211也可以设置在图案辊212的上游。或者,加热辊211也可以和图案辊212分别设置在基膜230的两侧。
可选地,图案辊212可以为柔性材料制成的辊。作为示例,柔性材料可以为橡胶。由于在橡胶表面加工的图案的精度较高,因此,将图案辊212设置为橡胶制成的辊,能够提高图案辊212上的图案精度。
作为一种示例,图案辊212表面设置的图案的精度范围可以为10um-500um。例如,可以为50um-500um。
上述技术方案,阻镀图案单元210包括用于对阻镀物质进行加热的加热辊211,这样,经过加热的阻镀物质能够更容易地印在基膜230上。此外,阻镀图案单元210包括表面设置有图案的图案辊212,这样,在基膜230经过该图案辊212时,加热后的阻镀物质就可以以图案辊212上的图案印在基膜230上,使得基膜230表面的部分区域上形成的图案与所需的图案相同,进而提高了基膜230表面上形成的图案的精度。
考虑到在某些情况下,图案辊212上的阻镀物质可能并不能充分地以该图案的形状印在基膜230上。因此,在一些实施例中,如图3所示,阻镀图案单元210还可以包括底辊213。该底辊213与图案辊212并排设置在基膜230的两侧,在基膜230从图案辊212和底辊213之间穿过时,在图案辊212和底辊213之间的压力下,图案辊212上的阻镀物质以图案该图案的形状形成在基膜230表面的部分区域上。
可选地,底辊213的尺寸可以大于图案辊212的尺寸。如此,底辊213能够向图案辊212施加较大的压力,从而图案辊212上的阻镀物质能够更充分地印在基膜230上。当然,如图3所示,底辊213的尺寸也可以与图案辊212的尺寸相同。
或者,底辊213的尺寸可以小于图案辊212的尺寸。在这种情况下,为了提高底辊213与图案辊212之间的压力,示例性地,底辊213的数量可以为多个。其中,该多个底辊213均与图案辊212接触,且每个底辊213可以与图案辊212的部分表面区域接触。
上述技术方案,阻镀图案单元210包括与图案辊212并排设置在基膜230的两侧的底辊213,使得图案辊212和底辊213之间能互相为对方施加压力。如此,在基膜230从图案辊212和底辊之间穿过时,图案辊212和底辊213之间的压力能够使图案辊212上的阻镀物质尽可能地形成在基膜230表面,以保证镀膜的精度。
进一步地,在一些实施例中,再次如图3所示,阻镀图案单元210还可以包括网纹辊214。其中,该网纹辊214设置在加热辊211和图案辊212之间,网纹辊214的表面设置有多个凹孔,凹孔用于存储加热后的阻镀物质,网纹辊214用于将存储的加热后的阻镀物质传送给图案辊212。
可选地,加热辊211在对阻镀物质加热之后,可以采用蒸发的方式将加热后的阻镀物质传送至网纹辊214。之后,网纹辊214同样采用蒸发的方式将存储的加热后的阻镀物质传送给图案辊212。
网纹辊214的具体结构可以参考相关技术中的网纹辊,本文不做具体论述。
上述技术方案,通过在加热辊211和图案辊212之间设置网纹辊214,使得加热后的阻镀物质能够均匀地存储在网纹辊214表面上的多个凹孔中。这样,在网纹辊214将阻镀物质传送给图案辊212时,也能够将阻镀物质均匀地传送给图案辊212,避免了图案辊212部分表面接收到的阻镀物质多而部分表面接收到的阻镀物质少甚至没有的情况,保证了印在基膜230上的图案的精度。
如前文所述,某些应用场景所需的金属镀膜的厚度较厚。金属镀膜 越厚,基膜230承受的热量则越高。比如,基膜230的温度可能会达到两三百度,从而可能导致基膜230的变形。
基于此,如图4所示,本申请实施例的镀膜设备200还可以包括冷却单元240。该冷却单元240用于在基膜230表面的部分区域上形成图案后,对具有图案的基膜230进行冷却。
通过设置冷却单元240,使得在金属镀膜的厚度较厚,基膜230承受的热量较高的情况下,冷却单元240能够对基膜230进行冷却,避免了基膜230在高温下变形的问题,有力地保证了镀膜以及后续工艺的正常进行。
在一些实施例中,如图4所示,冷却单元240可以包括冷鼓241,该冷鼓241用于传送和冷却具有图案的基膜230。其中,该冷鼓241设置为中空结构,且该中空结构内容纳有冷却液,冷却液用于在循环流动的过程中对具有该图案的基膜230进行冷却。
可选地,冷鼓241可以是碳钢辊或不锈钢辊等。
可选地,冷鼓241的直径可以在300mm-600mm范围内。
可选地,冷却液可以是水、水和乙二醇的混合液等,或者,冷却液可以为液氮、液氩和液态二氧化碳中的至少一种。
在真空镀膜机构221向基膜230输送金属蒸汽时,金属蒸汽变为固态的过程中会放热,因而基膜230在此过程中承受的热量会变高。因此,如图4所示,冷鼓241可以设置在真空镀膜机构221的上方,在真空镀膜机构221被配置为朝冷鼓241上的基膜230输送金属蒸汽的同时,冷鼓241可以对基膜230进行冷却,从而保证基膜230的温度在正常范围内。
需要说明的是,本申请实施例的“上”指的是沿与重力方向相反的方向,“下”指的是重力方向。
上述技术方案通过冷鼓241对基膜230进行冷却,实现简单。并且 冷鼓241内设置有循环流动的冷却液,通过冷却液循环流动能够达到更好的冷却效果。也就是说本申请实施例能够以较简单的方式实现更好的冷却效果。
由于基膜230本身可能是导电的,为了避免基膜230与冷鼓241之间发生导电的情况。进一步地,冷鼓241表面可以涂覆有绝缘材料。
可选地,绝缘材料可以为陶瓷、橡胶、绝缘漆、石棉等。
可选地,绝缘材料的厚度可以在50um-2000um范围内。
上述技术方案,通过在冷鼓241表面涂覆绝缘材料,能够避免冷鼓241和基膜230之间导电的问题,从而有效保证镀膜的正常进行。
在某些情况下,基膜230和冷鼓241之间可能没有完全贴附,进而导致冷鼓241对基膜230的冷却效果大打折扣。因此,在一些实施例中,冷却单元240还可以包括偏压辊242。其中,偏压辊242设置在冷鼓241的基膜230的传送方向的下游,用于将具有图案的基膜230吸附在冷鼓241的表面。
作为一种示例,冷鼓241可以接地并且偏压辊242可以接负电压。比如,偏压辊242可以接50V-500V的负电压。
作为另一种示例,冷鼓241可以接负电压,并且偏压辊242可以接地。
在设置有偏压辊242的情况下,可选地,绝缘材料的厚度可以为30um-200um。如此,能够平衡导热效果和偏压效果。
上述技术方案通过设置偏压辊242,加强了基膜230与冷鼓241之间的贴附,进而提高了冷鼓241中的冷却液对基膜230的冷却效果。也就是说,上述技术方案通过冷鼓241和偏压辊242的相互配合有效增强了对基膜230的冷却效果。
为了进一步提高冷却单元240对基膜230的冷却效果,进一步地, 如图5所示,冷却单元240还可以包括气冷管243。其中,该气冷管243包括导热介质,气冷管243通过气口将导热介质通入冷鼓和241具有图案的基膜230之间,以使导热介质对具有该图案的基膜230进行冷却。
具体而言,可以在真空环境下,将导热介质通入冷鼓241和基膜230之间,作为薄膜与冷鼓241之间的导热介质,以对基膜230进行冷却。
可选地,导热介质可以为惰性气体,如氩气、氦气等。举例说明,惰性气体的密度可以为1-5个/100mm,流量范围可以为10标准公升每分钟流量值(sccm)-200sccm。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
由于惰性气体相对比较便宜,因此利用惰性气体进行冷却,能够以较低的成本有效实现对基膜230的冷却。
可选地,气冷管243可以包括多个气口。该多个气口中的每个气口都可以覆盖基膜230的宽度,或者,该多个气口整体可以覆盖基膜230的宽度。在本申请实施例中,基膜230的宽度也可以称为幅宽。
示例性地,多个气口的数量可以基于幅宽确定。
在一些实现方式中,气冷管243可以持续喷出导热介质。
在另一些实现方式中,镀膜设备200可以包括控制系统。在具有图案的基膜230传送到冷鼓241位置处时,控制系统可以控制气冷管243的气口打开,以使气冷管243通过气口将导热介质通过冷鼓241和基膜230之间。在其他时刻,控制系统可以控制气冷管243的气口关闭,从而节省导热介质,减小对基膜230进行冷却的成本。
上述技术方案,在冷却单元240包括冷鼓241的基础上进一步设置气冷管243,即在冷鼓241和气冷管243的共同作用下对基膜230进行冷却,能够进一步增强对基膜230的冷却效果。
应理解,本申请实施例的冷却单元240可以包括气冷管243而不包括冷鼓241和偏压辊242,或者,冷却单元240包括气冷管243和偏压辊242,但不对偏压辊242加负电压。换言之,本申请实施例可以仅由气冷管243对基膜230进行冷却。
进一步地,从图2-图5可以看出,本申请实施例的镀膜设备200可以为卷对卷镀膜设备。镀膜设备200除了包括阻镀图案单元210和镀膜单元220之外,还可以放卷辊250和收卷辊260。
其中,放卷辊250设置在基膜230的传送方向的最上游,用于沿传送方向输送基膜230。收卷辊260设置在传送方向的最下游,用于收集经过镀膜的基膜230。
进一步地,镀膜设备200还可以包括至少一个传送辊,该传送辊用于沿传送方向,将基膜230传送至阻镀图案单元210和冷却单元24。
若镀膜设备200包括多个传送辊,该多个传送辊的大小可以相同,也可以不同,本申请实施例不做限定。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种镀膜设备,其特征在于,包括:
    阻镀图案单元(210),用于在基膜(230)表面的部分区域上形成由阻镀物质构成的图案,所述阻镀物质用于限制金属蒸汽形成镀膜;
    镀膜单元(220),用于对具有所述图案的所述基膜(230)上施加所述金属蒸汽,以在所述基膜(230)表面的没有设置所述阻镀物质的区域上形成金属镀膜。
  2. 根据权利要求1所述的镀膜设备,其特征在于,所述阻镀图案单元(210)包括:
    加热辊(211),用于对所述阻镀物质进行加热;
    图案辊(212),表面设置有所述图案,用于当所述基膜(230)经过所述图案辊(212)时,将加热后的所述阻镀物质以所述图案的形状印在所述基膜(230)上,以在所述基膜(230)表面的所述部分区域上形成所述图案。
  3. 根据权利要求2所述的镀膜设备,其特征在于,所述阻镀图案单元(210)还包括:
    底辊(213),与所述图案辊(212)并排设置在所述基膜(230)的两侧,在所述基膜(230)从所述图案辊(212)和所述底辊(213)之间穿过时,在所述图案辊(212)和所述底辊(213)之间的压力下,所述图案辊(212)上的所述阻镀物质以所述图案的形状形成在所述基膜(230)表面的部分区域上。
  4. 根据权利要求2或3所述的镀膜设备,其特征在于,所述阻镀图案单元(210)还包括:
    网纹辊(214),设置在所述加热辊(211)和所述图案辊(212)之间,所述网纹辊(214)的表面设置有多个凹孔,所述凹孔用于存储加热后的所述阻镀物质,所述网纹辊(214)用于将存储的加热后的所述阻镀物质传送给所述图案辊(212)。
  5. 根据权利要求2至4中任一项所述的镀膜设备,其特征在于,所述图案辊(212)为橡胶制成的辊。
  6. 根据权利要求1至5中任一项所述的镀膜设备,其特征在于,还包括:
    冷却单元(240),用于在所述基膜(230)表面的所述部分区域上形成所述图案后,对具有所述图案的所述基膜(230)进行冷却。
  7. 根据权利要求6所述的镀膜设备,其特征在于,所述冷却单元(240)包括:
    冷鼓(241),用于传送和冷却具有所述图案的所述基膜(230),其中,所述冷鼓(241)设置为中空结构,且所述中空结构内容纳有冷却液,所述冷却液用于在循环流动的过程中对具有所述图案的所述基膜(230)进行冷却。
  8. 根据权利要求7所述的镀膜设备,其特征在于,所述冷鼓(241)表面涂覆有绝缘材料。
  9. 根据权利要求8所述的镀膜设备,其特征在于,所述绝缘材料的厚度为30um-200um。
  10. 根据权利要求7至9中任一项所述的镀膜设备,其特征在于,所述冷却单元(240)还包括:
    偏压辊(242),设置在所述冷鼓(241)的所述基膜(230)的传送方向的下游,用于将具有所述图案的所述基膜(230)吸附在所述冷鼓(241)的表面。
  11. 根据权利要求10所述的镀膜设备,其特征在于,所述冷鼓(241)接地且所述偏压辊(242)接负电压。
  12. 根据权利要求7至11中任一项所述的镀膜设备,其特征在于,所述冷却单元(240)还包括:
    气冷管(243),包括导热介质,所述气冷管(243)通过气口将所述导热介质通入所述冷鼓(241)和具有所述图案的所述基膜(230)之间,以使所述导热介质对具有所述图案的所述基膜(230)进行冷却。
  13. 根据权利要求12所述的镀膜设备,其特征在于,所述导热介质为惰性气体。
  14. 根据权利要求7至13中任一项所述的镀膜设备,其特征在于,所述镀膜单元(220)包括真空镀膜机构(221),所述真空镀膜机构(221)被配置为朝所述冷鼓(241)上的所述基膜(230)输送金属蒸汽。
  15. 根据权利要求1至14中任一项所述的镀膜设备,其特征在于,所述阻镀物质为硅油。
  16. 根据权利要求1至15中任一项所述的镀膜设备,其特征在于,所述金属镀膜的厚度为1um-3um。
  17. 根据权利要求1至16中任一项所述的镀膜设备,其特征在于,所述基膜(230)为聚对苯二甲酸乙二醇酯PET膜。
  18. 根据权利要求1至17中任一项所述的镀膜设备,其特征在于,所述金属蒸汽为铜蒸汽或铝蒸汽。
PCT/CN2022/144267 2022-01-13 2022-12-30 镀膜设备 WO2023134484A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202290000315.4U CN221051971U (zh) 2022-01-13 2022-12-30 镀膜设备
EP22920114.0A EP4382631A1 (en) 2022-01-13 2022-12-30 Coating apparatus
US18/735,190 US20240327972A1 (en) 2022-01-13 2024-06-06 Coating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210037973.7A CN116479373A (zh) 2022-01-13 2022-01-13 镀膜设备
CN202210037973.7 2022-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/735,190 Continuation US20240327972A1 (en) 2022-01-13 2024-06-06 Coating apparatus

Publications (1)

Publication Number Publication Date
WO2023134484A1 true WO2023134484A1 (zh) 2023-07-20

Family

ID=87212414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144267 WO2023134484A1 (zh) 2022-01-13 2022-12-30 镀膜设备

Country Status (4)

Country Link
US (1) US20240327972A1 (zh)
EP (1) EP4382631A1 (zh)
CN (2) CN116479373A (zh)
WO (1) WO2023134484A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201074245Y (zh) * 2007-08-02 2008-06-18 武汉华工图像技术开发有限公司 一种用于全息标识和包装的塑料薄膜镀膜的装置
JP2009221506A (ja) * 2008-03-14 2009-10-01 Panasonic Corp 金属化フィルムの製造装置
CN101880856A (zh) * 2010-07-30 2010-11-10 汕头万顺包装材料股份有限公司 一种在印材上进行局部真空蒸镀的设备
CN212925150U (zh) * 2020-08-31 2021-04-09 合肥东昇机械科技有限公司 一种新型薄膜双舟双面镀膜装置
CN112638645A (zh) * 2018-08-29 2021-04-09 王子控股株式会社 金属层一体型聚丙烯薄膜、薄膜电容器和金属层一体型聚丙烯薄膜的制造方法
CN112853307A (zh) * 2021-02-25 2021-05-28 厦门海辰新能源科技有限公司 镀膜装置、镀膜系统及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201074245Y (zh) * 2007-08-02 2008-06-18 武汉华工图像技术开发有限公司 一种用于全息标识和包装的塑料薄膜镀膜的装置
JP2009221506A (ja) * 2008-03-14 2009-10-01 Panasonic Corp 金属化フィルムの製造装置
CN101880856A (zh) * 2010-07-30 2010-11-10 汕头万顺包装材料股份有限公司 一种在印材上进行局部真空蒸镀的设备
CN112638645A (zh) * 2018-08-29 2021-04-09 王子控股株式会社 金属层一体型聚丙烯薄膜、薄膜电容器和金属层一体型聚丙烯薄膜的制造方法
CN212925150U (zh) * 2020-08-31 2021-04-09 合肥东昇机械科技有限公司 一种新型薄膜双舟双面镀膜装置
CN112853307A (zh) * 2021-02-25 2021-05-28 厦门海辰新能源科技有限公司 镀膜装置、镀膜系统及其使用方法

Also Published As

Publication number Publication date
EP4382631A1 (en) 2024-06-12
CN221051971U (zh) 2024-05-31
CN116479373A (zh) 2023-07-25
US20240327972A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
WO2020207368A1 (zh) 一种补锂层及其负极极片和锂离子电池及装置
WO2020042411A1 (zh) 电池模组
CN106910860B (zh) 锂电池隔膜涂层、隔膜及隔膜制备方法
WO2021109811A1 (zh) 二次电池及含有它的电池模块、电池包和装置
KR101778096B1 (ko) 리튬 이온 전지의 제조 방법 및 제조 장치
WO2024016891A1 (zh) 预锂化极片及其制备方法、二次电池和用电装置
WO2023164993A1 (zh) 热管理部件、电池及用电装置
WO2023130910A1 (zh) 电池极片的制备方法、电池极片和二次电池
US20190218654A1 (en) Current collector production apparatus
JP2012097917A (ja) 乾燥装置と該装置を用いる二次電池用電極の製造方法
WO2024001479A1 (zh) 制备电极组件的装置和方法
CN202905856U (zh) 一种锂离子二次电池负极极片
WO2023134484A1 (zh) 镀膜设备
CN110350270A (zh) 板式加热冷却导热装置及采用该装置的可控温锂电池组
WO2016066023A1 (zh) 电极粘结剂、正极材料以及锂离子电池
WO2023246704A1 (zh) 一种锂离子电池极片及其制备方法
CN111058000B (zh) 一种三级蒸发高速卷对卷真空锂薄膜生产装置
WO2023246220A1 (zh) 极片烘干装置、电池生产设备及极片烘干方法
WO2020168591A1 (zh) 一种超宽温域高安全性锂离子动力电池系统
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
CN202905855U (zh) 一种锂离子二次电池
WO2022193550A1 (zh) 一种熔融碳酸盐燃料电池预热装置和方法
WO2023134515A1 (zh) 一种制备集流体组件的设备及方法
WO2023134532A1 (zh) 蚀刻设备
JPH1092456A (ja) 機器搭載用燃料電池装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202290000315.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022920114

Country of ref document: EP

Effective date: 20240304

NENP Non-entry into the national phase

Ref country code: DE