WO2022193550A1 - 一种熔融碳酸盐燃料电池预热装置和方法 - Google Patents

一种熔融碳酸盐燃料电池预热装置和方法 Download PDF

Info

Publication number
WO2022193550A1
WO2022193550A1 PCT/CN2021/114243 CN2021114243W WO2022193550A1 WO 2022193550 A1 WO2022193550 A1 WO 2022193550A1 CN 2021114243 W CN2021114243 W CN 2021114243W WO 2022193550 A1 WO2022193550 A1 WO 2022193550A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
air
molten carbonate
exhaust gas
preheating
Prior art date
Application number
PCT/CN2021/114243
Other languages
English (en)
French (fr)
Inventor
卢成壮
张瑞云
程健
杨冠军
黄华
白发琪
Original Assignee
华能国际电力股份有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能国际电力股份有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 华能国际电力股份有限公司
Publication of WO2022193550A1 publication Critical patent/WO2022193550A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to the field of high temperature fuel cells, in particular to a preheating device and method for molten carbonate fuel cells.
  • molten carbonate fuel cell As a high-temperature fuel cell power generation technology, molten carbonate fuel cell has the characteristics of high efficiency and environmental friendliness. It is mainly composed of electrodes, separators, electrolytes and bipolar plates. In the current startup process of molten carbonate fuel cells, the internal organics are first removed by in-situ roasting, then the electrolyte is immersed in the separator, and finally a stable three-phase interface (electrode-diaphragm and electrolyte-electrode) is formed inside the fuel cell.
  • the heating and roasting process of molten carbonate fuel cells is to preheat the stack and air through an external heating device. After preheating, the air enters the stack to remove organic matter in the stack.
  • the conventional roasting process is to preheat the air continuously. This roasting method increases energy consumption and reduces the overall efficiency of fuel cell power generation.
  • the purpose of the present application is to provide a molten carbonate fuel cell preheating device and method, to overcome the problem of increasing energy consumption in the current fuel cell roasting process, the present application can reduce the energy consumption of air preheating in the battery roasting process, and realize the melting The heating and roasting of carbonate fuel cells improves the overall power generation efficiency of fuel cells.
  • a molten carbonate fuel cell preheating device includes a fuel cell end plate and a heat exchange device, the fuel cell end plate is provided with a fuel cell air outlet and a fuel cell air inlet, and the heat exchange device is provided with a fuel cell air outlet and a fuel cell air inlet.
  • an air inlet, a fuel cell exhaust gas inlet, a fuel cell exhaust gas outlet, and a preheating air outlet the fuel cell gas outlet is connected to the fuel cell exhaust gas inlet through a fuel cell outlet pipe, and the preheated air outlet is connected through a fuel cell inlet pipe Connect to the fuel cell air inlet.
  • an air intake pipe is connected to the air intake port.
  • a heating device capable of heating the air is provided on the air intake duct.
  • the heating device is an intermittent controllable heating device.
  • the fuel cell end plate is a fuel cell anode end plate or a fuel cell cathode end plate.
  • the heat exchange device includes an inner tube and an outer tube, one end of the inner tube is an air inlet, the other end is a preheating air outlet, one end of the outer tube is a fuel cell exhaust gas inlet, and the other end is a fuel cell exhaust gas outlet.
  • the air inlet and the fuel cell exhaust gas inlet are located at the same end, and the preheated air outlet and the fuel cell exhaust gas outlet are located at the same end.
  • a method for preheating a molten carbonate fuel cell Heating air is introduced into the heating and roasting process of the molten carbonate fuel cell. After the reaction, the reacted high-temperature exhaust gas is discharged through the fuel cell outlet pipe and enters the heat exchange device. The high-temperature exhaust gas exchanges heat with the incoming air, and the heat-exchanged air enters the fuel cell through the fuel cell intake pipe to participate in the roasting of the internal organic matter.
  • heated air is introduced, and the heated air enters the fuel cell end plate through the fuel cell inlet pipe, and the air participates in the reaction with the organic matter inside the fuel cell, and the high-temperature exhaust gas after the reaction passes through the fuel cell outlet pipe. It is discharged into the heat exchange device, and the high-temperature exhaust gas exchanges heat with the incoming air.
  • the heat-exchanged air enters the interior of the fuel cell through the fuel cell intake pipe to participate in the roasting of the internal organic matter.
  • the heated gas enters the interior of the fuel cell, and roasts the organic matter of the battery to realize the heating and roasting of the fuel cell.
  • the application reduces energy consumption while improving the overall power generation of the fuel cell. efficiency.
  • Fig. 1 is the schematic diagram of the molten carbonate fuel cell preheating device of the present application
  • FIG. 2 is a schematic structural diagram of the heat exchange device of the present application.
  • 1- fuel cell end plate 2- fuel cell gas outlet pipe; 3- fuel cell inlet pipe; 4- heat exchange device; 5- air inlet; 6- fuel cell exhaust gas inlet; 7- preheating air outlet ; 8- Fuel cell exhaust gas outlet.
  • a molten carbonate fuel cell intake heating device comprising a fuel cell end plate 1 and a heat exchange device 4, the fuel cell end plate 1 is provided with a fuel cell air outlet and a fuel cell air inlet, the heat exchange
  • the device 4 is provided with an air inlet 5, a fuel cell exhaust gas inlet 6, a fuel cell exhaust gas outlet 8 and a preheated air outlet 7, and the fuel cell gas outlet is connected to the fuel cell exhaust gas inlet 6 through the fuel cell gas outlet pipe 2, so
  • the preheated air outlet 7 is connected to the fuel cell air inlet through the fuel cell air inlet duct 3 .
  • the fuel cell preheating device of the present application is the heat exchange between the intake and outlet air of the fuel cell. During the initial roasting process, external heating is required. After the temperature rises, the air uses the preheating device for heat exchange, wherein the heat exchange device 4 Connected are the intake and exhaust devices of the anode or cathode end plate of the fuel cell to prevent the short circuit of the intake air of the cathode and anode. In order to ensure the preheating effect, a plurality of heat exchange devices 4 can be connected in series. This application is not only applied to Molten carbonate fuel cells can also be used in other high temperature fuel cell fields.
  • a heat exchange device 4 is used.
  • the heat exchange device 4 is provided with an air inlet 5 and a fuel cell exhaust gas inlet 6.
  • a fuel cell exhaust gas outlet 8 and a preheating air outlet 7 the fuel cell gas outlet is connected to the fuel cell exhaust gas inlet 6 through the fuel cell gas outlet pipe 2, and the preheating air outlet 7 is connected to the fuel cell through the fuel cell inlet pipe 3.
  • the air enters through the air inlet 5 and exchanges heat with the exhaust gas with a certain temperature.
  • the heat-exchanged air enters the interior of the fuel cell through the preheated air outlet 7 and is connected with the fuel cell air inlet pipe 3 Participate in the roasting of internal organics.

Abstract

本申请公开了一种熔融碳酸盐燃料电池预热装置及方法,包括燃料电池端板和换热装置,所述燃料电池端板上设置有燃料电池出气口和燃料电池进气口,所述换热装置上设置有空气进气口、燃料电池尾气入口、燃料电池尾气出口以及预热空气出口,所述燃料电池出气口通过燃料电池出气管道连接至燃料电池尾气入口,所述预热空气出口通过燃料电池进气管道连接至燃料电池进气口。本申请能够减少电池焙烧过程中对空气预热能耗,实现对熔融碳酸盐燃料电池的升温焙烧,提高燃料电池整体发电效率。

Description

一种熔融碳酸盐燃料电池预热装置和方法 技术领域
本申请涉及高温燃料电池领域,具体涉及一种熔融碳酸盐燃料电池预热装置和方法。
背景技术
熔融碳酸盐燃料电池作为一种高温燃料电池发电技术,具有高效、环境友好的特点,其主要由电极、隔膜、电解质和双极板组成。目前熔融碳酸盐燃料电池的启动过程,先经过原位焙烧去除内部的有机物,然后电解质浸入隔膜,最后燃料电池内部形成稳定的三相界面(电极-隔膜和电解质-电极)。目前现在对于熔融碳酸盐燃料电池升温焙烧过程是通过外部加热装置对电堆和空气进行预热,预热后空气进入电堆内部,实现去除电堆中有机物。常规焙烧过程为一直不断对空气进行预热,这种焙烧方法增加了能耗,降低燃料电池发电的整体效率。
发明内容
本申请的目的在于提供一种熔融碳酸盐燃料电池预热装置和方法,以克服目前燃料电池焙烧能耗增加的问题,本申请能够减少电池焙烧过程中对空气预热能耗,实现对熔融碳酸盐燃料电池的升温焙烧,提高燃料电池整体发电效率。
为达到上述目的,本申请采用如下技术方案:
一种熔融碳酸盐燃料电池预热装置,包括燃料电池端板和换热装置,所述燃料电池端板上设置有燃料电池出气口和燃料电池进气口,所述换热装置上设置有空气进气口、燃料电池尾气入口、燃料电池尾气出口以及预热空气出口,所述燃料电池出气口通过燃料电池出气管道连接至燃料电池尾气入口,所述预热空气出口通过燃料电池进气管道连接至燃料电池进气口。
进一步地,所述空气进气口上连接有空气进气管道。
进一步地,所述空气进气管道上设置有能够对空气进行加热的加热装置。
进一步地,所述加热装置为间歇式可控加热装置。
进一步地,所述燃料电池端板为燃料电池阳极端板或燃料电池阴极端板。
进一步地,所述换热装置设置有若干个,若干个换热装置串联设置。
进一步地,所述换热装置包括内管和外管,内管的一端为空气进气口,另一端为预热空气出口,外管的一端为燃料电池尾气入口,另一端为燃料电池尾气出口。
进一步地,所述空气进气口和燃料电池尾气入口位于同一端,所述预热空气出口和燃料电池尾气出口位于同一端。
一种熔融碳酸盐燃料电池预热方法,熔融碳酸盐燃料电池的升温焙烧过程中通入加热空气,加热空气通过燃料电池进气管道进入燃料电池端板,空气与燃料电池内部的有机物参与反应,反应后的高温尾气通过燃料电池出气管道排出,进入换热装置,高温尾气与通入空气进行换热,换热后的空气通过燃料电池进气管道进入燃料电池内部参与内部有机物的焙烧。
与现有技术相比,本申请具有以下有益的技术效果:
熔融碳酸盐燃料电池的升温焙烧过程中通入加热空气,加热空气通过燃料电池进气管道进入燃料电池端板,空气与燃料电池内部的有机物参与反应,反应后的高温尾气通过燃料电池出气管道排出,进入换热装置,高温尾气与通入空气进行换热,换热后的空气通过燃料电池进气管道进入燃料电池内部参与内部有机物的焙烧,本申请装置可以利用尾气中的余热对空气进行预热,减少外部加热对进气的热量消耗,升温后的气体进入燃料电池内部,对电池的有机物进行焙烧,实现燃料电池的升温焙烧,本申请在降低能耗的同时,提高燃料电池整体发电效率。
附图说明
图1是本申请的熔融碳酸盐燃料电池预热装置示意图;
图2是本申请的换热装置结构示意图。
其中,1-燃料电池端板;2-燃料电池出气管道;3-燃料电池进气管道;4-换热装置;5-空气进气口;6-燃料电池尾气入口;7-预热空气出口;8-燃料电池尾气出口。
具体实施方式
下面对本申请的实施方式做进一步详细描述:
一种熔融碳酸盐燃料电池进气加热装置,包括燃料电池端板1和换热装置4,所述燃料电池端板1上设置有燃料电池出气口和燃料电池进气口,所述换热装置4上设置有空气进气口5、燃料电池尾气入口6、燃料电池尾气出口8以及预热空气出口7,所述燃料电池出气口通过燃料电池出气管道2连接至燃料电池尾气入口6,所述预热空气出口7通过燃料电池进气管道3连接至燃料电池进气口。
本申请的燃料电池预热装置是燃料电池进气和出气的换热,在开始的焙烧过程中,需利用外部加热,等温度上升后,空气利用预热装置进行换热,其中换热装置4连接的为燃料电池阳极或阴极端板的进气和尾气装置,以防止阴阳极进气的短路,为保证预热效果,可以将多个换热装置4进行串联连接,本申请不仅仅应用于熔融碳酸盐燃料电池,也可以用在其他高温燃料电池领域。
下面结合实施例对本申请做进一步详细描述:
熔融碳酸盐燃料电池的升温焙烧过程中需要空气通入,空气需要外部加热,空气通过燃料电池进气口及连接在燃料电池进气口的燃料电池出气管道2进入燃料电池端板1电池内部,空气与燃料电池内部的有机物参与反应,反应后的尾气通过燃料电池出气口排出。此时燃料电池出气口的尾气温度和燃料电池内部温度一致,为有效利用相对较高的温度,采用一个换热装置4,换热装置4上设置有空气进气口5、燃料电池尾气入口6、燃料电池尾气出口 8以及预热空气出口7,所述燃料电池出气口通过燃料电池出气管道2连接至燃料电池尾气入口6,所述预热空气出口7通过燃料电池进气管道3连接至燃料电池进气口,空气通过空气进气口5进入,与有一定温度的尾气进行换热,此时经过换热的空气通过预热空气出口7及与燃料电池进气管道3相连进入燃料电池内部参与内部有机物的焙烧。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种熔融碳酸盐燃料电池预热装置,其特征在于,包括燃料电池端板(1)和换热装置(4),所述燃料电池端板(1)上设置有燃料电池出气口和燃料电池进气口,所述换热装置(4)上设置有空气进气口(5)、燃料电池尾气入口(6)、燃料电池尾气出口(8)以及预热空气出口(7),所述燃料电池出气口通过燃料电池出气管道(2)连接至燃料电池尾气入口(6),所述预热空气出口(7)通过燃料电池进气管道(3)连接至燃料电池进气口。
  2. 根据权利要求1所述的一种熔融碳酸盐燃料电池预热装置,其特征在于,所述空气进气口(5)上连接有空气进气管道。
  3. 根据权利要求2所述的一种熔融碳酸盐燃料电池预热装置,其特征在于,所述空气进气管道上设置有能够对空气进行加热的加热装置。
  4. 根据权利要求3所述的一种熔融碳酸盐燃料电池预热装置,其特征在于,所述加热装置为间歇式可控加热装置。
  5. 根据权利要求1所述的一种熔融碳酸盐燃料电池预热装置,其特征在于,所述燃料电池端板(1)为燃料电池阳极端板或燃料电池阴极端板。
  6. 根据权利要求1所述的一种熔融碳酸盐燃料电池预热装置,其特征在于,所述换热装置(4)设置有若干个,若干个换热装置(4)串联设置。
  7. 根据权利要求1所述的一种熔融碳酸盐燃料电池预热装置,其特征在于,所述换热装置(4)包括内管和外管,内管的一端为空气进气口(5),另一端为预热空气出口(7),外管的一端为燃料电池尾气入口(6),另一端为燃料电池尾气出口(8)。
  8. 根据权利要求7所述的一种熔融碳酸盐燃料电池预热装置,其特征在于,所述空气进气口(5)和燃料电池尾气入口(6)位于同一端,所述预热空气出口(7)和燃料电池尾气出口(8)位于同一端。
  9. 一种熔融碳酸盐燃料电池预热方法,采用权利要求1所述的一种熔融碳酸盐燃料电池预热装置,其特征在于,熔融碳酸盐燃料电池的升温焙烧过 程中通入加热空气,加热空气通过燃料电池进气管道(3)进入燃料电池端板(1),空气与燃料电池内部的有机物参与反应,反应后的高温尾气通过燃料电池出气管道(2)排出,进入换热装置(4),高温尾气与通入空气进行换热,换热后的空气通过燃料电池进气管道(3)进入燃料电池内部参与内部有机物的焙烧。
PCT/CN2021/114243 2021-03-19 2021-08-24 一种熔融碳酸盐燃料电池预热装置和方法 WO2022193550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110298136.5A CN113161577A (zh) 2021-03-19 2021-03-19 一种熔融碳酸盐燃料电池预热装置和方法
CN202110298136.5 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022193550A1 true WO2022193550A1 (zh) 2022-09-22

Family

ID=76887798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114243 WO2022193550A1 (zh) 2021-03-19 2021-08-24 一种熔融碳酸盐燃料电池预热装置和方法

Country Status (2)

Country Link
CN (1) CN113161577A (zh)
WO (1) WO2022193550A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161577A (zh) * 2021-03-19 2021-07-23 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池预热装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1377097A (zh) * 2002-04-16 2002-10-30 上海交通大学 熔融碳酸盐燃料电池蒸汽轮机联合发电系统
CN101095254A (zh) * 2005-01-03 2007-12-26 瓦特西拉芬兰有限公司 燃料电池设备内的预热装置
CN101473482A (zh) * 2006-06-22 2009-07-01 瓦特西拉芬兰有限公司 燃料电池设备中的预热装置
CN102456898A (zh) * 2010-10-20 2012-05-16 上海新奥能源科技有限公司 燃料电池燃气轮机热电联产系统
CN113161577A (zh) * 2021-03-19 2021-07-23 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池预热装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1377097A (zh) * 2002-04-16 2002-10-30 上海交通大学 熔融碳酸盐燃料电池蒸汽轮机联合发电系统
CN101095254A (zh) * 2005-01-03 2007-12-26 瓦特西拉芬兰有限公司 燃料电池设备内的预热装置
CN101473482A (zh) * 2006-06-22 2009-07-01 瓦特西拉芬兰有限公司 燃料电池设备中的预热装置
CN102456898A (zh) * 2010-10-20 2012-05-16 上海新奥能源科技有限公司 燃料电池燃气轮机热电联产系统
CN113161577A (zh) * 2021-03-19 2021-07-23 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池预热装置和方法

Also Published As

Publication number Publication date
CN113161577A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN111525166B (zh) 一种混合高温燃料电池发电系统和方法
CN108511778B (zh) 一种铁-铬液流电池和电解质溶液及配制设备及配制方法
CN104810535A (zh) 一种有效利用余热的重整制氢燃料电池发电模块
WO2022193550A1 (zh) 一种熔融碳酸盐燃料电池预热装置和方法
CN104733746B (zh) 一种低温与中高温燃料电池联合运行系统
CN202905856U (zh) 一种锂离子二次电池负极极片
CN206685472U (zh) 一种大功率熔融碳酸盐燃料电池堆
CN106602006A (zh) 一种石墨烯磷酸铁锂复合材料及其制备方法
CN108448065A (zh) 一种抗弯折的金属锂负极的制备方法
CN109301288B (zh) 一种燃料电池电堆系统及启动方法
CN111416110A (zh) 一种石墨烯改性预锂化硅负极材料及其制备方法
CN212011147U (zh) 一种混合高温燃料电池发电系统
WO2021232664A1 (zh) 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法
WO2022000854A1 (zh) 一种应用于熔融碳酸盐燃料电池的天然气加热炉系统和方法
CN214313265U (zh) 一种熔融碳酸盐燃料电池预热装置
CN105576242A (zh) 一种石墨烯电池
CN108871013A (zh) 一种固体氧化物燃料电池高温气体换热器
CN109273799A (zh) 一种锂电池低温启动系统及低温启动方法
CN101459253B (zh) 一种大面积熔融碳酸盐燃料电池
CN115064730A (zh) 一种燃料电池全生命周期的增湿方法
CN112038660B (zh) 一种基于对称双阴极结构固体氧化物燃料电池电堆
CN107978820A (zh) 一种提高软包锂离子电池散热的方法
CN212298989U (zh) 一种应用于熔融碳酸盐燃料电池的天然气加热炉系统
CN205051118U (zh) 一种燃料电池金属双极板巡检接线结构
KR20190076665A (ko) 연료전지 하이브리드 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931126

Country of ref document: EP

Kind code of ref document: A1