WO2023134444A1 - Procédé et système de calcul d'épaisseur d'une couche de matériau sur une surface d'une grille à feu refroidie à l'eau, et incinérateur - Google Patents

Procédé et système de calcul d'épaisseur d'une couche de matériau sur une surface d'une grille à feu refroidie à l'eau, et incinérateur Download PDF

Info

Publication number
WO2023134444A1
WO2023134444A1 PCT/CN2022/142627 CN2022142627W WO2023134444A1 WO 2023134444 A1 WO2023134444 A1 WO 2023134444A1 CN 2022142627 W CN2022142627 W CN 2022142627W WO 2023134444 A1 WO2023134444 A1 WO 2023134444A1
Authority
WO
WIPO (PCT)
Prior art keywords
grate
unit
lamination
garbage
waste
Prior art date
Application number
PCT/CN2022/142627
Other languages
English (en)
Chinese (zh)
Inventor
张二威
洪益州
钱中华
杨应永
Original Assignee
光大环保技术装备(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光大环保技术装备(常州)有限公司 filed Critical 光大环保技术装备(常州)有限公司
Publication of WO2023134444A1 publication Critical patent/WO2023134444A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention belongs to the technical field of general industrial waste incineration treatment, and in particular relates to a calculation method, system and incinerator for calculating the thickness of a material layer on the surface of a water-cooled grate.
  • the change of air chamber pressure has a great relationship with the primary air volume and primary air temperature.
  • the resistance of the grate surface is much larger than that of the garbage material layer.
  • the resistance change of the garbage material layer cannot be controlled by the pressure difference between the air chamber and the furnace. It is directly reflected in the above, that is, the pressure difference between the air chamber and the furnace cannot directly represent the thickness of the garbage material layer.
  • the object of the present invention is to provide a method, a system and an incinerator for calculating the thickness of the material layer on the surface of a water-cooled grate.
  • the present invention provides a method for calculating the thickness of the material layer on the surface of the water-cooled grate, including:
  • the reference air volume is corrected to obtain the lamination flow compensation value
  • the method for obtaining the pressure loss caused by the air distribution hole when the waste incinerator grate is empty includes:
  • NDp0L NPTL - PT
  • NDp0R NPTR - PT
  • NDp0L is the no-load differential pressure on the left side of the grate N unit
  • NPTL is the bottom air pressure on the left side of the grate N unit
  • PT is the incineration furnace pressure
  • NDp0R is the no-load differential pressure on the right side of the grate N unit
  • the method for temperature compensation according to pressure loss includes:
  • NTDpL is the garbage lamination temperature compensation value on the left side of the grate N unit
  • NDpSL is the measured differential pressure when the left side of the grate N unit is running
  • NDp0L is the no-load differential pressure on the left side of the grate N unit
  • NTDpR is the grate N unit The temperature compensation value of the garbage lamination on the right
  • NDpSR is the measured differential pressure when the right side of the grate N unit is running
  • NDp0R is the no-load differential pressure on the right side of the grate N unit
  • TT is the primary air temperature.
  • the method for correcting the reference air volume according to the temperature compensation to obtain the lamination flow compensation value includes:
  • NQDpL is the waste lamination flow compensation value on the left side of the grate N unit
  • NTDpL is the waste lamination temperature compensation value on the left side of the grate N unit
  • a LN is the reference air volume conversion coefficient on the left side of the grate N unit
  • B LN is the furnace C LN is the reference air volume conversion coefficient on the left side of the grate N unit
  • NFBL is the design reference air volume on the left side of the grate N unit
  • NFL is the measured temperature and pressure compensation on the left side of the grate N unit Air volume
  • NQDpR is the waste lamination flow compensation value on the right side of the grate N unit
  • NTDpR is the waste lamination temperature compensation value on the right side of the grate N unit
  • a RN is the reference air volume conversion coefficient on the right side of the grate N unit
  • B RN is the furnace C RN is the conversion coefficient of the reference air volume on the right side of the grate N unit
  • the method for obtaining the lamination moving average according to the lamination flow compensation value includes:
  • NDpL is the moving average value of garbage lamination on the left side of the grate N unit
  • NQDpL is the waste lamination flow compensation value on the left side of the grate N unit
  • n is the moving average time of garbage lamination
  • NDpR is the garbage lamination on the right side of the grate N unit Lamination moving average
  • NQDpR is the waste lamination flow compensation value on the right side of grate N unit.
  • the method for obtaining the average layer thickness deviation of garbage includes:
  • NDL is the thickness of the garbage layer on the left side of the grate N unit
  • ABS is the absolute value calculation
  • NDpL is the moving average value of the garbage lamination on the left side of the grate N unit
  • NDpGL is the target value of the garbage lamination on the left side of the grate N unit
  • NSETL is the target deviation of the garbage layer thickness on the left side of the grate N unit
  • NDR is the garbage layer thickness on the right side of the grate N unit
  • NDpR is the moving average of the garbage lamination on the right side of the grate N unit
  • NDpGR is the garbage layer on the right side of the grate N unit Lamination target value
  • NSETR is the target deviation of garbage layer thickness on the right side of grate N unit.
  • the present invention also provides a system for calculating the thickness of the material layer on the surface of the water-cooled grate, including:
  • the pressure loss acquisition module acquires the pressure loss caused by the air distribution holes when the waste incinerator grate is empty;
  • Temperature compensation module temperature compensation according to pressure loss
  • the lamination flow compensation module is used to correct the reference air volume according to the temperature compensation to obtain the lamination flow compensation value
  • a lamination moving average module that obtains a lamination moving average based on the lamination flow compensation value
  • the layer thickness deviation module is used to obtain the average layer thickness deviation of garbage.
  • the present invention also provides an incinerator, comprising:
  • grate units a control module, and a detection module electrically connected to the control module;
  • the detection module is suitable for detecting parameters of each grate unit
  • the control module is adapted to obtain the average layer thickness deviation of garbage of each grate unit according to the parameters of each grate unit.
  • the beneficial effect of the present invention is that the present invention obtains the pressure loss caused by the air distribution hole when the garbage incinerator grate is empty; performs temperature compensation according to the pressure loss; performs reference air volume correction according to the temperature compensation to obtain the lamination flow compensation value; according to the lamination flow
  • the compensation value obtains the lamination moving average value; and obtains the average layer thickness deviation of the garbage to overcome the existing judgment of the garbage material layer on the grate surface based on the change in the pressure of the air chamber of the grate waste incineration boiler or the pressure difference between the air chamber pressure and the furnace.
  • Fig. 1 is the flow chart of the method for calculating the surface material layer thickness of water-cooled fire grate involved in the present invention
  • Fig. 2 is a schematic diagram of the grate unit involved in the present invention.
  • Fig. 3 is the grate differential pressure line graph involved in the present invention.
  • Fig. 4 is a principle block diagram of the calculation system for the surface material layer thickness of the water-cooled grate involved in the present invention.
  • 1 is grate 1 unit
  • 2 is grate 2 unit
  • 3 is grate 3 unit
  • 4 is grate 4 unit
  • 5 is grate 5 unit.
  • Fig. 1 is a flow chart of the method for calculating the thickness of the material layer on the surface of the water-cooled grate involved in the present invention.
  • this embodiment 1 provides a method for calculating the thickness of the material layer on the surface of the water-cooled grate, including: obtaining the pressure loss caused by the air distribution holes when the waste incinerator grate is empty; performing temperature compensation according to the pressure loss; Compensate the base air volume correction to obtain the lamination flow compensation value; obtain the lamination moving average according to the lamination flow compensation value; According to the pressure difference between the chamber pressure and the furnace chamber to judge the accumulation thickness of the garbage material layer on the grate surface, so as to adjust the movement speed of the grate and the amount of garbage entering the furnace, the method is insufficient, and the reasonableness can be obtained after compensation calculation of temperature and flow. Judging the thickness of the garbage layer, and then providing a calculation basis for the ACC automatic adjustment system, improving the automatic use rate and reducing the labor intensity of personnel.
  • Fig. 2 is a schematic diagram of the grate unit involved in the present invention.
  • Fig. 3 is a broken line diagram of the grate pressure difference involved in the present invention.
  • the method for obtaining the pressure loss caused by the air distribution hole when the garbage incinerator grate is empty includes: obtaining the no-load differential pressure of all grate units, namely
  • NDp0L NPTL - PT
  • NDp0R NPTR - PT
  • NDp0L is the no-load differential pressure on the left side of the grate N unit, the unit is Pa; NPTL is the bottom air pressure on the left side of the grate N unit, the range is 0-5000Pa; PT is the incinerator chamber pressure, the range is -2000 ⁇ + 2000Pa; NDp0R is the no-load differential pressure on the right side of the grate N unit; NPTR is the bottom air pressure on the right side of the grate N unit; N is the number of grate units, and the whole incineration grate can be divided into five units along the longitudinal direction, namely Grate 1 unit, grate 2 unit, grate 3 unit, grate 4 unit and grate 5 unit.
  • the method for performing temperature compensation according to pressure loss includes:
  • NTDpL is the waste lamination temperature compensation value on the left side of the grate N unit, in Pa
  • NDpSL is the measured differential pressure when the grate N unit is running on the left side, in Pa
  • NDp0L is the no-load difference on the left side of the grate N unit pressure, the unit is Pa
  • NTDpR is the waste lamination temperature compensation value on the right side of the grate N unit
  • NDpSR is the measured differential pressure when the grate N unit is running on the right side
  • NDp0R is the no-load differential pressure on the right side of the grate N unit
  • TT is Primary air temperature.
  • the method for correcting the reference air volume according to temperature compensation to obtain the lamination flow compensation value includes:
  • NQDpL is the waste lamination flow compensation value on the left side of the grate N unit, in Pa; NTDpL is the waste lamination temperature compensation value on the left side of the grate N unit, in Pa;
  • a LN is the reference on the left side of the grate N unit Air volume conversion coefficient (secondary); B LN is the reference air volume conversion coefficient on the left side of the grate N unit (primary); C LN is the reference air volume conversion coefficient on the left side of the grate N unit (intercept);
  • NFBL is the left side of the grate N unit Side design reference air volume, unit is Nm 3 /h; NFL is the measured air volume after temperature and pressure compensation on the left side of the grate N unit, unit is Nm 3 /h;
  • NQDpR is the waste lamination flow compensation value on the right side of the grate N unit; NTDpR is the garbage lamination temperature compensation value on the right side of the grate N unit;
  • a RN is the conversion
  • the method for obtaining the lamination moving average according to the lamination flow compensation value includes: garbage lamination takes 10 seconds as a period, sampling 6 data per minute, and performing a moving average on the number of samples every n minutes calculation;
  • NDpL is the moving average value of garbage lamination on the left side of grate N unit, in Pa
  • NQDpL is the compensation value of waste lamination flow rate on the left side of grate N unit, in Pa
  • n is the moving average time of garbage lamination 5 ⁇ 30 minutes
  • NDpR is the moving average of garbage lamination on the right side of grate N unit
  • NQDpR is the compensation value of garbage lamination flow on the right side of grate N unit.
  • the method for obtaining the average layer thickness deviation of garbage includes:
  • NDL is the thickness of the garbage layer on the left side of the grate N unit, and the unit is Pa; ABS is the absolute value calculation; NDpL is the moving average value of the garbage lamination on the left side of the grate N unit; NDpGL is the garbage layer on the left side of the grate N unit NSETL is the target deviation (setting value) of the garbage layer thickness on the left side of the grate N unit, which is percentage %; NDR is the garbage layer thickness on the right side of the grate N unit; NDpR is the garbage layer on the right side of the grate N unit Moving average; NDpGR is the target value of garbage lamination on the right side of the grate N unit; NSETR is the target deviation of the garbage layer thickness on the right side of the grate N unit; according to the calculation results, it is sent to the ACC control system, and the feeding and incineration are controlled after comprehensive judgment The action of the grate to adjust the thickness of the material layer.
  • Fig. 4 is a principle block diagram of the calculation system for the surface material layer thickness of the water-cooled grate involved in the present invention.
  • this Example 2 also provides a calculation system for the thickness of the material layer on the surface of the water-cooled grate, including: a pressure loss acquisition module to obtain the waste incineration grate caused by the air distribution hole when it is empty pressure loss; temperature compensation module, temperature compensation according to pressure loss; lamination flow compensation module, based on temperature compensation to correct the reference air volume to obtain lamination flow compensation value; lamination moving average module, according to lamination flow compensation value to obtain lamination A moving average; and a layer thickness deviation module to obtain the average layer thickness deviation of garbage.
  • a pressure loss acquisition module to obtain the waste incineration grate caused by the air distribution hole when it is empty pressure loss
  • temperature compensation module temperature compensation according to pressure loss
  • lamination flow compensation module based on temperature compensation to correct the reference air volume to obtain lamination flow compensation value
  • lamination moving average module according to lamination flow compensation value to obtain lamination A moving average
  • a layer thickness deviation module to obtain the average layer thickness deviation of garbage.
  • Embodiment 3 also provides an incinerator, including: several grate units, a control module, and a detection module electrically connected to the control module; the detection module is suitable for It is used to detect the parameters of each grate unit; the control module is adapted to obtain the average layer thickness deviation of garbage of each grate unit according to the parameters of each grate unit.
  • control module can integrate the functions of each module of the system for calculating the thickness of the material layer on the surface of the water-cooled grate.
  • the parameters that can be detected by the detection module may be pressure data with a certain pressure in the furnace, temperature data with a certain primary air temperature, and the like.
  • the present invention obtains the pressure loss caused by the air distribution hole when the waste incineration grate is empty; performs temperature compensation according to the pressure loss; corrects the reference air volume according to the temperature compensation to obtain the lamination flow compensation value; according to the lamination flow compensation value Obtain the lamination moving average; and obtain the average layer thickness deviation of the garbage to overcome the existing judgment of the accumulation of the garbage material layer on the grate surface based on the change in the pressure of the air chamber of the grate waste incineration boiler or the pressure difference between the air chamber pressure and the furnace Thickness, so as to adjust the movement speed of the grate and adjust the amount of garbage into the furnace.
  • Insufficient methods through the compensation calculation of temperature, flow, etc., can obtain a reasonable garbage layer thickness judgment, and then provide calculation basis for the ACC automatic adjustment system, and improve the automatic investment. utilization rate and reduce the labor intensity of personnel.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.
  • each functional module in each embodiment of the present invention can be integrated together to form an independent part, or each module can exist independently, or two or more modules can be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Incineration Of Waste (AREA)

Abstract

La présente invention appartient au domaine technique du traitement général d'incinération de déchets industriels, et concerne en particulier un procédé et un système de calcul de l'épaisseur d'une couche de matériau sur la surface d'une grille à feu refroidie à l'eau, et un incinérateur. Le procédé consiste à : acquérir la perte de pression provoquée par des trous de distribution d'air d'un incinérateur de déchets sans charge ; en fonction de la perte de pression, effectuer une compensation de température ; en fonction de la compensation de température, corriger un volume d'air de référence pour acquérir une valeur de compensation de flux laminaire ; en fonction de la valeur de compensation de flux laminaire, acquérir une valeur moyenne mobile laminaire ; et acquérir un écart d'épaisseur de couche moyenne des déchets. Dans le procédé, le défaut du procédé de l'état de la technique selon lequel l'épaisseur d'empilement de la couche de déchets sur la surface de la grille à feu est jugée en fonction du changement de la pression de chambre d'air de la chaudière d'incinération de déchets de la grille à feu ou de la différence de pression entre la pression de chambre d'air et la pression de foyer, de façon à ajuster la vitesse de mouvement de la grille à feu et la quantité de déchets entrant dans l'incinérateur est surmonté, et au moyen d'un calcul de compensation de température, de flux et analogue, un jugement raisonnable pour l'épaisseur de couche de déchets est obtenu, puis une base de calcul est fournie pour un système d'ajustement automatique ACC, ce qui permet d'augmenter le taux d'alimentation automatique et de réduire l'intensité de travail du personnel.
PCT/CN2022/142627 2022-01-11 2022-12-28 Procédé et système de calcul d'épaisseur d'une couche de matériau sur une surface d'une grille à feu refroidie à l'eau, et incinérateur WO2023134444A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210025131.XA CN114417586A (zh) 2022-01-11 2022-01-11 水冷炉排表面料层厚度计算方法、系统及焚烧炉
CN202210025131.X 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023134444A1 true WO2023134444A1 (fr) 2023-07-20

Family

ID=81270758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142627 WO2023134444A1 (fr) 2022-01-11 2022-12-28 Procédé et système de calcul d'épaisseur d'une couche de matériau sur une surface d'une grille à feu refroidie à l'eau, et incinérateur

Country Status (2)

Country Link
CN (1) CN114417586A (fr)
WO (1) WO2023134444A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114417586A (zh) * 2022-01-11 2022-04-29 光大环保技术装备(常州)有限公司 水冷炉排表面料层厚度计算方法、系统及焚烧炉
CN115342364A (zh) * 2022-08-31 2022-11-15 深圳能源环保股份有限公司 风室独立送风的垃圾焚烧炉料层厚度检测方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226674A (ja) * 2006-05-16 2006-08-31 Sumitomo Heavy Ind Ltd ボイラ設備を持たないごみ焼却炉の燃焼制御方式
CN102865582A (zh) * 2012-09-04 2013-01-09 吕庆忠 一种可测量垃圾厚度的垃圾焚烧炉及其测量方法
CN108194934A (zh) * 2016-12-31 2018-06-22 上海康恒环境股份有限公司 一种生活垃圾焚烧炉一次风独立布风流量联锁控制系统
CN110145745A (zh) * 2019-05-16 2019-08-20 绿色动力环保集团股份有限公司 一种多驱动逆推式垃圾焚烧炉acc控制方法及系统
JP2021103063A (ja) * 2019-12-25 2021-07-15 クボタ環境サ−ビス株式会社 ごみ焼却炉のごみ層厚評価方法及びごみ焼却炉の燃焼制御方法
CN113701160A (zh) * 2021-09-06 2021-11-26 中国天楹股份有限公司 垃圾焚烧厂acc自动燃烧控制方法
CN114417586A (zh) * 2022-01-11 2022-04-29 光大环保技术装备(常州)有限公司 水冷炉排表面料层厚度计算方法、系统及焚烧炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226674A (ja) * 2006-05-16 2006-08-31 Sumitomo Heavy Ind Ltd ボイラ設備を持たないごみ焼却炉の燃焼制御方式
CN102865582A (zh) * 2012-09-04 2013-01-09 吕庆忠 一种可测量垃圾厚度的垃圾焚烧炉及其测量方法
CN108194934A (zh) * 2016-12-31 2018-06-22 上海康恒环境股份有限公司 一种生活垃圾焚烧炉一次风独立布风流量联锁控制系统
CN110145745A (zh) * 2019-05-16 2019-08-20 绿色动力环保集团股份有限公司 一种多驱动逆推式垃圾焚烧炉acc控制方法及系统
JP2021103063A (ja) * 2019-12-25 2021-07-15 クボタ環境サ−ビス株式会社 ごみ焼却炉のごみ層厚評価方法及びごみ焼却炉の燃焼制御方法
CN113701160A (zh) * 2021-09-06 2021-11-26 中国天楹股份有限公司 垃圾焚烧厂acc自动燃烧控制方法
CN114417586A (zh) * 2022-01-11 2022-04-29 光大环保技术装备(常州)有限公司 水冷炉排表面料层厚度计算方法、系统及焚烧炉

Also Published As

Publication number Publication date
CN114417586A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2023134444A1 (fr) Procédé et système de calcul d'épaisseur d'une couche de matériau sur une surface d'une grille à feu refroidie à l'eau, et incinérateur
CN110101106B (zh) 基于模糊前馈反馈算法的回潮加湿过程水分控制方法及系统
JP7005930B2 (ja) シート検査装置及び検査システム
CN106773669B (zh) 一种燃料热值实时自适应校正的火电机组协调控制方法
KR20130093556A (ko) 시스템 제어 장치 및 시스템 제어 방법
JP2024050937A (ja) 自動燃焼制御方法および自動燃焼制御装置
JP2009198136A (ja) 石炭焚きボイラのガス濃度推定装置及びガス濃度推定方法
CN112275807A (zh) 一种热轧带钢轮廓边部平台的检测方法及装置
CN103033049B (zh) 烧结机主抽风机负压控制方法及系统
CN111719130B (zh) 半导体镀膜设备中的温度调整方法及半导体镀膜设备
CN112875830A (zh) 一种二级反渗透系统入口pH值的自动控制方法及系统
CN1651613A (zh) 一种碳素阳极焙烧生产系统的控制方法
US5930284A (en) Multiple input electrode gap controller
CA2975845C (fr) Dispositif et procede de pilotage d'un four a partir de mesures de la calamine formee
CN108950176B (zh) 一种基于残氧补偿的退火炉燃烧控制方法及装置
JP6402760B2 (ja) 圧延機における形状制御方法および装置
CN112666834B (zh) 一种适应燃气热值剧烈波动的加热炉炉温控制方法
JP2011121071A (ja) 板厚制御方法及び板厚制御状態判定装置
CN114509221B (zh) 一种加热罩密封评价方法、助燃空气修正方法及装置
CN111503656B (zh) 一种生活垃圾燃烧发电优化系统、方法及存储介质
CN108955260B (zh) 烧结系统主抽风机控制方法、装置及系统
CN115342364A (zh) 风室独立送风的垃圾焚烧炉料层厚度检测方法及装置
JP4194978B2 (ja) 廃棄物の燃焼設備
US11822319B2 (en) Semiconductor system
JP2004219177A (ja) 疵検出装置及び疵検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920074

Country of ref document: EP

Kind code of ref document: A1