WO2023134363A1 - 编码方法、解码方法和通信装置 - Google Patents

编码方法、解码方法和通信装置 Download PDF

Info

Publication number
WO2023134363A1
WO2023134363A1 PCT/CN2022/138444 CN2022138444W WO2023134363A1 WO 2023134363 A1 WO2023134363 A1 WO 2023134363A1 CN 2022138444 W CN2022138444 W CN 2022138444W WO 2023134363 A1 WO2023134363 A1 WO 2023134363A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs index
mcs
polar component
code rate
encoder
Prior art date
Application number
PCT/CN2022/138444
Other languages
English (en)
French (fr)
Inventor
牛凯
吴泊霖
戴金晟
张彦清
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023134363A1 publication Critical patent/WO2023134363A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate

Definitions

  • the present application relates to the communication field, and more specifically relates to an encoding method, a decoding method and a communication device in the communication field.
  • Polar codes (polar codes) coding is a coding method that can reach the Shannon capacity limit. Polar coding improves transmission reliability by introducing redundant information.
  • the embodiment of the present application provides an encoding method, a decoding method, and a communication device, which are capable of controlling the data carried by the physical shared channel through the code rate of the polar component encoder in the modulation and coding scheme (MCS) table. Processing is performed, thereby providing a method for encoding or decoding data carried by the physical shared channel through a polar code encoding scheme.
  • MCS modulation and coding scheme
  • an encoding method including: according to the code rate of each polarization component encoder among the M polarization component encoders corresponding to the first MCS index in the MCS table, the data carried by the physical shared channel
  • the MCS table includes at least one row, and each row in the at least one row included in the MCS table includes an MCS index and a code rate of at least one polar component encoder corresponding to the MCS index included in each row; sending indication information, where the indication information is used to indicate the first MCS index, and the first MCS index is an MCS index in an MCS table; wherein, M is a positive integer.
  • each row of the MCS table includes the MCS index and the code rate of at least one polar component encoder corresponding to the MCS index, and the physical The shared channel encodes the data carried by the shared channel, thereby providing a method for processing and encoding the data carried by the physical shared channel through a polar code coding scheme.
  • the first MCS index is one of the MCS indexes.
  • one row in the MCS table includes one MCS index and the code rate of at least one polar component encoder corresponding to the one MCS index.
  • the polar component encoder can be replaced by modulating sub-channels.
  • the sending the indication information includes: sending control information, where the control information includes the indication information; wherein the control information is also used to indicate the physical shared channel.
  • the foregoing method may be executed by a network device.
  • control information may be downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the physical shared channel may be a physical downlink shared channel (physical downlink shared channel, PDSCH).
  • PDSCH physical downlink shared channel
  • the foregoing method may be executed by a terminal device.
  • control information may be sidelink control information (sidelink control information, SCI).
  • sidelink control information sidelink control information, SCI.
  • the physical shared channel may be a sidelink shared channel (physical sidelink shared channel, PSSCH).
  • PSSCH physical sidelink shared channel
  • the sending the indication information includes: sending radio resource control (radio resource control, RRC) signaling, where the RRC signaling includes the indication information.
  • RRC radio resource control
  • the RRC signaling may indicate the physical shared channel.
  • the indication information indicating the first MCS index and the information indicating the physical shared channel may be the same information or different information, which is not limited in this application.
  • the device sending the indication information stores the MCS table, and the device receiving the indication information also stores the MCS table.
  • the MCS table may have been semi-statically configured through other signaling, may also be pre-configured, or may also be indicated by the indication information.
  • the encoding the data carried by the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index in the MCS table includes: according to the MCS The code rates of the M polarization component encoders corresponding to the first MCS index in the table process one code block (code block, CB) of the data carried by the physical shared channel.
  • each of the at least one row included in the MCS table further includes a modulation order and/or a total spectral efficiency corresponding to the MCS index included in each row.
  • encoding the data carried by the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index in the MCS table includes: At least one of an MCS index modulation order or total spectral efficiency and code rates of the M polarization component encoders corresponding to the first MCS encode the data carried by the physical shared channel.
  • the total spectral efficiency includes the first spectral efficiency and the second spectral efficiency occupied by the shaped bits.
  • the first spectral efficiency is the first spectral efficiency occupied by information bits.
  • the number of code rates of the polar component encoder corresponding to the MCS index included in each row is determined according to the modulation order corresponding to the MCS index included in each row.
  • the number of code rates of the polar component encoder is determined according to the modulation order corresponding to the MCS index included in each row, which facilitates the determination of the number of code rates of the planned component encoder.
  • the number of code rates of the polar component encoder corresponding to the first MCS index is determined according to the modulation order corresponding to the first MCS index.
  • the number of code rates of the polar component encoder corresponding to the MCS index included in each row is determined according to the modulation order corresponding to the MCS index included in each row, specifically: each row includes The number of code rates of the polar component encoder corresponding to the MCS index is equal to the modulation order corresponding to the MCS index included in each row.
  • the number of code rates of the polar component encoder corresponding to the MCS index included in each row is determined according to the modulation order corresponding to the MCS index included in each row, specifically: The number of code rates of the polar component encoder corresponding to the MCS index included in each row is half of the modulation order corresponding to the MCS index included in each row.
  • the MCS table is characterized by: there is a second MCS index and a third MCS index, and when the modulation order corresponding to the second MCS index is different from the modulation order corresponding to the third MCS index Meanwhile, the number of code rates of the polar component encoder corresponding to the second MCS index is different from the number of code rates of the polar component encoder corresponding to the third MCS index.
  • the number of code rates of the polar component encoder corresponding to the second MCS index is half of the modulation order corresponding to the second MCS index
  • the third MCS index The code rate of the corresponding polar component encoder is half of the modulation order corresponding to the third MCS index.
  • the total spectral efficiency corresponding to the MCS index included in each row is obtained from R T and R S .
  • R T is the first spectral efficiency
  • the first spectral efficiency is the sum of spectral efficiencies of at least one polar component encoder corresponding to the MCS index included in each row.
  • R S is the code rate of the shaping bit of the last polar component encoder in the at least one polar component encoder corresponding to the MCS index included in each row.
  • the total spectral efficiency corresponding to the MCS index included in each row is obtained from R T and R S , including: the total spectral efficiency corresponding to the MCS index included in each row is R T + 2RS .
  • each of the at least one row included in the MCS table further includes the code rate of the shaping bit of the last polar component encoder in the at least one polar component encoder corresponding to the MCS index R S .
  • the code rate occupied by the shaping bits of the Mth polar component encoder among the M polar component encoders corresponding to the first MCS index is determined in the MCS table R S .
  • said encoding the data carried by the physical shared channel according to the code rate of each of the M polarization component encoders corresponding to the first MCS index in the MCS table includes: according to the MCS The code rate of each polar component encoder among the M polar component encoders corresponding to the first MCS index in the table and the Mth The data carried by the physical shared channel is coded at the code rate R S of the shaped bits of a polar component coder.
  • the code rate of each polar component encoder among the M polar component encoders corresponding to the first MCS index in the MCS table and the code rate of the shaping bit of the Mth polar component encoder can be compared to The data carried by the physical shared channel is encoded.
  • the Mth polarization component in the M polarization component encoder corresponding to the first MCS index is determined according to the Maxwell Boltzmann parameter and the modulation order corresponding to the first MCS index
  • the code rate R S occupied by the shaping bits of the encoder, the Maxwell Boltzmann parameter is a preset value.
  • said encoding the data carried by the physical shared channel according to the code rate of each of the M polarization component encoders corresponding to the first MCS index in the MCS table includes: according to the MCS The code rate of each polar component encoder among the M polar component encoders corresponding to the first MCS index in the table and the Mth The data carried by the physical shared channel is coded at the code rate R S of the shaped bits of a polar component coder.
  • the Maxwell Boltzmann parameter may be semi-statically configured, for example configured by RRC signaling, or pre-configured.
  • Encoding the data carried by the physical shared channel at the code rate R S of the shaping bit of the Mth polar component encoder in the polar component encoders includes: according to the first MCS index in the MCS table Corresponding code rate of each polar component encoder among the M polar component encoders and shaping bits of the Mth polar component encoder among the M polar component encoders corresponding to the first MCS index
  • the code rate R S of is used to process the first code block CB corresponding to the physical shared channel.
  • the physical shared channel corresponds to one or more CBs, and the one or more CBs corresponding to the physical shared channel can be processed respectively according to the code rates of the M polarized component encoders corresponding to the first MCS index. In this way, The processing of the physical shared channel may be done.
  • the physical shared channel corresponds to one or more CBs, and the one or more CBs include the first CB.
  • the Mth pole of the M polarization component encoders corresponding to the first MCS index is determined according to the Maxwell Boltzmann parameter and the modulation order corresponding to the first MCS index
  • the code rate R S occupied by the shaping bits of the quantization component encoder includes: determining the probability distribution of constellation points according to the modulation order corresponding to the Maxwell Boltzmann parameter and the first MCS index; according to the constellation point Determine the conditional entropy of the Mth polarization component encoder according to the probability distribution of Rate R S .
  • the code rates of the M polar component encoders corresponding to the first MCS index in the MCS table are based on the code rates of the M modulators corresponding to the M polar component encoders.
  • the channel capacity of the channel is determined by the code length N of each polarization component encoder in the M polarization component encoders, and the M polarization component encoders correspond to the M modulation subchannels one by one;
  • the channel capacity corresponding to the M modulation subchannels is determined according to the total spectrum efficiency corresponding to the first MCS index.
  • the code rates of the M polarized component encoders can be determined according to the channel capacity of the M modulated subchannels and the code length N of each polarized component encoder, and the channel capacity of the modulated subchannels can be To characterize the reliability of the modulation sub-channel, therefore, determining the code rates of M polarization component encoders according to the channel capacity of the modulation sub-channel and the code length N of each polarization component encoder is beneficial to improve the reliability of transmission.
  • the channel capacity corresponding to the M modulation sub-channels is determined according to the total spectrum efficiency corresponding to the first MCS index, specifically: the channel capacity of the M modulation sub-channels is determined according to The transition probability of the equivalent channel of the M modulation subchannels and the probability distribution of the constellation point are determined, and the transition probability of the equivalent channel is determined according to the first spectral efficiency and the probability distribution of the constellation point, and the constellation point
  • the probability distribution of is the probability distribution of the modulation order corresponding to the first MCS index and the constellation point corresponding to the Maxwell Boltzmann parameter, the Maxwell Boltzmann parameter is a preset value, and the first spectral efficiency is the first spectral efficiency occupied by information bits in the total spectral efficiency.
  • the channel capacity of the M modulation subchannels is determined according to the transition probability of the equivalent channel of the M modulation subchannels and the probability distribution of constellation points, specifically:
  • the channel capacity of the M modulation sub-channels satisfies the following formula (1).
  • the first m bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are Under the condition of , the probability that the symbol output by the equivalent channel is y.
  • the first m-1 bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are Under the condition of , the probability that the sign of the output of the equivalent channel is y.
  • the first m bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are The probability. is determined according to the probability distribution of the constellation points. and is the transition probability of the equivalent channel; The set of symbols output for the equivalent channel.
  • the channel capacity of the M modulation subchannels is determined according to the transition probability of the equivalent channel of the M modulation subchannels and the probability distribution of constellation points, specifically: the M modulation subchannels
  • the channel capacity of each modulation sub-channel in the channel capacity of the modulation sub-channel is based on the error probability of each modulation sub-channel, the code length N of each polarization component encoder, the transition probability of the equivalent channel and the constellation
  • the probability distribution of the points is determined, and the error probability of each modulation subchannel is determined according to the error probability of the equivalent channel.
  • the error probability of each modulation subchannel is determined according to the error probability of an equivalent channel, specifically:
  • the ⁇ is the error probability of the equivalent channel
  • the ⁇ is a preset value
  • the ⁇ m is the error probability of the mth modulation subchannel, m ⁇ [1,...,M].
  • the code rates of the M polar component encoders corresponding to the first MCS index in the MCS table are based on the code rates of the M modulators corresponding to the M polar component encoders.
  • the channel capacity of the channel and the code length N of the M polarization component encoders are determined, specifically:
  • the code rates of the M polar component encoders corresponding to the first MCS index in the MCS table are based on the number of information bits of each polar component encoder and the The code length N is determined, and the number of information bits of each polarization component encoder is based on the proportion of the channel capacity corresponding to each modulation sub-channel in the sum of the channel capacities of M modulation sub-channels and The sum of information bits corresponding to the M polarized component encoders is determined, and the sum of information bits corresponding to the M polarized component encoders is determined according to the target code rate, the number of modulation sub-channels M and each polarized The code length N of the component encoder is obtained.
  • a decoding method including: receiving indication information, the indication information is used to indicate a first MCS index, the first MCS index is an MCS index in an MCS table, and the MCS table includes at least one row , each of the at least one row included in the MCS table includes an MCS index and a code rate of at least one polar component encoder corresponding to the MCS index included in each row;
  • M is a positive integer.
  • each row of the MCS table includes the MCS index and the code rate of at least one polar component encoder corresponding to the MCS index, and the physical The data carried by the shared channel is decoded, thereby providing a method for processing and decoding the data carried by the physical shared channel through a polar code coding scheme.
  • each row of the at least one row included in the MCS table further includes a modulation order and/or a total spectral efficiency corresponding to the MCS index included in each row.
  • the MCS table is characterized by: there is a second MCS index and a third MCS index, and when the modulation order corresponding to the second MCS index is different from the modulation order corresponding to the third MCS index Meanwhile, the number of code rates of the polar component encoder corresponding to the second MCS index is different from the number of code rates of the polar component encoder corresponding to the third MCS index.
  • the number of code rates of the polar component encoder corresponding to the second MCS index is half of the modulation order corresponding to the second MCS index
  • the third MCS index The code rate of the corresponding polar component encoder is half of the modulation order corresponding to the third MCS index.
  • the total spectral efficiency corresponding to the MCS index included in each row is obtained by R T and R S ;
  • R T is the first spectral efficiency
  • the first spectral efficiency is the sum of the spectral efficiencies of at least one polar component encoder corresponding to the MCS index included in each row
  • R S is the MCS included in each row
  • the total spectral efficiency corresponding to the MCS index included in each row is obtained from R T and R S , including: the total spectral efficiency corresponding to the MCS index included in each row is R T + 2RS .
  • each of the at least one row included in the MCS table further includes the code rate of the shaping bit of the last polar component encoder in the at least one polar component encoder corresponding to the MCS index R S .
  • the decoding method further includes:
  • decoding the data carried by the physical shared channel according to the code rate of each of the M polarization component encoders corresponding to the first MCS index in the MCS table includes:
  • the decoding method further includes:
  • the Maxwell Boltzmann parameter and the modulation order corresponding to the first MCS index determine the proportion of shaping bits occupied by the Mth polarized component encoder among the M polarized component encoders corresponding to the first MCS index Code rate R S , the Maxwell Boltzmann parameter is a preset value;
  • decoding the data carried by the physical shared channel according to the code rate of each of the M polarization component encoders corresponding to the first MCS index in the MCS table includes: Encoding according to the code rate of each of the M polar component encoders corresponding to the first MCS index in the MCS table and the M polar component encoders corresponding to the first MCS index
  • the code rate R S of the shaped bits of the Mth polarized component encoder in the encoder is used to decode the physical shared channel.
  • the Mth pole of the M polarization component encoders corresponding to the first MCS index is determined according to the Maxwell Boltzmann parameter and the modulation order corresponding to the first MCS index
  • the code rate R S occupied by the shaping bits of the quantization component encoder includes: determining the probability distribution of constellation points according to the modulation order corresponding to the Maxwell Boltzmann parameter and the first MCS index; according to the constellation point Determine the conditional entropy of the Mth polarization component encoder according to the probability distribution of Rate R S .
  • an encoding method including: receiving indication information, the indication information is used to indicate a first MCS index, the first MCS index is an MCS index in an MCS table, and the MCS table includes at least one row , each of the at least one row included in the MCS table includes an MCS index and a code rate of at least one polar component encoder corresponding to the MCS index included in each row;
  • M is a positive integer.
  • each row of the MCS table includes the MCS index and the code rate of at least one polar component encoder corresponding to the MCS index, and the physical The shared channel encodes the data carried by the shared channel, thereby providing a method for processing and encoding the data carried by the physical shared channel through a polar code coding scheme.
  • each row of the at least one row included in the MCS table further includes a modulation order and/or a total spectral efficiency corresponding to the MCS index included in each row.
  • the MCS table is characterized by: there is a second MCS index and a third MCS index, when the modulation order corresponding to the second MCS index and the modulation order corresponding to the third MCS index.
  • the numbers are different, the number of code rates of the polar component encoder corresponding to the second MCS index is different from the number of code rates of the polar component encoder corresponding to the third MCS index.
  • the number of code rates of the polar component encoder corresponding to the second MCS index is half of the modulation order corresponding to the second MCS index
  • the third MCS index The code rate of the corresponding polar component encoder is half of the modulation order corresponding to the third MCS index.
  • the total spectral efficiency corresponding to the MCS index included in each row is obtained by R T and R S ;
  • R T is the first spectral efficiency
  • the first spectral efficiency is the sum of the spectral efficiencies of at least one polar component encoder corresponding to the MCS index included in each row
  • R S is the MCS included in each row
  • the total spectral efficiency corresponding to the MCS index included in each row is obtained from R T and R S , including: the total spectral efficiency corresponding to the MCS index included in each row is R T + 2RS .
  • each of the at least one row included in the MCS table further includes the code rate of the shaping bit of the last polar component encoder in the at least one polar component encoder corresponding to the MCS index R S .
  • the encoding method also includes:
  • encoding the data carried by the physical shared channel according to the code rate of each of the M polarization component encoders corresponding to the first MCS index in the MCS table includes:
  • the encoding method also includes:
  • the Maxwell Boltzmann parameter and the modulation order corresponding to the first MCS index determine the proportion of shaping bits occupied by the Mth polarized component encoder among the M polarized component encoders corresponding to the first MCS index Code rate R S , the Maxwell Boltzmann parameter is a preset value;
  • encoding the data carried by the physical shared channel according to the code rate of each of the M polarization component encoders corresponding to the first MCS index in the MCS table includes:
  • the Mth pole of the M polarization component encoders corresponding to the first MCS index is determined according to the Maxwell Boltzmann parameter and the modulation order corresponding to the first MCS index
  • the code rate R S occupied by the shaping bits of the component coder includes:
  • the code rate RS occupied by the shaped bits of the Mth polar component encoder is determined according to the conditional entropy of the Mth polar component encoder.
  • a decoding method including: sending indication information, the indication information is used to indicate a first MCS index, the first MCS index is an MCS index in an MCS table, and the MCS table includes at least one row , each of the at least one row included in the MCS table includes an MCS index and the code rate of at least one polar component encoder corresponding to the MCS index included in each row; according to the MCS table and the first The code rate of each polarization component encoder among the M polarization component encoders corresponding to the MCS index decodes the data carried by the physical shared channel;
  • M is a positive integer.
  • each row of the MCS table includes the MCS index and the code rate of at least one polar component encoder corresponding to the MCS index, and the physical The data carried by the shared channel is decoded, thereby providing a method for processing and decoding the data carried by the physical shared channel through a polar code coding scheme.
  • each row of the at least one row included in the MCS table further includes a modulation order and/or a total spectral efficiency corresponding to the MCS index included in each row.
  • the MCS table is characterized by: there is a second MCS index and a third MCS index, when the modulation order corresponding to the second MCS index and the modulation order corresponding to the third MCS index.
  • the numbers are different, the number of code rates of the polar component encoder corresponding to the second MCS index is different from the number of code rates of the polar component encoder corresponding to the third MCS index.
  • the number of code rates of the polar component encoder corresponding to the second MCS index is half of the modulation order corresponding to the second MCS index
  • the third MCS index The code rate of the corresponding polar component encoder is half of the modulation order corresponding to the third MCS index.
  • the total spectral efficiency corresponding to the MCS index included in each row is obtained by R T and R S ;
  • R T is the first spectral efficiency
  • the first spectral efficiency is the sum of the spectral efficiencies of at least one polar component encoder corresponding to the MCS index included in each row
  • R S is the MCS included in each row
  • the total spectral efficiency corresponding to the MCS index included in each row is obtained from R T and R S , including: the total spectral efficiency corresponding to the MCS index included in each row is R T + 2RS .
  • each of the at least one row included in the MCS table further includes the code rate of the shaping bit of the last polar component encoder in the at least one polar component encoder corresponding to the MCS index R S .
  • the decoding method further includes:
  • decoding the data carried by the physical shared channel according to the code rate of each of the M polarization component encoders corresponding to the first MCS index in the MCS table includes:
  • the decoding method further includes:
  • the Maxwell Boltzmann parameter and the modulation order corresponding to the first MCS index determine the proportion of shaping bits occupied by the Mth polarized component encoder among the M polarized component encoders corresponding to the first MCS index Code rate R S , the Maxwell Boltzmann parameter is a preset value;
  • decoding the data carried by the physical shared channel according to the code rate of each of the M polarization component encoders corresponding to the first MCS index in the MCS table includes:
  • the Mth pole of the M polarization component encoders corresponding to the first MCS index is determined according to the Maxwell Boltzmann parameter and the modulation order corresponding to the first MCS index
  • the code rate R S occupied by the shaping bits of the quantization component encoder includes: determining the probability distribution of constellation points according to the modulation order corresponding to the Maxwell Boltzmann parameter and the first MCS index;
  • the code rate RS occupied by the shaped bits of the Mth polar component encoder is determined according to the conditional entropy of the Mth polar component encoder.
  • a method for determining the code rate of a polar component encoder comprising: obtaining a first spectral efficiency; determining the corresponding M polar component encoders according to the first spectral efficiency
  • the channel capacity of each modulation subchannel in the M modulation subchannels, the M polarization component encoders correspond to the M modulation subchannels one by one, and each polarization in the M polarization component encoders
  • the code length of the component encoder is N; the code rate of each polar component encoder is determined according to the channel capacity corresponding to each modulation subchannel and the code length N of each polar component encoder; wherein , N and M are positive integers.
  • the code rates of the M polarized component encoders can be determined according to the channel capacity of the M modulated subchannels and the code length N of each polarized component encoder, and the channel capacity of the modulated subchannels can be To characterize the reliability of the modulation sub-channel, therefore, the code rate of each polarization component encoder can be determined according to the channel capacity of the modulation sub-channel, thereby improving the applicability and avoiding the use of numerical search methods to determine the information of each polarization component encoder A problem of high complexity in the number of bits.
  • the determining the channel capacity of each modulation subchannel in the M modulation subchannels corresponding to the M polarization component encoders according to the first spectral efficiency includes:
  • the determining the channel capacity of each of the M modulation subchannels corresponding to the equivalent channel according to the transition probability of the equivalent channel and the probability distribution of the constellation points is such that The channel capacity of each modulation subchannel satisfies the following formula (1).
  • the first m bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are Under the condition of , the probability that the symbol output by the equivalent channel is y.
  • the first m-1 bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are Under the condition of , the probability that the sign of the output of the equivalent channel is y.
  • the first m bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are The probability, is determined according to the probability distribution of the constellation points. and is the transition probability of the equivalent channel.
  • the set of symbols output for the equivalent channel is the channel capacity of the mth modulation subchannel among the M modulation subchannels, m ⁇ [1,...,M].
  • the determining the channel capacity of each modulation subchannel in the M modulation subchannels corresponding to the equivalent channel according to the transition probability of the equivalent channel and the probability distribution of the constellation points include:
  • the error probability of each modulation subchannel in the M modulation subchannels is determined according to the error probability of the equivalent channel so that the error probability of each modulation subchannel satisfies the following formula (2 ).
  • the ⁇ is the error probability of the equivalent channel
  • the ⁇ is a preset value
  • the ⁇ m is the error probability of the mth modulation subchannel, m ⁇ [1,...,M].
  • the code rate of each polarization component encoder is determined according to the channel capacity corresponding to the M modulation subchannels and the code length N of each polarization component encoder, include:
  • the proportion of the channel capacity corresponding to each modulation subchannel in the sum of the channel capacities of m modulation subchannels and the sum of information bits corresponding to the M polarization component encoders determine the corresponding channel capacity of each modulation subchannel.
  • the number of information bits of the polar component encoders, the sum of the information bits corresponding to the M polar component encoders is according to the target code rate, the number M of modulation sub-channels and the number of each polar component encoder Obtained by code length N;
  • the method also includes:
  • the code length of each polarized component encoder is N
  • the probability distribution of the constellation points is the probability distribution of constellation points corresponding to the modulation order and the Maxwell Boltzmann parameter, and the Maxwell Boltzmann parameter is a preset value
  • a method for determining a code rate including: determining the conditional entropy corresponding to the Mth polarized component encoder among the M polarized component encoders according to the probability distribution of constellation points, each The code length of the polar component encoder is N, the probability distribution of the constellation points is the distribution of the probability of the constellation points corresponding to the modulation order and the Maxwell Boltzmann parameter, and the Maxwell Boltzmann parameter is a preset value ; According to the conditional entropy corresponding to the Mth polarized component encoder, determine the code rate occupied by the shaped bits of the Mth polarized component encoder.
  • the shaped bits in the Mth polarized component encoder Quantity according to the number of shaped bits of the Mth polarized component encoder and the code length N of the Mth polarized component encoder, determine the proportion of the shaped bits of the Mth polarized component encoder code rate.
  • conditional entropy corresponding to the Mth polarization component encoder among the M polarization component encoders can be determined according to the probability distribution of the constellation points, and the conditional entropy corresponding to the Mth polarization component encoder can be determined according to the conditional entropy corresponding to the Mth polarization component encoder.
  • the code rate occupied by the shaping bits of the M-th polarization component encoder that is to say, the code rate occupied by the shaping bits of the M-th polarization component encoder can be determined through the probability shaping scheme, avoiding the use of numerical search method to determine
  • the complexity of the number of shaping bits occupied by the Mth polar component encoder can also improve the applicability.
  • the probability distribution of the constellation points may be determined according to the Maxwell Boltzmann parameter and the modulation order.
  • determining the code rate occupied by the shaped bits of the Mth polarized component encoder according to the conditional entropy corresponding to the Mth polarized component encoder includes: according to the Mth polarized component The conditional entropy corresponding to the encoder determines the number of shaping bits in the Mth polarization component encoder; according to the number of shaping bits of the Mth polarization component encoder and the Mth polarization component encoding The code length N of the encoder determines the code rate occupied by the shaping bits of the Mth polar component encoder.
  • the present application provides a communication device, which has a function of realizing the behavior of each device in the foregoing aspects and possible implementation manners of the foregoing aspects.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more modules or units corresponding to the functions described above. For example, a determination module or unit, a transceiver module or unit, and the like.
  • the present application provides an electronic device, the device includes a processor, the processor is coupled with a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions stored in the memory, so that the above-mentioned The methods in the aspects and possible implementations of the above-mentioned aspects are performed.
  • the processor is used to execute the computer programs or instructions stored in the memory, so that the device executes the above aspects and the methods in possible implementations of the above aspects.
  • the device includes one or more processors.
  • the device may further include a memory coupled to the processor.
  • the device may include one or more memories.
  • the memory can be integrated with the processor, or set separately.
  • the device may further include a transceiver.
  • the present application provides an electronic device, including: one or more processors; memory; and one or more computer programs. Wherein one or more computer programs are stored in the memory, the one or more computer programs comprising instructions.
  • one or more processors are made to execute the method in the above aspects or any possible implementation of the aspects, or the method introduced in any embodiment of the present application.
  • the electronic device may further include: a touch display screen and/or a camera, wherein the touch display screen includes a touch-sensitive surface and a display.
  • the present application provides a computer-readable storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the electronic device, the electronic device is made to perform any of the above aspects or any possible method of the aspects, or this Apply the method introduced in any embodiment.
  • the present application provides a computer program product, which, when the computer program product is run on the electronic device, causes the electronic device to execute any possible method of any of the above-mentioned aspects or aspects, or any implementation method of the present application The method described in the example.
  • the present application provides an apparatus, including a unit for performing the method introduced in any embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a method for determining a code rate of a polar component encoder provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a method for determining a code rate occupied by shaped bits provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an encoding method and a decoding method provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of another encoding method and decoding method provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of an encoding process of an encoding device provided by an embodiment of the present application using M polarized component encoders.
  • Fig. 7 is a schematic diagram of the effect of the encoding method and the decoding method provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of effects of another encoding method and decoding method provided by the embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • NR new radio
  • Fig. 1 shows a schematic diagram of an application scenario applied to the embodiment of the present application.
  • the system includes: a terminal device 110 and a network device 120 .
  • Terminal equipment 110 is also called user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal, subscriber unit, subscriber station, mobile station, mobile station, Remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user communication device, etc.
  • user equipment user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, Remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user communication device, etc.
  • the terminal device 110 may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminal devices include: mobile phone, tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, enhanced Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocols protocol, SIP) telephone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem
  • Vehicle-mounted devices, wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc. are not limited in this
  • the network device 120 may also be called a radio access network (radio access network, RAN) or a radio access network device, and the network device 120 may be a transmission reception point (transmission reception point, TRP), and may also be an evolution in the LTE system.
  • type base station evolved NodeB, eNB or eNodeB
  • it can also be a home base station (for example, home evolved NodeB, or home Node B, HNB), a base band unit (base band unit, BBU), or a cloud wireless access network
  • the network device 120 may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a radio access network (radio access network) including a CU node and a DU node.
  • RAN Radio access network
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • DU node DU node
  • terminal device 110 and the network device 120 are schematically shown in FIG. 1 for ease of understanding, but this should not constitute any limitation to the present application. There may be more network devices in the wireless communication system, or A greater or lesser number of terminal devices may be included, which is not limited in this application.
  • the terminal device 110 may be fixed or mobile.
  • the network device 120 in FIG. 1 may also be replaced with a terminal device, and a link for transmitting data between terminal devices is called a sidelink (sidelink).
  • Sidelinks are generally used in scenarios where direct communication between devices can be performed, such as vehicle to everything (V2X) or device to device (D2D).
  • V2X communication can be regarded as a special case of D2D communication.
  • the new radio (new radio, NR) access technology is the current mainstream wireless communication technology, which can support V2X communication with lower delay and higher reliability according to V2X service characteristics and new service requirements.
  • V2X is the foundation and key technology for the realization of smart cars, autonomous driving, and intelligent transportation systems.
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to-vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I), vehicle to pedestrian (vehicle to pedestrian, V2P), etc.
  • V2N vehicle to network
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • terminal device 110 may be simplified as “terminal device”
  • network device 120 may be simplified as “network device”.
  • Polar code coding is currently the only channel coding method that has been theoretically proven to reach the Shannon capacity limit.
  • Polar coding improves the reliability of transmission by introducing redundant information, which may reduce the transmission rate due to the introduction of redundant information.
  • high-dimensional modulation can be used in channels with limited bandwidth.
  • a design scheme of polar coding and modulation may be adopted.
  • Polar coding and modulation is a joint optimization design scheme of polar coding and modulation, and it can be proved theoretically that the capacity of a symmetric channel can be achieved.
  • AWGN additive white Gaussian noise
  • a polar-coded modulation probability shaping scheme can be employed.
  • the construction of polar codes is empirical, which cannot be adapted to any coding and modulation system, and the scope of application is limited.
  • MLC-PCM multi-level polar-coded modulation
  • the construction of the polar code can be realized by means of numerical search. The numerical search method is to construct the code rate of the polar component encoder by trying to construct it. If the code rate of the polar component encoder is inaccurate, it will try to construct the code rate of the polar component encoder again until the exact code rate of the planned component encoder is found, which leads to high computational complexity and cannot be applied to any in the communication system.
  • a method for determining the code rate of a polar code component encoder is provided, which can be applied to any communication system, and the computational complexity is relatively low, avoiding the use of numerical search to construct polar components The bitrate of the encoder.
  • the following describes a method 200 for determining a code rate of a polar component encoder according to an embodiment of the present application in conjunction with FIG. 2.
  • the method 200 is applicable to the first device. As shown in FIG. 2, the method 200 includes:
  • the first device acquires a first spectrum efficiency.
  • the first device in method 200 may be the terminal device or network device shown in FIG. 1 , or other devices different from the terminal device and network device. That is to say, M polarizations are determined in this embodiment
  • the code rate of the component encoder can be other devices different from terminal devices and network devices.
  • S201 may be replaced by: the first device may obtain the modulation order and the target code rate.
  • the first device may determine the first spectral efficiency according to the modulation order and the target code rate. For example, the modulation order multiplied by the target code rate equals the first spectral efficiency.
  • the terminal device may obtain the first spectrum efficiency from the network device.
  • the method 200 further includes: acquiring the modulation order by the first device.
  • the method 200 further includes: the first device acquires the target code rate, and the first device may determine the modulation order according to the first spectral efficiency and the target code rate. For example, the first device may divide the first spectral efficiency by the target code rate to obtain the modulation order.
  • S201 includes: the first device acquires the total spectral efficiency, the first device determines the first spectral efficiency according to the second spectral efficiency occupied by the shaped bits, and the first spectral efficiency is the first spectral efficiency occupied by the information bits.
  • the total spectral efficiency may be the sum of the first spectral efficiency occupied by information bits and the second spectral efficiency occupied by shaped bits.
  • the first device may determine the second spectral efficiency occupied by shaped bits. second spectral efficiency, and then subtract the second spectral efficiency occupied by the shaped bits from the total spectral efficiency to obtain the first spectral efficiency occupied by the information bits.
  • the first device determines the channel capacity of each of the M modulation subchannels corresponding to the M polarization component encoders according to the first spectral efficiency, and the M polarization component encoders and the M modulation subchannels are one by one correspond.
  • the code length of each polar component encoder in the M polar component encoders is N.
  • one polar encoder can correspond to M polar component encoders, M can be a preset value, and the value of M can be different in different application scenarios.
  • the codeword sequence output by each polar component encoder corresponds to a modulation subchannel.
  • N is the length of a codeword sequence output by each polar component encoder among the M polar component encoders.
  • the length N of the codeword sequence output by each polar component encoder is determined according to the sum of information bits and the first spectral efficiency.
  • the length N of the codeword sequence output by each polar component encoder may be the sum of information bits divided by the first spectral efficiency.
  • the sum of information bits is equal to the length N of the codeword sequence multiplied by the first spectral efficiency.
  • the sum of information bits is K
  • the first spectrum efficiency is R T
  • K 2n ⁇ RT .
  • S202 includes operation A and operation B.
  • operation A the first device can determine the transition probabilities of the equivalent channels corresponding to M polarization distribution encoders according to the first spectral efficiency and the probability distribution of constellation points
  • operation B the first device can determine the transition probabilities of the equivalent channels according to the The probability distribution of the probability and constellation points determines the channel capacity of each of the M modulation subchannels.
  • the first device may equivalently generate an equivalent channel according to the first spectral efficiency so that the equivalent channel channel capacity Equal to the first spectral efficiency, the first spectral efficiency can be expressed by RT , that is
  • operation A includes: the first device may determine the transition probabilities of equivalent channels corresponding to the M polarization distribution encoders according to the first spectral efficiency and the probability distribution of constellation points so that the transition probabilities of the equivalent channels satisfy the following Formula (3).
  • p(x) is the set of constellation points The probability of x in .
  • p(x') is also a collection of constellation points
  • the probability of x' in . is the transition probability of the equivalent channel. is also the transition probability of the equivalent channel. Among them, x' is the traversal Constellation points in .
  • R T , p(x) and p(x') in formula (3) are known quantities, and is the quantity related to the variance ⁇ 2 of the equivalent channel, that is to say, the variance ⁇ 2 of the noise of the equivalent channel is an unknown quantity, after determining the variance ⁇ 2 of the noise of the equivalent channel according to formula (3), it can be determined and The value of , where the mean value of the noise of the equivalent channel can be 0.
  • the first device may determine the set of constellation points according to the modulation order
  • the number of constellation points included in for example, the modulation order is Q m , then the set of constellation points The number of constellation points included in is Right now
  • the first device may determine the set of constellation points according to the modulation order and the Maxwell Boltzmann parameter The probability p(x) of x in .
  • the Maxwell Boltzmann parameter can be a preset value. For example, p(x) that can be determined by the first device satisfies the following formula (4).
  • is the Maxwell Boltzmann parameter
  • x is the set of constellation points Constellation points in .
  • the first device may determine the channel capacity of each modulation sub-channel in the M modulation sub-channels according to the transition probability of the equivalent channel and the probability distribution of the constellation points.
  • the first device may determine the channel capacity of each of the M modulation sub-channels according to the transition probability of the equivalent channel and the probability distribution of the constellation points so that the channel capacity of each modulation sub-channel satisfies the following formula (5 ).
  • the first m bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are Under the condition of , the probability that the symbol output by the equivalent channel is y.
  • the first m-1 bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are Under the condition of , the probability that the sign of the output of the equivalent channel is y.
  • the first m bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are The probability, is determined according to the probability distribution of the constellation points. and is the transition probability of the equivalent channel.
  • formula (5) may be the same as the foregoing formula (1).
  • the transition probability of the equivalent channel can be obtained Since in the process of mapping, a given M-dimensional bit vector Represents an M-dimensional bit vector Consists of 0 and 1, M in represents the length of the bit vector, and the mapping rule of the modulation symbol is Represents a set partition (Set Partition, SP) map, therefore,
  • the first m bits of are equal to The sum of the probabilities of the constellation points of .
  • operation B includes: the first device determines the error probability of each modulation sub-channel in the M modulation sub-channels according to the error probability of the equivalent channel; according to the error probability of each modulation sub-channel, each polarization component coding
  • the channel capacity of each modulated sub-channel is determined by the code length N of the device, the transition probability of the equivalent channel, and the probability distribution of the constellation points.
  • the first device determines the error probability of each modulation subchannel in the M modulation subchannels according to the error probability of the equivalent channel so that the error probability of each modulation subchannel satisfies the following formula (6).
  • the ⁇ is the error probability of the equivalent channel
  • the ⁇ is a preset value
  • the ⁇ m is the error probability of the mth modulation subchannel, m ⁇ [1,...,M]
  • the first device determines the channel capacity of each modulation subchannel according to the error probability of each modulation subchannel, the code length N of each polarization component encoder, the transition probability of the equivalent channel, and the probability distribution of constellation points , including: the first device determines the divergence of each modulation subchannel according to the transition probability of the equivalent channel, the probability distribution of constellation points, and the original channel capacity of each modulation subchannel; according to the divergence of each modulation subchannel, The code length N of each polar component encoder, the error probability of each modulation subchannel and the original channel capacity of each modulation subchannel determine the channel capacity of each modulation subchannel.
  • the original channel capacity of each modulation sub-channel may be the channel capacity of the modulation sub-channel obtained according to Case 1.
  • formula (5) can be used to obtain the channel capacity of each modulation subchannel. That is to say, the channel capacity of the modulation sub-channel calculated in case one can be directly used in S203 to calculate the code rate of each polarization component encoder, or in case two can be used for each modulation sub-channel obtained in case one
  • the channel capacity of the channel is calibrated, so as to obtain the channel capacity of the calibrated modulation sub-channel, and in S203, the code rate of each polarization component encoder is calculated by using the channel capacity of the calibrated modulation sub-channel.
  • the first device determines the divergence of each modulation subchannel according to the transition probability of the equivalent channel, the probability distribution of constellation points, and the original channel capacity of each modulation subchannel such that the divergence V of each modulation subchannel m satisfies the following formula (7).
  • V m is the divergence of the mth modulation subchannel
  • the first m bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are Under the condition of , the probability that the symbol output by the equivalent channel is y
  • the first m-1 bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are Under the condition of , the probability that the sign of the output of the equivalent channel is y
  • the first m bits of the M-dimensional bit vector corresponding to the modulation symbol input to the equivalent channel are The probability, is determined according to the probability distribution of the constellation points. is the original channel capacity of each modulated subchannel, It can be obtained according to formula (5).
  • the first device makes each Channel capacity of modulated subchannels The following formula (8) is satisfied.
  • V m is the divergence of the mth modulation subchannel
  • ⁇ m is the error probability of the mth modulation subchannel
  • Q( ⁇ ) is the complementary Gaussian cumulative distribution function.
  • the first device determines the code rate of each polarization component encoder according to the channel capacity corresponding to each modulation subchannel and the code length N of each polarization component encoder.
  • S203 includes: the first device determining the proportion of the channel capacity corresponding to each modulation sub-channel in the sum of the channel capacities of the M modulation sub-channels; the first device according to each modulation sub-channel The proportion of the channel capacity corresponding to the channel in the sum of the channel capacities of the M modulation sub-channels and the sum of the information bits corresponding to the M polarization component encoders determine the information bits of the polarization component encoders corresponding to each modulation sub-channel number, the sum of the information bits corresponding to the M polarization component encoders is obtained according to the target code rate, the number M of modulation subchannels, and the code length N of each polarization component encoder; the first device according to the The number of information bits of the polarization component encoder corresponding to each modulation subchannel and the code length N of each polarization component encoder determine the code rate occupied by each polarization component encoder.
  • the first device may obtain the target code rate, or the first device may obtain the target code rate according to the first spectral efficiency and the modulation order.
  • the first device may determine the information bits of the polarization component encoders corresponding to each modulation sub-channel in proportion to the proportion of the channel capacity corresponding to each modulation sub-channel in the sum of the channel capacities of M modulation sub-channels
  • the number of , the number of information bits of the polarization component encoder corresponding to each modulation subchannel and the code length N determine the code rate of each polarization component encoder.
  • the higher the channel capacity of the modulation sub-channel the higher the reliability of the modulation sub-channel, the lower the channel capacity of the modulation sub-channel, the lower the reliability of the modulation sub-channel.
  • the first device is a highly reliable modulation sub-channel.
  • the number of information bits allocated to the polarization component encoder corresponding to the channel is large, and the number of information bits allocated to the polarization component encoder corresponding to the modulation sub-channel with low reliability is small.
  • the channel capacity of modulation sub-channel 1 is smaller than the channel capacity of modulation sub-channel 2
  • modulation sub-channel 1 corresponds to polarization component encoder 1
  • modulation sub-channel 2 corresponds to polarization component encoder 2
  • the first device is polar
  • the number of information bits allocated to the polar component encoder 1 is less than the number of information bits allocated to the polar component encoder 2.
  • the following describes the proportion of the first device determining the channel capacity corresponding to each modulation sub-channel in the sum of the channel capacities of the M modulation sub-channels in two cases;
  • the proportion of the channel capacity of the channel capacity in the sum of the channel capacities of the M modulation sub-channels determines the number of information bits of the polarization component encoder corresponding to each modulation sub-channel in the sum of information bits;
  • the first device according to each The number of information bits of the polar component encoder corresponding to the modulation subchannel and the code length N of each polar component encoder determine the code rate occupied by each polar component encoder.
  • the first device splits the channel for transmitting modulated symbols into M modulation sub-channels W m , where m ⁇ [1,...,M].
  • the channels of the modulated symbols may be AWGN channels.
  • the AWGN channel can be W, and I(X; Y) is the mutual information between the input and output of the channel W. From the perspective of mutual information, the sum of the channel capacities of each modulation sub-channel is the channel capacity of the channel W, Therefore, formula (9) exists.
  • I(W m ) is the channel capacity of each modulation sub-channel
  • I(W) is the channel capacity of the AWGN channel. That is to say, since the sum of the channel capacity of each modulation subchannel is the channel capacity of channel W, it can be calculated as each modulation subchannel according to the proportion of the channel capacity of each modulation subchannel in the sum of the capacities of M modulation subchannels
  • the corresponding polar component encoder allocates the number of information bits.
  • formula (9) characterizes the relationship between the channel capacity of each modulation subchannel and the channel capacity of channel W, which can be referred to in the process of allocating the number of information bits for the polarization component encoder corresponding to each modulation subchannel This relationship represented by formula (9).
  • the channel W is an actual physical transmission channel
  • the channel W is related to the transmission environment
  • the aforementioned is the equivalent channel of the channel W equivalent according to the modulation order and the target code rate
  • the channel capacity of the equivalent channel is the relationship in formula (9)
  • the equivalent channel with equivalent channel Corresponding M modulation sub-channels can also be the relationship represented by formula (10).
  • the channel capacity relationship of can also be the relationship represented by formula (10), so the channel capacity of each modulation subchannel can be The proportion in the sum of the capacities of M modulation sub-channels is the number of information bits allocated to the polarization component encoder corresponding to each modulation sub-channel, for example, the channel capacity of M modulation sub-channels The channel capacity ranking of satisfies the following formula (11).
  • the formula (11) in The subscripts m 1 , m 2 , m t and m M of are the subscripts of the modulated sub-channels sorted according to the channel capacity.
  • the number of information bits allocated by the m t polar component encoder The following formula (12) is satisfied.
  • the code rate of the polar component encoder can be calculated as
  • each polar component encoder is 256
  • the code rate of polar component encoder 1 is 20/256
  • the code rate of polar component encoder 2 is 60/256
  • the code rate of polar component encoder 3 is The rate is 100/256
  • the code rate of the polar component encoder 4 is 140/256.
  • formula (11) and formula (12) can also be replaced by That is, there is no need to sort the channel capacity of each modulation sub-channel, and the number K of information bits can be directly assigned to the m-th modulation sub-channel according to the proportion of the channel capacity of each modulation sub-channel in the sum of the capacities of M modulation sub-channels m .
  • the second case, for the second case of S202 above, is the same as the above formula (9), the formula (9) characterizes the relationship between the channel capacity of each modulation sub-channel and the channel capacity of the channel W, and is the pole corresponding to each modulation sub-channel
  • the relationship represented by formula (9) can be referred to in the process of allocating the number of information bits by the quantized component encoder.
  • the channel W is an actual physical transmission channel, and the channel W is related to the transmission environment.
  • the channel capacity relationship of can also be the relationship represented by formula (13), so the channel capacity of each modulation subchannel can be The proportion in the sum of the capacities of M modulation sub-channels is the number of information bits allocated to the polarization component encoder corresponding to each modulation sub-channel, for example, the channel capacity of M modulation sub-channels
  • the channel capacity ranking of satisfies the following formula (14).
  • the formula (14) in The subscripts m 1 , m 2 and m M of are the subscripts of the modulation subchannels sorted according to the channel capacity.
  • the number of information bits allocated by the m t polar component encoder The following formula (15) is satisfied.
  • the code rate of the polar component encoder can be calculated as
  • the determination of the code rate of each polar component encoder among the M polar component encoders described in S201-S203 above is the code rate occupied by the information bits of each polar component encoder.
  • the verification shows that it is necessary to add shaping bits in the last polar component encoder to make the mapped modulation symbols obey Maxwell-Boltzmann, but in some implementations
  • the number of shaping bits added in the last polar component encoder is also determined according to the numerical search method, which will lead to high complexity in determining the shaping bits.
  • the method 300 for determining the code rate occupied by shaped bits in the embodiment of the present application will be described below with reference to FIG. 3 , which can reduce the complexity of determining shaped bits.
  • the first device determines the conditional entropy corresponding to the Mth polarized component encoder among the M polarized component encoders according to the probability distribution of the constellation points, the code length of each polarized component encoder is N, and the The probability distribution of the constellation points is the distribution of the probability of the constellation points corresponding to the modulation order and the Maxwell Boltzmann parameter, and the Maxwell Boltzmann parameter is a preset value.
  • the probability distribution of the constellation points can refer to the description of the above formula (4).
  • conditional entropy corresponding to the Mth polarized component encoder satisfies the following formula (16).
  • the first device determines, according to the conditional entropy corresponding to the Mth polarization component encoder, a code rate occupied by shaping bits of the Mth polarization component encoder.
  • S302 includes: the first device determines the number of shaped bits in the Mth polarized component encoder according to the conditional entropy corresponding to the Mth polarized component encoder, and the first device determines the number of shaped bits in the Mth polarized component encoder according to the The number of shaping bits of the M th polar component encoder and the code length N of the M th polar component encoder determine the code rate occupied by the shaping bits of the M th polar component encoder.
  • the first device determines the number of shaped bits in the Mth polarized component encoder according to the conditional entropy corresponding to the Mth polarized component encoder, including: the first device determines the number of shaped bits in the Mth polarized component encoder according to The conditional entropy corresponding to the polar component encoder and the code length N of the Mth polar component encoder determine the number of shaping bits in the Mth polar component encoder.
  • the first device may determine the number K S of shaping bits in the Mth polar component encoder according to formula (17).
  • H(W M ) in formula (17) is the conditional entropy of the Mth polarized component encoder, It is the lower integer operation.
  • the first device determines the number of shaping bits of the Mth polarized component encoder and the code length N of the Mth polarized component encoder according to the number of shaping bits of the Mth polarized component encoder.
  • the code rate occupied by the shaped bits may include: the first device divides the number of shaped bits of the Mth polarized component encoder by the code length N of the Mth polarized component encoder to obtain the Mth polarized component code
  • the code rate occupied by the shaping bits of the device For example, the code rate occupied by the shaping bits of the Mth polarized component encoder satisfies the following formula (18).
  • An embodiment of the present application may provide an MCS table.
  • the MCS table may include at least one row, and each row in the MCS table includes the code rate of at least one polar component encoder, or, each row included in the MCS table includes at least one polar component code The code rate of the device and the code rate occupied by the shaped bits.
  • the code rate of at least one polar component encoder included in each row in the MCS table may be determined according to the method 200 .
  • the code rate occupied by the shaped bits included in each row in the MCS table can be determined according to the method 300 .
  • each row of the MCS table may further include at least one of an MCS index, a modulation order corresponding to the MCS index, or a total spectral efficiency.
  • the total spectral efficiency may include a first spectral efficiency and a second spectral efficiency.
  • the values of the Maxwell-Boltzmann parameter ⁇ corresponding to different modulation orders in the MCS table may be different.
  • the number of code rates of the polar component encoder corresponding to the MCS index included in each row of at least one row included in the MCS table is determined according to the modulation order corresponding to the MCS index.
  • the number of code rates of the polar component encoder corresponding to the MCS index included in each row of at least one row included in the MCS table is determined according to the modulation order corresponding to the MCS index, including: MCS
  • the code rate of the polar component encoder corresponding to the MCS index included in each row of at least one row included in the table is half of the modulation order corresponding to the MCS index.
  • the feature of the MCS table is: there is a second MCS index and a third MCS index in the MCS table, and when the modulation order corresponding to the second MCS index corresponds to the third MCS index
  • the modulation orders of are different, the number of code rates of the polar component encoder corresponding to the second MCS index is different from the number of code rates of the polar component encoder corresponding to the third MCS index.
  • the number of code rates of the polar component encoder corresponding to the second MCS index is half of the modulation order corresponding to the second MCS index
  • the third MCS index The code rate of the corresponding polar component encoder is half of the modulation order corresponding to the third MCS index.
  • the number of code rates of the polar component encoder corresponding to the MCS index included in each row of at least one row included in the MCS table is determined according to the modulation order corresponding to the MCS index, including: MCS
  • the number of code rates of the polar component encoder corresponding to the MCS index included in each row of at least one row included in the table is equal to the modulation order corresponding to the MCS index.
  • the MCS table is described below with reference to Table 1, Table 2 and Table 3 as examples.
  • Table 1-Table 3 when the modulation order is 2, the corresponding Maxwell-Boltzmann parameter ⁇ is 0, when the modulation order is 4, the corresponding Maxwell-Boltzmann parameter ⁇ is 0.171, and when the modulation order is 6, the corresponding Maxwell-Boltzmann parameter ⁇ is 0.041.
  • Table 2 when the modulation order is 8, the corresponding Maxwell-Boltzmann parameter ⁇ is 0.01.
  • the MCS index with a value of 0-28 in Table 1 and Table 3 is used for initial transmission, and the MCS index with a value of 29-31 is used for retransmission; the MCS index with a value of 0-27 in Table 2 is used for For initial transmission, the MCS index with a value of 28-31 is used for retransmission.
  • the spectral efficiencies in Tables 1 to 3 may be the aforementioned total spectral efficiencies, and the total spectral efficiencies include the first spectral efficiency and the second spectral efficiency.
  • the spectral efficiency in Table 1 to Table 3 is in is the first spectral efficiency R T
  • 2RS is the second spectral efficiency occupied by shaped bits.
  • the code rate of the polar component encoder is half of the modulation order
  • the first column indicates the MCS index
  • the second column indicates the modulation order
  • the third column indicates the spectral efficiency
  • the spectrum The efficiency is also called the total spectral efficiency, and the total spectral efficiency is in, is the first spectral efficiency R T occupied by information bits
  • 2RS is the second spectral efficiency occupied by shaped bits
  • R 1 is the code rate of the encoder for the first polarized component
  • R 2 is the second polarized component code rate of the encoder
  • R 3 is the code rate of the third polar component encoder
  • R 4 is the code rate of the fourth polar component encoder
  • R S is the shape bit rate of the last polar component encoder code rate.
  • the number of polarization component encoders is 1, and RS is 0, that is, the code rate of the shaped bits is all zero.
  • the polarization component The number of encoders is 2, and RS is the code rate occupied by the shaped bits in the second polar component encoder.
  • the modulation order is equal to 6
  • the number of polar component encoders is 3, and RS is Code rate occupied by shaped bits in the third polar component encoder.
  • the modulation order is 2, the number of polar component encoders is 1, and the code rate of the corresponding polar component encoder is 1; when the modulation order is 4, the number of polar component encoders The number is 2, and the code rate of the corresponding polar component encoder is 2; when the modulation order is 6, the number of polar component encoders is 3, and the code rate of the corresponding polar component encoder is 3 .
  • Tables 1 to 3 are just examples.
  • the embodiment of the present application does not have any restrictions on the MCS table.
  • Maxwell-Boltzmann parameter
  • the value of the total spectral efficiency, and the index of the MCS, all can be Get any row of the MCS table.
  • m in Q m in Table 1-Table 3 is different from m in the m-th polar component encoder, or m in Q m in Table 1-Table 3 is different from m in the m-th modulator The m in the channel is different.
  • the code rate occupied by the shaped bits can be determined according to the method 300, and the determined shaped bits at this time
  • the occupied code rate may not be included in the MCS table.
  • the column R S may not be included in Table 1-Table 3 at this time.
  • the first device determines the code rates of the M polar encoders in the MCS table according to the value of the Maxwell-Boltzmann parameter ⁇ , the value of the total spectral efficiency, the length N of the codeword sequence, and the index of the MCS.
  • the first device determines the code rates of the M polar encoders in the MCS table according to the value of the Maxwell-Boltzmann parameter ⁇ , the value of the total spectral efficiency, and the index of the MCS, which may include: the first device determines the code rates of the M polar encoders according to the MCS index The modulation order G corresponding to the MCS index is determined, and the first device determines the probability distribution of constellation points according to the modulation order and the value of the Maxwell-Boltzmann parameter ⁇ (such as formula (4)).
  • the first device determines the number K S of shaped bits according to method 300, and determines the code rate R S occupied by the shaped bits (such as formula (18)), that is, the first device determines the value of RS in the MCS table value.
  • the first device calculates the second spectral efficiency occupied by the shaped bits according to the value of J ⁇ RS , where J is the dimension of the constellation modulation corresponding to the MCS table, for example, the modulation mode corresponding to the MCS table is two-dimensional constellation modulation, then J
  • J is the dimension of the constellation modulation corresponding to the MCS table, for example, the modulation mode corresponding to the MCS table is two-dimensional constellation modulation, then J
  • J is 2, usually a constellation point in phase shift keying (phase shift keying, PSK) and quadrature amplitude modulation (quadrature amplitude modulation, QAM) modulation can be understood as being composed of two amplitude shift keying (amplitude shift keying, ASK), when the modulation order is
  • the value of J can be understood as the number of ASKs that constitute the constellation modulation diagram; if the MCS table corresponds to The modulation mode of is one-dimensional constellation modulation, and the value of J is 1.
  • the total first spectral efficiency occupied by the information bits is obtained by subtracting the second spectral efficiency occupied by the shaping bits from the given total spectral efficiency.
  • the first device uses the method 200 to determine the code rate of each polar component encoder, so as to obtain the code rate of each polar component encoder in the MCS table.
  • the first device determines the code rates of the M polar encoders in the MCS table according to the value of the Maxwell-Boltzmann parameter ⁇ , the sum of information bits, the length N of the codeword sequence, and the index of the MCS.
  • the first device determines the code rates of the M polar component encoders in the MCS table according to the value of the Maxwell-Boltzmann parameter ⁇ , the sum of information bits, the length N of the codeword sequence, and the index of the MCS, including: A device determines the total codeword length according to the product of the length N of the codeword sequence and the number M of polar component encoders, and divides the information bit sum by the total codeword length to obtain a target code rate.
  • the first device determines the first spectral efficiency according to the product of the target code rate and the modulation order corresponding to the MCS index, and then obtains the code rate of each polarization component encoder according to method 200, for example, obtains the code rate occupied by shaped bits by method 300.
  • the first device can subtract the second spectral efficiency occupied by the shaped bits from the total spectral efficiency to obtain the first spectral efficiency of the information bits, and then determine each polarization component according to the method 200 The bitrate of the encoder.
  • the sum of information bits can be given, and the total code length can be determined according to the number M of polar component encoders and the code length N output by each polar component encoder, and then according to the ratio of the sum of information bits to the total code length
  • the target code rate is determined, and the first spectrum efficiency is obtained according to the product of the modulation order and the target code rate.
  • method 400 includes:
  • the second device sends indication information, and the third device receives the indication information.
  • the indication information indicates the first MCS index
  • the first MCS index is the MCS index in the MCS table
  • the first MCS index is an MCS index in the MCS table
  • the MCS table is as described above.
  • S401 includes: the second device sends control information, and the third device receives the control information, where the control information includes indication information.
  • the indication information included in the control information indicates the first MCS index, and may include: the indication information included in the control information indicates the first MCS index in real time.
  • control information indicating the first MCS index may include: the indication information included in the control information indicates the first MCS index of the semi-persistent scheduling.
  • control information is also used to indicate the physical shared channel.
  • control information indicating the physical shared channel may include: the control information scheduling the physical shared channel.
  • control information indicating the physical shared channel may include: the control information activates the semi-persistently scheduled physical shared channel.
  • control information may be DCI
  • the physical shared channel is at least one physical uplink shared channel PUSCH scheduled by the DCI.
  • the physical shared channel may be dynamically scheduled by the DCI after C-RNTI scrambling, or it may be the DCI is activated after CS-RNTI scrambling to configure authorization scheduling.
  • the third device may be an encoding device, and the second device may be a decoding device.
  • the second device may be a terminal device
  • the third device may be another terminal device.
  • the physical shared channel may be a physical sidelink shared channel (physical sidelink shared channel, PSSCH).
  • PSSCH physical sidelink shared channel
  • the second device may be a network device
  • the third device may be a terminal device.
  • control information may indicate the first MCS index and the information of the physical shared channel.
  • the downlink control information (downlink control information, DCI) may indicate the first MCS index through the Modulation and coding scheme field, and through the Frequency domain resource assignment and The Time domain resourcea signature field indicates the time-frequency domain resource of the physical shared channel.
  • the physical shared channel may be a physical uplink shared channel (physical uplink shared channel, PUSCH).
  • PUSCH physical uplink shared channel
  • S401 includes: the second device sends radio resource control (radio resource control, RRC) signaling, and the third device receives the RRC signaling, where the RRC signaling includes indication information.
  • the RRC signaling is used to configure the first MCS index and the physical shared channel.
  • the configuration information in the RRC signaling is used to indicate the first MCS index and the physical shared channel, and the configuration information may include indication information.
  • the configuration information in the RRC signaling may further include: at least one item of ConfiguredGrantConfig or SL-ConfiguredGrantConfig.
  • the second device may indicate the first MCS index through the mcsAndTBS signaling in the ConfiguredGrantConfig information element in the RRC signaling, and indicate the time-frequency domain resource of the PUSCH through the timeDomainAllocation and timeDomainAllocation signaling.
  • the information indicating the first MCS index and the physical shared channel may be different information.
  • the RRC signaling may be PC5 RRC signaling.
  • the second device may be the same device or a different device from the aforementioned first device for determining code rates of the M polarized component encoders, which is not limited in this embodiment of the present application.
  • the third device may be the same device or a different device from the aforementioned first device for determining code rates of the M polarization component encoders, which is not limited in this embodiment of the present application.
  • the second device may include the aforementioned first device for determining code rates of the M polar component encoders.
  • the third device may include the aforementioned first device for determining code rates of the M polar component encoders.
  • the third device obtains the first MCS index according to the received indication information, and encodes the data carried by the physical shared channel by using the M polarization component encoders corresponding to the first MCS index in the MCS table.
  • the third device obtains the first MCS index according to the received indication information, and uses each of the M polar component encoders corresponding to the first MCS index in the MCS table
  • the code rate encodes the data carried by the physical shared channel.
  • S402 includes: the third device determines the code rate of each of the M polar component encoders according to the code rate of each of the M polar component encoders corresponding to the first MCS index. The number of information bits of the polar component encoder; the third device performs encoding according to the number of information bits of each polar component encoder.
  • the third device determines, according to the code rate of each polar component encoder among the code rates of the M polar component encoders corresponding to the first MCS index, that each of the M polar component encoders encodes
  • the number of information bits of each polarization component encoder includes: the third device determines the number of information bits of each polarization component encoder according to the code rate of each polarization component encoder and the code length of each polarization component encoder.
  • the code length of each polar component encoder among the M polar component encoders may be the same or different, which is not limited in this embodiment of the present application.
  • S402 includes: the third device encodes one CB carried by the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index in the MCS table.
  • the number of information bits of one CB may be K.
  • the third device may encode one CB according to the code rates of the M polarization component encoders corresponding to the first MCS index in the MCS table.
  • the information bits of a CB may include bits corresponding to data from higher layers and cyclic redundancy check (cyclic redundancy check, CRC) bits.
  • the information bits of a CB include not only bits of data from higher layers Also includes parity bits.
  • the data from the upper layer may include data from the application of the higher layer and data from the packet header of the higher layer.
  • the third device determines the number of CBs according to the total code length and the code length of the CB.
  • the third device may determine the total code length according to parameters such as the modulation order corresponding to the first MCS index and the physical resource allocated by the second device to the third device.
  • the total code length may be understood as a code after multiple CB codes
  • the sum of lengths, the total code length can also be understood as the length of the total bit sequence that the third device can transmit, obtained from the total number of resource elements (resource elements, REs) in the time slot, the modulation order Q m and the number of spatial layers v , wherein the control information in S401 may indicate the total number of REs or the RRC signaling may indicate the total number of REs, and the number of spatial layers v may be configured semi-statically through high-level signaling.
  • N total is the length of the total bit sequence that can be transmitted by the third device, which can also be understood as the total code length
  • N RE is the control
  • Q m is the modulation order corresponding to the first MCS index, and the meaning of Q m in Table 1 to Table 3 same.
  • the total code length may also be obtained in other ways, which is not limited in this application.
  • the code length of CB can be a preset value, that is, the code length of CB is a known parameter of the second device and the third device, or the code length of CB can be semi-statically configured by the third device to the second device , or the code length of the CB is semi-statically configured by the second device to the third device.
  • the code length of each CB can be equal, or the actual code length of the last CB can be different from the actual code lengths of other CBs, wherein the code length of the CB can be understood as the length of the bit sequence of the encoded CB or the length of the bit quantity.
  • the total code length determined by the third device is N total
  • the code length of CB is N cb
  • the number C of CB can be That is, there are C CBs in total, and the code length of each CB in the first C-1 CBs is N cb , and the code length of the last CB is N total -(C-1) ⁇ N cb , where is rounded up.
  • N cb may be M ⁇ N, that is, the encoded code length of one CB may be the sum M ⁇ N of encoded code lengths of the M polarized component encoders corresponding to the CB.
  • the third device determines the number of information bits K cb of each CB according to the code length N cb of the CB and the target code rate.
  • the number K cb of information bits of a CB may include bits corresponding to data from higher layers, or the number K cb of information bits of a CB may also include bits corresponding to data from higher layers and CRC bits.
  • the information bits K cb of a CB include not only data bits from higher layers but also parity bits.
  • the data from the upper layer may include data from the application of the higher layer and data from the packet header of the higher layer.
  • the target code rate may be a code rate corresponding to the first spectral efficiency corresponding to the first MCS.
  • RT is the first spectral efficiency corresponding to the first MCS index
  • Q m is the modulation order corresponding to the first MCS
  • the number of information bits for the Cth CB There can be two ways of determining. In the first way, the value of the largest integer power of 2 less than or equal to N total -(C-1) N cb is determined as N cb1 , the number of information bits of the Cth CB In this manner, the redundant bits of the Cth CB may be filled in a padding manner, such as filling multiple bits '0' or bits '1'. For example, the value of N total -(C-1) N cb is 300, and the largest integer power of 2 less than 300 is 256, then N cb1 is 256, and the remaining 44 bits can be filled with '0' or '1'.
  • N cb2 the number of information bits of the Cth CB is Because N cb2 is greater than N total -(C-1) ⁇ N cb , it is necessary to puncture or truncate the coded bits of the C-th CB.
  • N total- (C-1) N cb 500
  • N cb2 512
  • the encoded 512 bits are punched or truncated to 500 bits
  • the method of puncturing is used Reduce the coded 512 bits to 500 bits; if the target code rate corresponding to the first MCS index is greater than the threshold code rate, then use truncation to reduce the 512 bits to 500 bits, wherein the threshold code rate is indicated by high-level signaling Or pre-configured, for example, when R ⁇ R th , the coded 512 bits are reduced to 500 bits by puncturing, and when R>R th, the truncation method is selected, and R th is the threshold code rate.
  • the third device encodes the information bits of each CB according to the code rate of the polar component encoder corresponding to the first MCS index in the MCS table.
  • each CB corresponds to the same first MCS index, thus, each CB corresponds to the same code rate and spectral efficiency.
  • the third device determines, according to the number of information bits K cb of the first CB, the code rate of each polar component encoder, and the code length N of each polar component encoder, the The number of information bits.
  • the third device performs encoding according to the information bits of each polarization component encoder, and the first CB is one of the one or more CBs corresponding to the physical shared channel.
  • the third device can encode C-1 CBs.
  • the length of the M polarization component codes corresponding to the C-th CB may not be equal to N cb , and may be smaller than N cb , and the third device may encode the M polarization component codes corresponding to the C-th CB, so that the The encoding process for the physical shared channel.
  • the third device determines the number of CBs according to the information bit length of each CB and the total information bit length.
  • K cb of the information bit length of each CB may be pre-configured, or semi-statically configured from the second device to the third device, or semi-statically configured from the third device to the second device.
  • the number K cb of information bits of each CB may include bits corresponding to data from higher layers, or the number K cb of information bits of one CB may also include bits corresponding to data from higher layers and CRC bits.
  • the information bits K cb of a CB include not only high-level data bits but also parity bits.
  • the data from higher layers includes application data from higher layers and packet header data from higher layers.
  • the total information bits include bits corresponding to data from higher layers and CRC bits. Therefore, the total information bit length is the sum of the bit length corresponding to the data from the upper layers and the CRC bit length.
  • the data from the upper layer may include data from the application of the higher layer and data from the packet header of the higher layer.
  • the bit length corresponding to the data from the upper layer is A
  • the length of the added CRC check bit is L
  • the length of the information bit of each CB is K cb
  • the number of information bits of the first C-1 CBs is K cb
  • the number of information bits of the Cth CB can be less than or equal to K cb and can be passed get.
  • the actual size of the CB is the length of the total information bits, that is, At this time, no additional CRC check bits are added to the CB.
  • the third device determines the total information bit length B according to the parameters corresponding to the first MCS index, the number of spatial layers, and the total number of REs in the time slot, where the number of spatial layers may be semi-statically configured by high-level signaling , which is not limited in this embodiment of the present application.
  • the control information may indicate the total number of REs or the RRC signaling may indicate the total number of REs.
  • the parameters corresponding to the first MCS index include the modulation order corresponding to the first MCS index and the code rate corresponding to the first MCS index
  • the third device may, according to the modulation order corresponding to the first MCS index, the first MCS Parameters such as the code rate corresponding to the index, the total number of REs in the slot, and the number of spatial layers determine the length of the total information bits.
  • B is the length of the total information bits before encoding, and can also be understood as the total code length before encoding
  • N RE The total number of REs in the time slot scheduled for the control information or the total number of REs in the time slot indicated by RRC signaling
  • Q m is the modulation order corresponding to the first MCS index, which is the same as Q in Table 1 to Table 3 m has the same meaning
  • R is the target code rate corresponding to the first MCS index.
  • the length of the total information bits may also be obtained in other ways, which is not limited in this application.
  • the third device encodes the information bits of each CB according to the information bits of each CB and the code rate of the polar component encoder corresponding to the first MCS index in the MCS table.
  • each CB corresponds to the same first MCS index, thus, each CB corresponds to the same code rate and spectral efficiency.
  • the third device determines the information bits of each polarization component encoder according to the information bits K cb of the first CB, the code rate of each polarization component encoder and the code length N of each polarization component encoder quantity.
  • the third device performs encoding according to the number of information bits of each polarization component encoder, and the first CB is one of the one or more CBs corresponding to the physical shared channel.
  • the third device may perform coding processing on each CB, so as to complete the coding process on the physical shared channel.
  • the third device sends the physical shared channel to the second device, and the second device receives the physical shared channel.
  • the indication information in S401 may indicate multiple physical shared channels.
  • the indication information included in a control message such as the modulation and coding scheme field, can be used to indicate the encoding of data carried by multiple physical shared channels, and these physical shared channels can be in adjacent or non-adjacent time units , such as time slots, symbols or subframes, that is, one S401 indication information may indicate the encoding of data carried by multiple S403 physical shared channels.
  • a CS-RNTI scrambled DCI can activate semi-persistent scheduling, such as configuring grant scheduling, that is, within a period of transmission time, the indication information of S401 and the corresponding control information appearing once can be used to indicate multiple different transmission moments Coding of data carried by physical shared channels, the transmission time interval of these physical shared channels is configured by RRC signaling.
  • semi-persistent scheduling such as configuring grant scheduling, that is, within a period of transmission time
  • the indication information of S401 and the corresponding control information appearing once can be used to indicate multiple different transmission moments Coding of data carried by physical shared channels, the transmission time interval of these physical shared channels is configured by RRC signaling.
  • one piece of indication information may indicate encoding of data carried by multiple physical shared channels.
  • the physical shared channel is used to carry coded data, and optionally, the coded data may be a coded CB.
  • the physical shared channel may be the physical shared channel scheduled by the control information in S401.
  • the control information may be DCI, and the physical shared channel scheduled by the DCI may be the PUSCH; for another example, the control information may be any SCI, and the shared channel scheduled by the SCI may be the PSSCH.
  • the physical shared channel may be a semi-persistently scheduled physical shared channel activated by the control information in S401.
  • the control information in S401 may be a cell-radio network temporary identifier (cell-radio network temporary identifier, C-RNTI) scrambled DCI, which is used to activate the semi-persistently scheduled PUSCH.
  • the control information in S401 may be any SCI scrambled by a sidelink cell-radio network temporary identifier (SL-C-RNTI), which is used to activate the semi-persistently scheduled PSSCH.
  • SL-C-RNTI sidelink cell-radio network temporary identifier
  • control information in S401 is also used to indicate parameters such as the time-frequency resource and the first MCS index of the semi-persistent scheduling, and is used to activate parameters such as the time-frequency resource and the first MCS index of the semi-persistent scheduling.
  • semi-persistent scheduling includes semi-persistent scheduling (semi-persistent scheduling, SPS) and configuration authorization scheduling (configrued grant, CG).
  • SPS semi-persistent scheduling
  • configuration authorization scheduling configurerued grant, CG.
  • the third device periodically sends the physical shared channel to the second device, where the period parameter may be configured by the second device for the third device, or may be configured by the third device
  • the device is configured as the second device, which is not limited in this embodiment of the present application.
  • the physical shared channel may be the physical shared channel configured by the RRC signaling in S401.
  • S403 may also include a process of modulation and demodulation, which will not be described in detail to avoid repetition.
  • S403 may be an optional step, and the embodiment of the present application may not include: S403, that is, the embodiment of the present application mainly describes the M polarization component encoders corresponding to the first MCS index of the third device.
  • the code rate encodes the physical shared channel
  • the second device decodes the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index, and may not pay attention to whether the third device sends the physical shared channel.
  • the second device decodes the data carried by the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index.
  • information bits may be obtained after decoding in S404.
  • S404 includes: the second device decodes the data carried by the physical shared channel according to the code rate of each polarization component encoder in the M polarization component encoders corresponding to the first MCS index.
  • the information bits in S404 may be the information bits of each CB.
  • the principle that the second device decodes the data carried by the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index is the reverse process of the encoding principle of the third device.
  • method 500 includes:
  • the second device encodes the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index in the MCS table.
  • the second device encodes the physical shared channel according to the code rate of each polarization component encoder among the M polarization component encoders corresponding to the first MCS index in the MCS table.
  • the second device sends indication information, and the third device receives the indication information.
  • the indication information indicates the first MCS index
  • the first MCS index is the MCS index in the MCS table
  • the first MCS index is an MCS index in the MCS table
  • the MCS table is as described above.
  • S502 includes: the second device sends control information, and the third device receives the control information, where the control information includes indication information.
  • the indication information included in the control information indicates the first MCS index, and may include: the indication information included in the control information indicates the first MCS index in real time.
  • control information indicating the first MCS index may include: the indication information included in the control information indicates the first MCS index of the semi-persistent scheduling.
  • control information is also used to indicate the physical shared channel.
  • control information indicating the physical shared channel may include: the control information scheduling the physical shared channel.
  • control information indicating the physical shared channel may include: the control information activates the semi-persistently scheduled physical shared channel.
  • control information may be downlink control information DCI
  • the physical shared channel is at least one physical downlink shared channel PDSCH scheduled by the DCI
  • the physical shared channel may be the dynamic scheduling of the DCI after C-RNTI scrambling It may also be semi-persistent scheduling (semi-persistent scheduling, SPS) activated by the DCI after CS-RNTI scrambling.
  • SPS semi-persistent scheduling
  • the physical shared channel may be a physical downlink shared channel (physical downlink shared channel, PDSCH).
  • PDSCH physical downlink shared channel
  • the second device may be an encoding device
  • the third device may be a decoding device.
  • the second device may be a terminal device
  • the third device may be another terminal device.
  • control information may be sidelink control information (sidelink control information, SCI) format 1
  • SCI format 1 may indicate the first MCS index through the Modulation and coding scheme field, and may indicate through the Time reousrce assignment and frequency resource assignment fields
  • SCI format 1 may be SCI format 1-A.
  • the physical shared channel may be a physical sidelink shared channel (physical sidelink shared channel, PSSCH).
  • PSSCH physical sidelink shared channel
  • the second device may be a network device
  • the third device may be a terminal device.
  • control information may indicate the first MCS index and the physical shared channel
  • the DCI may indicate the first MCS index and the physical shared channel through the modulation and coding scheme field.
  • the physical shared channel may be a physical downlink shared channel (physical downlink shared channel, PDSCH).
  • PDSCH physical downlink shared channel
  • S502 includes: the second device sends RRC signaling, and the third device receives the RRC signaling, where the RRC signaling includes indication information.
  • the RRC signaling is used to configure the first MCS index and the physical shared channel.
  • the configuration information in the RRC signaling is used to indicate the first MCS index and the physical shared channel, and the configuration information may include indication information.
  • the information indicating the first MCS index and the physical shared channel may be different information.
  • the configuration information in the RRC signaling may further include: at least one item of SPS-Config, ConfiguredGrantConfig or SL-ConfiguredGrantConfig.
  • the RRC signaling may be PC5 RRC signaling.
  • the second device may be the same device or a different device from the aforementioned first device for determining code rates of the M polarized component encoders, which is not limited in this embodiment of the present application.
  • the third device may be the same device or a different device from the aforementioned first device for determining code rates of the M polarization component encoders, which is not limited in this embodiment of the present application.
  • the second device may include the aforementioned first device for determining code rates of the M polar component encoders.
  • the third device may include the aforementioned first device for determining code rates of the M polar component encoders.
  • the second device sends the physical shared channel to the third device, and the third device receives the physical shared channel.
  • the physical shared channel in S503 and the indication information in S502 may be located in the same time slot, or the time slot in which the physical shared channel in S503 is located is located in any time slot after the time slot in which the indication information in S502 is located.
  • the physical shared channel in S503 may be the encoded physical shared channel in S501.
  • S501 can be before S502.
  • S502 can be before S501 and/or S503, or execute One S502 may execute S501 and/or S503 multiple times, and one execution of S501 corresponds to one execution of S503.
  • S503 may also include a modulation and demodulation process, which will not be described in detail to avoid repetition.
  • S503 may be an optional step, and the embodiment of the present application may not include: S503, that is, the embodiment of the present application mainly describes the M polarization component encoders corresponding to the first MCS index of the second device
  • the code rate encodes the physical shared channel
  • the third device decodes the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index, and may not pay attention to whether the second device sends the physical shared channel.
  • the third device obtains the first MCS index according to the received indication information, and decodes the data carried by the physical shared channel by using the code rates of the M polarization component encoders corresponding to the first MCS index in the MCS table.
  • information bits may be obtained after decoding in S504.
  • S504 includes: the third device obtains the first MCS index according to the received indication information, and uses each of the M polar component encoders corresponding to the first MCS index in the MCS table The data carried by the physical shared channel is decoded at a bit rate.
  • the indication information in S502 may indicate multiple physical shared channels.
  • the indication information included in a control message such as the modulation and coding scheme field, can be used to indicate the encoding of data carried by multiple physical shared channels, and these physical shared channels can be in adjacent or non-adjacent time units , such as time slots, symbols or subframes, that is, one S502 indication information may indicate the encoding of data carried by multiple S503 physical shared channels.
  • a CS-RNTI scrambled DCI can activate semi-persistent scheduling, such as semi-persistent scheduling, that is, within a period of transmission time, the indication information of S502 and the corresponding control information appearing once can be used to indicate multiple different transmission moments Coding of data carried by physical shared channels, the transmission time interval of these physical shared channels is configured by RRC signaling.
  • semi-persistent scheduling such as semi-persistent scheduling
  • the indication information of S502 and the corresponding control information appearing once can be used to indicate multiple different transmission moments Coding of data carried by physical shared channels, the transmission time interval of these physical shared channels is configured by RRC signaling.
  • one piece of indication information may indicate encoding of data carried by multiple physical shared channels.
  • the information bits in S504 may be the information bits of each CB.
  • the principle that the third device decodes the data carried by the physical shared channel according to the code rates of the M polarization component encoders corresponding to the first MCS index is the reverse process of the encoding principle of the second device.
  • the following describes the schematic diagram of the encoding process using the polar component encoder in the MCS table.
  • it can be the encoding process of the third device for a CB in method 400, or it can be the encoding process of the network device in method 500 for a CB.
  • FIG. 6 a schematic diagram of an encoding process in which the encoding device uses M polarized component encoders is shown.
  • the polar code encoder includes M polar component encoders
  • the encoding device obtains the first MCS index, determines the modulation order G corresponding to the first MCS index according to the MCS table, and the total spectrum corresponding to the first MCS Efficiency R T +J ⁇ RS , and the code rates R 1 , R 2 ,..., R M of the M polarized component encoders corresponding to the first MCS and the shaping bits of the Mth polarized component encoder Accounted for code rate R S .
  • the coding device determines the second spectral efficiency occupied by the shaped bits according to J ⁇ RS , where J is the dimension of the constellation modulation corresponding to the MCS table, for example, the modulation mode corresponding to the MCS table is two-dimensional constellation modulation, then the value of J is is 2; if the modulation mode corresponding to the MCS table is one-dimensional constellation modulation, then the value of J is 1.
  • the encoding device determines the first spectral efficiency R T occupied by the information bits according to the total spectral efficiency R T +J ⁇ RS minus the spectral efficiency occupied by the shaped bits J ⁇ RS .
  • the encoding device can determine the information bit set of the first polar component encoder according to the code length N of each polar component encoder and the reliability sorting table of polar codes
  • the information bit set of the second polarization component encoder The information bit set of the M-1th polarization component encoder
  • the ranking of reliability of polar codes may be obtained according to a polarization weight (polarization weight, PW) metric.
  • the encoding device can determine the K 1 bit positions with the highest reliability for carrying K 1 information bits, determine the K 2 bit positions with the highest reliability for carrying K 2 information bits, ..., determine the reliability
  • the highest KM + KS bit positions are used to carry KM + KS information bits.
  • the encoding device may determine the position of each polar component encoder for carrying information bits according to the reliability of the polar sub-channel. For example, if the codeword sequence length of a polar component encoder is N, then a polar component encoder corresponds to N polar sub-channels, and the encoding device determines the most reliable one among the reliability corresponding to N polar sub-channels Polarized sub-channels are used to carry information bits.
  • N max is the length of the polarization sequence or the number of polarization sub-channels, for example, in 5G
  • the length of the polarization sequence is 1024
  • Nmax is 1024. That is to say, in, Indicates the first The reliability of each polar sub-channel, that is, It can be understood as the channel number of the polarization subchannel.
  • a reliability ranking can be obtained in, Since the sizes of the information bit sets of the first M-1 polarized component encoders are respectively
  • the encoding device can be based on the information bit set size of the first M-1 polarization component encoders and reliability ranking Determining the set of information bits m ⁇ [1,...,M-1]; the encoding device according to the information bit set size of the Mth polarization component encoder and reliability ranking Determining the set of information bits
  • Table 4 shows a reliability ranking table based on a polarization sequence with a length of 1024 in 5G.
  • the ranking of the reliability of the polarization sequence may be the ranking of the reliability of the 1024 polarized sub-channels.
  • M is 2
  • N is 8
  • K 1 is 3
  • K 2 is 2
  • K S is 2, That is, the 5th bit, the 6th bit and the 7th bit of the first polarized component encoder are used to carry the information bits of the first polarized component encoder, That is, the third bit, the fifth bit, the sixth bit and the seventh bit of the second polar component encoder are used to carry the information bits and shaping bits of the second polar component encoder.
  • the spectral efficiency corresponding to an MCS index of 14 is 3.6094, so the sum of the total information bits and shaping bits corresponding to M polarized component encoders is 256*3.6094 ⁇ 924.
  • R 1 0.0732 corresponding to MCS index 14 in Table 2
  • R 2 0.7354 corresponding to the MCS index of 14 in Table 2
  • R 3 0.7266 corresponding to MCS index 14 in Table 2
  • An MCS index of 5 corresponds to a total spectral efficiency of 1.4727, so the sum of the total number of information bits and shaping bits corresponding to M polarization component encoders is 256*1.4727 ⁇ 377.
  • R2 0.4199 corresponding to MCS index 5 in Table 2
  • the encoding device determines the code rate of each polar component encoder according to the code rate in the above MCS table, that is, the component code rate allocation in FIG. 6 .
  • the coding device determines the sizes of information bit sets of the M polar component encoders to be K 1 , K 2 , . . . , K M , respectively, according to the code rate of each polar component encoder.
  • the encoding device divides the K-length information bits into M sub-streams according to the serial-to-parallel conversion, and the sizes of the information bits of the M sub-streams are K 1 , K 2 , ..., K M .
  • the encoding device calculates the number K S of shaped bits according to the above method (that is, the calculation of the number of shaped bits in FIG. 6 ). After the encoding device obtains the information bit set size of each polarization component encoder according to the above method, each information bit set can be sorted according to the reliability of the polarization sequence (ie, component code information bit selection in FIG. 6 ). The encoding device can encode the first M-1 polar component encoders according to the generator matrix G N to obtain a code word sequence with a length of N. The encoding device needs to calculate the value of the shaping bits of the Mth polarized component encoder, that is, the aforementioned calculated K S is the number of shaping bits.
  • the calculation of the values of the KS shaped bits by the specific encoding device may include: the encoding device determines the Mth polarization according to the codeword sequence c m (1 ⁇ m ⁇ M-1) output by the previous M-1 and the Maxwell-Boltzmann parameter ⁇ The bit likelihood ratio of the codeword sequence c M output by the component encoder; the encoding device performs serial cancellation (successive cancellation, SC) decoding according to the number of shaped bits K S and the bit likelihood ratio of the codeword sequence c M to obtain the shaped The value of the bit and the encoded codeword sequence c M .
  • SC serial cancellation
  • the encoding device performs serial cancellation list (successive cancellation list, SCL) decoding according to the number of shaped bits K S and the bit likelihood ratio of the code word sequence c M to obtain the value of the shaped bit and the encoded code word sequence c M.
  • serial cancellation list successive cancellation list, SCL
  • the log-likelihood ratio ⁇ M ,j of c M satisfies the following formula (19).
  • c m,j represents the jth bit of the code word c m , 1 ⁇ m ⁇ M-1; ⁇ M ,j represents the value likelihood ratio of c M,j , Indicates the SP mapping, Indicates the value of the constellation point of the M-dimensional bit vector c 1,j ,...,c M-1,j ,0 under the SP mapping. Indicates the value of the constellation point of the M-dimensional bit vector c 1,j ,...,c M-1,j ,1 under the SP mapping.
  • Each G-dimensional bit vector is mapped into a modulation symbol according to a mapping rule, and finally N modulation symbol sequences are obtained for transmission.
  • the code word sequence output by polar component encoder 1 is The code word sequence output by polar component encoder 2 is The N-bit codeword sequence output by the polar component encoder M is Then in the process of modulation, the N bit sequences with a length of M are respectively Then the N bit sequences are respectively mapped into modulation symbol sequences with a length of N and sent out.
  • the principle of encoding and sending modulation symbols by the encoding device is described above.
  • the principle of decoding by the decoding device is similar to the principle of encoding by the encoding device, and will not be described in detail to avoid repetition.
  • RF-I in FIG. 7 represents a method based on case 1 of method 200
  • RF-II in FIG. 8 represents a method based on case 2 of method 200 .
  • the code rate of each polarization component encoder is determined according to the channel capacity of the modulation subchannel corresponding to each polarization component encoder, and the modulation subchannel
  • the channel capacity of the channel can represent the reliability of the modulation sub-channel. Therefore, the code rate of each polarization component encoder can be determined according to the channel capacity of the modulation sub-channel, which can improve the applicability and avoid using the numerical search method to determine the There is a problem that the complexity of the number of information bits of the component coder is high.
  • the MCS table includes at least one row, and each row in the at least one row included in the MCS table includes an MCS index and the code rate of at least one polar component encoder corresponding to the MCS index included in each row
  • the embodiment of the present application is not limited to the form of the MCS table.
  • the MCS table may include at least one column, and each column in the at least one column included in the MCS table includes an MCS index and at least one polarization corresponding to the MCS index included in each column.
  • the code rate of the component encoder for example, the rows and columns in Table 1 to Table 3 can be converted, one column corresponds to one MCS index, and the MCS index corresponding to one column corresponds to the code rate of at least one polarized component encoder.
  • FIG. 9 shows a communication device 900 provided by an embodiment of the present application.
  • the communication device 900 includes a processor 910 and a transceiver 920 .
  • the processor 910 and the transceiver 920 communicate with each other through an internal connection path, and the processor 910 is used to execute instructions to control the transceiver 920 to send signals and/or receive signals.
  • the communication device 900 may further include a memory 930, and the memory 930 communicates with the processor 910 and the transceiver 920 through an internal connection path.
  • the memory 930 is used to store instructions, and the processor 910 can execute the instructions stored in the memory 930 .
  • the communication apparatus 900 is configured to implement various processes and operations corresponding to the first device, the second device, the third device, the network device, or the terminal device in the foregoing method embodiments.
  • the communications apparatus 900 may specifically be the first device, the second device, the third device, the network device, or the terminal device in the foregoing embodiments, and may also be a chip or a chip system.
  • the transceiver 920 may be a transceiver circuit of the chip, which is not limited here.
  • the communication apparatus 900 may be configured to execute various operations and/or processes corresponding to the first device or the second device or the third device or the network device or the terminal device in the foregoing method embodiments.
  • the memory 930 may include read-only memory and random-access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 910 can be used to execute instructions stored in the memory, and when the processor 910 executes the instructions stored in the memory, the processor 910 can be used to perform the above-mentioned communication with the first device or the second device or the third device or the network. Various operations and/or processes of the method embodiments corresponding to the device or the terminal device.
  • each operation of the above method may be implemented by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the operations of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the operation of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • the operations of the foregoing method embodiments may be implemented by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the operations of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the operation of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the first step in the above method embodiments Each operation or process performed by a device or a second device or a third device or a network device or a terminal device.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute the above-mentioned method embodiments Each operation or process performed by the first device or the second device or the third device or the network device or the terminal device.
  • the present application further provides a communication system, which includes the foregoing one or more second devices and one or more third devices.
  • the above-mentioned various device embodiments correspond completely to those in the method embodiments, and the corresponding modules or units perform corresponding operations, for example, the communication unit (transceiver) performs receiving or sending operations in the method embodiments, except for sending and receiving Other operations may be performed by a processing unit (processor).
  • the functions of the specific units may be based on the corresponding method embodiments. Wherein, there may be one or more processors.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each functional unit may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the functions are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, server, or network device, etc.) execute all or part of the operations of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种编码方法、解码方法和通信装置。涉及通信领域,该方法中MCS表格的每行包括MCS索引以及与MCS索引对应的至少一个分量编码器的码率,可以基于第一MCS索引对应的M个极化分量编码器的码率对物理共享信道所承载的数据进行编码或者解码处理,从而提供了一种通过极化码编码的方案对物理共享信道所承载的数据进行编码或者解码的方法。

Description

编码方法、解码方法和通信装置
本申请要求于2022年01月17日提交国家知识产权局、申请号为202210047691.5、申请名称为“一种通信方法、UE及网络设备”,以及,要求于2022年04月29日提交国家知识产权局、申请号为202210476457.4、申请名称为“编码方法、解码方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地涉及通信领域中编码方法、解码方法和通信装置。
背景技术
极化码(polar codes)编码是可以达到香农容量极限的编码方式。极化码编码通过引入冗余信息来提高传输的可靠性。
在极化码编码的方案中,如何通过至少一个极化分量编码器对物理共享信道所承载的数据进行编解码是亟待解决的问题。
发明内容
本申请实施例提供了一种编码方法、解码方法和通信装置,能够通过调制与编码策略(modulation and coding scheme,MCS)表格中的极化分量编码器的码率对物理共享信道所承载的数据进行处理,从而提供了通过极化码编码的方案对物理共享信道所承载的数据进行编码或者解码的方法。
第一方面,提供了一种编码方法,包括:根据MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,所述MCS表格包括至少一行,所述MCS表格包括的至少一行中的每行包括MCS索引以及与所述每行包括的MCS索引对应的至少一个极化分量编码器的码率;发送指示信息,所述指示信息用于指示所述第一MCS索引,所述第一MCS索引为MCS表格中的MCS索引;其中,M为正整数。
在上述方案中,MCS表格的每行包括MCS索引以及与MCS索引对应的至少一个极化分量编码器的码率,可以基于第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行所承载的数据进行编码,从而提供了一种通过极化码编码的方案处理物理共享信道所承载的数据进行编码的方法。
可选地,第一MCS索引为MCS索引中的一个MCS索引。
可选地,MCS表格中的一行包括一个MCS索引以及与该一个MCS索引对应的至少一个极化分量编码器的码率。
可选地,极化分量编码器可以替换为调制子信道。
在一些可能的实现方式中,所述发送指示信息,包括:发送控制信息,控制信息包括指示信息;其中,所述控制信息还用于指示所述物理共享信道。
可选地,上述方法可以由网络设备执行。
可选地,控制信息可以是下行控制信息(downlink control information,DCI)。
可选地,物理共享信道可以是物理下行共享信道(physical downlink shared channel,PDSCH)。
可选地,上述方法可以由终端设备执行。
可选地,控制信息可以是侧链路控制信息(sidelink control information,SCI)。
可选地,物理共享信道可以是侧行链路共享信道(physical sidelink shared channel,PSSCH)。
在一些可能的实现方式中,所述发送指示信息,包括:发送无线资源控制(radio resource control,RRC)信令,RRC信令包括指示信息。可选地,RRC信令可以指示所述物理共享信道。
可选地,指示第一MCS索引的指示信息和指示物理共享信道的信息可以是一个信息也可以是不同的信息,本申请不予限制。
可选地,发指示信息的设备保存有MCS表格,接收指示信息的设备也保存有MCS表格。
可选地,所述MCS表格可以是已经通过其他信令半静态配置完成的,也可以是预配置的,或者也可以是所述指示信息指示的。
可选地,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器的码率对所述物理共享信道所承载的数据进行编码,包括:根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器的码率对所述物理共享信道所承载的数据的一个码块(code block,CB)进行处理。
在一些可能的实现方式中,所述MCS表包括的至少一行中的每行还包括与所述每行包括的MCS索引对应的调制阶数和/或总频谱效率。
可选地,根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器的码率对所述物理共享信道所承载的数据进行编码,包括:根据MCS表格中与第一MCS索引调制阶数或总频谱效率中的至少一项以及第一MCS对应的M个极化分量编码器的码率对物理共享信道所承载的数据进行编码。
可选地,总频谱效率包括第一频谱效率和成形比特所占的第二频谱效率。第一频谱效率为信息比特所占的第一频谱效率。
在一些可能的实现方式中,所述每行包括的MCS索引对应的极化分量编码器的码率的数量是根据所述每行包括的MCS索引对应的调制阶数确定的。
在上述方案中,极化分量编码器的码率的数量是根据每行包括的MCS索引对应的调制阶数确定的,这样有利于确定计划分量编码器的码率的数量。例如,第一MCS索引对应的极化分量编码器的码率的数量是根据第一MCS索引对应的调制阶数确定的。
可选地,所述每行包括的MCS索引对应的极化分量编码器的码率的数量是根据所述每行包括的MCS索引对应的调制阶数确定的,具体为:所述每行包括的MCS索引对应的极化分量编码器的码率的数量等于所述每行包括的MCS索引对应的调制阶数。
在一些可能的实现方式中,所述每行包括的MCS索引对应的极化分量编码器的码率的数量是根据所述每行包括的MCS索引对应的调制阶数确定的,具体为:所述每行包括的MCS索引对应的极化分量编码器的码率的数量是所述每行包括的MCS索引对应的调制 阶数的二分之一。
在一些可能的实现方式中,所述MCS表格的特征为:存在第二MCS索引和第三MCS索引,当第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,第二MCS索引对应的极化分量编码器的码率的数量,与第三MCS索引对应的极化分量编码器的码率的数量不同。
在一些可能的实现方式中,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
在一些可能的实现方式中,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到。
其中,R T为第一频谱效率,所述第一频谱效率为所述每行包括的MCS索引对应的至少一个极化分量编码器的频谱效率之和。R S为所述每行包括的MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率。
在一些可能的实现方式中,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到,包括:所述每行包括的MCS索引对应的总频谱效率为R T+2R S
在一些可能的实现方式中,所述MCS表格包括的至少一行中的每行还包括与所述MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率R S
在一些可能的实现方式中,在所述MCS表格中确定与所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S
其中,所述根据MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,包括:根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码。
在上述方案中,可以根据MCS表格中第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和第M个极化分量编码器的成形比特的码率对物理共享信道所承载的数据进行编码。
在一些可能的实现方式中,根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,所述麦克斯韦玻尔兹曼参数为预设值。
其中,所述根据MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,包括:根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码。
可选地,麦克斯韦玻尔兹曼参数可以是半静态配置的,例如RRC信令配置的,或者是预配置的。
可选地,根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中 每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码,包括:根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道对应的第一码块CB进行处理。
可选地,物理共享信道对应一个或多个CB,可以根据第一MCS索引对应的M个极化分量编码器的码率分别对物理共享信道对应的一个或多个CB的进行处理,这样,可以完成对物理共享信道的处理。
可选地,物理共享信道对应一个或多个CB,一个或多个CB包括第一CB。
在一些可能的实现方式中,所述根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,包括:根据所述麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定星座点的概率分布;根据所述星座点的概率分布确定所述第M个极化分量编码器的条件熵;根据所述第M个极化分量编码器的条件熵确定所述第M个极化分量编码器的成形比特所占的码率R S
在一些可能的实现方式中,所述MCS表格中所述第一MCS索引对应的所述M个极化分量编码器的码率是根据所述M个极化分量编码器对应的M个调制子信道的信道容量和所述M个极化分量编码器中每个极化分量编码器的码长N确定的,所述M个极化分量编码器与所述M个调制子信道一一对应;所述M个调制子信道对应的信道容量是根据所述第一MCS索引对应的总频谱效率确定的。
在上述方案中,可以根据M个调制子信道的信道容量和每个极化分量编码器的码长N确定M个极化分量编码器的码率,调制子信道的信道容量在一定程度上可以表征调制子信道的可靠性,因此,根据调制子信道的信道容量和每个极化分量编码器的码长N确定M个极化分量编码器的码率有利于提高传输的可靠性。
在一些可能的实现方式中,所述M个调制子信道对应的信道容量是根据所述第一MCS索引对应的总频谱效率确定的,具体为:所述M个调制子信道的信道容量是根据所述M个调制子信道的等效信道的转移概率和星座点的概率分布确定的,所述等效信道的转移概率是根据第一频谱效率和星座点的概率分布确定的,所述星座点的概率分布为所述第一MCS索引对应的调制阶数和麦克斯韦玻尔兹曼参数对应的星座点的概率的分布,所述麦克斯韦玻尔兹曼参数为预设值,所述第一频谱效率为所述总频谱效率中信息比特所占的第一频谱效率。
在一些可能的实现方式中,所述M个调制子信道的信道容量是根据所述M个调制子信道的等效信道的转移概率和星座点的概率分布确定的,具体为:
所述M个调制子信道的信道容量满足下述公式(1)。
Figure PCTCN2022138444-appb-000001
其中,
Figure PCTCN2022138444-appb-000002
为所述M个调制子信道中的第m个调制子信道的信道容量。m∈[1,…,M]。
Figure PCTCN2022138444-appb-000003
为输入所述等效信道的调制符号对应的M维比特向量的前m个比特为
Figure PCTCN2022138444-appb-000004
的条件下,所述等效信道输出的符号为y的概率。
Figure PCTCN2022138444-appb-000005
为输入所述等效信道的调制符号对应 的M维比特向量的前m-1个比特为
Figure PCTCN2022138444-appb-000006
的条件下,所述等效信道的输出的符号为y的概率。
Figure PCTCN2022138444-appb-000007
为输入所述等效信道的调制符号对应的M维比特向量的前m个比特为
Figure PCTCN2022138444-appb-000008
的概率。
Figure PCTCN2022138444-appb-000009
是根据星座点的概率分布确定的。
Figure PCTCN2022138444-appb-000010
Figure PCTCN2022138444-appb-000011
为所述等效信道的转移概率;
Figure PCTCN2022138444-appb-000012
为所述等效信道输出的符号的集合。
在一些可能的实现方式中,所述M个调制子信道的信道容量是根据所述M个调制子信道的等效信道的转移概率和星座点的概率分布确定的,具体为:所述M个调制子信道的信道容量中每个调制子信道的信道容量是根据每个调制子信道的差错概率、所述每个极化分量编码器的码长N、所述等效信道的转移概率和星座点的概率分布确定的,所述每个调制子信道的差错概率是根据等效信道的差错概率确定的。
在一些可能的实现方式中,所述每个调制子信道的差错概率是根据等效信道的差错概率确定的,具体为:
所述每个调制子信道的差错概率满足下述公式(2);
Figure PCTCN2022138444-appb-000013
其中,所述ε为所述等效信道的差错概率,所述ε为预设值,所述ε m为所述第m个调制子信道的差错概率,m∈[1,…,M]。
在一些可能的实现方式中,所述MCS表格中所述第一MCS索引对应的所述M个极化分量编码器的码率是根据所述M个极化分量编码器对应的M个调制子信道的信道容量和所述M个极化分量编码器的码长N确定的,具体为:
所述MCS表格中所述第一MCS索引对应的所述M个极化分量编码器的码率是根据每个极化分量编码器的信息比特的数量和所述每个极化分量编码器的码长N确定的,所述每个极化分量编码器的信息比特的数量是根据所述每个调制子信道对应的信道容量在M个调制子信道的信道容量之和中所占的比重以及所述M个极化分量编码器对应的在信息比特总和确定的,所述M个极化分量编码器对应的信息比特总和是根据目标码率、调制子信道数量M和所述每个极化分量编码器的码长N得到的。
第二方面,提供了一种解码方法,包括:接收指示信息,所述指示信息用于指示第一MCS索引,所述第一MCS索引为MCS表格中的MCS索引,所述MCS表格包括至少一行,所述MCS表格包括的至少一行中的每行包括MCS索引以及与所述每行包括的MCS索引对应的至少一个极化分量编码器的码率;
根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码;
其中,M为正整数。
在上述方案中,MCS表格的每行包括MCS索引以及与MCS索引对应的至少一个极化分量编码器的码率,可以基于第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行所承载的数据进行解码,从而提供了一种通过极化码编码的方案处理物理共享信道所承载的数据进行解码的方法。
在一些可能的实现方式中,所述MCS表格包括的至少一行中的每行还包括与所述每行包括的MCS索引对应的调制阶数和/或总频谱效率。
在一些可能的实现方式中,所述MCS表格的特征为:存在第二MCS索引和第三MCS索引,当第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,第 二MCS索引对应的极化分量编码器的码率的数量,与第三MCS索引对应的极化分量编码器的码率的数量不同。
在一些可能的实现方式中,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
在一些可能的实现方式中,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到;
其中,R T为第一频谱效率,所述第一频谱效率为所述每行包括的MCS索引对应的至少一个极化分量编码器的频谱效率之和,R S为所述每行包括的MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率。
在一些可能的实现方式中,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到,包括:所述每行包括的MCS索引对应的总频谱效率为R T+2R S
在一些可能的实现方式中,所述MCS表格包括的至少一行中的每行还包括与所述MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率R S
在一些可能的实现方式中,所述解码方法还包括:
在所述MCS表格中确定与所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S
其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码,包括:
根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行解码。
在一些可能的实现方式中,所述解码方法还包括:
根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,所述麦克斯韦玻尔兹曼参数为预设值;
其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码,包括:根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道进行解码。
在一些可能的实现方式中,所述根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,包括:根据所述麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定星座点的概率分布;根据所述星座点的概率分布确定所述第M个极化分量编码器的条件熵;根据所述第M个极化分量编码器的条件熵确定所述第M个极化分量编码器的成形比特所占的码率R S
具体地,第二方面的描述参见第一方面的描述。
第三方面,提供了一种编码方法,包括:接收指示信息,所述指示信息用于指示第一MCS索引,所述第一MCS索引为MCS表格中的MCS索引,所述MCS表格包括至少一行,所述MCS表格包括的至少一行中的每行包括MCS索引以及与所述每行包括的MCS索引对应的至少一个极化分量编码器的码率;
根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码;
其中,M为正整数。
在上述方案中,MCS表格的每行包括MCS索引以及与MCS索引对应的至少一个极化分量编码器的码率,可以基于第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行所承载的数据进行编码,从而提供了一种通过极化码编码的方案处理物理共享信道所承载的数据进行编码的方法。
在一些可能的实现方式中,所述MCS表格包括的至少一行中的每行还包括与所述每行包括的MCS索引对应的调制阶数和/或总频谱效率。
在一些可能的实现方式中,所述MCS表格的特征为:存在第二MCS索引和第三MCS索引,当所述第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,所述第二MCS索引对应的极化分量编码器的码率的数量,与所述第三MCS索引对应的极化分量编码器的码率的数量不同。
在一些可能的实现方式中,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
在一些可能的实现方式中,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到;
其中,R T为第一频谱效率,所述第一频谱效率为所述每行包括的MCS索引对应的至少一个极化分量编码器的频谱效率之和,R S为所述每行包括的MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率。
在一些可能的实现方式中,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到,包括:所述每行包括的MCS索引对应的总频谱效率为R T+2R S
在一些可能的实现方式中,所述MCS表格包括的至少一行中的每行还包括与所述MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率R S
在一些可能的实现方式中,所述编码方法还包括:
在所述MCS表格中确定与所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S
其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,包括:
根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码。
在一些可能的实现方式中,所述编码方法还包括:
根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,所述麦克斯韦玻尔兹曼参数为预设值;
其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,包括:
根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码。
在一些可能的实现方式中,所述根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,包括:
根据所述麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定星座点的概率分布;
根据所述星座点的概率分布确定所述第M个极化分量编码器的条件熵;
根据所述第M个极化分量编码器的条件熵确定所述第M个极化分量编码器的成形比特所占的码率R S
具体地,第三方面的描述参见第一方面的描述。
第四方面,提供了一种解码方法,包括:发送指示信息,所述指示信息用于指示第一MCS索引,所述第一MCS索引为MCS表格中的MCS索引,所述MCS表格包括至少一行,所述MCS表格包括的至少一行中的每行包括MCS索引以及与所述每行包括的MCS索引对应的至少一个极化分量编码器的码率;根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码;
其中,M为正整数。
在上述方案中,MCS表格的每行包括MCS索引以及与MCS索引对应的至少一个极化分量编码器的码率,可以基于第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行所承载的数据进行解码,从而提供了一种通过极化码编码的方案处理物理共享信道所承载的数据进行解码的方法。
在一些可能的实现方式中,所述MCS表格包括的至少一行中的每行还包括与所述每行包括的MCS索引对应的调制阶数和/或总频谱效率。
在一些可能的实现方式中,所述MCS表格的特征为:存在第二MCS索引和第三MCS索引,当所述第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,所述第二MCS索引对应的极化分量编码器的码率的数量,与所述第三MCS索引对应的极化分量编码器的码率的数量不同。
在一些可能的实现方式中,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
在一些可能的实现方式中,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到;
其中,R T为第一频谱效率,所述第一频谱效率为所述每行包括的MCS索引对应的至少一个极化分量编码器的频谱效率之和,R S为所述每行包括的MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率。
在一些可能的实现方式中,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到,包括:所述每行包括的MCS索引对应的总频谱效率为R T+2R S
在一些可能的实现方式中,所述MCS表格包括的至少一行中的每行还包括与所述MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率R S
在一些可能的实现方式中,所述解码方法还包括:
在所述MCS表格中确定与所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S
其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码,包括:
根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行解码。
在一些可能的实现方式中,所述解码方法还包括:
根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,所述麦克斯韦玻尔兹曼参数为预设值;
其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码,包括:
根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行解码。
在一些可能的实现方式中,所述根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,包括:根据所述麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定星座点的概率分布;
根据所述星座点的概率分布确定所述第M个极化分量编码器的条件熵;
根据所述第M个极化分量编码器的条件熵确定所述第M个极化分量编码器的成形比特所占的码率R S
具体地,第四方面的描述参见第一方面的描述。
第五方面,提供了一种用于确定极化分量编码器的码率的方法,所述方法包括:获取第一频谱效率;根据所述第一频谱效率确定M个极化分量编码器对应的M个调制子信道中每个调制子信道的信道容量,所述M个极化分量编码器与所述M个调制子信道一一对应,所述M个极化分量编码器中每个极化分量编码器的码长为N;根据所述每个调制子信道对应的信道容量和所述每个极化分量编码器的码长N确定所述每个极化分量编码器的码率;其中,N和M为正整数。
在上述方案中,可以根据M个调制子信道的信道容量和每个极化分量编码器的码长N确定M个极化分量编码器的码率,调制子信道的信道容量在一定程度上可以表征调制子信道的可靠性,因此,可以根据调制子信道的信道容量确定各个极化分量编码器的码率,从而可以提高适用性,避免采用数值搜索法确定每个极化分量编码器的信息比特的数量的复杂度高的问题。
在一些可能的实现方式中,所述根据所述第一频谱效率确定M个极化分量编码器对应的M个调制子信道中每个调制子信道的信道容量,包括:
根据所述第一频谱效率和星座点的概率分布确定所述M个极化分量编码器对应的等效信道的转移概率,所述星座点的概率分布为所述调制阶数和麦克斯韦玻尔兹曼参数对应的星座点的概率的分布,所述麦克斯韦玻尔兹曼参数为预设值;
根据所述等效信道的转移概率和所述星座点的概率分布确定所述等效信道对应的M个调制子信道中每个调制子信道的信道容量。
在一些可能的实现方式中,所述根据所述等效信道的转移概率和所述星座点的概率分布确定所述等效信道对应的M个调制子信道中每个调制子信道的信道容量使得所述每个调制子信道的信道容量满足下述公式(1)。
Figure PCTCN2022138444-appb-000014
其中,
Figure PCTCN2022138444-appb-000015
为M个调制子信道中的第m个调制子信道的信道容量,m∈[1,…,M]。
Figure PCTCN2022138444-appb-000016
为输入所述等效信道的调制符号对应的M维比特向量的前m个比特为
Figure PCTCN2022138444-appb-000017
的条件下,所述等效信道输出的符号为y的概率。
Figure PCTCN2022138444-appb-000018
为输入所述等效信道的调制符号对应的M维比特向量的前m-1个比特为
Figure PCTCN2022138444-appb-000019
的条件下,所述等效信道的输出的符号为y的概率。
Figure PCTCN2022138444-appb-000020
为输入所述等效信道的调制符号对应的M维比特向量的前m个比特为
Figure PCTCN2022138444-appb-000021
的概率,
Figure PCTCN2022138444-appb-000022
为根据所述星座点的概率分布确定的。
Figure PCTCN2022138444-appb-000023
Figure PCTCN2022138444-appb-000024
为所述等效信道的转移概率。
Figure PCTCN2022138444-appb-000025
为所述等效信道输出的符号的集合。
在一些可能的实现方式中,所述根据所述等效信道的转移概率和所述星座点的概率分布确定所述等效信道对应的M个调制子信道中每个调制子信道的信道容量,包括:
根据所述等效信道的差错概率确定所述M个调制子信道中每个调制子信道的差错概
率;
根据所述每个调制子信道的差错概率、所述每个极化分量编码器的码长N、所述等效信道的转移概率和所述星座点的概率分布确定所述每个调制子信道的信道容量。
在一些可能的实现方式中,所述根据所述等效信道的差错概率确定所述M个调制子信道中每个调制子信道的差错概率使得每个调制子信道的差错概率满足以下公式(2)。
Figure PCTCN2022138444-appb-000026
其中,所述ε为所述等效信道的差错概率,所述ε为预设值,所述ε m为所述第m个调制子信道的差错概率,m∈[1,…,M]。
在一些可能的实现方式中,所述根据所述M个调制子信道对应的信道容量和所述每个极化分量编码器的码长N确定所述每个极化分量编码器的码率,包括:
确定所述每个调制子信道对应的信道容量在M个调制子信道的信道容量之和中所占的比重;
根据所述每个调制子信道对应的信道容量在m个调制子信道的信道容量之和中所占的比重以及所述M个极化分量编码器对应的信息比特总和确定各个调制子信道对应的极化分量编码器的信息比特的数量,所述M个极化分量编码器对应的信息比特总和为根据所述目标码率、调制子信道的数量M和所述每个极化分量编码器的码长N得到的;
根据所述每个调制子信道对应的极化分量编码器的信息比特的数量和所述每个极化分量编码器的码长N确定每个极化分量编码器的信息比特所占的码率。
在一些可能的实现方式中,所述方法还包括:
根据星座点的概率分布确定M个极化分量编码器中第M个极化分量编码器对应的条件熵,所述每个极化分量编码器的码长为N,所述星座点的概率分布为所述调制阶数和麦克斯韦玻尔兹曼参数对应的星座点的概率的分布,所述麦克斯韦玻尔兹曼参数为预设值;
根据所述第M个极化分量编码器对应的条件熵确定所述第M个极化分量编码器中的成形比特的数量;
根据所述第M个极化分量编码器的成形比特的数量和所述第M个极化分量编码器的码长N确定所述第M个极化分量编码器的成形比特所占的码率。
第六方面,提供了一种用于确定码率的方法,包括:根据星座点的概率分布确定M个极化分量编码器中第M个极化分量编码器对应的条件熵,所述每个极化分量编码器的码长为N,所述星座点的概率分布为调制阶数和麦克斯韦玻尔兹曼参数对应的星座点的概率的分布,所述麦克斯韦玻尔兹曼参数为预设值;根据所述第M个极化分量编码器对应的条件熵确定所述第M个极化分量编码器的成形比特所占的码率所述第M个极化分量编码器中的成形比特的数量;根据所述第M个极化分量编码器的成形比特的数量和所述第M个极化分量编码器的码长N确定所述第M个极化分量编码器的成形比特所占的码率。
在上述方案中,可以根据星座点的概率分布确定M个极化分量编码器中第M个极化分量编码器对应的条件熵,并根据第M个极化分量编码器对应的条件熵确定所述第M个极化分量编码器的成形比特所占的码率,也就是说通过概率成形方案可以确定第M个极化分量编码器的成形比特所占的码率,避免采用数值搜索法确定第M个极化分量编码器的成形比特所占的数量的复杂度,也能提高适用性。
可选地,可以根据所述麦克斯韦玻尔兹曼参数和调制阶数确定星座点的概率分布。
可选地,根据所述第M个极化分量编码器对应的条件熵确定所述第M个极化分量编码器的成形比特所占的码率,包括:根据所述第M个极化分量编码器对应的条件熵确定所述第M个极化分量编码器中的成形比特的数量;根据所述第M个极化分量编码器的成形比特的数量和所述第M个极化分量编码器的码长N确定所述第M个极化分量编码器的成形比特所占的码率。
第七方面,本申请提供了一种通信装置,该装置具有实现上述各方面及上述各方面的可能实现方式中各个设备行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块或单元。例如,确定模块或单元、收发模块或单元等。
第八方面,本申请提供了一种电子设备,所述装置包括处理器,处理器与存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器存储的计算机程序或指令,使得上述各方面及上述各方面的可能实现方式中的方法被执行。
例如,处理器用于执行存储器存储的计算机程序或指令,使得该装置执行上述各方面及上述各方面的可能实现方式中的方法。
可选的,该装置包括的处理器为一个或多个。
可选的,该装置中还可以包括与处理器耦合的存储器。
可选的,该装置包括的存储器可以为一个或多个。
可选的,该存储器可以与该处理器集成在一起,或者分离设置。
可选的,该装置中还可以包括收发器。
第九方面,本申请提供了一种电子设备,包括:一个或多个处理器;存储器;以及一个或多个计算机程序。其中,一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令。当指令被电子设备执行时,使得一个或多个处理器执行上述各方面或者各方面的任一项可能的实现中的方法,或者本申请任一实施例所介绍的方法。
可选的,该电子设备还可以包括:触摸显示屏和/或摄像头,其中,触摸显示屏包括触敏表面和显示器。
第十方面,本申请提供了一种计算机可读存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述各方面或者各方面的任一项可能的方法,或者本申请任一实施例所介绍的方法。
第十一方面,本申请提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备执行上述各面或者各方面的任一项可能的方法,或者本申请任一实施例所介绍的方法。
第十二方面,本申请提供一种装置,包含用于执行本申请任一实施例所介绍的方法的单元。
附图说明
图1是本申请实施例提供的一种应用场景的示意图。
图2是本申请实施例提供的用于确定极化分量编码器的码率的方法示意图。
图3是本申请实施例提供的用于确定成形比特的所占的码率的方法示意图。
图4是本申请实施例提供的编码方法和解码方法的示意图。
图5是本申请实施例提供的另一编码方法和解码方法的示意图。
图6是本申请实施例提供的编码设备采用M个极化分量编码器编码的过程示意图。
图7是本申请实施例提供的编码方法和解码方法的效果示意图。
图8是本申请实施例提供的另一编码方法和解码方法的效果示意图。
图9是本申请实施例提供的通信装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution, LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等或者未来的其他的通信系统。
图1示出了应用于本申请实施例的一种应用场景的示意图。如图1所示,该系统包括:终端设备110和网络设备120。
终端设备110,也称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户通信装置等。
终端设备110可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例包括:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请对此并不限定。
网络设备120,也可以称为无线接入网(radio access network,RAN)或者无线接入网设备,网络设备120可以是传输接收点(transmission reception point,TRP),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,还可以是无线局域网(wireless local area network,WLAN)中的接入点(access point,AP),还可以是NR系统中的gNB,上述网络设备120还可以是城市基站、微基站、微微基站、毫微微基站等等,本申请对此不做限定。
在一种网络结构中,网络设备120可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或是包括CU节点和DU节点的无线接入网络(radio access network,RAN)设备、或者是包括控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的设备。
应理解,图1中仅为便于理解,示意性地示出了终端设备110和网络设备120,但这不应对本申请构成任何限定,该无线通信系统中还可以更多数量的网络设备,也可以包括更多或更少数量的终端设备,本申请对此不做限定。终端设备110可以是固定位置的,也可以是可移动的。
可选地,图1中的网络设备120还可以替换成终端设备,终端设备与终端设备之间传输数据的链路称为侧行链路(sidelink)。侧行链路一般用于车辆对其他设备(vehicle to everything,V2X),或者设备到设备(device to device,D2D)等可以在设备间进行直联通信的场景。V2X通信可以看成是D2D通信的一种特殊情形。可选地,新无线(new radio,NR)接入技术是目前主流的无线通信技术,其针对V2X业务特性及新的业务需求,可以支持更低延迟、更高可靠性的V2X通信。V2X是实现智能汽车、自动驾驶、智能交通运输系统的基础和关键技术。V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to-vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等。
下面为了描述方面,省去了设备的编号,例如“终端设备110”可以简化为“终端设备”,“网络设备120”可以简化为“网络设备”。
极化码编码是目前唯一理论证明能够达到香农容量极限的信道编码方式。极化码编码通过引入冗余信息来提高传输的可靠性,由于引入了冗余信息因此可能会降低传输速率。为了提高传输速率,在带宽有限的信道中,可以采用高维调制。在一个实施例中,可以采用极化编码调制的设计方案,极化编码调制是一种极化码与调制联合优化的设计方案,并可以理论证明达到对称信道的容量。但是在加性高斯白噪声(additive white Gaussian noise,AWGN)信道中,采用均匀等概率分布星座调制无法达到对称的信道容量。因此,可以采用极化码编码调制概率成形方案。在一些实施例中,采用极化码编码调制概率成形方案中,极化码的构造均为经验式的,不能适应任意的编码调制系统,适用范围受限,例如,在多级码极化编码调制(multi-level polar-coded modulation,MLC-PCM)方案中,可以采用数值搜索的方式实现极化码的构造,数值搜索的方式为通过尝试构造极化分量编码器的码率,如果尝试构造的极化分量编码器的码率不准确,则会再次尝试构造极化分量编码器的码率,直到搜索到准确的计划分量编码器的码率,这样导致计算复杂度高,无法应用在任意的通信系统中。
因此,在本申请实施例中提供了一种用于确定极化码分量编码器的码率的方法,可以应用于任意通信系统,计算复杂度比较低,避免采用数值搜索的方式构造极化分量编码器的码率。
下面结合图2描述本申请实施例的用于确定极化分量编码器的码率的方法200,方法200适用于第一设备,如图2所示,方法200包括:
S201,第一设备获取第一频谱效率。
可选地,方法200中的第一设备可以是图1的终端设备或者网络设备,或者是不同于终端设备和网络设备的其他的设备,也就是说,本申请实施例中确定M个极化分量编码器的码率的可以是其他的不同于终端设备和网络设备的设备。
可替换的,S201可以替换为:第一设备可以获取调制阶数和目标码率。第一设备可以根据调制阶数和目标码率确定第一频谱效率。例如,调制阶数乘以目标码率等于第一频谱效率。
可选地,若第一设备为终端设备,终端设备可以从网络设备获取第一频谱效率。
可选地,方法200还包括:第一设备获取调制阶数。
可选地,方法200还包括:第一设备获取目标码率,第一设备可以根据第一频谱效率 和目标码率确定调制阶数。例如,第一设备可以将第一频谱效率除以目标码率得到调制阶数。
可选地,S201,包括:第一设备获取总频谱效率,第一设备根据成形比特所占的第二频谱效率确定第一频谱效率,第一频谱效率为信息比特所占的第一频谱效率。
需要理解的是,总频谱效率可以是信息比特所占的第一频谱效率与成形比特所占的第二频谱效率之和,第一设备获取到总频谱效率之后,可以确定成形比特所占的第二频谱效率,然后将总频谱效率减去成形比特所占的第二频谱效率得到信息比特所占的第一频谱效率。
S202,第一设备根据第一频谱效率确定M个极化分量编码器对应的M个调制子信道中每个调制子信道的信道容量,M个极化分量编码器与M个调制子信道一一对应。M个极化分量编码器中每个极化分量编码器的码长为N。
可选地,一个极化编码器可以对应M个极化分量编码器,M可以是预设值,不同应用场景下M的取值可以不同。每个极化分量编码器输出的码字序列对应一个调制子信道。
可选地,N为M个极化分量编码器中每个极化分量编码器输出的码字序列的长度。
可选地,每个极化分量编码器输出的码字序列的长度N为根据信息比特总和以及第一频谱效率确定的。例如,每个极化分量编码器输出的码字序列的长度N可以为信息比特的总和除以第一频谱效率。
可选地,极化分量编码器输出的码字序列的长度N为2的幂次方,即N=2 n
可选地,信息比特总和等于码字序列的长度N乘以第一频谱效率。例如,信息比特总和为K,第一频谱效率为R T,则K=2 n·R T
可选地,S202,包括操作A和操作B。其中,操作A:第一设备可以根据第一频谱效率和星座点的概率分布确定M个极化分布编码器对应的等效信道的转移概率;操作B:第一设备可以根据等效信道的转移概率和星座点的概率分布确定M个调制子信道中每个调制子信道的信道容量。
可选地,第一设备可以根据第一频谱效率等效出一个等效信道
Figure PCTCN2022138444-appb-000027
使得等效信道
Figure PCTCN2022138444-appb-000028
的信道容量
Figure PCTCN2022138444-appb-000029
等于第一频谱效率,第一频谱效率可以用R T表示,也即
Figure PCTCN2022138444-appb-000030
可选地,操作A,包括:第一设备可以根据第一频谱效率和星座点的概率分布确定M个极化分布编码器对应的等效信道的转移概率使得等效信道的转移概率满足下述公式(3)。
Figure PCTCN2022138444-appb-000031
其中,
Figure PCTCN2022138444-appb-000032
为星座点集合。
Figure PCTCN2022138444-appb-000033
为星座点集合
Figure PCTCN2022138444-appb-000034
中的星座点输入等效信道后。等效信道输出的符号的集合。p(x)为星座点集合
Figure PCTCN2022138444-appb-000035
中x的概率。p(x')也为星座点集合
Figure PCTCN2022138444-appb-000036
中x'的概率。
Figure PCTCN2022138444-appb-000037
为等效信道的转移概率。
Figure PCTCN2022138444-appb-000038
也为等效信道的转移概率。其中,x'为遍历完
Figure PCTCN2022138444-appb-000039
中的星座点。也就是说,公式(3)中R T、p(x)和p(x')为已知量,
Figure PCTCN2022138444-appb-000040
Figure PCTCN2022138444-appb-000041
为与等效信道的方差σ 2相关的量,也就是说等效信道的噪声的方差σ 2为未知量,根据公式(3)确定等效信道的噪声的方差σ 2之后,可以确定
Figure PCTCN2022138444-appb-000042
Figure PCTCN2022138444-appb-000043
的取值,其中等效信道的噪声的均值可以为0。
可选地,第一设备获取到调制阶数之后,可以根据调制阶数确定星座点集合
Figure PCTCN2022138444-appb-000044
中包括的星座点的数量,例如,调制阶数为Q m,则星座点集合
Figure PCTCN2022138444-appb-000045
中包括的星座点的数量为
Figure PCTCN2022138444-appb-000046
Figure PCTCN2022138444-appb-000047
可选地,第一设备可以根据调制阶数和麦克斯韦玻尔兹曼参数确定星座点集合
Figure PCTCN2022138444-appb-000048
中x的概率p(x)。麦克斯韦玻尔兹曼参数可以是预设值。例如,第一设备可以确定的p(x)满足下述公式(4)。
Figure PCTCN2022138444-appb-000049
其中,ν为麦克斯韦玻尔兹曼参数,
Figure PCTCN2022138444-appb-000050
为星座点集合,
Figure PCTCN2022138444-appb-000051
和x为星座点集合
Figure PCTCN2022138444-appb-000052
中的星座点。
下面分两种情况描述上述的操作B:第一设备可以根据等效信道的转移概率和星座点的概率分布确定M个调制子信道中每个调制子信道的信道容量。
情况一,第一设备可以根据等效信道的转移概率和星座点的概率分布确定M个调制子信道中每个调制子信道的信道容量使得每个调制子信道的信道容量满足下述公式(5)。
Figure PCTCN2022138444-appb-000053
其中,
Figure PCTCN2022138444-appb-000054
为M个调制子信道中的第m个调制子信道的信道容量,m∈[1,…,M]。
Figure PCTCN2022138444-appb-000055
为输入所述等效信道的调制符号对应的M维比特向量的前m个比特为
Figure PCTCN2022138444-appb-000056
的条件下,所述等效信道输出的符号为y的概率。
Figure PCTCN2022138444-appb-000057
为输入所述等效信道的调制符号对应的M维比特向量的前m-1个比特为
Figure PCTCN2022138444-appb-000058
的条件下,所述等效信道的输出的符号为y的概率。
Figure PCTCN2022138444-appb-000059
为输入所述等效信道的调制符号对应的M维比特向量的前m个比特为
Figure PCTCN2022138444-appb-000060
的概率,
Figure PCTCN2022138444-appb-000061
为根据所述星座点的概率分布确定的。
Figure PCTCN2022138444-appb-000062
Figure PCTCN2022138444-appb-000063
为所述等效信道的转移概率。
Figure PCTCN2022138444-appb-000064
为所述等效信道输出的符号的集合,公式(5)可以与前述的公式(1)相同。
其中,根据公式(3)可得等效信道的转移概率
Figure PCTCN2022138444-appb-000065
由于在映射的过程中,给定M维比特向量
Figure PCTCN2022138444-appb-000066
表示M维比特向量
Figure PCTCN2022138444-appb-000067
由0和1组成,
Figure PCTCN2022138444-appb-000068
中的M表示比特向量的长度,调制符号的映射规则为
Figure PCTCN2022138444-appb-000069
表示集分割(Set Partition,SP)映射,因此,
Figure PCTCN2022138444-appb-000070
其中,公式(1)的
Figure PCTCN2022138444-appb-000071
Figure PCTCN2022138444-appb-000072
表示一个M维的比特向量,由
Figure PCTCN2022138444-appb-000073
Figure PCTCN2022138444-appb-000074
级联得到,
Figure PCTCN2022138444-appb-000075
Figure PCTCN2022138444-appb-000076
其中,
Figure PCTCN2022138444-appb-000077
为比特向量
Figure PCTCN2022138444-appb-000078
对应的星座点
Figure PCTCN2022138444-appb-000079
的转移概率;
Figure PCTCN2022138444-appb-000080
Figure PCTCN2022138444-appb-000081
为比特向量
Figure PCTCN2022138444-appb-000082
对应的星座点的取值概率,即
Figure PCTCN2022138444-appb-000083
为M维比特向量
Figure PCTCN2022138444-appb-000084
的前m个比特等于
Figure PCTCN2022138444-appb-000085
的星座点的概率之和。
情况二,操作B,包括:第一设备根据等效信道的差错概率确定M个调制子信道中每个调制子信道的差错概率;根据每个调制子信道的差错概率、每个极化分量编码器的码长N、等效信道的转移概率和星座点的概率分布确定每个调制子信道的信道容量。
可选地,第一设备根据等效信道的差错概率确定M个调制子信道中每个调制子信道的差错概率使得每个调制子信道的差错概率满足下述公式(6)。
Figure PCTCN2022138444-appb-000086
其中,所述ε为所述等效信道的差错概率,所述ε为预设值,所述ε m为所述第m个调制子信道的差错概率,m∈[1,…,M],也就是说在给定等效信道的差错概率的前提下,可以确定出每个调制子信道的差错概率,且每个调制子信道的差错概率可以相同,其中,公式(6)可以与上述的公式(2)相同。
可选地,第一设备根据每个调制子信道的差错概率、每个极化分量编码器的码长N、等效信道的转移概率和星座点的概率分布确定每个调制子信道的信道容量,包括:第一设备根据等效信道的转移概率、星座点的概率分布和每个调制子信道的原始的信道容量确定每个调制子信道的散度;根据每个调制子信道的散度、每个极化分量编码器的码长N、每个调制子信道的差错概率和每个调制子信道的原始的信道容量确定每个调制子信道的信道容量。
其中,每个调制子信道的原始的信道容量可以是根据情况一得到的调制子信道的信道容量。例如,可以利用公式(5)得到每个调制子信道的信道容量。也就是说,在情况一中计算得到的调制子信道的信道容量可以直接用于S203中计算每个极化分量编码器的码率,或者在情况二中可以对情况一得到的每个调制子信道的信道容量进行校准,从而得到校准后的调制子信道的信道容量,在S203中利用校准后的调制子信道的信道容量计算每个极化分量编码器的码率。
可选地,第一设备根据等效信道的转移概率、星座点的概率分布和每个调制子信道的原始的信道容量确定每个调制子信道的散度使得每个调制子信道的散度V m满足下述公式(7)。
Figure PCTCN2022138444-appb-000087
其中,V m为第m个调制子信道的散度,
Figure PCTCN2022138444-appb-000088
为输入所述等效信道的调制符号对应的M维比特向量的前m个比特为
Figure PCTCN2022138444-appb-000089
的条件下,等效信道输出的符号为y的概率,
Figure PCTCN2022138444-appb-000090
为输入所述等效信道的调制符号对应的M维比特向量的前m-1个比特为
Figure PCTCN2022138444-appb-000091
的条件下,所述等效信道的输出的符号为y的概率,
Figure PCTCN2022138444-appb-000092
为输入所述等效信道的调制符号对应的M维比特向量的前m个比特为
Figure PCTCN2022138444-appb-000093
的概率,
Figure PCTCN2022138444-appb-000094
为根据所述星座点的概率分布确定的。
Figure PCTCN2022138444-appb-000095
为每个调制子信道的原始的信道容量,
Figure PCTCN2022138444-appb-000096
可以根据公式(5)得到。
可选地,第一设备根据每个调制子信道的散度、每个极化分量编码器的码长N、每个调制子信道的差错概率和每个调制子信道的原始的信道容量使得每个调制子信道的信道容量
Figure PCTCN2022138444-appb-000097
满足下述公式(8)。
Figure PCTCN2022138444-appb-000098
其中,
Figure PCTCN2022138444-appb-000099
为第m个调制子信道的信道容量,
Figure PCTCN2022138444-appb-000100
为每个调制子信道的原始的信道容量,
Figure PCTCN2022138444-appb-000101
可以根据公式(1)得到,V m为第m个调制子信道的散度,ε m为所述第m个调制子信道的差错概率,Q(·)为互补高斯累积分布函数。
S203,第一设备根据每个调制子信道对应的信道容量和每个极化分量编码器的码长N确定每个极化分量编码器的码率。
可选地,S203,包括:第一设备确定所述每个调制子信道对应的信道容量在M个调制子信道的信道容量之和中所占的比重;第一设备根据所述每个调制子信道对应的信道容量在M个调制子信道的信道容量之和中所占的比重以及M个极化分量编码器对应的信息比特总和确定各个调制子信道对应的极化分量编码器的信息比特的数量,所述M个极化分量编码器对应的信息比特总和为根据目标码率、调制子信道的数量M和所述每个极化分量编码器的码长N得到的;第一设备根据所述每个调制子信道对应的极化分量编码器的信息比特的数量和所述每个极化分量编码器的码长N确定每个极化分量编码器的所占的码率。
可选地,第一设备可以获取目标码率,或者,第一设备可以根据第一频谱效率和调制阶数得到目标码率。
在上述方案中,第一设备可以按照每个调制子信道对应的信道容量在M个调制子信道的信道容量之和中的比重按比例确定各个调制子信道对应的极化分量编码器的信息比特的数量,各个调制子信道对应的极化分量编码器的信息比特的数量和码长N确定每个极化分量编码器的码率。换句话说,调制子信道的信道容量越高表示调制子信道的可靠性越高,调制子信道的信道容量越低表示调制子信道的可靠性越低,第一设备为可靠性高的调制子信道对应的极化分量编码器分配的信息比特的数量多,为可靠性低的调制子信道对应的极化分量编码器分配的信息比特的数量少。例如,调制子信道1的信道容量小于调制子信道2的信道容量,调制子信道1与极化分量编码器1对应,调制子信道2与极化分量编码器2对应,则第一设备为极化分量编码器1分配的信息比特的数量少于为极化分量编码器2分配的信息比特的数量。
下面分两种情况描述第一设备确定所述每个调制子信道对应的信道容量在M个调制子信道的信道容量之和中所占的比重;第一设备根据所述每个调制子信道对应的信道容量在M个调制子信道的信道容量之和中所占的比重在信息比特总和中确定各个调制子信道对应的极化分量编码器的信息比特的数量;第一设备根据所述每个调制子信道对应的极化分量编码器的信息比特的数量和所述每个极化分量编码器的码长N确定每个极化分量编码器的所占的码率。
情况一,针对上述S202的情况一,第一设备将发送调制后的符号的信道拆分成M个调制子信道W m,m∈[1,…,M]。可选地,调制后的符号的信道可以为AWGN信道。例如,AWGN信道可以为W,I(X;Y)为信道W的输入与输出之间的互信息,从互信息的角度可知,各个调制子信道的信道容量之和为信道W的信道容量,因此,存在公式(9)。
Figure PCTCN2022138444-appb-000102
其中,I(W m)为各个调制子信道的信道容量,I(W)为AWGN信道的信道容量。也就是说,由于各个调制子信道的信道容量之和为信道W的信道容量,因此,可以按照各个调制子信道的信道容量在M个调制子信道的容量之和中的比重为各个调制子信道对应的极化分量编码器分配信息比特的数量。换句话说,公式(9)表征各个调制子信道的信道容量与信道W的信道容量之间的关系,在为各个调制子信道对应的极化分量编码器分配信息比特的数量的过程中可以参考公式(9)所表征的这种关系。
需要理解的是,信道W为实际的物理传输信道,信道W与传输环境有关,而前述的
Figure PCTCN2022138444-appb-000103
为根据调制阶数和目标码率所等效出来的信道W的等效信道,
Figure PCTCN2022138444-appb-000104
为等效信道的信道容 量,结合实际的物理传输信道W的信道容量与信道W对应的M个调制子信道W m的信道容量的关系为公式(9)中的关系,因此,等效信道
Figure PCTCN2022138444-appb-000105
与等效信道
Figure PCTCN2022138444-appb-000106
对应的M个调制子信道
Figure PCTCN2022138444-appb-000107
的信道容量关系也可以为公式(10)所表征的关系。
Figure PCTCN2022138444-appb-000108
由于等效信道
Figure PCTCN2022138444-appb-000109
与等效信道
Figure PCTCN2022138444-appb-000110
对应的M个调制子信道
Figure PCTCN2022138444-appb-000111
的信道容量关系也可以为公式(10)所表征的关系,因此可以按照各个调制子信道的信道容量
Figure PCTCN2022138444-appb-000112
在M个调制子信道的容量之和中的比重为各个调制子信道对应的极化分量编码器分配信息比特的数量,例如,M个调制子信道的信道容量的
Figure PCTCN2022138444-appb-000113
的信道容量排序满足下述公式(11)。
Figure PCTCN2022138444-appb-000114
其中,公式(11)中的
Figure PCTCN2022138444-appb-000115
的下标m 1,m 2,m t和m M为按照信道容量排序后的调制子信道的下标。第m t个极化分量编码器分配的信息位的数量
Figure PCTCN2022138444-appb-000116
满足下述公式(12)。
Figure PCTCN2022138444-appb-000117
其中,公式(12)中
Figure PCTCN2022138444-appb-000118
为上取整运算,K为信息比特总和,其中K=N·M·R,R为目标码率,若第一设备获取到第一频谱效率R T和调制阶数Q m,则第一设备可以确定
Figure PCTCN2022138444-appb-000119
或者第一设备可以直接获取K,第一设备可以根据K,N和M确定R。计算出
Figure PCTCN2022138444-appb-000120
之后,可以计算出极化分量编码器的码率为
Figure PCTCN2022138444-appb-000121
下面针对公式(10)和公式(11)进行举例描述。如,
Figure PCTCN2022138444-appb-000122
Figure PCTCN2022138444-appb-000123
M=4。则根据公式(7)排序后
Figure PCTCN2022138444-appb-000124
m 1=4,m 2=3,m 3=2,m 4=1,t=1,…,4,若K=320,则
Figure PCTCN2022138444-appb-000125
Figure PCTCN2022138444-appb-000126
Figure PCTCN2022138444-appb-000127
Figure PCTCN2022138444-appb-000128
对应极化分量编码器1,
Figure PCTCN2022138444-appb-000129
对应极化分量编码器2,
Figure PCTCN2022138444-appb-000130
对应极化分量编码器3,
Figure PCTCN2022138444-appb-000131
对应极化分量编码器4,则第一设备为极化分量编码器1分别的信息比特的数量为20,为极化分量编码器2分配的信息比特的数量为60,为极化分量编码器3分配的信息比特的数量为100,为极化分量编码器4分配的信息比特的数量为140。若每个极化分量编码器的长度为256,则极化分量编码器1的码率为20/256,极化分量编码器2的码率为60/256,极化分量编码器3的码率为100/256,极化分量编码器4的码率为140/256。
可以理解的是,公式(11)和公式(12)还可以替换为
Figure PCTCN2022138444-appb-000132
即可以无需对每个调制子信道的信道容量进行排序,直接按照每个调制子信道的信道容量在M 个调制子信道的容量总和中的比重为第m个调制子信道分配信息比特的数量K m
情况二,针对上述S202的情况二,与上述公式(9)相同,公式(9)表征各个调制子信道的信道容量与信道W的信道容量之间的关系,在为各个调制子信道对应的极化分量编码器分配信息比特的数量的过程中可以参考公式(9)所表征的这种关系。
需要理解的是,信道W为实际的物理传输信道,信道W与传输环境有关,
Figure PCTCN2022138444-appb-000133
为有限码长下根据调制阶数和目标码率所等效出来的信道W的等效信道,
Figure PCTCN2022138444-appb-000134
为等效信道的在有限码长N下的信道容量,结合公式(9),因此,等效信道
Figure PCTCN2022138444-appb-000135
与等效信道
Figure PCTCN2022138444-appb-000136
对应的M个调制子信道
Figure PCTCN2022138444-appb-000137
的信道容量关系满足下述公式(13)。
Figure PCTCN2022138444-appb-000138
由于等效信道
Figure PCTCN2022138444-appb-000139
与等效信道
Figure PCTCN2022138444-appb-000140
对应的M个调制子信道
Figure PCTCN2022138444-appb-000141
的信道容量关系也可以为公式(13)所表征的关系,因此可以按照各个调制子信道的信道容量
Figure PCTCN2022138444-appb-000142
在M个调制子信道的容量之和中的比重为各个调制子信道对应的极化分量编码器分配信息比特的数量,例如,M个调制子信道的信道容量的
Figure PCTCN2022138444-appb-000143
的信道容量排序满足下述公式(14)。
Figure PCTCN2022138444-appb-000144
其中,公式(14)中的
Figure PCTCN2022138444-appb-000145
的下标m 1,m 2和m M为按照信道容量排序后的调制子信道的下标。第m t个极化分量编码器分配的信息位的数量
Figure PCTCN2022138444-appb-000146
满足下述公式(15)。
Figure PCTCN2022138444-appb-000147
其中,公式(15)中
Figure PCTCN2022138444-appb-000148
为上取整运算,K为信息比特总和,其中K=N·M·R,R为目标码率,若第一设备获取到第一频谱效率R T和调制阶数Q m,则第一设备可以确定
Figure PCTCN2022138444-appb-000149
或者第一设备可以直接获取K,第一设备可以根据K,N和M确定R。计算出
Figure PCTCN2022138444-appb-000150
之后,可以计算出极化分量编码器的码率为
Figure PCTCN2022138444-appb-000151
需要理解的是,上述S201-S203中描述的确定M个极化分量编码器中每个极化分量编码器的码率为每个极化分量编码器的信息比特所占的码率。在极化码编码的方案中,通过验证表明需要在最后一个极化分量编码器中添加成形比特,才可以使得映射后的调制符号服从麦克斯韦玻尔兹曼(Maxwell-Boltzmann),但是在一些实施例中最后一个极化分量编码器中添加的成形比特的数量也是根据数值搜索法确定的,这样会导致确定成形比特的复杂度较高。下面结合图3描述本申请实施例中确定成形比特的所占的码率的方法300,可以降低确定成形比特的复杂度。
S301,第一设备根据星座点的概率分布确定M个极化分量编码器中第M个极化分量编码器对应的条件熵,所述每个极化分量编码器的码长为N,所述星座点的概率分布为所述调制阶数和麦克斯韦玻尔兹曼参数对应的星座点的概率的分布,所述麦克斯韦玻尔兹曼参数为预设值。
其中,星座点的概率分布可以参见上述公式(4)的描述。
可选地,第M个极化分量编码器对应的条件熵满足下述公式(16)。
Figure PCTCN2022138444-appb-000152
其中,
Figure PCTCN2022138444-appb-000153
表示M维比特向量在前M-1维已知的前提下,第M维比特向量取0的概率,
Figure PCTCN2022138444-appb-000154
表示M维比特向量在前M-1维已知的前提下,第M维比特向量取1的概率,
Figure PCTCN2022138444-appb-000155
Figure PCTCN2022138444-appb-000156
可以根据公式(4)中的星座点的概率分布得到。
S302,第一设备根据所述第M个极化分量编码器对应的条件熵确定所述第M个极化分量编码器的成形比特所占的码率。
可选地,S302,包括:第一设备根据所述第M个极化分量编码器对应的条件熵确定所述第M个极化分量编码器中的成形比特的数量,第一设备根据所述第M个极化分量编码器的成形比特的数量和所述第M个极化分量编码器的码长N确定所述第M个极化分量编码器的成形比特所占的码率。
可选地,第一设备根据所述第M个极化分量编码器对应的条件熵确定所述第M个极化分量编码器中的成形比特的数量,包括:第一设备根据第M个极化分量编码器对应的条件熵和第M个极化分量编码器的码长N确定第M个极化分量编码器中的成形比特的数量。
例如,第一设备可以根据公式(17)确定第M个极化分量编码器中的成形比特的数量K S
Figure PCTCN2022138444-appb-000157
其中,公式(17)中H(W M)为第M个极化分量编码器的条件熵,
Figure PCTCN2022138444-appb-000158
为下取整运算。
可选地,第一设备根据所述第M个极化分量编码器的成形比特的数量和所述第M个极化分量编码器的码长N确定所述第M个极化分量编码器的成形比特所占的码率,可以包括:第一设备将第M个极化分量编码器的成形比特的数量除以第M个极化分量编码器的码长N得到第M个极化分量编码器的成形比特所占的码率。例如,第M个极化分量编码器的成形比特所占的码率满足下述公式(18)。
R S=K S/N  (18)
本申请实施例可以提供一种MCS表格,MCS表格可以包括至少一行,MCS表格中每行包括至少一个极化分量编码器的码率,或者,MCS表格包括的每行包括至少一个极化分量编码器的码率和成形比特所占的码率。
在一些可能的实现方式中,MCS表格中每行所包括的至少一个极化分量编码器的码率可以根据方法200确定的。
在一些可能的实现方式中,MCS表格中每行所包括的成形比特所占的码率可以根据方法300确定。
在一些可能的实现方式中,MCS表格的每行还可以包括MCS索引、MCS索引所对应的调制阶数或总频谱效率中的至少一项。总频谱效率可以包括第一频谱效率和第二频谱效率。
可选地,MCS表格中不同调制阶数对应的Maxwell-Boltzmann参数ν的取值可以不同。
在一些可能的实现方式中,MCS表格包括的至少一行中的每行包括的MCS索引对应 的极化分量编码器的码率的数量是根据MCS索引所对应的调制阶数确定的。
在一些可能的实现方式中,MCS表格包括的至少一行中的每行包括的MCS索引对应的极化分量编码器的码率的数量是根据MCS索引所对应的调制阶数确定的,包括:MCS表格包括的至少一行中的每行包括的MCS索引对应的极化分量编码器的码率的数量是根据MCS索引所对应的调制阶数的二分之一。
在一些可能的实现方式中,所述MCS表格的特征为:MCS表格中存在第二MCS索引和第三MCS索引,当所述第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,所述第二MCS索引对应的极化分量编码器的码率的数量,与所述第三MCS索引对应的极化分量编码器的码率的数量不同。
在一些可能的实现方式中,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
在一些可能的实现方式中,MCS表格包括的至少一行中的每行包括的MCS索引对应的极化分量编码器的码率的数量是根据MCS索引所对应的调制阶数确定的,包括:MCS表格包括的至少一行中的每行包括的MCS索引对应的极化分量编码器的码率的数量与MCS索引所对应的调制阶数相等。
下面结合表1、表2和表3举例描述MCS表格。表1-表3中调制阶数为2时对应的Maxwell-Boltzmann参数ν为0,调制阶数为4时对应的Maxwell-Boltzmann参数ν为0.171,调制阶数为6时对应的Maxwell-Boltzmann参数ν为0.041。表2中调制阶数为8时对应的Maxwell-Boltzmann参数ν为0.01。其中,表1和表3中取值为0-28的MCS索引用于初传,取值为29-31的MCS索引用于重传;表2中取值为0-27的MCS索引用于初传,取值为28-31的MCS索引用于重传。其中,表1至表3频谱效率可以为前述的总频谱效率,总频谱效率包括第一频谱效率和第二频谱效率。例如表1至表3中的频谱效率为
Figure PCTCN2022138444-appb-000159
其中
Figure PCTCN2022138444-appb-000160
为第一频谱效率R T,2R S为成形比特所占的第二频谱效率。
表1
Figure PCTCN2022138444-appb-000161
Figure PCTCN2022138444-appb-000162
表2
Figure PCTCN2022138444-appb-000163
Figure PCTCN2022138444-appb-000164
表3
Figure PCTCN2022138444-appb-000165
表1至表3中,极化分量编码器的码率的数量为调制阶数的二分之一,第一列表示MCS索引,第二列表示调制阶数,第三列表示频谱效率,频谱效率也称为总频谱效率,总频谱效率为
Figure PCTCN2022138444-appb-000166
其中,
Figure PCTCN2022138444-appb-000167
为信息比特所占的第一频谱效率R T,2R S为成形比特所占的第二频谱效率,R 1为第一个极化分量编码器的码率,R 2为第二个极化分量编码器的码率,R 3为第三个极化分量编码器的码率,R 4为第四个极化分量编码器的码率,R S为最后一个极化分量编码器中成形比特所占的码率。如对于调制阶数等于2的情况下,极化分量编码器的数量为1,R S都为0,即成形比特的码率都为零,对于调制阶数等于4的情况下,极化分量编码器的数量为2,R S为第二个极化分量编码器中成形比特所占的码率,对于调制阶数等于6的情况下,极化分量编码器的数量为3,R S为第三个极化分量编码器中成形比特所占的码率。例如,调制阶数为2的情况下,极化分量编码器的数量为1,对 应的极化分量编码器的码率为1个;调制阶数为4的情况下,极化分量编码器的数量为2,对应的极化分量编码器的码率为2个;调制阶数为6的情况下,极化分量编码器的数量为3,对应的极化分量编码器的码率为3个。
需要说明的是,表1-表3只是举例描述,本申请实施例对MCS表格没有任何限制,对于给定的Maxwell-Boltzmann参数ν的取值、总频谱效率的值以及MCS的索引,都可以得到MCS表格的任意一行。
需要说明的是,表1-表3中的Q m中的m与第m个极化分量编码器中的m不同,或者表1-表3中的Q m中的m与第m个调制子信道中的m不同。
也需要说明的是,表1-表3中的“X”表示不存在,即码率不存在。
在一些可能得实现方式中,在MCS表格中每行所包括的至少一个极化分量编码器的码率的情况下,成形比特所占的码率可以根据方法300确定,此时确定的成形比特所占的码率可以不包括在MCS表格中。例如,此时表1-表3中可以不包括R S这一列。
可选地,第一设备根据Maxwell-Boltzmann参数ν的取值、总频谱效率的值、码字序列的长度N、MCS的索引确定MCS表格中的M个极化编码器的码率。
可选地,第一设备根据Maxwell-Boltzmann参数ν的取值、总频谱效率的值以及MCS的索引确定MCS表格中的M个极化编码器的码率,可以包括:第一设备根据MCS索引确定与MCS索引对应的调制阶数G,第一设备根据调制阶数和Maxwell-Boltzmann参数ν的取值确定星座点的概率分布(如公式(4))。第一设备根据方法300确定成形比特的数量K S,并确定成形比特的所占的码率R S(如公式(18)),也就是说,第一设备确定了MCS表格中的R S的取值。第一设备根据J·R S的值计算成形比特所占的第二频谱效率,其中,J为MCS表对应的星座调制的维数,例如MCS表对应的调制方式为二维星座调制,则J的取值为2,通常相移键控(phase shift keying,PSK)和正交振幅调制(quadrature amplitude modulation,QAM)调制方式中的一个星座点可以理解为由2个幅移键控(amplitude shift keying,ASK)构成,当调制阶数为4时,对应的调制星座图为16QAM,16QAM可以由2个4ASK构成,因此,J取值可以理解为构成星座调制图ASK的数量;若MCS表对应的调制方式为一维星座调制,则J的取值为1。利用给定的总频谱效率减去成形比特所占的第二频谱效率得到信息比特所占的总的第一频谱效率。然后第一设备利用方法200确定各个极化分量编码器的码率,从而得到MCS表格中的各个极化分量编码器的码率。
可选地,第一设备根据Maxwell-Boltzmann参数ν的取值、信息比特总和、码字序列的长度N、MCS的索引确定MCS表格中的M个极化编码器的码率。
可选地,第一设备根据Maxwell-Boltzmann参数ν的取值、信息比特总和、码字序列的长度N、MCS的索引确定MCS表格中的M个极化分量编码器的码率,包括:第一设备根据码字序列的长度N和极化分量编码器的数量M的乘积确定总的码字长度,利用信息比特和除以总的码字长度得到目标码率。第一设备根据目标码率与MCS索引对应的调制阶数的乘积确定第一频谱效率,然后根据方法200得到各个极化分量编码器的码率,例如方法300得到成形比特所占的码率。
可以理解的是,可以给定总频谱效率,第一设备可以将总频谱效率减去成形比特所占的第二频谱效率得到信息比特的第一频谱效率,进而根据方法200确定每个极化分量编码器的码率。或者,可以给定信息比特总和,并根据极化分量编码器的数量M和每个极化分量编码器输出的码长N确定总的码长,然后根据信息比特总和与总的码长的比值确定目标 码率,根据调制阶数与目标码率的乘积得到第一频谱效率。
下面结合MCS表格描述用于编码方法和解码方法。如图4所示,方法400包括:
S401,第二设备发送指示信息,第三设备接收指示信息。
其中,指示信息指示第一MCS索引,第一MCS索引为MCS表格中的MCS索引,举例来说,第一MCS索引为MCS表格中的一个MCS索引,MCS表格如前述描述。
可选地,S401,包括:第二设备发送控制信息,第三设备接收控制信息,控制信息包括指示信息。
可选地,控制信息包括的指示信息指示第一MCS索引,可以包括:控制信息包括的指示信息实时指示第一MCS索引。
可选地,控制信息指示第一MCS索引,可以包括:控制信息包括的指示信息指示半静态调度的第一MCS索引。
可选地,控制信息还用于指示物理共享信道。
可选地,控制信息指示物理共享信道可以包括:控制信息调度物理共享信道。
可选地,控制信息指示物理共享信道可以包括:控制信息激活半静态调度的物理共享信道。
示例性地,控制信息可以为DCI,物理共享信道为该DCI所调度的至少一个物理上行共享信道PUSCH,该物理共享信道可以是该DCI在C-RNTI加扰后动态调度的,也可以是该DCI在CS-RNTI加扰后激活的配置授权调度的。
可选地,第三设备可以为编码设备,第二设备可以为解码设备。
可选地,第二设备可以为一个终端设备,第三设备可以为另一个终端设备。
可选地,物理共享信道可以为物理侧行链路共享信道(physical sidelink shared channel,PSSCH)。
可选地,第二设备可以是网络设备,第三设备可以是终端设备。
可选地,控制信息可以指示第一MCS索引和物理共享信道的信息,例如,下行控制信息(downlink control information,DCI)可以通过Modulation and coding scheme字段指示第一MCS索引,通过Frequency domain resource assignment和Time domain resourcea ssignment字段指示物理共享信道的时频域资源。
可选地,物理共享信道可以为物理上行共享信道(physical uplink shared channel,PUSCH)。
可选地,S401,包括:第二设备发送无线资源控制(radio resource control,RRC)信令,第三设备接收RRC信令,RRC信令包括指示信息。RRC信令用于配置第一MCS索引和物理共享信道。可选地,RRC信令中的配置信息用于指示第一MCS索引和物理共享信道,配置信息可以包括指示信息。
可选地,RRC信令中的配置信息还可以包括:ConfiguredGrantConfig或者SL-ConfiguredGrantConfig中的至少一项。
示例性地,在上行传输中,第二设备可以通过RRC信令中的ConfiguredGrantConfig information element中的mcsAndTBS信令指示第一MCS索引,并通过timeDomainAllocation和timeDomainAllocation信令指示PUSCH的时频域资源。
可选地,指示第一MCS索引和物理共享信道的信息可以是不同的信息。
可选地,在第二设备可以是一个终端设备,第三设备可以是另一个终端设备的情况下,RRC信令可以是PC5RRC信令。
可选地,第二设备可以与前述的确定M个极化分量编码器的码率的第一设备可以为同一个设备或者不同的设备,本申请实施例不予限制。
可选地,第三设备可以与前述的确定M个极化分量编码器的码率的第一设备可以为同一个设备或者不同的设备,本申请实施例不予限制。
可选地,第二设备可以包括前述的确定M个极化分量编码器的码率的第一设备。
可选地,第三设备可以包括前述的确定M个极化分量编码器的码率的第一设备。
S402,第三设备根据接收到的指示信息,获得第一MCS索引,并通过MCS表格中与第一MCS索引对应的M个极化分量编码器对物理共享信道所承载的数据进行编码。
可选地,S402,第三设备根据接收到的指示信息,获得第一MCS索引,并通过MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码。
可选地,S402,包括:第三设备根据第一MCS索引对应的M个极化分量编码器的码率中每个极化分量编码器的码率确定M个极化分量编码器中每个极化分量编码器的信息比特的数量;第三设备根据每个极化分量编码器的信息比特的数量进行编码。
可选地,第三设备根据第一MCS索引对应的M个极化分量编码器的码率中每个极化分量编码器的码率确定M个极化分量编码器中每个极化分量编码器的信息比特的数量,包括:第三设备根据每个极化分量编码器的码率和每个极化分量编码器的码长确定每个极化分量编码器的信息比特的数量。
可选地,M个极化分量编码器中每个极化分量编码器的码长可以相同或者不同,本申请实施例不予限制。
可选地,S402,包括:第三设备根据MCS表格中与第一MCS索引对应的M个极化分量编码器的码率对物理共享信道所承载的一个CB进行编码。一个CB的信息比特的数量可以为K。
可选地,物理共享信道对应的一个或多个CB,针对一个CB,第三设备可以根据MCS表格中与第一MCS索引对应的M个极化分量编码器的码率对一个CB进行编码。
可选地,一个CB的信息比特可以包括来自高层的数据对应的比特以及循环冗余校验(cyclic redundancy check,CRC)比特,换句话说,一个CB的信息比特不仅包括来自高层的数据的比特也包括校验比特。可选地,来自高层的数据可以包括来自高层的应用的数据和来自高层的包头的数据。
下面结合CB分情况讨论描述第三设备编码的过程。
情况一
操作1,第三设备根据总码长和CB的码长确定CB的数量。
可选地,第三设备可以根据第一MCS索引对应的调制阶数、第二设备为第三设备分配的物理资源等参数确定总码长,总码长可以理解为多个CB编码后的码长总和,总码长也可以理解为第三设备可传输的总共比特序列的长度,由时隙内的资源元素(resource element,RE)的总数量,调制阶数Q m以及空间层数v获得,其中S401中的控制信息可以指示RE的总数量或者RRC信令可以指示RE的总数量,空间层数v可通过高层信令半静 态配置。示例性地,总码长可参照根据N total=N RE·Q m·v得到,其中N total为第三设备可传输的总共比特序列的长度,也可以理解为总码长,N RE为控制信息调度的时隙内的RE的总数量或者RRC信令指示的时隙内的RE的总数量,Q m为第一MCS索引对应的调制阶数,与表1至表3中的Q m含义相同。或者,总码长也可以通过其他方式获得,本申请对此不做限制。
可选地,CB的码长可以是预设值,即CB的码长为第二设备和第三设备的已知参数,或者CB的码长可以是第三设备向第二设备半静态配置的,或者CB的码长是第二设备向第三设备半静态配置的。
可选地,每个CB的码长可以相等,或最后一个CB的实际码长可以不同于其他CB的实际码长,其中CB的码长可以理解为编码后CB的比特序列的长度或比特的数量。
示例性地,第三设备确定的总码长为N total,CB的码长为N cb,则CB的数量C可以是
Figure PCTCN2022138444-appb-000168
即一共存在C个CB,其中前C-1个CB中每个CB的码长为N cb,最后一个CB的码长为N total-(C-1)·N cb,其中
Figure PCTCN2022138444-appb-000169
为向上取整。例如,N cb可以为M·N,即一个CB编码后的码长可以为该CB对应的M个极化分量编码器编码后的码长之和M·N。
操作2,第三设备根据CB的码长N cb和目标码率确定每个CB的信息比特的数量K cb
应理解,一个CB的信息比特的数量K cb可以包括来自高层的数据对应的比特,或者一个CB的信息比特的数量K cb还可以包括来自高层的数据对应的比特以及CRC比特。换句话说,一个CB的信息比特K cb不仅包括来自高层的数据的比特也包括校验比特。可选地,来自高层的数据可以包括来自高层的应用的数据和来自高层的包头的数据。
可选地,目标码率可以是第一MCS对应的第一频谱效率对应的码率。例如,R T为第一MCS索引对应的第一频谱效率,Q m为第一MCS对应的调制阶数,则目标码率R=R T/Q m
结合操作1的举例,前C-1个CB中每个CB的信息比特的数量为K cb=N cb·R=M·N·R,R为第一MCS索引对应目标码率,第一MCS索引对应的目标码率R=R T/Q m
对于第C个CB的信息比特的数量
Figure PCTCN2022138444-appb-000170
可以有两种确定方式。第一种方式,确定小于或等于N total-(C-1)·N cb的最大的2的整数次幂的数值为N cb1,第C个CB的信息比特的数量
Figure PCTCN2022138444-appb-000171
在这种方式下,第C个CB多余的比特位可以采用填补(padding)的方式进行填充,如填充多个比特‘0’或比特‘1’。例如,N total-(C-1)·N cb的值为300,小于300的最大的2的整数次幂为256,则N cb1为256,剩余的44比特可以全部填充为‘0’或‘1’。第二种方式,确定大于N total-(C-1)·N cb的最小的2的整数次幂的数值为N cb2,第C个CB的信息比特的数量为
Figure PCTCN2022138444-appb-000172
因为N cb2大于N total-(C-1)·N cb,因此需要对第C个CB的编码后的比特进行打孔或者截断。例如,N total-(C-1)·N cb的值为500,则大于500的最小的2的整数次幂为N cb2=512,则将编码后的512比特打孔或截断至500比特,可以根据第一MCS索引对应的目标码率和门限码率的大小关系确定选择打孔还是截断,具体地,若第一MCS对应的目标码率小于或等于门限码率,则采用打孔的方式将编码后的512比特减少为500比特;若第一MCS索引对应的目标码率大于门限码率,则采用截断的方式将512比特减少为500比特,其中,门限码率为高层信令指示的或者预配置的,例如,当R≤R th时,采用打孔的方式将编码后的512比特减少为500比特,当R>R th选择截断的 方式,R th为门限码率。
操作3,第三设备根据MCS表格中第一MCS索引对应的极化分量编码器的码率对每个CB的信息比特进行编码处理。
其中,每个CB对应相同的第一MCS索引,这样,每个CB对应的码率和频谱效率相同。
可选地,第三设备根据第一CB的信息比特的数量K cb,每个极化分量编码器的码率以及每个极化分量编码器的码长N确定每个极化分量编码器的信息比特的数量。第三设备根据每个极化分量编码器的信息比特进行编码,第一CB为物理共享信道对应的一个或多个CB中的一个CB。依次类推,第三设备可以对C-1个CB进行编码处理。其中,第C个CB对应的M个极化分量编码的长度可以不等于N cb,可以小于N cb,第三设备可以对第C个CB对应的M个极化分量编码进行编码,从而可以完成对物理共享信道的编码过程。
情况二
操作1,第三设备根据每个CB的信息比特的长度和总的信息比特的长度确定CB的数量。
可选地,每个CB的信息比特长度的K cb可以为预配置的,或者第二设备向第三设备半静态配置的,或者第三设备向第二设备半静态配置的。
可选地,每个CB的信息比特的数量K cb可以包括来自高层的数据对应的比特,或者一个CB的信息比特的数量K cb还可以包括来自高层的数据对应的比特以及CRC比特。换句话说,一个CB的信息比特K cb不仅包括高层的数据的比特也包括校验比特。可选地,来自高层的数据包括来自高层的应用数据和高层的包头的数据。
可选地,总的信息比特包括来自高层的数据对应的比特以及CRC比特。因此,总的信息比特的长度为来自高层的数据对应的比特的长度与CRC比特的长度的之和。可选地,来自高层的数据可以包括来自高层的应用的数据和来自高层的包头的数据。
例如,来自高层的数据对应的比特长度为A,添加的CRC校验比特长度为L,则总的信息比特的长度为B=A+L,每个CB的信息比特的长度为K cb,则根据B与K cb确定CB的数量,如CB的数量为
Figure PCTCN2022138444-appb-000173
为上取整。
其中,当C>1时,前C-1个CB的信息比特的数量为K cb,第C个CB的信息比特的数量
Figure PCTCN2022138444-appb-000174
可以小于或等于K cb,可以通过
Figure PCTCN2022138444-appb-000175
获得。当C=1时,即只有一个CB时,CB的实际大小为总的信息比特的长度,即
Figure PCTCN2022138444-appb-000176
此时不再为该CB额外添加CRC校验比特。
可选地,第三设备根据第一MCS索引所对应的参数、空间层数以及时隙内的RE的总数量确定总的信息比特长度B,其中空间层数可以是高层信令半静态配置的,本申请实施例对此不做限制。S401控制信息可以指示RE的总数量或者RRC信令可以指示RE的总数量。可选地,第一MCS索引所对应的参数包括第一MCS索引对应的调制阶数和第一MCS索引对应的码率,第三设备可以根据第一MCS索引对应的调制阶数,第一MCS索引对应的码率、时隙内的RE的总数量以及空间层数等参数确定总的信息比特的长度。示例性地,总的信息比特的长度可以根据B=N RE·Q m·v·R,其中B为编码前的总的信息比特的长度,也可以理解为编码前的总码长,N RE为控制信息调度的时隙内的RE的总数量或者RRC信令指示的时隙内的RE的总数量,Q m为第一MCS索引对应的调制阶数,与表1至表3中 的Q m含义相同,R为第一MCS索引对应的目标码率。或者,总的信息比特的长度也可以通过其他方式获得,本申请对此不做限制。
操作2,第三设备根据每个CB的信息比特以及与MCS表格中第一MCS索引对应的极化分量编码器的码率对每个CB的信息比特进行编码处理。
其中,每个CB对应相同的第一MCS索引,这样,每个CB对应的码率和频谱效率相同。
可选地,第三设备根据第一CB的信息比特K cb,每个极化分量编码器的码率以及每个极化分量编码器的码长N确定每个极化分量编码器的信息比特的数量。第三设备根据每个极化分量编码器的信息比特的数量进行编码,第一CB为物理共享信道对应的一个或多个CB中的一个CB。依次类推,第三设备可以对每个CB进行编码处理,从而可以完成对物理共享信道的编码过程。
S403,第三设备向第二设备发送物理共享信道,第二设备接收物理共享信道。
应理解,S401中指示信息可以指示多个物理共享信道。例如,一个控制信息所包含的指示信息,如modulation and coding scheme字段,可以用于指示多个物理共享信道所承载数据的编码,且这些物理共享信道可以是在相邻或者不相邻的时间单元,如时隙、符号或子帧,上的,即一个S401指示信息可以指示多个S403的物理共享信道所承载的数据的编码。示例性的,一个CS-RNTI加扰的DCI可以激活半静态调度,如配置授权调度,即在一段传输时间内,S401的指示信息及对应的控制信息出现一次可用于指示多个不同传输时刻的物理共享信道所承载的数据的编码,这些物理共享信道的传输时间间隔为RRC信令配置。又例如,在动态调度中,一个指示信息可以指示多个物理共享信道所承载数据的编码。
可选地,物理共享信道用于承载编码后的数据,可选地,编码后的数据可以是编码后的CB。
可选地,物理共享信道可以是S401中的控制信息所调度的物理共享信道。例如,控制信息可以是DCI,DCI调度的物理共享信道可以是PUSCH;又例如,控制信息可以是任意SCI,SCI调度的共享信道可以是PSSCH。
可选地,物理共享信道可以是S401中的控制信息所激活的半静态调度的物理共享信道。示例性地,S401中控制信息可以是小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)加扰的DCI,用于激活半静态调度的PUSCH。S401中控制信息可以是侧行链路小区无线网络临时标识(sidelink cell-radio network temporary identifier,SL-C-RNTI)加扰的任意SCI,用于激活半静态调度的PSSCH。可选地,S401中控制信息还用于指示半静态调度的时频资源及第一MCS索引等参数,用于激活半静态调度的时频资源及第一MCS索引等参数。其中,半静态调度包括半持续调度(semi-persistent scheduling,SPS)和配置授权调度(configrued grant,CG)。具体地,当半静态调度被控制信息激活时,第三设备周期性给第二设备发送物理共享信道,其中,周期参数可以是由第二设备为第三设备配置的,也可以是由第三设备为第二设备配置的,本申请实施例对此不做限制。
可选地,物理共享信道可以是S401中的RRC信令所配置的物理共享信道。
可选地,S403还可以包括调制解调的过程,为了避免赘述不详细描述。
需要说明的是,S403可以是可选步骤,本申请实施例可以不包括:S403,也就是说, 本申请实施例主要描述第三设备根据第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行编码,第二设备根据第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行解码的方式,可以不关注第三设备是否发送物理共享信道。
S404,第二设备根据第一MCS索引对应的M个极化分量编码器的码率对物理共享信道所承载的数据进行解码。
可选地,S404解码后可以得到信息比特。
可选地,S404包括:第二设备根据第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码。
可选地,S404中的信息比特可以是每个CB的信息比特。
其中,第二设备根据第一MCS索引对应的M个极化分量编码器的码率对物理共享信道所承载的数据进行解码的原理,是第三设备编码的原理的逆过程,为了避免赘述不详细描述。
下面结合MCS表格描述另一编码方法和解码方法。如图5所示,方法500包括:
S501,第二设备根据MCS表格中与第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行编码。
可选地,S501,第二设备根据MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道进行编码。
具体地,S501参见S402的描述,第二设备编码的原理与S402中第三设备编码的原理类似,为了避免赘述不详细描述。
S502,第二设备发送指示信息,第三设备接收指示信息。
其中,指示信息指示第一MCS索引,第一MCS索引为MCS表格中的MCS索引,如第一MCS索引为MCS表格中的一个MCS索引,MCS表格如前述描述。
可选地,S502,包括:第二设备发送控制信息,第三设备接收控制信息,控制信息包括指示信息。
可选地,控制信息包括的指示信息指示第一MCS索引,可以包括:控制信息包括的指示信息实时指示第一MCS索引。
可选地,控制信息指示第一MCS索引,可以包括:控制信息包括的指示信息指示半静态调度的第一MCS索引。
可选地,控制信息还用于指示物理共享信道。
可选地,控制信息指示物理共享信道可以包括:控制信息调度物理共享信道。
可选地,控制信息指示物理共享信道可以包括:控制信息激活半静态调度的物理共享信道。
示例性地,控制信息可以为下行控制信息DCI,所述物理共享信道为该DCI所调度的至少一个物理下行共享信道PDSCH,该物理共享信道可以是该DCI在C-RNTI加扰后的动态调度的,也可以是该DCI在CS-RNTI加扰后激活的半持续调度(semi-persistent scheduling,SPS)的。
可选地,物理共享信道可以是物理下行共享信道(physical downlink shared channel,PDSCH)。
可选地,第二设备可以为编码设备,第三设备可以解码设备。
可选地,第二设备可以为一个终端设备,第三设备可以为另一个终端设备。
例如,控制信息可以是侧行链路控制信息(sidelink control information,SCI)格式1,SCI格式1可以通过Modulation and coding scheme字段指示第一MCS索引,并通过Time reousrce assignment和frequency resource assignment字段可以指示物理共享信道,SCI格式1可以是SCI格式1-A。
可选地,物理共享信道可以为物理侧行链路共享信道(physical sidelink shared channel,PSSCH)。
可选地,第二设备可以为网络设备,第三设备可以是终端设备。
可选地,控制信息可以指示第一MCS索引和物理共享信道,例如,DCI可以通过modulation and coding scheme字段指示第一MCS索引和物理共享信道。
可选地,物理共享信道可以为物理下行共享信道(physical downlink shared channel,PDSCH)。
可选地,S502,包括:第二设备发送RRC信令,第三设备接收RRC信令,RRC信令包括指示信息。RRC信令用于配置第一MCS索引和物理共享信道。可选地,RRC信令中的配置信息用于指示第一MCS索引和物理共享信道,配置信息可以包括指示信息。
可选地,指示第一MCS索引和物理共享信道的信息可以是不同的信息。
可选地,RRC信令中的配置信息还可以包括:SPS-Config、ConfiguredGrantConfig或者SL-ConfiguredGrantConfig中的至少一项。
可选地,在第二设备可以是一个终端设备,第三设备可以是另一个终端设备的情况下,RRC信令可以是PC5RRC信令。
可选地,第二设备可以与前述的确定M个极化分量编码器的码率的第一设备可以为同一个设备或者不同的设备,本申请实施例不予限制。
可选地,第三设备可以与前述的确定M个极化分量编码器的码率的第一设备可以为同一个设备或者不同的设备,本申请实施例不予限制。
可选地,第二设备可以包括前述的确定M个极化分量编码器的码率的第一设备。
可选地,第三设备可以包括前述的确定M个极化分量编码器的码率的第一设备。
S503,第二设备向第三设备发送物理共享信道,第三设备接收物理共享信道。
可选地,S503中的物理共享信道与S502的指示信息可以位于同一个时隙,或者S503中的物理共享信道所在的时隙位于S502的指示信息所在的时隙之后的任意一个时隙。
可以理解的是,S503中的物理共享信道可以是S501编码后的物理共享信道。
需要说明的是,S501,S502和S503的顺序没有任何限制,例如,对于动态调度的场景,S501可以在S502之前,对于半静态调度,例如SPS,S502可以在S501和/或S503之前,或者执行一次S502可以执行多次S501和/或执行多次S503,执行一次S501对应执行一次S503。
可选地,S503还可以包括调制解调的过程,为了避免赘述不详细描述。
需要说明的是,S503可以是可选步骤,本申请实施例可以不包括:S503,也就是说,本申请实施例主要描述第二设备根据第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行编码,第三设备根据第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行解码的方式,可以不关注第二设备是否发送物理共享信道。
S504,第三设备根据接收到的指示信息,获得第一MCS索引,通过MCS表格中与第一MCS索引对应的M个极化分量编码器的码率对物理共享信道所承载的数据进行解码。
可选地,S504解码之后可以得到信息比特。
可选地,S504,包括:第三设备根据接收到的指示信息,获得第一MCS索引,通过MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码。
应理解,S502中指示信息可以指示多个物理共享信道。例如,一个控制信息所包含的指示信息,如modulation and coding scheme字段,可以用于指示多个物理共享信道所承载数据的编码,且这些物理共享信道可以是在相邻或者不相邻的时间单元,如时隙、符号或子帧,上的,即一个S502指示信息可以指示多个S503的物理共享信道所承载的数据的编码。示例性的,一个CS-RNTI加扰的DCI可以激活半静态调度,如半持续调度,即在一段传输时间内,S502的指示信息及对应的控制信息出现一次可用于指示多个不同传输时刻的物理共享信道所承载的数据的编码,这些物理共享信道的传输时间间隔为RRC信令配置。又例如,在动态调度中,一个指示信息可以指示多个物理共享信道所承载数据的编码。
可选地,S504中的信息比特可以是每个CB的信息比特。
其中,第三设备根据第一MCS索引对应的M个极化分量编码器的码率对物理共享信道进行所承载的数据进行解码的原理是第二设备编码的原理的逆过程,为了避免赘述不详细描述。
下面描述采用MCS表格中的极化分量编码器编码的过程示意图,如可以是方法400中第三设备针对一个CB的编码过程,又如也可以是方法500中的网络设备针对一个CB的编码过程。如图6所示示出了编码设备采用M个极化分量编码器编码的过程示意图。图6中,极化码编码器包括M个极化分量编码器,编码设备获取第一MCS索引,根据MCS表格确定与第一MCS索引对应的调制阶数G,与第一MCS对应的总频谱效率R T+J·R S,以及与第一MCS对应的M个极化分量编码器的码率R 1,R 2,……,R M以及第M个极化分量编码器的成形比特所占的码率R S。编码设备根据J·R S确定成形比特所占的第二频谱效率,其中,J为MCS表对应的星座调制的维数,例如MCS表对应的调制方式为二维星座调制,则J的取值为2;若MCS表对应的调制方式为一维星座调制,则J的取值为1。编码设备根据总频谱效率R T+J·R S减去成形比特J·R S所占的频谱效率确定信息比特所占的第一频谱效率R T。编码设备根据第一MCS索引对应的调制阶数G和信息比特所占的第一频谱效率R T确定目标码率R=R T/G。编码设备根据目标码率确定M个极化分量编码器对应的总的信息比特K=M·N·R=(M·N·R T)/G。编码设备根据M个极化分量编码器的码率R 1,R 2,……,R M以及每个极化分量编码器的码长N确定每个极化分量编码器的信息比特的数量分别是K 1=R 1·N,K 2=R 2·N,……,K M=R M·N。编码器根据成形比特所占的码率R S以及第M个极化分量编码器的码长N确定第M个极化分量编码器中成形比特的数量K S=R S·N。因此,前M-1个极化分量编码器的信息位集合的大小为的
Figure PCTCN2022138444-appb-000177
对于最后一个极化分量编码器(即第M个极化分量编码器)的信息位集合的大小为
Figure PCTCN2022138444-appb-000178
也就是说,第1个极化分量编码器需要K 1个比特位置承载K 1个信息比特,第2个极化分量编码器需要K 2个比特位置承 载K 2个信息比特,……,第M-1个极化分量编码器需要K M-1个比特位置承载K M-1个信息比特,第M个极化分量编码器需要K M+K S个比特位置承载K M个信息比特和K S个成形比特。编码设备可以根据每个极化分量编码器的码长N以及极化码的可靠度排序表,确定第1个极化分量编码器的信息位集合
Figure PCTCN2022138444-appb-000179
第2个极化分量编码器的信息位集合
Figure PCTCN2022138444-appb-000180
第M-1个极化分量编码器的信息位集合
Figure PCTCN2022138444-appb-000181
例如,极化码的可靠度排序可以是根据极化重量(polarization weight,PW)度量得到的。具体地,编码设备可以确定可靠度最高的K 1个比特位置用于承载K 1个信息比特,确定可靠度最高的K 2个比特位置用于承载K 2个信息比特,……,确定可靠度最高的K M+K S个比特位置用于承载K M+K S个信息比特。
可选地,编码设备可以根据极化子信道的可靠度确定每个极化分量编码器中用于承载信息比特的位置。例如,一个极化分量编码器的码字序列的长度为N,则一个极化分量编码器对应N极化子信道,编码设备在N个极化子信道对应的可靠度中确定最可靠度的极化子信道用于承载信息比特。具体地,若极化序列
Figure PCTCN2022138444-appb-000182
是按照极化子信道的可靠度由小到达的方式进行排序的,其中,N max为极化序列的长度或者极化子信道的数量,例如,在5G中极化序列的长度为1024,则N max为1024。也就是说,
Figure PCTCN2022138444-appb-000183
其中,
Figure PCTCN2022138444-appb-000184
表示第
Figure PCTCN2022138444-appb-000185
个极化子信道的可靠度,也就是说,
Figure PCTCN2022138444-appb-000186
可以理解为极化子信道的信道编号。对于码长N的极化分量编码器,通过查询N个极化子信道的可靠度排序,可以得到一个可靠度排序
Figure PCTCN2022138444-appb-000187
其中,
Figure PCTCN2022138444-appb-000188
由于前M-1个极化分量编码器的信息位集合大小分别为
Figure PCTCN2022138444-appb-000189
编码设备可以根据前M-1个极化分量编码器的信息位集合大小
Figure PCTCN2022138444-appb-000190
和可靠度排序
Figure PCTCN2022138444-appb-000191
确定信息位集合
Figure PCTCN2022138444-appb-000192
m∈[1,…,M-1];编码设备根据第M个极化分量编码器的信息位集合大小
Figure PCTCN2022138444-appb-000193
和可靠度排序
Figure PCTCN2022138444-appb-000194
确定信息位集合
Figure PCTCN2022138444-appb-000195
例如,表4示出了5G中基于长度为1024的极化序列的可靠度排序表。极化序列的可靠度的排序可以是1024个极化子信道的可靠度的排序。例如M为2,N为8,K 1为3,K 2为2,K S为2的情况下,
Figure PCTCN2022138444-appb-000196
Figure PCTCN2022138444-appb-000197
即第1个极化分量编码器的第5个比特、第6个比特和第7个比特用于承载第1个极化分量编码器的信息比特,
Figure PCTCN2022138444-appb-000198
即第2个极化分量编码器的第3个比特、第5个比特、第6个比特和第7个比特用于承载第2个极化分量编码器的信息比特和成形比特。
表4
Figure PCTCN2022138444-appb-000199
Figure PCTCN2022138444-appb-000200
Figure PCTCN2022138444-appb-000201
Figure PCTCN2022138444-appb-000202
例如,第一MCS索引为表2的14,输出符号数为256,MCS索引为14对应的调制阶数是6,调制方式为64QAM。由于I/Q两路独立且每一路表示64QAM中的两个比特,因此可以采用6/2=3个码长为512的极化分量编码器。由于每个符号占6个比特,则256个符号总共占256*6=1536个比特,因此每个极化分量编码器的长度N为1536/3=512。MCS索引为14对应的频谱效率为3.6094,因此需要M个极化分量编码器对应的总的信息比特和成形比特的数量和为256*3.6094≈924。根据表2中MCS索引为14对应的R 1=0.0732,因此,第1个极化分量编码器的信息比特的数量K 1=N·R 1=512·0.0732≈37。根据表2中MCS索引为14对应的R 2=0.7354,因此,第2个极化分量编码器的信息比特的数量K 2=N·R 2=512·0.7354≈377。根据表2中MCS索引为14对应的R 3=0.7266,因此,第3个极化分量编码器的信息比特的数量K 3=N·R 3=512·0.7266≈372。根据表2中MCS索引为14对应的R S=0.2695,第3个极化分量编码器的成形比特的数量K S=N·R S=512·0.2695≈138,其中,138+372+377+37=924。因此,第1个极化分量编码器的信息位集合的大小
Figure PCTCN2022138444-appb-000203
第2个极化分量编码器的信息位集合的大小
Figure PCTCN2022138444-appb-000204
第3个极化分量编码器的信息位集合的大小
Figure PCTCN2022138444-appb-000205
又例如,第一MCS索引为表2的5,输出符号数为256,MCS索引为5对应的调制阶数是4,调制方式为16正交振幅调制(quadrature amplitude modulation,QAM)。由于I/Q两路独立且每一路表示16QAM中的两个比特,因此可以采用4/2=2个码长为512的极化分量编码器。也就是说,每个符号占4个比特,则256个符号总共占256*4=1024个比特,因此每个极化分量编码器的长度N为1024/2=512。MCS索引为5对应总频谱效率为1.4727,因此M个极化分量编码器对应的总的信息比特和成形比特的数量和为256*1.4727≈377。根据表2中MCS索引为5对应的R 1=0.0449,因此,第1个极化分量编码器的信息比特的数量K 1=N·R 1=512·0.0449≈23。根据表2中MCS索引为5对应的R2=0.4199,第2个极化分量编码器的信息比特的数量K 2=N·R 2=512·0.4199≈215。根据表2中MCS索引为5对应的R S=0.2715,第2个极化分量编码器的成形比特的数量K S=N·R S=512·0.2715≈139,其中,23+215+139=377。因此,第1个极化分量编码器的信息位集合的大小
Figure PCTCN2022138444-appb-000206
第2个极化分量编码器的信息位集合的大小
Figure PCTCN2022138444-appb-000207
如图6所示,编码设备根据上述的MCS表格中的码率确定每个极化分量编码器的码率,即图6中的分量码码率分配。编码设备根据每个极化分量编码器的码率确定M个极化分量编码器的信息位集合的大小分别为K 1,K 2,……,K M。编码设备根据串并变换将K长度的信息比特分割成M个子流,M个子流的信息比特的大小分别为K 1,K 2,……,K M。编码设备根据上述方法计算成形比特的数量K S(即图6中成形比特数量计算)。编码设备根据上述方法得到每个极化分量编码器的信息位集合大小之后,可以根据极化序列的可靠度排序得到各个信息位集合(即图6中的分量码信息位选择)。编码设备可以根据生成矩阵G N对前M-1个极化分量编码器进行编码,得到长度为N的码字序列。编码设备需要计算第M个极化分量编码器的成形比特的取值,也即前述计算的K S为成形比特的数量。具 体编码设备计算K S个成形比特的取值可以包括:编码设备根据前M-1输出的码字序列c m(1≤m≤M-1)和Maxwell-Boltzmann参数ν确定第M个极化分量编码器输出的码字序列c M的比特似然比;编码设备根据成形比特的数量K S和码字序列c M的比特似然比进行串行抵消(successive cancellation,SC)译码得到成形比特的取值和编码后的码字序列c M。或者,编码设备根据成形比特的数量K S和码字序列c M的比特似然比进行串行抵消列表(successive cancellation list,SCL)译码得到成形比特的取值和编码后的码字序列c M
例如,c M的对数似然比Λ M,j满足下述公式(19)。
Figure PCTCN2022138444-appb-000208
其中,c m,j表示码字c m的第j个比特,1≤m≤M-1;Λ M,j表示c M,j的取值似然比,
Figure PCTCN2022138444-appb-000209
表示SP映射,
Figure PCTCN2022138444-appb-000210
表示M维比特向量c 1,j,…,c M-1,j,0在SP映射下的星座点的取值。
Figure PCTCN2022138444-appb-000211
表示M维比特向量c 1,j,…,c M-1,j,1在SP映射下的星座点的取值。
可选地,编码设备可以根据M个极化分量编码器每个极化分量编码器输出的码字序列c m(1≤m≤M)取出J个比特,组成一个G维的比特向量,其中,J=G/M,由于每个极化分量编码器的长度为N,总共可以得到N个G维比特向量。每个G维比特向量根据映射规则映射成一个调制符号,最终得到N个调制符号序列进行发送。例如,G=M,极化分量编码器1输出的码字序列为
Figure PCTCN2022138444-appb-000212
极化分量编码器2输出的码字序列为
Figure PCTCN2022138444-appb-000213
极化分量编码器M输出的N比特的码字序列为
Figure PCTCN2022138444-appb-000214
则调制的过程中,组成长度为M的N个比特序列分别为
Figure PCTCN2022138444-appb-000215
Figure PCTCN2022138444-appb-000216
然后将这N个比特序列分别映射成长度为N的调制符号序列发送出去。
上面描述了编码设备编码并发送调制符号的原理,在解码设备侧,解码设备解码的原理与编码设备编码的原理类似,为了避免赘述不详细描述。
图7和图8示出了本申请实施例提供的用于处理物理共享信道的效果示意图,如图7和图8所示,符号数256,采用16幅移键控(amplitude-shift keying,ASK)调制,Maxwell-Boltzmann参数ν=0.01时的性能对比图。图7中的RF-I表示基于方法200的情况一的方法,图8中的RF-II表示基于方法200的情况二的方法。从图7和图8中可知,采用本申请提供的星座成形方法,与未采用星座成形的星座点等概率分布的方法相比,在相同信噪比(signal-to-noise ratio,SNR)下本申请实施例提供的方法的误块率(block error rate,BLER)更低,在相同的误块率的相同下,本申请提供的方法的信噪比更低,因此可以获得显著的性能增益。
因此,本申请实施例提供的用于确定极化分量编码器的码率的方法,通过各个极化分量编码器对应的调制子信道的信道容量确定各个极化分量编码器的码率,调制子信道的信道容量可以表征调制子信道的可靠度,因此,可以根据调制子信道的信道容量确定各个极化分量编码器的码率,从而可以提高适用性,避免采用数值搜索法确定每个极化分量编码器的信息比特的数量的复杂度高的问题。
需要说明的是,本申请实施例以MCS表格包括至少一行,MCS表格包括的至少一行中的每行包括MCS索引以及与每行包括的MCS索引对应的至少一个极化分量编码器的码率为例描述,本申请实施例不限于MCS表格的形式,例如,MCS表格可以包括至少一列,MCS表格包括的至少一列中的每列包括MCS索引以及与每列包括的MCS索引对应的至 少一个极化分量编码器的码率,例如,表1至表3中的行与列可以转换,一列对应一个MCS索引,一列对应的MCS索引对应至少一个极化分量编码器的码率。
上文描述了本申请提供的方法实施例,下文将描述本申请提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图9示出了本申请实施例提供的通信装置900。该通信装置900包括处理器910和收发器920。其中,处理器910和收发器920通过内部连接通路互相通信,该处理器910用于执行指令,以控制该收发器920发送信号和/或接收信号。
可选的,该通信装置900还可以包括存储器930,该存储器930与处理器910、收发器920通过内部连接通路互相通信。该存储器930用于存储指令,该处理器910可以执行该存储器930中存储的指令。在一种可能的实现方式中,通信装置900用于实现上述方法实施例中的第一设备或第二设备或第三设备或网络设备或终端设备对应的各个流程和操作。
应理解,通信装置900可以具体为上述实施例中的第一设备或第二设备或第三设备或网络设备或终端设备,也可以是芯片或者芯片系统。对应的,该收发器920可以是该芯片的收发电路,在此不做限定。具体地,该通信装置900可以用于执行上述方法实施例中与第一设备或第二设备或第三设备或网络设备或终端设备对应的各个操作和/或流程。可选的,该存储器930可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器910可以用于执行存储器中存储的指令,并且当该处理器910执行存储器中存储的指令时,该处理器910用于执行上述与第一设备或第二设备或第三设备或网络设备或终端设备对应的方法实施例的各个操作和/或流程。
在实现过程中,上述方法的各操作可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的操作可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的操作。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各操作可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、操作及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的操作可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的操作。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包 括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中第一设备或第二设备或第三设备或网络设备或终端设备所执行的各个操作或流程。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中第一设备或第二设备或第三设备或网络设备或终端设备所执行的各个操作或流程。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的一个或多个第二设备以及一个或多个第三设备。
上述各个装置实施例中和方法实施例中的完全对应,由相应的模块或单元执行相应的操作,例如通信单元(收发器)执行方法实施例中接收或发送的操作,除发送、接收外的其它操作可以由处理单元(处理器)执行。具体单元的功能可以基于相应的方法实施例。其中,处理器可以为一个或多个。
在本申请的实施例中,各术语及英文缩略语均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
应理解,本文中“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和操作,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以基于前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分操作。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种编码方法,其特征在于,包括:
    根据调制与编码策略MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,所述MCS表格包括至少一行,所述MCS表格包括的至少一行中的每行包括MCS索引以及与所述每行包括的MCS索引对应的至少一个极化分量编码器的码率;
    发送指示信息,所述指示信息用于指示所述第一MCS索引,所述第一MCS索引为MCS表格中的MCS索引;
    其中,M为正整数。
  2. 根据权利要求1所述的编码方法,其特征在于,所述MCS表格包括的至少一行中的每行还包括与所述每行包括的MCS索引对应的调制阶数和/或总频谱效率。
  3. 根据权利要求2所述的编码方法,其特征在于,所述MCS表格的特征为:存在第二MCS索引和第三MCS索引,当所述第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,所述第二MCS索引对应的极化分量编码器的码率的数量,与所述第三MCS索引对应的极化分量编码器的码率的数量不同。
  4. 根据权利要求3所述的编码方法,其特征在于,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
  5. 根据权利要求2至4中任一项所述的编码方法,其特征在于,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到;
    其中,R T为第一频谱效率,所述第一频谱效率为所述每行包括的MCS索引对应的至少一个极化分量编码器的频谱效率之和,R S为所述每行包括的MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率。
  6. 根据权利要求5所述的编码方法,其特征在于,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到,包括:所述每行包括的MCS索引对应的总频谱效率为R T+2R S
  7. 根据权利要求1至6中任一项所述的编码方法,其特征在于,
    所述MCS表格包括的至少一行中的每行还包括与所述MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率R S
  8. 根据权利要求7所述的编码方法,其特征在于,所述编码方法还包括:
    在所述MCS表格中确定与所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S
    其中,所述根据MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,包括:
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码。
  9. 根据权利要求1至6中任一项所述的编码方法,其特征在于,所述编码方法还包括:
    根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,所述麦克斯韦玻尔兹曼参数为预设值;
    其中,所述根据MCS表格中与第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,包括:
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码。
  10. 根据权利要求9所述的编码方法,其特征在于,所述根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,包括:
    根据所述麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定星座点的概率分布;
    根据所述星座点的概率分布确定所述第M个极化分量编码器的条件熵;
    根据所述第M个极化分量编码器的条件熵确定所述第M个极化分量编码器的成形比特所占的码率R S
  11. 一种解码方法,其特征在于,包括:
    接收指示信息,所述指示信息用于指示第一调制与编码策略MCS索引,所述第一MCS索引为MCS表格中的MCS索引,所述MCS表格包括至少一行,所述MCS表格包括的至少一行中的每行包括MCS索引以及与所述每行包括的MCS索引对应的至少一个极化分量编码器的码率;
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码;
    其中,M为正整数。
  12. 根据权利要求11所述的解码方法,其特征在于,所述MCS表格包括的至少一行中的每行还包括与所述每行包括的MCS索引对应的调制阶数和/或总频谱效率。
  13. 根据权利要求12所述的解码方法,其特征在于,所述MCS表格的特征为:存在第二MCS索引和第三MCS索引,当所述第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,所述第二MCS索引对应的极化分量编码器的码率的数量,与所述第三MCS索引对应的极化分量编码器的码率的数量不同。
  14. 根据权利要求13所述的解码方法,其特征在于,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
  15. 根据权利要求12至14中任一项所述的解码方法,其特征在于,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到;
    其中,R T为第一频谱效率,所述第一频谱效率为所述每行包括的MCS索引对应的至少一个极化分量编码器的频谱效率之和,R S为所述每行包括的MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率。
  16. 根据权利要求15所述的解码方法,其特征在于,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到,包括:所述每行包括的MCS索引对应的总频谱效率为R T+2R S
  17. 根据权利要求11至16中任一项所述的解码方法,其特征在于,
    所述MCS表格包括的至少一行中的每行还包括与所述MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率R S
  18. 根据权利要求17所述的解码方法,其特征在于,所述解码方法还包括:
    在所述MCS表格中确定与所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S
    其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码,包括:
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行解码。
  19. 根据权利要求11至16中任一项所述的解码方法,其特征在于,所述解码方法还包括:
    根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,所述麦克斯韦玻尔兹曼参数为预设值;
    其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码,包括:
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道进行解码。
  20. 根据权利要求19所述的解码方法,其特征在于,所述根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,包括:
    根据所述麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定星座点的概率分布;
    根据所述星座点的概率分布确定所述第M个极化分量编码器的条件熵;
    根据所述第M个极化分量编码器的条件熵确定所述第M个极化分量编码器的成形比特所占的码率R S
  21. 一种编码方法,其特征在于,包括:
    接收指示信息,所述指示信息用于指示第一调制与编码策略MCS索引,所述第一MCS索引为MCS表格中的MCS索引,所述MCS表格包括至少一行,所述MCS表格包括的至少一行中的每行包括MCS索引以及与所述每行包括的MCS索引对应的至少一个极化分量编码器的码率;
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码;
    其中,M为正整数。
  22. 根据权利要求21所述的编码方法,其特征在于,所述MCS表格包括的至少一行中的每行还包括与所述每行包括的MCS索引对应的调制阶数和/或总频谱效率。
  23. 根据权利要求22所述的编码方法,其特征在于,所述MCS表格的特征为:存在第二MCS索引和第三MCS索引,当所述第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,所述第二MCS索引对应的极化分量编码器的码率的数量,与所述第三MCS索引对应的极化分量编码器的码率的数量不同。
  24. 根据权利要求23所述的编码方法,其特征在于,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
  25. 根据权利要求22至24中任一项所述的编码方法,其特征在于,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到;
    其中,R T为第一频谱效率,所述第一频谱效率为所述每行包括的MCS索引对应的至少一个极化分量编码器的频谱效率之和,R S为所述每行包括的MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率。
  26. 根据权利要求25所述的编码方法,其特征在于,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到,包括:所述每行包括的MCS索引对应的总频谱效率为R T+2R S
  27. 根据权利要求21至26中任一项所述的编码方法,其特征在于,
    所述MCS表格包括的至少一行中的每行还包括与所述MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率R S
  28. 根据权利要求27所述的编码方法,其特征在于,所述编码方法还包括:
    在所述MCS表格中确定与所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S
    其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,包括:
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码。
  29. 根据权利要求21至28中任一项所述的编码方法,其特征在于,所述编码方法还包括:
    根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,所述麦克斯韦玻尔兹曼参数为预设值;
    其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行编码,包括:
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化 分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行编码。
  30. 根据权利要求29所述的编码方法,其特征在于,所述根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,包括:
    根据所述麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定星座点的概率分布;
    根据所述星座点的概率分布确定所述第M个极化分量编码器的条件熵;
    根据所述第M个极化分量编码器的条件熵确定所述第M个极化分量编码器的成形比特所占的码率R S
  31. 一种解码方法,其特征在于,包括:
    发送指示信息,所述指示信息用于指示第一调制与编码策略MCS索引,所述第一MCS索引为MCS表格中的MCS索引,所述MCS表格包括至少一行,所述MCS表格包括的至少一行中的每行包括MCS索引以及与所述每行包括的MCS索引对应的至少一个极化分量编码器的码率;
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码;
    其中,M为正整数。
  32. 根据权利要求31所述的解码方法,其特征在于,所述MCS表格包括的至少一行中的每行还包括与所述每行包括的MCS索引对应的调制阶数和/或总频谱效率。
  33. 根据权利要求32所述的解码方法,其特征在于,所述MCS表格的特征为:存在第二MCS索引和第三MCS索引,当所述第二MCS索引对应的调制阶数和所述第三MCS索引对应的调制阶数不同时,所述第二MCS索引对应的极化分量编码器的码率的数量,与所述第三MCS索引对应的极化分量编码器的码率的数量不同。
  34. 根据权利要求33所述的解码方法,其特征在于,所述第二MCS索引对应的极化分量编码器的码率的数量是所述第二MCS索引对应的调制阶数的二分之一,所述第三MCS索引对应的极化分量编码器的码率的数量是所述第三MCS索引对应的调制阶数的二分之一。
  35. 根据权利要求32至34中任一项所述的解码方法,其特征在于,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到;
    其中,R T为第一频谱效率,所述第一频谱效率为所述每行包括的MCS索引对应的至少一个极化分量编码器的频谱效率之和,R S为所述每行包括的MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率。
  36. 根据权利要求35所述的解码方法,其特征在于,所述每行包括的MCS索引对应的总频谱效率由R T和R S得到,包括:所述每行包括的MCS索引对应的总频谱效率为R T+2R S
  37. 根据权利要求31至36中任一项所述的解码方法,其特征在于,
    所述MCS表格包括的至少一行中的每行还包括与所述MCS索引对应的至少一个极化分量编码器中最后一个极化分量编码器的成形比特的码率R S
  38. 根据权利要求37所述的解码方法,其特征在于,所述解码方法还包括:
    在所述MCS表格中确定与所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S
    其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码,包括:
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行解码。
  39. 根据权利要求31至36中任一项所述的解码方法,其特征在于,所述解码方法还包括:
    根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,所述麦克斯韦玻尔兹曼参数为预设值;
    其中,所述根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率对物理共享信道所承载的数据进行解码,包括:
    根据所述MCS表格中与所述第一MCS索引对应的M个极化分量编码器中每个极化分量编码器的码率和所述第一MCS索引对应的所述M个极化分量编码器中第M个极化分量编码器的成形比特的码率R S对所述物理共享信道所承载的数据进行解码。
  40. 根据权利要求39所述的解码方法,其特征在于,所述根据麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定所述第一MCS索引对应的M个极化分量编码器中第M个极化分量编码器的成形比特所占的码率R S,包括:
    根据所述麦克斯韦玻尔兹曼参数和所述第一MCS索引对应的调制阶数确定星座点的概率分布;
    根据所述星座点的概率分布确定所述第M个极化分量编码器的条件熵;
    根据所述第M个极化分量编码器的条件熵确定所述第M个极化分量编码器的成形比特所占的码率R S
  41. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述处理器用于执行所述存储器中存储的计算机程序或指令,以使得所述通信装置实现如权利要求1至40中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1至40中任一项所述的方法。
PCT/CN2022/138444 2022-01-17 2022-12-12 编码方法、解码方法和通信装置 WO2023134363A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210047691 2022-01-17
CN202210047691.5 2022-01-17
CN202210476457.4A CN116470987A (zh) 2022-01-17 2022-04-29 编码方法、解码方法和通信装置
CN202210476457.4 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023134363A1 true WO2023134363A1 (zh) 2023-07-20

Family

ID=87172312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138444 WO2023134363A1 (zh) 2022-01-17 2022-12-12 编码方法、解码方法和通信装置

Country Status (2)

Country Link
CN (1) CN116470987A (zh)
WO (1) WO2023134363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117176185B (zh) * 2023-10-18 2024-02-09 苏州元脑智能科技有限公司 一种基于极化码的数据编解码方法、装置和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034906A (zh) * 2018-01-11 2019-07-19 株式会社Kt 用于新无线电的数据调制与编码的方法和装置
CN110048727A (zh) * 2019-04-18 2019-07-23 中南大学 任意码长的Polar码编码方法
US20190253121A1 (en) * 2018-04-06 2019-08-15 Intel Corporation Configuration and design of cqi and mcs tables for 5g communications
WO2019225655A1 (ja) * 2018-05-23 2019-11-28 株式会社Nttドコモ ユーザ端末
CN110830155A (zh) * 2018-08-08 2020-02-21 华为技术有限公司 数据传输方法及设备
CN112511268A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 策略配置、功率配置和质量上报方法、设备和介质
CN112930666A (zh) * 2018-08-17 2021-06-08 株式会社Ntt都科摩 用户终端以及无线通信方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034906A (zh) * 2018-01-11 2019-07-19 株式会社Kt 用于新无线电的数据调制与编码的方法和装置
US20190253121A1 (en) * 2018-04-06 2019-08-15 Intel Corporation Configuration and design of cqi and mcs tables for 5g communications
WO2019225655A1 (ja) * 2018-05-23 2019-11-28 株式会社Nttドコモ ユーザ端末
CN110830155A (zh) * 2018-08-08 2020-02-21 华为技术有限公司 数据传输方法及设备
CN112930666A (zh) * 2018-08-17 2021-06-08 株式会社Ntt都科摩 用户终端以及无线通信方法
CN110048727A (zh) * 2019-04-18 2019-07-23 中南大学 任意码长的Polar码编码方法
CN112511268A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 策略配置、功率配置和质量上报方法、设备和介质

Also Published As

Publication number Publication date
CN116470987A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2017041683A1 (zh) 用于上行数据传输的方法、网络设备和终端设备
WO2018153307A1 (zh) 传输数据的方法和装置
WO2016154968A1 (zh) 编码方法、装置、基站和用户设备
WO2018082485A1 (zh) 数据处理的方法、基站与终端
CN106982172A (zh) 确定极化码传输块大小的方法和通信设备
WO2022161201A1 (zh) 编码调制与解调解码方法及装置
WO2020029987A1 (zh) 数据传输方法及设备
WO2023134363A1 (zh) 编码方法、解码方法和通信装置
US20240090006A1 (en) Wireless communication method and network device
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
WO2021056320A1 (zh) 上行控制信息复用传输的方法和装置
WO2014110812A1 (zh) 信息传输方法和设备
WO2017193932A1 (zh) 通信方法及其网络设备、用户设备
WO2021147214A1 (zh) 通信方法和通信装置
WO2018228506A1 (zh) 一种传输信息的方法、终端设备和网络设备
WO2022199607A1 (zh) 数据传输方法及装置
WO2023011145A1 (zh) 一种通信方法及装置
WO2022267020A1 (zh) 无线通信方法、终端设备和网络设备
CN112423313B (zh) 传输块大小确定方法及装置
WO2022236719A1 (zh) 无线通信方法、终端设备和网络设备
WO2022007621A1 (zh) 一种Polar码编解码方法及装置
WO2021092954A1 (zh) 一种侧行数据包的发送、接收方法和通信装置
WO2018171538A1 (zh) 数据传输方法、网络设备及终端设备
WO2020135815A1 (zh) 数据传输方法和装置、用户设备及计算机存储介质
WO2020010968A1 (zh) 一种数据发送方法、接收方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919996

Country of ref document: EP

Kind code of ref document: A1