WO2023134059A1 - 电池能量回收方法、装置、电池管理系统和电池 - Google Patents

电池能量回收方法、装置、电池管理系统和电池 Download PDF

Info

Publication number
WO2023134059A1
WO2023134059A1 PCT/CN2022/089620 CN2022089620W WO2023134059A1 WO 2023134059 A1 WO2023134059 A1 WO 2023134059A1 CN 2022089620 W CN2022089620 W CN 2022089620W WO 2023134059 A1 WO2023134059 A1 WO 2023134059A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
pulse
battery
signal
discharging
Prior art date
Application number
PCT/CN2022/089620
Other languages
English (en)
French (fr)
Inventor
周翔
刘江
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22785674.7A priority Critical patent/EP4239755A4/en
Priority to KR1020227034001A priority patent/KR20230110445A/ko
Priority to JP2022558303A priority patent/JP2024508061A/ja
Priority to US18/087,707 priority patent/US20230231401A1/en
Publication of WO2023134059A1 publication Critical patent/WO2023134059A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery energy recovery method, device, battery management system and battery.
  • electric vehicles start the energy recovery strategy when braking, and calculate the maximum charging capacity of energy recovery through the working conditions of the braking conditions and the state of the battery pack, so as to perform battery energy recovery.
  • the current battery energy recovery strategy requires a braking signal and utilizes the charging capacity of the battery to the greatest extent.
  • the embodiments of the present application at least partly solve the above problems, effectively recover the energy of the battery, and reduce the decay speed of the battery.
  • the embodiments of the present application provide a battery energy recovery method, the method includes: sending a charging and discharging command to the battery pack, so that The battery pack outputs a charging signal and a discharging signal alternately during the running of the vehicle according to the charging and discharging instruction; and performs battery energy recovery of the vehicle according to the charging signal.
  • the embodiment of the present application by alternately outputting the charging signal and the discharging signal, battery energy recovery is performed under the corresponding condition of the charging signal, which not only effectively improves the cruising range of the electric vehicle, but also reduces the decay speed of the battery.
  • the sending the charging and discharging instruction to the battery pack, so that the battery pack alternately outputs the charging signal and the discharging signal during the running of the vehicle according to the charging and discharging instruction includes: sending the pulse charging and discharging instruction to battery pack, so that the battery pack alternately outputs a pulse charging signal and a pulse discharging signal during the running of the vehicle according to the pulse charging and discharging instruction;
  • the battery energy recovery of the vehicle according to the charging signal includes:
  • the pulse charging signal performs battery energy recovery of the vehicle.
  • the sending the pulse charging and discharging instruction to the battery pack, so that the battery pack alternately outputs the pulse charging signal and the pulse discharging signal during the running of the vehicle according to the pulse charging and discharging instruction includes: According to the speed information during driving, a pulse charging and discharging command is sent to the battery pack according to the speed information, so that the battery pack alternately outputs a pulse charging signal and a pulse discharging signal according to the speed information.
  • the output of the pulse charging signal and the pulse discharging signal can be determined according to the driving speed of the vehicle, which can not only realize battery energy recovery and reduce battery attenuation, but also match the current power consumption of the vehicle with the driving state of the vehicle to improve vehicle performance. At the same time, it also ensures the user's driving experience.
  • the battery pack alternately outputs a pulse charging signal and a pulse discharge signal according to the speed information, including: when the speed information indicates that the vehicle is in an accelerating state, controlling the output of the battery pack The discharge power of the pulse discharge signal is greater than the charge power of the pulse charge signal; when the speed information indicates that the vehicle is in a deceleration state, the discharge power of the pulse discharge signal output by the battery pack is controlled to be less than The charging power of the pulse charging signal: when the speed information indicates that the vehicle is in a state of constant speed, the discharging power of the pulse discharging signal output by the battery pack is controlled to be equal to the charging power of the pulse charging signal.
  • the embodiment of the present application can recover the battery energy under the state of acceleration, deceleration and constant speed of the vehicle, which has wide application range and high flexibility.
  • the method when the vehicle is in an acceleration state or a deceleration state, the method further includes: when the speed of the vehicle reaches a target speed, controlling the pulse discharge signal output by the battery pack The discharging power is equal to the charging power of the pulse charging signal.
  • the vehicle after the vehicle reaches the target speed, the vehicle can be controlled at a constant speed. According to the target speed, the charging and discharging of the vehicle can be maintained at a target state, and the target state can make the electric quantity of the constant current discharge just meet the needs of the vehicle. Therefore, not only the cruising range of the electric vehicle can be effectively improved, but also the service life of the battery pack can be significantly improved.
  • the sending the pulse charging and discharging instruction to the battery pack, so that the battery pack alternately outputs the pulse charging signal and the pulse discharging signal during the running of the vehicle according to the pulse charging and discharging instruction includes: charging and pulse discharging, and/or pulse charging, pulse discharging and resting, determining at least one set of charge and discharge alternating patterns; sending the at least one set of charge and discharge alternate patterns to the battery pack so that the battery pack according to the A group of charging and discharging alternate modes output pulse charging signal and pulse discharging signal.
  • the process of pulse charging and discharging can be diversified, and the pulse can be charged or discharged stepwise at different rates, so that the cumulative polarization of the battery in the continuous charging and discharging process can be effectively eliminated, and the pulse charging capacity can be improved at the same time.
  • the energy recovery efficiency is improved while the battery life is extended, and it can also be flexibly matched to different application scenarios.
  • the sending the charge and discharge instruction to the battery pack, so that the battery pack alternately outputs the charging signal and the discharge signal during the running of the vehicle according to the charge and discharge instruction includes: sending a constant current charge and discharge instruction to the battery pack, so that the battery pack alternately outputs a constant current charging signal and a constant current discharging signal during the running of the vehicle according to the constant current charging and discharging command;
  • the recovery includes: recovering battery energy of the vehicle according to the constant current charging signal.
  • an embodiment of the present application provides a battery energy recovery device, the device comprising: an instruction sending module, configured to send a charging and discharging instruction to a battery pack, so that the battery pack The charging signal and the discharging signal are alternately output during the running of the vehicle; the battery energy recovery module is used for recovering the battery energy of the vehicle according to the charging signal.
  • an instruction sending module configured to send a charging and discharging instruction to a battery pack, so that the battery pack
  • the battery energy recovery module is used for recovering the battery energy of the vehicle according to the charging signal.
  • the embodiment of the present application provides a battery management system, including: at least one processor; and a memory connected to the at least one processor in communication; A processor-executable instruction, the instructions being executed by the at least one processor, to enable the at least one processor to perform the method as described above.
  • a battery management system including: at least one processor; and a memory connected to the at least one processor in communication; A processor-executable instruction, the instructions being executed by the at least one processor, to enable the at least one processor to perform the method as described above.
  • battery energy recovery is performed under the corresponding condition of the charging signal, which not only effectively improves the cruising range of the electric vehicle, but also reduces the decay speed of the battery.
  • an embodiment of the present application provides a battery, including a battery cell and the above-mentioned battery management system, the battery management system is used to manage the charging and discharging of the battery cell, and when the charging corresponds to The stage controls the vehicle's battery energy recovery.
  • the battery has energy recovery capability, can effectively increase the cruising range of the electric vehicle, and can reduce its own decay speed.
  • the battery energy recovery method, device, battery management system, and battery provided in the embodiments of the present application can not only effectively improve the cruising range of electric vehicles, but also effectively eliminate the problem of the battery in the continuous charging and discharging process by alternating charging and discharging. Active activation can significantly improve the service life of the battery pack.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a battery management system provided in an embodiment of the present application.
  • Fig. 3 is a flow chart of a battery energy recovery method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a pulse-accelerated battery pack current provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a pulse deceleration battery pack current provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another pulse-accelerated battery pack current provided by the embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a battery energy recovery device provided in an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the battery energy recovery method and device provided by the embodiment of the present application can be applied to this application scenario.
  • the application scenarios include a battery management system (Battery Management System, BMS) 10, a battery pack 20, a motor 30, a generator 40, and a car.
  • BMS Battery Management System
  • the battery management system 10 , the battery pack 20 , the electric motor 30 and the generator 40 are loaded in the automobile as components of the automobile.
  • the battery pack 20 can provide electrical energy for external electrical equipment, and when the mechanical energy of the external equipment is converted into electrical energy, the electrical energy can charge the battery pack 20 .
  • the battery pack 20 includes a battery module connected to the battery management system.
  • the battery module includes at least one battery cell, and when the battery module includes a plurality of battery cells, the plurality of battery cells are connected in series and/or in parallel.
  • the battery management system 10 is used to collect working parameters of the battery module, such as charging/discharging current, voltage, temperature, etc., and control the charging/discharging of the battery module according to the collected working parameters. Detect the state parameters of the battery, for example, detect the state of charge of the battery module.
  • the electric motor 30 is used to convert electrical energy into mechanical energy.
  • the generator 40 is used to convert other forms of energy into electrical energy, such as converting mechanical energy into electrical energy.
  • the battery management system 10 can send a charging and discharging command to the battery pack 20 during the whole process of running the vehicle, and the battery pack 20 will alternately output charging and discharging signals during the running of the vehicle according to the charging and discharging command.
  • the motor 30 converts electrical energy into mechanical energy and transmits it to the vehicle according to the discharge signal to drive the vehicle; also transmits the mechanical energy to the generator 40 according to the charging signal, and the generator 40 converts the mechanical energy into electrical energy, and then stores the electrical energy In the battery pack 20, battery energy recovery is realized.
  • the alternate charging and discharging mode includes alternating constant current charging and constant current discharging, and also includes charging and discharging in the form of pulse signals.
  • the output of the pulse signal can be determined according to the driving speed of the vehicle.
  • the device structure shown in Figure 1 does not constitute a limitation of the application scenarios of the battery energy recovery method and device, and may include more or less components than those shown in the illustration, or combine certain components, or Different component arrangements.
  • the following battery energy recovery method and device can be applied to the above application scenarios, specifically, the battery management system can execute the battery energy recovery method.
  • the battery energy recovery device can be used as a functional module of the battery management system, so as to realize battery energy recovery.
  • Fig. 2 is a schematic structural diagram of a battery management system provided in an embodiment of the present application.
  • the battery management system 10 includes one or more processors 101 and a memory 102 , one processor 101 is taken as an example in FIG. 2 .
  • the processor 101 and the memory 102 may be connected through a bus or in other ways, and the connection through a bus is taken as an example in FIG. 2 .
  • the memory 102 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the program corresponding to the battery energy recovery method in the embodiment of the present application Instructions/modules (for example, the various modules shown in Figure 7).
  • the processor 101 executes various functional applications and data processing of the battery management system by running the non-volatile software programs, instructions and modules stored in the memory 102, that is, implements the battery energy recovery method in the following method embodiments.
  • the one or more modules are stored in the memory 102, and when executed by the one or more processors 101, perform the battery energy recovery method in any of the following method embodiments, for example, execute the following diagram
  • the method steps in 3 realize the functions of the modules in FIG. 7 .
  • the battery management system 10 may further include: a display module, a wireless communication module, a collection module, and electrical equipment.
  • the battery management system 10 can be used to intelligently manage and maintain battery modules, prevent battery modules from overcharging and overdischarging, monitor the status of battery modules and prolong the service life of battery modules; The voltage, current, and temperature of the batteries in the group are detected, and at the same time, leakage monitoring, calculation of remaining capacity, and alarm reminders are also performed.
  • the battery management system 10 can effectively improve the cruising range of the car, and can also eliminate the cumulative positive of the battery during continuous charging and discharging, effectively improving the service life of the battery pack 20 .
  • the above-mentioned products can execute the methods provided in the embodiments of the present application, and have corresponding functional modules and beneficial effects for executing the methods.
  • the methods provided in the embodiments of the present application can be referred to.
  • FIG. 3 is a flow chart of a battery energy recovery method provided in an embodiment of the present application. The method may include the steps of:
  • S11 Sending a charging and discharging command to the battery pack, so that the battery pack alternately outputs a charging signal and a discharging signal during the running of the vehicle according to the charging and discharging command.
  • S12 Perform battery energy recovery of the vehicle according to the charging signal.
  • the charging and discharging instruction may be that after the vehicle is started, the main control device of the vehicle sends an instruction to the battery management system, and the battery management system sends the charging and discharging instruction to the battery pack according to the instruction, and the charging and discharging instruction is specifically given to the battery battery in the module.
  • the instruction is used to instruct the battery energy recovery function to start, and the charging and discharging instruction is used to instruct the battery to output a current signal, and the current signal may be a direct current or a pulse current.
  • the charging signal and the discharging signal may be a constant-current charging signal and a constant-current discharging signal, respectively, or pulse electrical signals.
  • the alternately outputting the charging signal and the discharging signal refers to outputting the charging signal within the preset first time period, outputting the discharging signal within the preset second time period, and the preset first time period and the preset second time period Take turns according to the preset rules.
  • the said taking turns according to the preset rules may be: first outputting the charging signal within the preset first time period, then outputting the discharging signal within the preset second time period, and then outputting the charging signal within the preset first time period...
  • the form of alternately outputting the charging signal and the discharging signal may be set according to the current application scenario, and the above is only used as an example to explain the alternately outputting the charging signal and the discharging signal.
  • the charging signal and discharging signal output alternately are output from the battery pack to the motor, and the motor converts electrical energy into mechanical energy and transmits it to the vehicle according to the discharging signal to drive the vehicle, and the motor also transmits the mechanical energy of the vehicle to the generator according to the charging signal to generate electricity
  • the machine converts mechanical energy into electrical energy, and then stores the electrical energy in the battery pack, thereby realizing the recovery of battery energy.
  • the charging signal and discharging signal can be output alternately, so that the battery energy can be recovered in any state of the vehicle.
  • the method for recovering battery energy provided by the embodiment of the present application can not only improve the battery life of the vehicle, but also reduce the attenuation of the battery and prolong the life of the battery.
  • the above step S11: sending a charge and discharge command to the battery pack, so that the battery pack alternately outputs a charge signal and a discharge signal during the running of the vehicle according to the charge and discharge command specifically includes: sending a pulse charge
  • the discharge command is sent to the battery pack, so that the battery pack alternately outputs a pulse charging signal and a pulse discharge signal during the running of the vehicle according to the pulse charge and discharge command.
  • the performing battery energy recovery of the vehicle according to the charging signal includes: performing battery energy recovery of the vehicle according to the pulse charging signal.
  • the vehicle battery pack is charged and discharged in the form of pulses.
  • the battery pack outputs electric energy to drive the motor to work and convert it into the power of the vehicle;
  • the rotational mechanical energy of the vehicle is transferred to the generator for conversion into electric energy.
  • the electrical energy is stored in the battery pack, thereby recovering battery energy.
  • the magnitude of the pulse current signal involved in the process of pulse charging and discharging may be fixed and preset.
  • the charging window includes a pulse charge and discharge table, which can be provided by the battery manufacturer, and the pulse charge and discharge table records information such as the current that the battery can use at a certain temperature, the charging capacity of the battery, and the like.
  • the minimum pulse charging capacity of the battery pack can be selected as the constant charging current for recovering energy during the pulse charging process. Regardless of the state of charge of the battery pack, a charging strategy can be used for battery energy recovery.
  • the battery charging capacity recorded in the charging window is close to the upper limit of the battery capacity, and the set pulse current can be as close as possible to the window value, so as to recover the battery energy to the maximum capacity.
  • the magnitude of the pulse current signal involved in the pulse charging and discharging process may not be fixed, for example, the output pulse current signal may be determined according to the form speed of the vehicle.
  • the sending the pulse charging and discharging instruction to the battery pack, so that the battery pack alternately outputs the pulse charging signal and the pulse discharging signal during the running of the vehicle according to the pulse charging and discharging instruction includes: acquiring the According to the speed information during driving, a pulse charging and discharging command is sent to the battery pack according to the speed information, so that the battery pack alternately outputs a pulse charging signal and a pulse discharging signal according to the speed information.
  • the battery pack alternately outputs a pulse charging signal and a pulse discharge signal according to the speed information, including: when the speed information indicates that the vehicle is in an accelerating state, controlling the pulse discharge output by the battery pack The discharge power of the signal is greater than the charging power of the pulse charging signal; when the speed information indicates that the vehicle is in a deceleration state, the discharge power of the pulse discharge signal output by the battery pack is controlled to be smaller than the pulse charging The charging power of the signal; when the speed information indicates that the vehicle is in a state of constant speed, control the discharging power of the pulse discharging signal output by the battery pack to be equal to the charging power of the pulse charging signal.
  • the output conditions of the pulse discharge signal and pulse charge signal are respectively formulated, so that the output pulse discharge signal and pulse charge signal match the current driving state of the vehicle.
  • the current power consumption of the vehicle can also be matched with the driving state of the vehicle, improving vehicle performance while ensuring the user's driving experience.
  • the battery management system can also control the pulse discharge signal output by the battery pack
  • the discharging power is equal to the charging power of the pulse charging signal.
  • the target speed may be a relatively stable driving speed maintained by the vehicle for a period of time. In the embodiment of the present application, after the vehicle reaches the target speed, the vehicle can be controlled at a constant speed.
  • the driving acceleration of the electric vehicle is greater than the deceleration acceleration during the energy recovery process of the battery pack, realizing the acceleration of the electric vehicle.
  • the pulse discharging power is equal to the pulse charging power, and the electric vehicle is in an equivalent constant speed driving state.
  • the charging and discharging are carried out in the form of pulse signals, and the charging and discharging are alternated. While improving the cruising range of the vehicle, it effectively eliminates the attenuation of the battery during the continuous charging and discharging process, and can significantly improve the service life of the battery. Among them, the minimum charging capacity of the battery pack is also used to formulate an energy recovery charging strategy, which greatly reduces the risk of charging the battery beyond the charging window, reduces the risk of accelerated battery life decay, and effectively prolongs the battery life.
  • pulse charging signal and pulse discharging signal are alternate.
  • alternate output of pulse charging signal and pulse discharging signal may include:
  • Pulse charging, pulse discharging and resting determine at least one set of charging and discharging alternate modes
  • the process of pulse charging and discharging can be, but not limited to, a cycle of 1 pulse charging ⁇ pulse discharging ⁇ pulse charging ⁇ pulse discharging..., or 2pulse charging ⁇ pulse discharging ⁇ rest ⁇ pulse charging ⁇ pulse discharging ⁇ rest...
  • the cycle can be 3pulse current 1 charge ⁇ pulse current 2 charge ⁇ pulse current 1 discharge ⁇ pulse current 2 discharge ⁇ ... cycle, which can be 4pulse current 1 charge ⁇ rest ⁇ pulse current 2 charge ⁇ rest ⁇ pulse current 1 discharge ⁇ rest ⁇ pulse current 2 discharge ⁇ rest ⁇ ... cycle.
  • Figure 4 is a schematic diagram of the current of a pulse-accelerated battery pack.
  • the horizontal axis represents time, and the vertical axis represents current value.
  • the charging power is greater than the discharging power, and then discharge after charging.
  • Figure 5 is a schematic diagram of the pulse deceleration battery pack current, the horizontal axis represents the time, the vertical axis represents the current value, the discharge power is greater than the charging power, and then recharge after discharging.
  • Figure 6 is a schematic diagram of pulse-accelerated battery pack current, the horizontal axis represents time, the vertical axis represents current value, and there is no rest during charging and discharging.
  • the process of pulse charging and discharging can be diversified, and the pulse can be charged or discharged stepwise at different rates, so that the cumulative polarization of the battery in the continuous charging and discharging process can be effectively eliminated, and the pulse charging capacity can be improved at the same time.
  • the energy recovery efficiency is improved while the battery life is extended, and it can also be flexibly matched to different application scenarios.
  • the battery energy recovery can also be achieved by using a constant current charge and constant current discharge mode.
  • the sending the charge and discharge command to the battery pack, so that the battery pack alternately outputs the charging signal and the discharge signal during the running of the vehicle according to the charge and discharge command specifically includes: sending the constant current charge and discharge command to the battery pack, so that The battery pack alternately outputs a constant current charging signal and a constant current discharging signal during the running of the vehicle according to the constant current charging and discharging instruction.
  • the performing battery energy recovery of the vehicle according to the charging signal includes: performing battery energy recovery of the vehicle according to the constant current charging signal.
  • FIG. 7 is a schematic structural diagram of a battery energy recovery device provided in an embodiment of the present application.
  • the battery energy recovery device 50 includes a command sending module 51 and a battery energy recovery module 52 .
  • the command sending module 51 is used to send charging and discharging commands to the battery pack, so that the battery pack alternately outputs charging signals and discharging signals during the running of the vehicle according to the charging and discharging commands; the battery energy recovery module 52 uses The battery energy recovery of the vehicle is performed according to the charging signal.
  • the instruction sending module 51 is specifically configured to: send a pulse charging and discharging instruction to the battery pack, so that the battery pack alternately outputs a pulse charging signal and a pulse discharging signal according to the pulse charging and discharging instruction while the vehicle is running.
  • the battery energy recovery module 52 is specifically configured to recover battery energy of the vehicle according to the pulse charging signal.
  • the instruction sending module 51 is specifically configured to: acquire speed information during vehicle driving, and send pulse charge and discharge instructions to the battery pack according to the speed information, so that the battery pack can Alternately output pulse charging signal and pulse discharging signal.
  • the battery pack alternately outputs a pulse charging signal and a pulse discharge signal according to the speed information, including: when the speed information indicates that the vehicle is in an accelerating state, controlling the pulse discharge output by the battery pack The discharge power of the signal is greater than the charging power of the pulse charging signal; when the speed information indicates that the vehicle is in a deceleration state, the discharge power of the pulse discharge signal output by the battery pack is controlled to be smaller than the pulse charging The charging power of the signal; when the speed information indicates that the vehicle is in a state of constant speed, control the discharging power of the pulse discharging signal output by the battery pack to be equal to the charging power of the pulse charging signal.
  • the vehicle is in an acceleration state or a deceleration state, when the speed of the vehicle reaches a target speed
  • the sending the pulse charging and discharging instruction to the battery pack, so that the battery pack alternately outputs the pulse charging signal and the pulse discharging signal during the running of the vehicle according to the pulse charging and discharging instruction includes: charging and pulse discharging, and/or pulse charging, pulse discharging and resting, determining at least one set of charge and discharge alternating patterns; sending the at least one set of charge and discharge alternate patterns to the battery pack so that the battery pack according to the A group of charging and discharging alternate modes output pulse charging signal and pulse discharging signal.
  • the instruction sending module 51 is specifically configured to: send a constant current charge and discharge instruction to the battery pack, so that the battery pack alternately outputs a constant current according to the constant current charge and discharge instruction during vehicle driving Charging signal and constant current discharge signal.
  • the battery energy recovery module 52 is specifically configured to recover battery energy of the vehicle according to the constant current charging signal.
  • the above-mentioned battery energy recovery device can execute the battery energy recovery method provided in the embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the battery energy recovery method provided in the embodiment of the present invention.
  • An embodiment of the present application provides a non-volatile computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, in FIG. 2
  • a processor 101 may enable the above-mentioned one or more processors to execute the battery energy recovery method in any of the above-mentioned method embodiments.
  • An embodiment of the present application provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by the When the battery management system is executed, the battery management system is enabled to execute the battery energy recovery method in any of the above method embodiments.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course also by hardware.
  • all or part of the processes in the methods of the above embodiments can be completed by instructing related hardware through computer programs, and the programs can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及电池技术领域,公开了一种电池能量回收方法、装置、电池管理系统和电池。该方法包括:发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号;根据所述充电信号进行所述车辆的电池能量回收。本申请的电池能量回收方法、装置、电池管理系统和电池,通过交替输出充电信号和放电信号,在充电信号的对应情况下进行电池能量回收,因此,有效的提高了车辆的续航里程,并且降低了电池的衰减速度。

Description

电池能量回收方法、装置、电池管理系统和电池
相关申请的交叉引用
本申请要求享有于2022年01月14日提交的名称为“电池能量回收方法、装置、电池管理系统和电池”的中国专利申请202210044608.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池能量回收方法、装置、电池管理系统和电池。
背景技术
目前,电动汽车在制动时启动能量回收策略,通过制动条件的工况,电池包状态,计算出能量回收最大充电能力,从而进行电池能量回收。当前的这种电池能量回收策略需要有制动信号,并且极大限度的利用了电池的充电能力。
相关技术长期在临近电池的最大能力状态下进行能量回收,加速了电池的衰减。
发明内容
本申请实施方式至少部分改善了上述问题,有效的进行电池能量的回收,并且降低了电池的衰减速度。
为解决上述技术问题,本申请实施方式采用的一个技术方案是:在第一方面,本申请实施例提供了一种电池能量回收方法,所述方法包括:发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号;根据所述充电信号进行所述车辆的电池能量回收。本申请实施例通过交替输出充电信号和放电信号,在充电信号的对应情况下进行电池能量回收,不仅有效提高了电动车辆的续航里程,而且能够降低电池的衰减速度。
在一些实施例中,所述发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号,包括:发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号;所述根据所述充电信号进行所述车辆的电池能量回收包括:根据所述脉冲充电信号进行所述车辆的电池能量回收。其中,通过脉冲不同倍率阶梯式的充电或者放电的方法,可以有效消除电池在持续充放电过程中的累积极化,同时提升脉冲充电能力,在提高电池使用寿命的同时提高能量回收效率。
在一些实施例中,所述发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号,包括:获取车辆行驶过程中的速度信息,根据所述速度信息发送脉冲充放电指令至电池包,以使所述电池包根据所述速度信息交替输出脉冲充电信号和脉冲放电信号。其中,脉冲充电信号和脉冲放电信号的输出情况可以根据车辆行驶速度决定,不仅能实现电池能量回收,降低电池衰减,还能使车辆当前电能的消耗与车辆的行驶状态相匹配,提升车辆性能的同时还保证了用户的驾驶体验。
在一些实施例中,所述电池包根据所述速度信息交替输出脉冲充电信号和脉冲放电信号,包括:在所述速度信息指示所述车辆为加速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率大于所述脉冲充电信号的充电功率;在所述速度信息指示所述车辆为减速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率小于所述脉冲充电信号的充电功率;在所述速度信息指示所述车辆为匀速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率等于所述脉冲充电信号的充电功率。本申请实施例可以在车辆加速、减速和匀速的状态下都能进行电池能量的回收,适应范围广,灵活性高。
在一些实施例中,在所述车辆为加速状态或减速状态的情况下,所述方法还包括:当所述 车辆的速度达到目标速度时,控制所述电池包输出的所述脉冲放电信号的放电功率等于所述脉冲充电信号的充电功率。本申请实施例可以在车辆达到目标速度后,控制车辆匀速形式,根据所述目标速度可以维持车辆的充电和放电保持在一个目标状态,该目标状态可以使恒流放电的电量刚好满足车辆所需,由此,不仅能够有效提高电动车辆的续航里程,而且显著的改善了电池包的使用寿命。
在一些实施例中,所述发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号,包括:根据脉冲充电和脉冲放电,和/或脉冲充电、脉冲放电和静置,确定至少一组充电放电交替模式;发送所述至少一组充电放电交替模式至电池包,以使所述电池包根据所述至少一组充电放电交替模式输出脉冲充电信号和脉冲放电信号。本申请实施例中,脉冲充放电的过程可以多样化,脉冲可以不同倍率阶梯式的充电或者放电,从而可以有效消除电池在持续充放电过程中的累积极化,同时提升脉冲充电能力,在提高电池使用寿命的同时提高能量回收效率,而且还能灵活匹配不同的应用场景。
在一些实施例中,所述发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号,包括:发送恒流充放电指令至电池包,以使所述电池包根据所述恒流充放电指令在车辆行驶的过程中交替输出恒流充电信号和恒流放电信号;所述根据所述充电信号进行所述车辆的电池能量回收包括:根据所述恒流充电信号进行所述车辆的电池能量回收。通过交替输出恒流充电信号和恒流放电信号,不仅有效提高了电动车辆的续航里程,而且能够降低电池的衰减速度。
在第二方面,本申请实施例提供了一种电池能量回收装置,所述装置包括:指令发送模块,用于发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号;电池能量回收模块,用于根据所述充电信号进行所述车辆的电池能量回收。本申请实施例通过交替输出充电信号和放电信号,在充电信号的对应情况下进行电池能量回收,不仅有效提高了电动车辆的续航里程,而且能够降低电池的衰减速度。
在第三方面,本申请实施例提供了一种电池管理系统,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。本申请实施例通过交替输出充电信号和放电信号,在充电信号的对应情况下进行电池能量回收,不仅有效提高了电动车辆的续航里程,而且能够降低电池的衰减速度。
在第三方面,本申请实施例提供了一种电池,包括电芯和如上所述的电池管理系统,所述电池管理系统用于管理所述电芯的充电和放电,并且在所述充电对应的阶段控制车辆的电池能量回收。所述电池具备能量回收能力,能够有效的提高电动车辆的续航里程,而且能够降低其本身的衰减速度。
本申请实施例提供的一种电池能量回收方法、装置、电池管理系统和电池,不仅可有效提高电动汽车续航里程,而且通过充放电交替的方式,能够有效的消除了电池在持续充放电过程中的累积极化,可以显著的改善电池包的使用寿命。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的一种应用场景示意图;
图2是本申请实施例提供的一种电池管理系统的结构示意图;
图3是本申请实施例提供的一种电池能量回收方法的流程图;
图4是本申请实施例提供的一种脉冲加速电池包电流示意图;
图5是本申请实施例提供的一种脉冲减速电池包电流示意图;
图6是本申请实施例提供的另一种脉冲加速电池包电流示意图;
图7是本申请实施例提供的一种电池能量回收装置的结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
请参阅图1,图1是本申请实施例提供的一种应用场景示意图,本申请实施例提供的电池能量回收方法和装置均可应用于该应用场景中。所述应用场景包括电池管理系统(Battery Management System,BMS)10、电池包20、电动机30、发电机40以及汽车。所述电池管理系统10、所述电池包20、所述电动机30和所述发电机40作为所述汽车的部件加载于所述汽车中。所述电池包20可为外部用电设备提供电能,在将外部设备的机械能转换为电能时,所述电能可为所述电池包20充电。所述电池包20包括电池模组,所述电池模组与所述电池管理系统连接。所述电池模组包括至少一个电芯,当电池模组包括多个电芯时,多个电芯之间通过串联和/或并联连接。所述电池管理系统10用于采集电池模组的工作参数,比如,充/放电电流,电压,温度等,根据采集的工作参数控制电池模组的充/放电,还可以根据采集的工作参数,检测电池的状态参数,比如,检测电池模组的荷电状态。所述电动机30用于将电能转换成机械能。所述发电机40用于将其他形式的能源转换成电能,比如将机械能转换成电能。
在本申请实施例中,在汽车运行的整个过程中,电池管理系统10可以向电池包20发送充放电指令,电池包20根据该充放电指令在车辆行驶过程中交替的输出充电信号和放电信号至电动机30,电动机30根据放电信号将电能转换为机械能传递给汽车,以驱动汽车行驶;还根据充电信号,将机械能传递给发电机40,发电机40将机械能转换为电能,再将该电能存储于电池包20中,从而实现电池能量的回收。通过充放电交替的模式,并且在充电段实现电池能量回收,由此不仅可以提高汽车的续航里程,而且还能消除电池在持续充放电过程中的累积极化,可以有效的改善电池包20的使用寿命。其中,所述充电放电交替的模式包括恒流充电和恒流放电交替进行,还包括以脉冲信号形式进行充放电。所述脉冲信号的输出情况可以根据汽车的行驶速度来确定。
本领域技术人员可以理解,图1中示出的设备结构并不构成电池能量回收方法和装置的应用场景的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下述电池能量回收方法和装置可应用于上述应用场景,具体可以由所述电池管理系统执行所述电池能量回收方法。所述电池能量回收装置可作为所述电池管理系统的功能模块,从而实现电池能量回收。
在本申请的一个实施例中,如图2所示,图2是本申请实施例提供的一种电池管理系统的 结构示意图。所述电池管理系统10包括一个或多个处理器101以及存储器102,图2中以一个处理器101为例。处理器101和存储器102可以通过总线或者其他方式连接,图2中以通过总线连接为例。存储器102作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的电池能量回收方法对应的程序指令/模块(例如,附图7所示的各个模块)。处理器101通过运行存储在存储器102中的非易失性软件程序、指令以及模块,从而执行所述电池管理系统的各种功能应用以及数据处理,即实现下述方法实施例电池能量回收方法。所述一个或者多个模块存储在所述存储器102中,当被所述一个或者多个处理器101执行时,执行下述任意方法实施例中的电池能量回收方法,例如,执行以下描述的图3中的方法步骤,实现图7中的模块的功能。
在本申请的一个实施例中,所述电池管理系统10还可以包括:显示模组、无线通信模组、采集模组以及电气设备等。该电池管理系统10可以用于智能化管理和维护电池模组,防止电池模组出现过充电和过放电,监控电池模组的状态以及延长电池模组的使用寿命;通过传感器对所述电池模组中的电池的电压、电流、温度进行检测,同时还进行漏电监测、计算剩余容量、报警提醒等。
所述电池管理系统10通过执行所述电池能量回收方法,有效的提高了汽车的续航里程,而且还能消除电池在持续充放电过程中的累积极化,有效的改善了电池包20的使用寿命。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果,可参见本申请实施例所提供的方法。
基于上述应用场景,下述实施例将具体阐述本申请的电池能量回收方法。
请参阅图3,图3是本申请实施例提供的一种电池能量回收方法的流程图。该方法可以包括以下步骤:
S11:发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号。
S12:根据所述充电信号进行所述车辆的电池能量回收。
所述充放电指令可以是车辆启动后,车辆的主控设备发送指令至电池管理系统,所述电池管理系统根据该指令向电池包下发所述充放电指令,该充放电指令具体给到电池模组中的电池。其中,所述指令用于指示电池能量回收功能启动,所述充放电指令用于指示电池输出电流信号,该电流信号可以是直流或脉冲电流。
所述充电信号和所述放电信号可以分别是恒流充电信号和恒流放电信号,还可以是脉冲电信号。所述交替输出充电信号和放电信号指的是在预设第一时间段内输出充电信号,在预设第二时间段内输出放电信号,并且预设第一时间段和预设第二时间段按预设规则轮流进行。所述按预设规则轮流进行可以是,先在预设第一时间段内输出充电信号,然后在预设第二时间段内输出放电信号,再在预设第一时间段内输出充电信号……依次轮流进行;还可以是,先在预设第二时间段内输出放电信号,然后在预设第一时间段内输出充电信号,再在预设第二时间段内输出放电信号……依次轮流进行;还可以是,先在预设第一时间段内输出充电信号,接着再在预设第一时间段内输出充电信号,然后在预设第二时间段内输出放电信号,接着再在预设第二时间段内输出放电信号……依次轮流进行,等。
交替输出充电信号和放电信号的形式可以根据当前的应用场景进行设定,上述仅作为示例用于解释所述交替输出充电信号和放电信号。
所述交替输出的充电信号和放电信号由电池包输出至电动机,电动机根据放电信号将电能转换为机械能传递给车辆,以驱动车辆行驶,电动机还根据充电信号将车辆的机械能传递给发电机,发电机将机械能转换为电能,再将该电能存储至电池包中,从而实现电池能量的回收。
在车辆启动时,车辆行驶过程中,以及车辆制动过程中,都可以交替的输出充电信号和放电信号,从而可以在车辆的任意状态下都能实现电池能量的回收。本申请实施例提供的电池能量的回收方法在提高车辆的续航能力的同时,还可以降低电池的衰减,延长了电池的寿命。
在一些实施例中,上述步骤S11:发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号,具体包括:发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号。所述根据所述充电信号进行所述车辆的电池能量回收包括:根据所述脉冲充电信号进行所述车辆的电池能量回收。
在本实施例中,车辆电池包以脉冲的形式进行充放电,放电段,电池包输出电能,驱动电机工作,转换成车辆的动力;充电段,将车辆的转动机械能传递给发电机转换成电能,所述电能被储存在电池包中,从而回收电池能量。
其中,脉冲充放电的过程中所涉及的脉冲电流信号的大小可以是固定的并且是预先设置好的。例如,根据电池包的充电窗口,制定电池包的脉冲充放电逻辑。所述充电窗口包括脉冲充放电表,该脉冲充放电表可以由电池厂商提供,该脉冲充放电表记录了某个温度下电池能使用的电流,电池的充电能力等信息。其中,可以根据所述充电窗口选用电池包的最小脉冲充电能力作为脉冲充电过程中回收能量的恒定充电电流,不论电池包在哪种荷电状态,都可以采用一个充电策略进行电池能量回收。所述充电窗口记录的电池充电能力是贴近电池的能力上限的,设置的脉冲电流可以尽量的贴近窗口值,从而最大能力的回收电池能量。可选地,如果不需要进行较大能力的电池能量回收,则可以设置脉冲电流小一些,不太靠近窗口值,这样可以较温和的实现电池能量回收,而且能够有效的降低电池的衰减速度。
在一些实施例中,脉冲充放电的过程中所涉及的脉冲电流信号的大小可以是不固定的,比如,可以根据车辆的形式速度确定输出的脉冲电流信号。在本实施例中,所述发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号,包括:获取车辆行驶过程中的速度信息,根据所述速度信息发送脉冲充放电指令至电池包,以使所述电池包根据所述速度信息交替输出脉冲充电信号和脉冲放电信号。
其中,所述电池包根据所述速度信息交替输出脉冲充电信号和脉冲放电信号,包括:在所述速度信息指示所述车辆为加速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率大于所述脉冲充电信号的充电功率;在所述速度信息指示所述车辆为减速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率小于所述脉冲充电信号的充电功率;在所述速度信息指示所述车辆为匀速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率等于所述脉冲充电信号的充电功率。
根据车辆的加速状态、减速状态和匀速状态分别制定脉冲放电信号和脉冲充电信号的输出情况,使输出的脉冲放电信号和脉冲充电信号与车辆当前的行驶状态相匹配。由此,不仅能实现电池能量回收,降低电池衰减,还能使车辆当前电能的消耗与车辆的行驶状态相匹配,提升车辆性能的同时还保证了用户的驾驶体验。
在一些实施例中,在所述车辆为加速状态或减速状态的情况下,当所述车辆的速度达到目标速度时,所述电池管理系统还可以控制所述电池包输出的所述脉冲放电信号的放电功率等于所述脉冲充电信号的充电功率。当车辆加速或减少到目标速度后,车辆保持匀速行驶,此时输出的脉冲信号与当前车辆的匀速行驶状态保持一致。所述目标速度可以是车辆在一段时间内保持的相对稳定的行驶速度。本申请实施例可以在车辆达到目标速度后,控制车辆匀速形式,根据所述目标速度可以维持车辆的充电和放电保持在一个目标状态,该目标状态可以使恒流放电的电量刚好满足车辆所需,由此,不仅能够有效提高电动车辆的续航里程,而且显著的改善了电池包的使用寿命。
例如,当电动汽车需要加速时,检测加速度踏板状态,根据加速度踏板的加速指令,确定电动汽车的加速需求,获取目标工况下电池包的脉冲充放电方法,要求电池包输出脉冲充放电动力,其中电池包的放电功率大于电池包的充电功率,在一个脉冲周期中,电动汽车行驶加速度大于电池包能量回收过程中的减速加速度,实现电动汽车加速。电动汽车加速达到目标速度后,切换电动汽车电池包的充放电方法,其中新的脉冲充放电方法中,脉冲放电功率等于脉冲充电功率,电动汽车处于等效匀速行驶状态。例如,电动汽车需要减速时,检测制动踏板状态,根据制动踏板的减速指令,确定电动汽车的减速需求,获取目标工况下电池包的脉冲充放电方法,要求电池包输出脉冲充放电动力,其中电池包的充电功率大于电池包的放电功率,在一个脉冲周期中,电池包能量回 收过程中的减速加速度大于电动汽车加速加速度,实现电动汽车减速。电动汽车减速达到目标速度后,切换电动汽车电池包的充放电方法,其中新的脉冲充放电方法中,脉冲充电功率等于脉冲放电功率,电动汽车处于等效匀速行驶状态。
上述通过脉冲信号形式进行充放电,充放电交替,在提高车辆续航里程的同时,有效的消除了电池在持续充放电过程中对电池的衰减,可以显著的改善电池的使用寿命。其中,还采用电池包的最小充电能力制定能量回收的充电策略,大大降低了电池超过充电使用窗口充电的风险,降低了电池寿命衰减加速的风险,有效的延长了电池的使用寿命。
上述脉冲充电信号和脉冲放电信号的输出形式是交替的,具体的,交替输出脉冲充电信号和脉冲放电信号可以包括:
根据脉冲充电和脉冲放电,和/或
脉冲充电、脉冲放电和静置,确定至少一组充电放电交替模式;
发送所述至少一组充电放电交替模式至电池包,以使所述电池包根据所述至少一组充电放电交替模式输出脉冲充电信号和脉冲放电信号。
例如,脉冲充放电的过程可以但不限于是①脉冲充电→脉冲放电→脉冲充电→脉冲放电…的循环,可以是②脉冲充电→脉冲放电→静置→脉冲充电→脉冲放电→静置…的循环,可以是③脉冲电流1充电→脉冲电流2充电→脉冲电流1放电→脉冲电流2放电→…的循环,可以是④脉冲电流1充电→静置→脉冲电流2充电→静置→脉冲电流1放电→静置→脉冲电流2放电→静置→…的循环。比如,请参阅图4至图6,图4是脉冲加速电池包电流示意图,横轴表示时间,纵轴表示电流值,充电功率大于放电功率,充电后静置再放电。图5是脉冲减速电池包电流示意图,横轴表示时间,纵轴表示电流值,放电功率大于充电功率,放电后静置再充电。图6是脉冲加速电池包电流示意图,横轴表示时间,纵轴表示电流值,充放电过程中无静置。
本申请实施例中,脉冲充放电的过程可以多样化,脉冲可以不同倍率阶梯式的充电或者放电,从而可以有效消除电池在持续充放电过程中的累积极化,同时提升脉冲充电能力,在提高电池使用寿命的同时提高能量回收效率,而且还能灵活匹配不同的应用场景。
在一些实施例中,除了上述以脉冲充放电模式进行电池能量回收外,还可以采用恒流充电和恒流放电的模式实现电池能量回收。所述发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号具体包括:发送恒流充放电指令至电池包,以使所述电池包根据所述恒流充放电指令在车辆行驶的过程中交替输出恒流充电信号和恒流放电信号。所述根据所述充电信号进行所述车辆的电池能量回收包括:根据所述恒流充电信号进行所述车辆的电池能量回收。通过恒流充电和恒流放电交替的模式,也可以在提高车辆续航里程的同时,降低电池的衰减速度,提升电池的使用寿命。
请参阅图7,图7是本申请实施例提供的一种电池能量回收装置的结构示意图。该电池能量回收装置50包括指令发送模块51和电池能量回收模块52。所述指令发送模块51用于发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号;所述电池能量回收模块52用于根据所述充电信号进行所述车辆的电池能量回收。
其中,所述指令发送模块51具体用于:发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号。所述电池能量回收模块52具体用于根据所述脉冲充电信号进行所述车辆的电池能量回收。
在一些实施例中,所述指令发送模块51具体用于:获取车辆行驶过程中的速度信息,根据所述速度信息发送脉冲充放电指令至电池包,以使所述电池包根据所述速度信息交替输出脉冲充电信号和脉冲放电信号。其中,所述电池包根据所述速度信息交替输出脉冲充电信号和脉冲放电信号,包括:在所述速度信息指示所述车辆为加速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率大于所述脉冲充电信号的充电功率;在所述速度信息指示所述车辆为减速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率小于所述脉冲充电信号的充电功率;在所述速度信息指示所述车辆为匀速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放 电功率等于所述脉冲充电信号的充电功率。在所述车辆为加速状态或减速状态的情况下,当所述车辆的速度达到目标速度时,控制所述电池包输出的所述脉冲放电信号的放电功率等于所述脉冲充电信号的充电功率。
在一些实施例中,所述发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号,包括:根据脉冲充电和脉冲放电,和/或脉冲充电、脉冲放电和静置,确定至少一组充电放电交替模式;发送所述至少一组充电放电交替模式至电池包,以使所述电池包根据所述至少一组充电放电交替模式输出脉冲充电信号和脉冲放电信号。
在一些实施例中,所述指令发送模块51具体用于:发送恒流充放电指令至电池包,以使所述电池包根据所述恒流充放电指令在车辆行驶的过程中交替输出恒流充电信号和恒流放电信号。所述电池能量回收模块52具体用于根据所述恒流充电信号进行所述车辆的电池能量回收。
需要说明的是,上述电池能量回收装置可执行本申请实施例所提供的电池能量回收方法,具备执行方法相应的功能模块和有益效果。未在电池能量回收装置实施例中详尽描述的技术细节,可参见本发明实施例所提供的电池能量回收方法。
本申请实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图2中的一个处理器101,可使得上述一个或多个处理器可执行上述任意方法实施例中的电池能量回收方法。
本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述电池管理系统执行时,使所述电池管理系统能够执行上述任意方法实施例中的电池能量回收方法。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种电池能量回收方法,其特征在于,所述方法包括:
    发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号;
    根据所述充电信号进行所述车辆的电池能量回收。
  2. 根据权利要求1所述的方法,其特征在于,所述发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号,包括:
    发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号;
    所述根据所述充电信号进行所述车辆的电池能量回收包括:
    根据所述脉冲充电信号进行所述车辆的电池能量回收。
  3. 根据权利要求2所述的方法,其特征在于,所述发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号,包括:
    获取车辆行驶过程中的速度信息,根据所述速度信息发送脉冲充放电指令至电池包,以使所述电池包根据所述速度信息交替输出脉冲充电信号和脉冲放电信号。
  4. 根据权利要求3所述的方法,其特征在于,所述电池包根据所述速度信息交替输出脉冲充电信号和脉冲放电信号,包括:
    在所述速度信息指示所述车辆为加速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率大于所述脉冲充电信号的充电功率;
    在所述速度信息指示所述车辆为减速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率小于所述脉冲充电信号的充电功率;
    在所述速度信息指示所述车辆为匀速状态的情况下,控制所述电池包输出的所述脉冲放电信号的放电功率等于所述脉冲充电信号的充电功率。
  5. 根据权利要求4所述的方法,其特征在于,在所述车辆为加速状态或减速状态的情况下,所述方法还包括:
    当所述车辆的速度达到目标速度时,控制所述电池包输出的所述脉冲放电信号的放电功率等于所述脉冲充电信号的充电功率。
  6. 根据权利要求2所述的方法,其特征在于,所述发送脉冲充放电指令至电池包,以使所述电池包根据所述脉冲充放电指令在车辆行驶的过程中交替输出脉冲充电信号和脉冲放电信号,包括:
    根据脉冲充电和脉冲放电,和/或
    脉冲充电、脉冲放电和静置,确定至少一组充电放电交替模式;
    发送所述至少一组充电放电交替模式至电池包,以使所述电池包根据所述至少一组充电放电交替模式输出脉冲充电信号和脉冲放电信号。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号,包括:
    发送恒流充放电指令至电池包,以使所述电池包根据所述恒流充放电指令在车辆行驶的过程中交替输出恒流充电信号和恒流放电信号;
    所述根据所述充电信号进行所述车辆的电池能量回收包括:
    根据所述恒流充电信号进行所述车辆的电池能量回收。
  8. 一种电池能量回收装置,其特征在于,所述装置包括:
    指令发送模块,用于发送充放电指令至电池包,以使所述电池包根据所述充放电指令在车辆行驶的过程中交替输出充电信号和放电信号;
    电池能量回收模块,用于根据所述充电信号进行所述车辆的电池能量回收。
  9. 一种电池管理系统,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1至7任一项所述的方法。
  10. 一种电池,其特征在于,包括电芯和如权利要求9所述的电池管理系统,所述电池管理系统用于管理所述电芯的充电和放电,并且在所述充电对应的阶段控制车辆的电池能量回收。
PCT/CN2022/089620 2022-01-14 2022-04-27 电池能量回收方法、装置、电池管理系统和电池 WO2023134059A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22785674.7A EP4239755A4 (en) 2022-01-14 2022-04-27 METHOD AND DEVICE FOR RECOVERING BATTERY ENERGY, BATTERY MANAGEMENT SYSTEM AND BATTERY
KR1020227034001A KR20230110445A (ko) 2022-01-14 2022-04-27 배터리 에너지 회수 방법, 장치, 배터리 관리 시스템 및 배터리
JP2022558303A JP2024508061A (ja) 2022-01-14 2022-04-27 電池エネルギー回収方法、装置、電池管理システム及び電池
US18/087,707 US20230231401A1 (en) 2022-01-14 2022-12-22 Method and apparatus for battery energy recovery, battery management system, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210044608.9 2022-01-14
CN202210044608.9A CN116487742A (zh) 2022-01-14 2022-01-14 电池能量回收方法、装置、电池管理系统和电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/087,707 Continuation US20230231401A1 (en) 2022-01-14 2022-12-22 Method and apparatus for battery energy recovery, battery management system, and battery

Publications (1)

Publication Number Publication Date
WO2023134059A1 true WO2023134059A1 (zh) 2023-07-20

Family

ID=84370277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089620 WO2023134059A1 (zh) 2022-01-14 2022-04-27 电池能量回收方法、装置、电池管理系统和电池

Country Status (2)

Country Link
CN (1) CN116487742A (zh)
WO (1) WO2023134059A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030749A (ja) * 1998-07-10 2000-01-28 Toyota Central Res & Dev Lab Inc 車両搭載用二次電池の充電方法
CN109130875A (zh) * 2018-10-18 2019-01-04 奇瑞新能源汽车技术有限公司 一种电动汽车能量回收控制方法
CN109473745A (zh) * 2018-12-24 2019-03-15 广东省智能制造研究所 一种电池快速充电方法及装置
CN111371143A (zh) * 2020-03-24 2020-07-03 北京经纬恒润科技有限公司 一种充放电系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120203404A1 (en) * 2011-02-04 2012-08-09 GM Global Technology Operations LLC Method for heating hybrid powertrain components
CN102231555A (zh) * 2011-07-15 2011-11-02 安徽省高程电子科技有限公司 电动汽车电池组能量回收管理系统及其管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030749A (ja) * 1998-07-10 2000-01-28 Toyota Central Res & Dev Lab Inc 車両搭載用二次電池の充電方法
CN109130875A (zh) * 2018-10-18 2019-01-04 奇瑞新能源汽车技术有限公司 一种电动汽车能量回收控制方法
CN109473745A (zh) * 2018-12-24 2019-03-15 广东省智能制造研究所 一种电池快速充电方法及装置
CN111371143A (zh) * 2020-03-24 2020-07-03 北京经纬恒润科技有限公司 一种充放电系统

Also Published As

Publication number Publication date
CN116487742A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US11374508B2 (en) Electric drive system and energy management method
JP5093225B2 (ja) 二次電池の制御装置および車両
JP5305025B2 (ja) ハイブリッド車両
CN102381314B (zh) 一种混合动力汽车充放电控制方法
JP6982787B2 (ja) 燃料電池制御装置およびその制御方法、燃料電池自動車
JP6344336B2 (ja) 電池システム
JP4187942B2 (ja) 充電状態制御装置
US11183706B2 (en) Lithium-ion second battery controller for reducing charging loss while preventing deterioration from lithium deposition
JP2002142379A (ja) 電池の充電方法
CN112810600B (zh) 动力控制方法及系统、车辆以及存储介质
JP2010022128A (ja) 蓄電装置充放電制御システム
CN113696748A (zh) 一种燃料电池供电系统及其控制方法和控制装置
CN104590249B (zh) 混合动力汽车工作模式的动态转移控制方法及系统
JP2015000685A (ja) ハイブリッド車両の制御装置および制御方法
WO2023134059A1 (zh) 电池能量回收方法、装置、电池管理系统和电池
WO2024017152A1 (zh) 混合动力汽车的控制方法、装置、汽车及介质
US20230231401A1 (en) Method and apparatus for battery energy recovery, battery management system, and battery
CN114744697A (zh) 电池保护方法、电池保护装置及车辆
CN112744084B (zh) 扭矩控制方法及其装置、车辆、电子设备和存储介质
JP6322417B2 (ja) 電圧変動制御装置
CN114094676B (zh) 一种笔记本电池充电管理方法、系统
JP5803277B2 (ja) 電池システムおよびそれを備える車両
CN117681728A (zh) 一种动力电池过充保护的方法、装置、车辆和存储介质
CN113410529A (zh) 一种电池充电方法及装置
JP2002369592A (ja) 車両用発電機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022558303

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022785674

Country of ref document: EP

Effective date: 20221017