WO2023133883A1 - 横波激励等离子体阵列发生器 - Google Patents

横波激励等离子体阵列发生器 Download PDF

Info

Publication number
WO2023133883A1
WO2023133883A1 PCT/CN2022/072331 CN2022072331W WO2023133883A1 WO 2023133883 A1 WO2023133883 A1 WO 2023133883A1 CN 2022072331 W CN2022072331 W CN 2022072331W WO 2023133883 A1 WO2023133883 A1 WO 2023133883A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
plasma array
shear wave
frequency
wave excited
Prior art date
Application number
PCT/CN2022/072331
Other languages
English (en)
French (fr)
Inventor
魏巍
郭丰领
杨辉
Original Assignee
中国航天空气动力技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航天空气动力技术研究院 filed Critical 中国航天空气动力技术研究院
Priority to PCT/CN2022/072331 priority Critical patent/WO2023133883A1/zh
Publication of WO2023133883A1 publication Critical patent/WO2023133883A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the invention relates to the field of plasma technology, in particular to a shear wave excited plasma array generator.
  • the flow state of the boundary layer has a great influence on the heat flow and friction on the surface of the aircraft.
  • the dynamic coupling phenomenon between the transition state and the motion/control of the aircraft may also occur, which affects the flight stability of the aircraft and even endangers flight safety. . Therefore, the control of flow transition is one of the key issues in the development of high-speed aircraft.
  • transition zone There are many factors that affect the transition, including flow conditions, surface roughness, and the structural form of the transition zone.
  • the forms of transition can also be divided into natural transition and forced transition.
  • the connotation of this patent mainly refers to the Excitation/control of the second mode of the layer (main frequency about 50kHz).
  • Vortex generators are generally arranged on the surface of wings or flaps to generate flow direction vortices, enhance the mixing of main flow and boundary layer flow, and achieve the purpose of inhibiting separation, but they cannot improve performance under different flight conditions; blowing air suction system Energy can be injected into the boundary layer through an external air source, but its size and power consumption are too large; the high-frequency jet energy generated by diaphragm and piezoelectric synthetic jet generators is small, and the jet velocity is small, even if it has been aimed at The effect is amplified through various mechanisms, but the effect is still not enough to meet the practical standard, so it is rarely used in high-speed flow; the piston-type synthetic jet generator can obtain higher energy output, but is limited by Limited to the structural form, the jet frequency cannot reach a higher level; in these existing technologies, the upper limit frequency of the plasma excitation technology is the highest, but it is generally lower than 3kHz.
  • the object of the present invention is to provide a shear wave excited plasma array generator, aiming to solve the above-mentioned problems in the prior art.
  • the present invention provides a shear wave excited plasma array generator, including: a plasma array controller and a controlled profile, wherein the plasma array controller specifically includes: a plurality of plasma generators, and the plasma array controller is installed on the accused profile;
  • the plasma array controller is specifically used to: under the excitation of high-frequency electricity, control the plasma generator to generate high-frequency jets, obtain spatially distributed high-frequency shear waves, and generate high-frequency waves that control the second mode of the boundary layer. Excited to promote the transition of the boundary layer of the controlled surface.
  • high-frequency shear waves can be generated, which directly resonate with the second mode of the boundary layer, thereby generating forced transition.
  • the high-frequency shear waves can be controlled and adjusted in real time according to the flight status; the high-frequency shear waves can be Superposition and combination along the flow direction form the frequency modulation and intensity adjustment of the flow direction, which broadens the flow control boundary.
  • Fig. 1 is the schematic diagram of the shear wave excitation plasma array generator of the embodiment of the present invention
  • Fig. 2 is a schematic structural view of a single plasma generator of an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a plasma array controller according to an embodiment of the present invention.
  • Fig. 4 is the schematic diagram that is applied to 20 ° of conical body standard model of the embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the working principle of the embodiment of the present invention.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • plural means two or more, unless otherwise specifically defined.
  • installation”, “connection” and “connection” should be interpreted in a broad sense, for example, it can be fixed connection, detachable connection, or integral connection; it can be mechanical connection or electrical connection; it can be It can be directly connected, or indirectly connected through an intermediary, and can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • FIG. 1 is a schematic diagram of a shear wave excited plasma array generator according to an embodiment of the present invention.
  • the plasma array generator specifically includes:
  • the plasma array controller 2 is specifically used to: under the excitation of high-frequency electricity, control the plasma generator 1 to generate high-frequency jets, obtain spatially distributed high-frequency shear waves, and generate and control the second mode of the boundary layer.
  • High-frequency excitation promotes transition of the boundary layer of the controlled profile 3 . Its principle is shown in Figure 5.
  • the plasma array controller 2 specifically includes: an LC circuit composed of multiple plasma generators 1, capacitors and inductors connected according to specific positions.
  • the mechanism of the plasma array controller 3 is as shown in Figure 3, specifically: a single plasma generator 1 is connected in series with a capacitor and an inductance coil to form the various circuits of the plasma array, wherein the input end of the lower circuit is connected to the upper
  • the downstream of the inductance coil of the loop forms a loop module; each loop module is connected in series with the next loop module to form a loop module; each loop module is connected in parallel with the next loop module to form the plasma array controller.
  • the plasma generator 1 specifically includes: a cavity and electrodes arranged on both sides of the cavity.
  • the material of the cavity includes: ceramics, and the material of the electrodes includes: tungsten.
  • the ratio of the diameter of the electrode to the inner diameter of the cavity is 0.05-0.08.
  • the frequency of the high-frequency electricity is 1KHz-3KHz
  • the voltage is 1KV-10KV.
  • the ratio of the spacing in the horizontal direction, namely the X direction, to the distance between the plurality of plasma generators in the longitudinal direction, namely the Z direction, is 0.8 ⁇ 1.2.
  • the ratio of the number of plasma generators distributed in the X direction to the number distributed in the Z direction is 0.8-1.2.
  • the shear wave excited plasma array generator of the embodiment of the present invention is especially suitable for controlling hypersonic inlet boundary layer flow, high-speed airfoil surface separation flow, compression corner shock wave control, etc.
  • the hypersonic inlet boundary layer flow is arranged in the inlet so that the periodic reverse jet flow generated by it interacts with the high-speed incoming flow, which can enhance the boundary layer/mainstream mixing and make the flow into the inlet
  • the fluid transitions into turbulent flow, which effectively inhibits the separation of the flow in the compression corner and the lip shock reflection area, and improves the performance of the intake port.
  • the technical solution of the embodiment of the present invention uses a plasma synthetic jet generator as the basic flow control component, and uses an LC network to drive the flow control component, thereby obtaining a spatially distributed high-frequency shear wave generation matrix, and then Influence the second mode of the boundary layer and force its transition.
  • the present invention has the following beneficial effects:
  • the embodiment of the present invention can generate a high-frequency shear wave, which directly resonates with the second mode of the boundary layer, thereby generating a forced transition.
  • the high-frequency shear wave generated by the embodiment of the present invention is controllable and can be adjusted in real time according to the flight status.
  • the high-frequency shear waves generated by the embodiments of the present invention can be superimposed and combined along the flow direction, forming frequency modulation and intensity adjustment of the flow direction, and broadening the flow control boundary.
  • the improvement of a technology can be clearly distinguished as an improvement in hardware (for example, improvements in circuit structures such as diodes, transistors, switches, etc.) or improvements in software (improvement in method flow).
  • improvements in many current method flows can be regarded as the direct improvement of the hardware circuit structure.
  • Designers almost always get the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that the improvement of a method flow cannot be realized by hardware physical modules.
  • a Programmable Logic Device such as a Field Programmable Gate Array (FPGA)
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • the controller may be implemented in any suitable way, for example the controller may take the form of a microprocessor or processor and a computer readable medium storing computer readable program code (such as software or firmware) executable by the (micro)processor , logic gates, switches, application specific integrated circuits (Application Specific Integrated Circuit, ASIC), programmable logic controllers and embedded microcontrollers, examples of controllers include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicone Labs C8051F320, the memory controller can also be implemented as part of the control logic of the memory.
  • controller in addition to realizing the controller in a purely computer-readable program code mode, it is entirely possible to make the controller use logic gates, switches, application-specific integrated circuits, programmable logic controllers, and embedded The same function can be realized in the form of a microcontroller or the like. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for realizing various functions can also be regarded as structures within the hardware component. Or even, means for realizing various functions can be regarded as a structure within both a software module realizing a method and a hardware component.
  • a typical implementing device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Combinations of any of these devices.
  • one or more embodiments of this specification may be provided as a method, system or computer program product. Accordingly, one or more embodiments of the present description may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present description may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer-readable media, in the form of random access memory (RAM) and/or nonvolatile memory, such as read-only memory (ROM) or flash RAM.
  • RAM random access memory
  • ROM read-only memory
  • Memory is an example of computer readable media.
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • program modules may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)

Abstract

一种横波激励等离子体阵列发生器,包括:等离子阵列控制器(2)以及被控型面(3),等离子阵列控制器(2)具体包括:多个等离子体发生器(1),等离子阵列控制器(2)安装于被控型面(3);等离子阵列控制器(2)具体用于:在高频电的激励下,控制等离子体发生器(1)产生高频射流,获得空间分布的高频横波,产生控制附面层第二模态的高频激励,促使被控型面(3)附面层发生转捩,提高了等离子体流动控制的频域边界。

Description

横波激励等离子体阵列发生器 技术领域
本发明涉及等离子体技术领域,尤其是涉及一种横波激励等离子体阵列发生器。
背景技术
附面层流动状态对飞行器表面热流和摩阻等影响较大,在一些高速飞行器中,还可能发生转捩状态与飞行器运动/控制的动态耦合现象,影响了飞行器飞行稳定性,甚至危及飞行安全。因此,流动转捩的控制是高速飞行器研制的关键问题之一。
影响转捩的因素有很多种,包括来流情况、表面粗糙度、转捩带结构形式等,转捩发生的形式也分为自然转捩、强制转捩等,本专利内涵主要指对附面层第二模态(主频约50kHz)的激励/控制。
一般在工程应用中,国内外多采用被动控制结构对流动转捩进行控制,如涡流发生器等,但这种方式不能覆盖较宽的飞行包线,只能选择有限的几个常用工况进行流动控制。其他流动控制方法,还包括吹吸气系统、膜片式合成射流发生器、压电式合成射流发生器、活塞式合成射流发生器等。涡流发生器一般布置在机翼或襟翼表面以产生流向涡,增强主流和附面层流动的掺混,达到抑制分离的目的,但其不能在不同飞行状态下均改善性能;吹吸气系统通过外加气源可为附面层注入能量,但其尺寸和功耗过大;膜片式和压电式合成射流发生器等产生的高频射流能量较小,射流速度较 小,即使已经针对性地通过多种机制放大其效果,但所产生的作用仍不足以达到实用化标准,因此在鲜有在高速流动中的应用;活塞式合成射流发生器可获得较高的能量输出,但受限于结构形式,其射流频率达不到较高水平;在这些已有技术中,等离子体激励技术的上限频率最高,但一般也低于3kHz。
综上可知,上述方法从工况覆盖、频率、强度、功率等角度无法充分满足对附面层第二模态的控制需求。
发明内容
本发明的目的在于提供一种横波激励等离子体阵列发生器,旨在解决现有技术中的上述问题。
本发明提供一种横波激励等离子体阵列发生器,包括:等离子阵列控制器以及被控型面,其中,所述等离子阵列控制器具体包括:多个等离子体发生器,所述等离子阵列控制器安装于所述被控型面;
所述等离子阵列控制器具体用于:在高频电的激励下,控制所述等离子体发生器产生高频射流,获得空间分布的高频横波,产生控制附面层第二模态的高频激励,促使所述被控型面附面层发生转捩。
采用本发明实施例,可产生高频横波,直接与附面层第二模态产生共振,从而产生强制转捩,此外,高频横波可控,可根据飞行状态实时调整;该高频横波可沿流向叠加组合,形成流向的频率调制、强度调节,拓宽了流动控制边界。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的横波激励等离子体阵列发生器的示意图;
图2是本发明实施例的单个等离子体发生器的结构示意图;
图3是本发明实施例的等离子阵列控制器的结构示意图;
图4是本发明实施例的应用于20°圆椎体标模的示意图;
图5是本发明实施例的工作原理示意图。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或 暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。此外,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
根据本发明实施例,提供了一种横波激励等离子体阵列发生器,图1是本发明实施例的横波激励等离子体阵列发生器的示意图,如图1所示,根据本发明实施例的横波激励等离子体阵列发生器具体包括:
等离子阵列控制器2以及被控型面3,其中,所述等离子阵列控制器2具体包括:多个等离子体发生器1,所述等离子阵列控制器2安装于所述被控型面3;
所述等离子阵列控制器2具体用于:在高频电的激励下,控制所述等离子体发生器1产生高频射流,获得空间分布的高频横波,产生控制附面层第二模态的高频激励,促使所述被控型面3附面层发生转捩。其原理如图5所示。
所述等离子阵列控制器2具体包括:由多个等离子体发生器1、电容和电感组成的LC电路按照特定位置连接构成。所述等离子阵列控制器3的机构如图3所示,具体为:单个等离子体发生器1与电容器和电感线圈串联组成所述等离子阵列的各级回路,其中,下级回路的输入端连接至上级回路的电感线圈下游,形成回路模块;每个回路模块与下一个回路模块串联形成回路模组;每个回路模组与下一个回路模组并联形成所述等离子阵列控制器。
如图2所示,所述等离子体发生器1具体包括:腔体和设置于所述腔体两侧的电极。所述腔体的材料包括:陶瓷,所述电极的材料包括:钨。所述电极的直径与所述腔体的内径之比为0.05~0.08。
此外,在本发明实施例中,所述高频电的频率为1KHz~3KHz,电压为1KV~10KV。
如图1所示,所述等离子阵列控制器2中横向即X方向间距与纵向即Z方向的多个等离子体发生器的间距之比为0.8~1.2。多个等离子体发生器分布在的X方向个数与分布在Z方向个数之比为0.8~1.2。等离子体发生器2的输出特性为Y=F(ω,t,τ,φ),其中,ω为等离子体发生器的射流频率,t为时间序列,τ为横波激励等离子体阵列发生器的空间分布延迟矩阵,φ为横波激励等离子体阵列发生器的空间分布相位矩阵。
需要说明的是,如图4所示,本发明实施例的横波激励等离子体阵列发生器尤其适用于控制高超声速进气道边界层流动、高速翼型表面分离流动、压缩拐角激波控制等。以控制高超声速进气道边界层流动为例,其布置于进气道内,使其产生的周期性逆向射流与高速来流相互作用,可增强附面层/主流掺混,使进入进气道的流体转捩为湍流,有效抑制压缩拐角和唇口激波反射区的流动发生分离,提高进气道性能。
从上述描述可以看出,本发明实施例的技术方案采用等离子合成射流发生器作为基础流动控制组件,采用一种LC网络对流动控制组件进行驱动,从而获得空间分布的高频横波发生矩阵,进而影响附面层第二模态,强迫其发生转捩。
综上所述,本发明与现有技术相比具有如下有益效果:
(1)本发明实施例可产生高频横波,直接与附面层第二模态产生共振,从而产生强制转捩。
(2)本发明实施例产生的高频横波可控,可根据飞行状态实时调整。
(3)本发明实施例产生的高频横波可沿流向叠加组合,形成流向的频 率调制、强度调节,拓宽了流动控制边界。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
在20世纪30年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL (Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书实施例时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本说明书一个或多个实施例可提供为方法、系统或计算机程序产品。因此,本说明书一个或多个实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本说明书可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书是参照根据本说明书实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器 (RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书一个或多个实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书的一个或多个实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本文件的实施例而已,并不用于限制本文件。对于本领域技术人员来说,本文件可以有各种更改和变化。凡在本文件的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本文件的权利要求范围之内。

Claims (10)

  1. 一种横波激励等离子体阵列发生器,其特征在于,包括:等离子阵列控制器以及被控型面,其中,所述等离子阵列控制器具体包括:多个等离子体发生器,所述等离子阵列控制器安装于所述被控型面;
    所述等离子阵列控制器具体用于:在高频电的激励下,控制所述等离子体发生器产生高频射流,获得空间分布的高频横波,产生控制附面层第二模态的高频激励,促使所述被控型面附面层发生转捩。
  2. 根据权利要求1所述的横波激励等离子体阵列发生器,其特征在于,所述等离子阵列控制器具体包括:由多个等离子体发生器、电容和电感组成的LC电路按照特定位置连接构成。
  3. 根据权利要求2所述的横波激励等离子体阵列发生器,其特征在于,所述等离子阵列控制器具体为:单个等离子体发生器与电容器和电感线圈串联组成所述等离子阵列的各级回路,其中,下级回路的输入端连接至上级回路的电感线圈下游,形成回路模块;每个回路模块与下一个回路模块串联形成回路模组;每个回路模组与下一个回路模组并联形成所述等离子阵列控制器。
  4. 根据权利要求1所述的横波激励等离子体阵列发生器,其特征在于,所述等离子体发生器具体包括:腔体和设置于所述腔体两侧的电极。
  5. 根据权利要求4所述的横波激励等离子体阵列发生器,其特征在于,所述腔体的材料包括:陶瓷,所述电极的材料包括:钨。
  6. 根据权利要求4所述的横波激励等离子体阵列发生器,其特征在于,所述电极的直径与所述腔体的内径之比为0.05~0.08。
  7. 根据权利要求1所述的横波激励等离子体阵列发生器,其特征在于,所述高频电的频率为1KHz~3KHz,电压为1KV~10KV。
  8. 根据权利要求1所述的横波激励等离子体阵列发生器,其特征在于,
    所述等离子阵列控制器中横向即X方向间距与纵向即Z方向的多个等离子体发生器的间距之比为0.8~1.2。
  9. 根据权利要求8所述的横波激励等离子体阵列发生器,其特征在于,所述多个等离子体发生器分布在的X方向个数与分布在Z方向个数之比为0.8~1.2。
  10. 根据权利要求1所述的横波激励等离子体阵列发生器,其特征在于,所述等离子体发生器的输出特性为Y=F(ω,t,τ,φ),其中,ω为等离子体发生器的射流频率,t为时间序列,τ为横波激励等离子体阵列发生器的空间分布延迟矩阵,φ为横波激励等离子体阵列发生器的空间分布相位矩阵。
PCT/CN2022/072331 2022-01-17 2022-01-17 横波激励等离子体阵列发生器 WO2023133883A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072331 WO2023133883A1 (zh) 2022-01-17 2022-01-17 横波激励等离子体阵列发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072331 WO2023133883A1 (zh) 2022-01-17 2022-01-17 横波激励等离子体阵列发生器

Publications (1)

Publication Number Publication Date
WO2023133883A1 true WO2023133883A1 (zh) 2023-07-20

Family

ID=87279852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072331 WO2023133883A1 (zh) 2022-01-17 2022-01-17 横波激励等离子体阵列发生器

Country Status (1)

Country Link
WO (1) WO2023133883A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114910A (zh) * 2010-12-14 2011-07-06 大连海事大学 一种等离子体机翼流动控制方法
US20160032906A1 (en) * 2013-09-12 2016-02-04 James Andrew Leskosek Plasma drive
CN107238481A (zh) * 2017-05-31 2017-10-10 西北工业大学 一种基于等离子体的飞行器气动特性分析方法
CN110131072A (zh) * 2019-05-28 2019-08-16 中国人民解放军空军工程大学 组合式等离子体流动控制装置及其调控进气道激波/附面层干扰流动分离的方法
CN110920869A (zh) * 2019-07-16 2020-03-27 中国人民解放军空军工程大学 高频阵列式组合电弧放电激励器及其控制激波附面层干扰不稳定性的方法
CN111520352A (zh) * 2020-04-21 2020-08-11 中国人民解放军空军工程大学 一种利用等离子体激励调控压气机叶型附面层流动的装置和方法
CN112594011A (zh) * 2020-12-15 2021-04-02 中国科学院工程热物理研究所 一种高负荷低压涡轮内部流动分离主动调控装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114910A (zh) * 2010-12-14 2011-07-06 大连海事大学 一种等离子体机翼流动控制方法
US20160032906A1 (en) * 2013-09-12 2016-02-04 James Andrew Leskosek Plasma drive
CN107238481A (zh) * 2017-05-31 2017-10-10 西北工业大学 一种基于等离子体的飞行器气动特性分析方法
CN110131072A (zh) * 2019-05-28 2019-08-16 中国人民解放军空军工程大学 组合式等离子体流动控制装置及其调控进气道激波/附面层干扰流动分离的方法
CN110920869A (zh) * 2019-07-16 2020-03-27 中国人民解放军空军工程大学 高频阵列式组合电弧放电激励器及其控制激波附面层干扰不稳定性的方法
CN111520352A (zh) * 2020-04-21 2020-08-11 中国人民解放军空军工程大学 一种利用等离子体激励调控压气机叶型附面层流动的装置和方法
CN112594011A (zh) * 2020-12-15 2021-04-02 中国科学院工程热物理研究所 一种高负荷低压涡轮内部流动分离主动调控装置

Similar Documents

Publication Publication Date Title
TWI680656B (zh) 基於區塊鏈的資料處理方法及設備
Cassak et al. Scaling of the magnetic reconnection rate with symmetric shear flow
US8671380B2 (en) Dynamic frequency control using coarse clock gating
CN103287575B (zh) 基于等离子体激励装置实现的减少表面阻力的方法
Sasaki et al. Topological bifurcation of helical flows in magnetized plasmas with density gradient and parallel flow shear
CN109510621A (zh) 一种自适应电压频率调节方法和装置
WO2023133883A1 (zh) 横波激励等离子体阵列发生器
CN114364115B (zh) 横波激励等离子体阵列发生器
Kolesnichenko et al. MW energy deposition for aerodynamic application
US20190050020A1 (en) Clock Signal Staggering with Clock Frequency Adjustment
CN106209028B (zh) 一种适用于低电源电压的环形压控振荡器
Ja'fari et al. Synthetic jet actuators: Overview and applications
Hui et al. Flow induced by a pair of plasma actuators on a circular cylinder in still air under duty-cycle actuation
Dokuchaev Self-similar spherical shock solution with sustained energy injection
Han et al. Composite nonlinear structure within the magnetosonic soliton interactions in a spin-1/2 degenerate quantum plasma
Fuketa et al. Intermittent resonant clocking enabling power reduction at any clock frequency for 0.37 v 980kHz near-threshold logic circuits
KR102571032B1 (ko) 스커미온의 핵 자화 반전 방법 및 이를 이용한 정보 저장 소자
Nishanth et al. Design of low power sequential circuit using Clocked Pair Shared Flip flop
US9698797B1 (en) Hierarchical feedback-controlled oscillator techniques
Bulanov et al. Singularities in the Rayleigh-Taylor instability of a thin plasma slab
Zhang et al. Dynamic stall flow control with multistage dielectric-barrier discharge actuation under light stall conditions
EP4293472A1 (en) A clock scheme circuit
Griffiths The behaviour of vortex lines near a wire in liquid helium ii
Seol et al. Shock formation induced by poloidal flow and its effects on the edge stability in tokamaks
Kim et al. Effect of a localized time-periodic wall motion on a turbulent boundary layer flow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919529

Country of ref document: EP

Kind code of ref document: A1