WO2023132317A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2023132317A1
WO2023132317A1 PCT/JP2022/048510 JP2022048510W WO2023132317A1 WO 2023132317 A1 WO2023132317 A1 WO 2023132317A1 JP 2022048510 W JP2022048510 W JP 2022048510W WO 2023132317 A1 WO2023132317 A1 WO 2023132317A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
curable resin
epoxy
epoxy resins
Prior art date
Application number
PCT/JP2022/048510
Other languages
French (fr)
Japanese (ja)
Inventor
智崇 野口
康代 金沢
千夏 高橋
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2023132317A1 publication Critical patent/WO2023132317A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections

Definitions

  • the present invention relates to a curable resin composition, and more particularly to a curable resin composition that can be suitably used as a filling material for filling through holes such as through holes and recesses in printed wiring boards.
  • a multi-layer substrate such as a build-up wiring board in which layers are connected and multi-layered is used.
  • thermosetting resin filler a thermosetting resin filler containing an epoxy resin as a thermosetting resin component, an epoxy resin curing agent, and an inorganic filler is generally used.
  • Patent Document 1 proposes a curable resin composition capable of forming a hole insulating layer having excellent crack resistance, adhesion, insulation reliability, heat resistance, moisture resistance, PCT resistance, and the like.
  • an object of the present invention is to provide a curable resin composition that is excellent in heat resistance, low CTE and crack resistance, as well as excellent filling properties and adhesion to copper plating.
  • the inventors focused on epoxy resins and found that the above problems can be solved by combining multiple types of epoxy resins with different functional groups.
  • the present invention is based on such findings. That is, the gist of the present invention is as follows.
  • a curable resin composition comprising The (A) epoxy resin contains at least three epoxy resins having different numbers of functional groups or different molecular skeleton structures, The three types of epoxy resins include at least an epoxy resin having a functional group number of 2 or less and an epoxy resin having a functional group number of 4 or more and an aromatic ring.
  • a curable resin composition characterized by: [2] The curable resin composition according to [1], wherein the epoxy resin having 4 or more functional groups is liquid at room temperature. [3] The curable resin composition according to [1] or [2], wherein (A) the epoxy resin further contains an epoxy resin having 3 functional groups.
  • the curable resin composition of the present invention contains (A) an epoxy resin, (B) an epoxy resin curing agent, and (C) an inorganic filler as essential components.
  • the term "liquid” means a fluid state or a semi-liquid state (paste state).
  • the curable resin composition according to the present invention contains at least three types of epoxy resins having different numbers of functional groups or different molecular skeleton structures as epoxy resins which are curable components.
  • the number of functional groups means an epoxy group (glycidyl group)
  • the molecular skeleton structure means a compound obtained by substituting a hydrogen atom for the epoxy group.
  • At least two of these three types of epoxy resins are an epoxy resin with a functional group number of 2 or less and an epoxy resin with a functional group number of 4 or more and an aromatic ring.
  • a curable resin composition mainly containing an epoxy resin as a curable component, an epoxy resin having a functional group number of 2 or less, an epoxy resin having a functional group number of 4 or more and an aromatic ring, and an epoxy having a different molecular skeleton structure from these two types
  • a resin or an epoxy resin having a functional group of 3 it is possible to obtain a curable resin composition that is excellent not only in heat resistance, low CTE, and crack resistance, but also in filling properties and adhesion to copper plating.
  • the inclusion of an epoxy resin having a polyfunctional aromatic ring with a number of functional groups of 4 or more increases the cross-linking density of the cured product, thereby improving the heat resistance of the cured product and improving the CTE. decreases. Therefore, unlike the conventional curable resin composition, it is not necessary to add a large amount of inorganic filler, so that the printability is improved and the filling property is improved. In addition, it can be inferred that the volume shrinkage at the time of curing is suppressed, the crack resistance is improved, and etching is facilitated in the desmear process, and as a result, the adhesion to the copper plating is improved due to the unevenness of the surface.
  • epoxy resin having 2 or less functional groups include, for example, bisphenol A diglycidyl ether type epoxy resin and bisphenol F diglycidyl ether type epoxy resin.
  • Resin bisphenol E type epoxy resin, bisphenol S diglycidyl ether type epoxy resin, resorcin diglycidyl ether type epoxy resin, hydroquinone diglycidyl ether type epoxy resin, terephthalic acid diglycidyl ester type epoxy resin, bisphenoxyethanolfluorenediglycidyl ether type epoxy resin resins, bisphenol fluorenediglycidyl ether type epoxy resins, biscresol fluorenediglycidyl ether type epoxy resins, novolak glycidyl ether type epoxy resins, epoxy resins having an aromatic skeleton such as hexahydrophthalic acid glycidyl ester, cyclohexanedimethanol diglycidyl ether , butanediol diglycidyl ether, hexahydrophthalic acid diglycidyl ester, and other epoxy resins having an aliphatic skeleton, but are not limited to these.
  • Epoxy resins having one functional group include aliphatic skeletons having 6 to 36 carbon atoms, such as alkyl glycidyl ethers, alkenyl glycidyl ethers, alkyl glycidyl esters, and alkenyl glycidyl esters. and epoxy resins having an aromatic skeleton such as phenylglycidyl ether and phenylglycidyl ester, but are not limited thereto.
  • the chain length of alkyl is usually about 6-18.
  • the above epoxy resins having a functional group number of 2 or less may be used alone, or two or more epoxy resins may be used in combination. Therefore, it preferably contains an epoxy resin having two functional groups.
  • the above-described epoxy resin having a functional group number of 2 or less is preferably contained in an amount of 5 to 70 parts by mass when the total solid content of the epoxy resin is 100 parts by mass. It is more preferable to contain up to 50 parts by mass.
  • epoxy resin having an aromatic ring with 4 or more functional groups include bisphenol A type epoxy resins and bisphenol F type epoxy resins.
  • resin bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, phenol novolac type epoxy resin, metaxylenediamine type epoxy resin, etc.
  • Liquid epoxy resin at room temperature bixylenol type Epoxy that is solid at room temperature
  • epoxy resin cresol novolac type epoxy resin
  • trisphenol type epoxy resin naphthol type epoxy resin
  • biphenyl type epoxy resin naphthylene ether type epoxy resin
  • anthracene type epoxy resin tetraphenylethane type epoxy resin, etc.
  • resins include, but are not limited to, resins.
  • epoxy resin having an aromatic ring with 5 functional groups (hereinafter also referred to as pentafunctional epoxy resin), 2,4,6-tris[(4-hydroxyphenyl)methyl]-1,3-benzenediol type epoxy Resin etc. are mentioned.
  • Examples of the epoxy resin having an aromatic ring with 6 or more functional groups include 2,3,6,7,10,11-hexaglycidyloxytriphenylene and the like. However, it is not limited to these.
  • the epoxy resin having an aromatic ring with a functional number of 4 or more may be used alone, or two or more epoxy resins may be used in combination.
  • a tetrafunctional epoxy resin is used. preferably.
  • tetrafunctional epoxy resins tetrafunctional epoxy resins that are liquid at room temperature are preferred from the viewpoint of the balance between filling properties (printability) and crack resistance.
  • tetrafunctional epoxy resins that are liquid at room temperature meta-xylene diamine type epoxy resins and the like can be preferably used from the viewpoint of heat resistance.
  • the above-mentioned epoxy resin having an aromatic ring with 4 or more functional groups is preferably contained in an amount of 5 to 50 parts by mass when the total solid content of the epoxy resin is 100 parts by mass. It is more preferable to contain up to 40 parts by mass.
  • the blending ratio of the epoxy resin having a functional group number of 2 or less and the epoxy resin having a functional group number of 4 or more and having an aromatic ring is preferably 90:10 to 10:90, preferably 90:10 to 20 in terms of solid content. :80, more preferably 90:10 to 40:60.
  • the curable resin composition according to the present invention contains an epoxy resin other than the two types of epoxy resins described above.
  • epoxy resin other than two types of epoxy resins refers to two types of epoxy resins, namely an epoxy resin having a functional group number of 2 or less and an epoxy resin having a functional group number of 4 or more and an aromatic ring.
  • the epoxy resin preferably contains one or more difunctional epoxy resins, one or more tetrafunctional aromatic ring-containing epoxy resins, and one or more trifunctional epoxy resins.
  • trifunctional epoxy resins include, but are not limited to, triazine skeleton-containing epoxy resins, aminophenol-type epoxy resins, aminocresol-type epoxy resins, triphenylglycidyl ether methane-type epoxy resins, and the like. Only one of these trifunctional epoxy resins may be used, or two or more epoxy resins may be used in combination.
  • the blending ratio is 10 to 50 parts by mass when the total solid content of the epoxy resin is 100 parts by mass, from the viewpoint of printability and heat resistance. Preferably, it is contained in an amount of 20 to 40 parts by mass.
  • the blending amount of the epoxy resin with a functional group number of 2 or less, the epoxy resin with a functional group number of 3, and the epoxy resin with a functional group number of 4 or more and an aromatic ring is 80 to 80 in terms of solid content. It is preferably 10:10-45:10-45, more preferably 70-10:15-45:15-45.
  • an epoxy resin having no aromatic ring and having a functional group number of 4 or more may be included.
  • these epoxy resins include alicyclic epoxy resins having an ester skeleton, cyclohexane-type epoxy resins, cyclohexanedimethanol-type epoxy resins, epoxy resins having a butadiene structure, dicyclopentadiene-type epoxy resins, and dipentaerythritol hexaglycidyl. ether, sorbitol hexaglycidyl ether and the like.
  • the total solid content of the epoxy resin is preferably 5 to 70 parts by mass, more preferably 10 to 60 parts by mass, based on the total solid content of the curable resin composition.
  • the epoxy resin used in the present invention is preferably liquid rather than solid.
  • the viscosity of the epoxy resin is preferably 20 Pa ⁇ s or less, more preferably 10 Pa ⁇ s or less, and even more preferably 5 Pa ⁇ s or less.
  • the viscosity here is JIS K8803: 25 using a cone-plate viscometer (manufactured by Toki Sangyo Co., Ltd., TV-33H) in accordance with the viscosity measurement method using a 10 cone-plate rotation viscometer of 2011. It refers to the viscosity measured at ⁇ 1°C, 5 rpm, 30 seconds value.
  • the epoxy resin curing agent can be used without any particular limitation as long as it has the effect of accelerating the curing reaction of the epoxy resin.
  • Amines include dicyandiamide, diaminodiphenylmethane, and the like.
  • Examples of imidazoles include alkyl-substituted imidazoles and benzimidazoles.
  • the imidazole compound may also be an imidazole latent curing agent such as an imidazole adduct.
  • polyfunctional phenols examples include hydroquinone, resorcinol, bisphenol A and their halogen compounds, and condensates of these with aldehydes such as novolak and resole resins.
  • Acid anhydrides include phthalic anhydride, hexahydrophthalic anhydride, methylnadic anhydride, benzophenonetetracarboxylic acid and the like.
  • Isocyanates include tolylene diisocyanate, isophorone diisocyanate, and the like, and these isocyanates may be used after being masked with phenols or the like.
  • One type of these curing agents may be used alone, or two or more types may be used in combination.
  • amines and imidazoles can be preferably used from the viewpoint of adhesion to the conductive portion and the insulating portion, storage stability, and heat resistance.
  • Adduct compounds of aliphatic polyamines such as alkylenediamines having 2 to 6 carbon atoms, polyalkylenepolyamines having 2 to 6 carbon atoms, and aromatic ring-containing aliphatic polyamines having 8 to 15 carbon atoms, or isophoronediamine, 1,3-bis
  • the main component is an alicyclic polyamine adduct compound such as (aminomethyl)cyclohexane, or a mixture of the above aliphatic polyamine adduct compound and the above alicyclic polyamine adduct compound.
  • adduct compound of the aliphatic polyamine those obtained by subjecting the aliphatic polyamine to addition reaction with aryl glycidyl ether (especially phenyl glycidyl ether or tolyl glycidyl ether) or alkyl glycidyl ether are preferable.
  • aryl glycidyl ether especially phenyl glycidyl ether or tolyl glycidyl ether
  • alkyl glycidyl ether alkyl glycidyl ether
  • adduct compound of the alicyclic polyamine those obtained by subjecting the alicyclic polyamine to addition reaction with n-butyl glycidyl ether, bisphenol A diglycidyl ether or the like are preferable.
  • Aliphatic polyamines include alkylenediamines having 2 to 6 carbon atoms such as ethylenediamine and propylenediamine, polyalkylenepolyamines having 2 to 6 carbon atoms such as diethylenetriamine and triethylenetriamine, and aromatic ring-containing fats having 8 to 15 carbon atoms such as xylylenediamine. group polyamines.
  • Examples of commercially available modified aliphatic polyamines include Fujicure FXE-1000, Fujicure FXR-1020, Fujicure FXR-1030, Fujicure FXR-1080, Fujicure FXR-1090M2 (manufactured by T&K TOKA Co., Ltd.), Ancamine 2089K, and Sunmide P. -117, Sunmide X-4150, Ancamine 2422, Serwet R, Sunmide TX-3000, Sunmide A-100 (manufactured by Evonik Japan Co., Ltd.) and the like.
  • alicyclic polyamines examples include isophoronediamine, 1,3-bis(aminomethyl)cyclohexane, bis(4-aminocyclohexyl)methane, norbornenediamine, 1,2-diaminocyclohexane, and lalomine.
  • modified alicyclic polyamines include, for example, Ancamine 1618, Ancamine 2074, Ancamine 2596, Ancamine 2199, Sunmide IM-544, Sunmide I-544, Ancamine 2075, Ancamine 2280, Ancamine 1934, and Ancamine 2228 (Evonik Japan Co., Ltd.).
  • EH-5015S manufactured by ADEKA Co., Ltd.
  • EH-5015S can be mentioned as a polyamine-type curing agent.
  • imidazoles include reaction products of epoxy resin and imidazole.
  • Examples of commercially available imidazole compounds include imidazoles such as 2E4MZ, C11Z, C17Z, and 2PZ, imidazole AZINE compounds such as 2MZ-A and 2E4MZ-A, and imidazoles such as 2MZ-OK and 2PZ-OK. and imidazole hydroxymethyl compounds such as isocyanurate of 2PHZ and 2P4MHZ (all of which are manufactured by Shikoku Kasei Kogyo Co., Ltd.).
  • Examples of commercially available imidazole-type latent curing agents include Cure Duct P-0505 (manufactured by Shikoku Kasei Kogyo Co., Ltd.).
  • the amount of the above curing agent is preferably 1 to 100 parts by mass, more preferably 2 to 30 parts by mass, when the total solid content of the epoxy resin (A) is 100 parts by mass. It is more preferably 3 to 20 parts by mass.
  • the pre-curing speed of the resin composition generally does not slow down, and as a result, the composition in the deep part of the hole is sufficiently cured, resulting in the occurrence of cracks.
  • the amount of the (B) epoxy resin curing agent is 50 parts by mass or less, the storage stability is improved, and generally the pre-curing speed of the resin composition does not become too fast, making it difficult for voids to remain in the cured product. Therefore, it is preferable.
  • the inorganic filler includes an inorganic filler for stress relaxation due to curing shrinkage of the filler and adjustment of the coefficient of linear expansion.
  • known inorganic fillers used in ordinary resin compositions can be used. Specifically, non-metals such as silica, barium sulfate, calcium carbonate, silicon nitride, aluminum nitride, boron nitride, alumina, magnesium oxide, aluminum hydroxide, magnesium hydroxide, titanium oxide, mica, talc, and organic bentonite. Examples include fillers and metal fillers such as copper, gold, silver, palladium, silicon, alloys, and ferrite. One type of these inorganic fillers may be used alone, or two or more types may be used in combination.
  • silica is more preferably used.
  • Silica may be amorphous, crystalline, or a mixture thereof. Amorphous (fused) silica is particularly preferred.
  • the shape of the inorganic filler is not particularly limited, and includes spherical, needle-like, plate-like, scale-like, hollow, irregular, hexagonal, cubic, and flaky shapes.
  • a spherical shape is preferable from the point of view.
  • the average particle size of these inorganic fillers is preferably 0.1 ⁇ m to 25 ⁇ m, preferably 0.1 ⁇ m to 25 ⁇ m, taking into account the dispersibility of the inorganic filler, the ability to fill holes, and the smoothness when a wiring layer is formed in the filled portion.
  • a range of 0.1 ⁇ m to 15 ⁇ m is suitable. More preferably, it is 1 ⁇ m to 10 ⁇ m.
  • the average particle size means the average primary particle size, and the average particle size (D50) can be measured by a laser diffraction/scattering method.
  • the blending ratio of the inorganic filler is 10% with respect to the total solid content of the curable resin composition, from the viewpoint of achieving both the thermal expansion coefficient, polishability, and adhesiveness of the cured product, as well as printability and hole-filling properties. It is preferably up to 90% by mass, more preferably 20 to 80% by mass, and particularly preferably 40 to 75% by mass.
  • the curable resin composition of the present invention may contain, as a curable component, a curable resin other than the epoxy resins described above, such as isocyanate compounds, blocked isocyanate compounds, amino resins, carbodiimide resins, cyclocarbonate compounds, Oxetane compounds, episulfide resins, urea resins, resins with triazine rings such as melamine resins, unsaturated polyester resins, maleimide resins such as bismaleimide compounds, polyurethane resins, diallyl phthalate resins, benzoxazine resins, polyimide resins, polyamides Imide resin, benzocyclobutene resin, novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, cyanate ester resin such as bisphenol type cyanate resin such as tetramethylbisphenol F type cyanate resin, silicone resin etc. things are mentioned. These can be used alone or in combination of two or more
  • a filler treated with a fatty acid or an amorphous filler such as organic bentonite or talc can be added to impart thixotropy.
  • the above fatty acid has the general formula: (R 1 COO) n —R 2 (substituent R 1 is a hydrocarbon having 5 or more carbon atoms, substituent R 2 is hydrogen, a metal alkoxide, or a metal, and n is 1 to 4) can be used.
  • the fatty acid can exhibit the effect of imparting thixotropy when the substituent R 1 has 5 or more carbon atoms. More preferably, n is 7 or more.
  • the fatty acid may be an unsaturated fatty acid that has a double bond or triple bond in the carbon chain, or a saturated fatty acid that does not contain them.
  • stearic acid the number of carbon atoms and the number of unsaturated bonds and the numbers in parentheses are represented by their positions. 18: 0), hexanoic acid (6: 0), oleic acid (18: 1 (9)), icosane acid (20:0), docosanoic acid (22:0), melissic acid (30:0) and the like.
  • the substituent R1 of these fatty acids preferably has 5 to 30 carbon atoms. More preferably, it has 5 to 20 carbon atoms.
  • a skeleton having a coupling agent-based structure and a long (having 5 or more carbon atoms) aliphatic chain such as a metal alkoxide in which the substituent R2 is a titanate-based substituent capped with an alkoxyl group.
  • a metal alkoxide in which the substituent R2 is a titanate-based substituent capped with an alkoxyl group there may be.
  • the product name KR-TTS manufactured by Ajinomoto Fine-Techno Co., Inc.
  • metallic soaps such as aluminum stearate and barium stearate (each manufactured by Kawamura Kasei Co., Ltd.) can be used.
  • Other metal soap elements include Ca, Zn, Li, Mg and Na.
  • the blending ratio of the fatty acid is 0.1 to 2 parts by mass with respect to 100 parts by mass of the inorganic filler from the viewpoint of thixotropy, embedding, antifoaming, etc. Proportion is appropriate.
  • the fatty acid may be incorporated by using an inorganic filler that has been surface-treated with a fatty acid in advance, making it possible to more effectively impart thixotropy to the curable resin composition.
  • the blending ratio of the fatty acid can be lower than when the untreated filler is used. It is preferably 1 to 1 part by mass.
  • the curable resin composition of the present invention may contain a silane coupling agent.
  • a silane-based coupling agent By adding a silane-based coupling agent, it is possible to improve the adhesion between the inorganic filler and the epoxy resin and suppress the occurrence of cracks in the cured product.
  • silane-based coupling agents examples include epoxysilane, vinylsilane, imidazolesilane, mercaptosilane, methacryloxysilane, aminosilane, styrylsilane, isocyanatesilane, sulfidesilane, and ureidosilane.
  • the silane coupling agent may be blended by using an inorganic filler that has been surface-treated with a silane coupling agent in advance.
  • the mixing ratio of the silane coupling agent is 100% of the inorganic filler from the viewpoint of achieving both adhesion and defoaming properties between the inorganic filler and the epoxy resin. It is preferably 0.05 to 2.5 parts by weight per part by weight.
  • the curable resin composition of the present invention may optionally contain an oxazine compound having an oxazine ring obtained by reacting a phenol compound, formalin and a primary amine.
  • an oxazine compound having an oxazine ring obtained by reacting a phenol compound, formalin and a primary amine.
  • phthalocyanine blue phthalocyanine blue
  • phthalocyanine green disazo yellow
  • titanium oxide titanium oxide
  • carbon black carbon black
  • naphthalene black naphthalene black
  • thermal polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, tert-butyl catechol, pyrogallol, and phenothiazine for imparting storage stability during storage, and clay, kaolin, and the like for viscosity adjustment.
  • known thickeners and thixotropic agents such as organic bentonite and montmorillonite can be added.
  • known additives such as silicone-based, fluorine-based, polymer-based antifoaming agents, leveling agents, imidazole-based, thiazole-based, triazole-based, silane coupling agents, and other adhesive agents are added. be able to.
  • the portion protruding from the surface of the hole portion is easily formed into a protruding state that is easy to polish and remove, and is excellent in polishability, which is preferable.
  • known and commonly used colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc., can also be blended.
  • the curable resin composition of the present invention when a liquid epoxy resin is mainly included as the epoxy resin, it is not always necessary to use a diluent solvent, but voids are generated in order to adjust the viscosity of the curable resin composition.
  • a diluent solvent may be added to the extent that it does not
  • Diluent solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol mono Glycol ethers such as ethyl ether and triethylene glycol monoethyl ether; Esters such as ethyl acetate, butyl acetate, and acetic esters of the above glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol and propylene glycol; Octane , aliphatic hydrocarbons such as decane; and petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha.
  • ketones such as methyl ethyl ketone
  • the curable resin composition according to the present invention can be used widely and generally, but it is preferably used for forming a cured film of a printed wiring board, more preferably for forming a permanent protective film, and is used for soldering. More preferably, it is used as a resist, an interlayer insulating layer, a coverlay, or a filler (material) for filling holes. Among these uses, it is particularly preferable to use it as a filling material for filling holes, specifically, as a filling material for filling through holes such as through holes of printed wiring boards and recesses.
  • the filling material is formed using a known patterning method such as a screen printing method, a roll coating method, a die coating method, and a vacuum printing method, for example, a multilayer printed wiring board. through-holes and recesses with bottoms.
  • the inner diameter of the hole or recess to be filled with the curable resin composition is not particularly limited, but it is 0.05 to 0.8 mm for package substrates such as IC substrates, server substrates, vehicle-mounted substrates, and the like. and the depth is 0.4 to 10 mm.
  • the curable resin composition is completely filled so as to protrude slightly from the holes and recesses.
  • the curable resin composition of the present invention preferably has a viscosity at 25 ⁇ 1° C. in the range of 100 to 1000 dPa s, more preferably 200 to 800 dPa s, more preferably 200 to 600 dPa s. s is particularly preferred. With such a range, the holes can be easily filled, and the concave portions and the through holes can be satisfactorily filled without generating voids or the like.
  • the viscosity here is based on JIS K8803: 2011 10 cone-plate type rotational viscometer viscosity measurement method, using a cone plate type viscometer (manufactured by Toki Sangyo Co., Ltd., TV-33H) It refers to the viscosity measured at 25°C, 5 rpm, 30 seconds value.
  • the curable resin composition By heating the multilayer printed wiring board in which the holes and recesses are filled with the curable resin composition, for example, at 80 to 160 ° C. for about 30 to 180 minutes, the curable resin composition is cured and a cured product is formed. .
  • the curing of the curable resin composition may be carried out in two stages from the viewpoint of easily removing unnecessary portions protruding from the surface of the substrate after filling the holes in the cured product by physical polishing. That is, the curable resin composition can be pre-cured at a lower temperature and then subjected to main curing (finish curing). Heating at 80 to 110° C. for about 30 to 180 minutes is preferable as the condition for pre-curing.
  • the hardness of the pre-cured cured product is relatively low, the unnecessary portion protruding from the substrate surface can be easily removed by physical polishing, and the surface can be flattened. After that, it is heated to be fully cured. Heating at 130 to 180° C. for about 30 to 180 minutes is preferable as the condition for main curing.
  • a hot air circulation drying oven for both pre-curing and main curing, a hot air circulation drying oven, IR oven, hot plate, convection oven, etc. (equipped with a steam air heating type heat source) is used to heat the dryer in the countercurrent direction.
  • a contact method and a method of spraying onto the material to be cured from a nozzle) can be used.
  • a hot air circulation drying furnace is particularly preferable.
  • the cured product hardly expands or contracts due to its low expansibility, and the final cured product is excellent in dimensional stability, low hygroscopicity, adhesion, electrical insulation and the like.
  • the hardness of the pre-cured product can be controlled by changing the heating time and heating temperature for pre-curing.
  • a predetermined circuit pattern is formed by patterning into a predetermined pattern. If necessary, the surface of the cured product may be roughened with an aqueous solution of potassium permanganate or the like, and then a wiring layer may be formed on the cured product by electroless plating or the like.
  • the density (D1) of the curable resin composition was measured by a pycnometer method using a 100 cm 3 capacity metal pycnometer ( Measured according to JIS K5600-2-4:2014).
  • volume shrinkage rate (%) (D2-D1)/D2 x 100
  • the calculated volumetric shrinkage was as shown in Table 1 below.
  • ⁇ Preparation of evaluation board> Screen printing from one side of a glass epoxy substrate (thickness 1.6 mm with through-holes with conductor layers formed by panel plating/through-hole diameter 0.15 mm (after plating)/pitch 1 mm glass epoxy substrate) , the curable resin compositions of Examples and Comparative Examples were filled in the through-holes under the following printing conditions. After filling, the curable resin composition was cured by heating at 110° C. for 30 minutes and then heating at 150° C. for 60 minutes in a hot air circulating drying oven to obtain an evaluation substrate.
  • the obtained measurement sample was subjected to TMA measurement using a thermomechanical analyzer (TMA Q400, manufactured by TA Instruments Japan Co., Ltd.).
  • TMA Q400 thermomechanical analyzer
  • a test load of 5 g was applied, and the temperature of the sample was increased from room temperature to 300°C at a heating rate of 10°C/min, and the measurement was continuously performed twice.
  • the intersection point of two tangent lines with different coefficients of thermal expansion in the second time was defined as the glass transition temperature (Tg).
  • Tg glass transition temperature
  • CTE coefficient of thermal expansion CTE
  • Tg glass transition temperature
  • CTE ( ⁇ 1) is less than 20 ppm ⁇ : CTE ( ⁇ 1) is 20 ppm or more and less than 30 ppm ⁇ : CTE ( ⁇ 1) is 30 ppm or more and less than 40 ppm ⁇ : CTE ( ⁇ 1) is 40 ppm or more
  • the evaluation results are shown in Table 1 below. It was true.
  • the surface of the obtained laminated substrate was subjected to roughening treatment (*1), electroless copper plating treatment (*2), and electrolytic copper plating treatment (*3) in the following order. Then, an annealing treatment was performed at 180° C. for 60 minutes in a hot air circulating drying oven to obtain a test substrate for adhesion evaluation.
  • Electroless copper plating (Thrucup PEA, manufactured by Uyemura & Co., Ltd.) was performed on the roughened resin laminated substrate.
  • the thickness of the formed electroless copper plating layer was approximately 1 ⁇ m.
  • Electrolytic copper plating treatment (*3) After heating the resin laminated substrate on which the electroless copper plating layer is formed for 30 minutes at 150° C., copper sulfate electroplating is performed in the following steps to form an electroless copper plating layer with a thickness of 25 ⁇ m on the resin layer. bottom.
  • a cut of 10 mm in width and 60 mm in length was made in the copper plating layer of the test board obtained as described above (Preparation of test board for adhesion evaluation), and one end was peeled off and pinched with a gripper, Peel strength (N/cm ) was measured.
  • the evaluation criteria for adhesion to copper plating were as follows. ⁇ : Peel strength is 5.0 or more ⁇ : Peel strength is 4.0 or more and less than 5.0 ⁇ : Peel strength is 3.0 or more and less than 4.0 ⁇ : Peel strength is less than 3.0
  • the evaluation results are shown in the table below. 1 as shown.

Abstract

Provided is a curable resin composition which has very low CTE and is excellent in terms of heat resistance and crack resistance and of filling property and adhesiveness to copper platings. This curable resin composition comprises (A) epoxy resins, (B) an epoxy resin hardener, and (C) an inorganic filler, wherein the epoxy resins (A) comprise at least three epoxy resins differing in the number of functional groups or in molecular skeletal structure, the three epoxy resins at least including an epoxy resin containing up to two functional groups and an epoxy resin including four or more aromatic rings.

Description

硬化性樹脂組成物Curable resin composition
 本発明は、硬化性樹脂組成物に関し、プリント配線板のスルーホール等の貫通孔や凹部の穴埋め用充填材として好適に使用できる硬化性樹脂組成物に関する。 The present invention relates to a curable resin composition, and more particularly to a curable resin composition that can be suitably used as a filling material for filling through holes such as through holes and recesses in printed wiring boards.
 電子機器の小型化・高機能化に伴い、プリント配線板のパターンの微細化、実装面積の縮小化、部品実装の高密度化が要求されている。そのため、異なる配線層同士を電気的に接続するための層間接続を形成する貫通孔、すなわちスルーホールが設けられた両面基板や、コア材上に絶縁層、導体回路が順次形成され、ビアホールなどで層間接続されて多層化されたビルドアップ配線板などの多層基板が用いられる。 With the miniaturization and sophistication of electronic devices, there is a demand for finer printed wiring board patterns, smaller mounting areas, and higher density component mounting. For this reason, double-sided boards with through-holes for forming interlayer connections for electrically connecting different wiring layers, insulating layers and conductor circuits are sequentially formed on a core material, and via holes and the like are used. A multi-layer substrate such as a build-up wiring board in which layers are connected and multi-layered is used.
 このようなプリント配線板において、表面の導体回路間の凹部や、内壁面に配線層が形成されたスルーホール、ビアホールなどの穴部には、熱硬化性樹脂充填材により穴埋め加工処理がされるのが一般的である。熱硬化性樹脂充填材としては、一般に、熱硬化性樹脂成分としてのエポキシ樹脂、エポキシ樹脂硬化剤、および無機フィラーを含有する熱硬化性樹脂充填材が用いられている。 In such a printed wiring board, recesses between conductor circuits on the surface, and holes such as through holes and via holes having wiring layers formed on the inner wall surfaces are filled with a thermosetting resin filler. is common. As the thermosetting resin filler, a thermosetting resin filler containing an epoxy resin as a thermosetting resin component, an epoxy resin curing agent, and an inorganic filler is generally used.
 また、プリント配線板の耐熱性の向上や低CTE(熱膨張率)化が進んでおり、それに伴って熱硬化性樹脂充填材にも耐熱性や低CTEが求められている。例えば、パッケージ基板への電子素子の実装温度は250℃程度にもなるため、従来にも増して、耐熱性に優れるとともに、低CTEであり、耐クラック特性や銅との密着性にも優れる熱硬化性樹脂充填材が要求されている。例えば、特許文献1には、耐クラック性や密着性に優れ、絶縁信頼性や耐熱性、耐湿性、PCT耐性等に優れる穴部絶縁層を形成できる硬化性樹脂組成物が提案されている。 In addition, the heat resistance of printed wiring boards has been improved and the CTE (coefficient of thermal expansion) has been reduced, and along with this, thermosetting resin fillers are also required to have heat resistance and a low CTE. For example, the temperature at which electronic elements are mounted on a package substrate can reach as high as 250°C. There is a need for curable resin fillers. For example, Patent Document 1 proposes a curable resin composition capable of forming a hole insulating layer having excellent crack resistance, adhesion, insulation reliability, heat resistance, moisture resistance, PCT resistance, and the like.
特開2009-269994号公報JP 2009-269994 A
 近年、IC基板等のパッケージ基板においては、多層化による基板厚さが増し、スルーホール長が大きくなると同時にホール径が小さくなる傾向にある。そのため、従来にもまして、充填性(印刷適性)に優れた充填材が希求されるようになっている。無機フィラーの配合割合を増やすことで耐熱性やCTEを低減できるものの、充填性(印刷適性)が悪化する傾向があり、これらはトレードオフの関係にあると言える。 In recent years, in package substrates such as IC substrates, there has been a tendency for the thickness of substrates to increase due to multilayering, the length of through holes to increase, and the diameter of holes to decrease. Therefore, there is a growing demand for fillers that are more excellent in filling properties (printability) than ever before. Although the heat resistance and CTE can be reduced by increasing the blending ratio of the inorganic filler, there is a tendency for the fillability (printability) to deteriorate, and it can be said that these are in a trade-off relationship.
 したがって、本発明の目的は、耐熱性、低CTE、クラック耐性が優れるとともに、充填性や銅めっきとの密着性にも優れる硬化性樹脂組成物を提供することである。 Accordingly, an object of the present invention is to provide a curable resin composition that is excellent in heat resistance, low CTE and crack resistance, as well as excellent filling properties and adhesion to copper plating.
 本発明者らは、エポキシ樹脂に着目し、官能基の異なる複数種のエポキシ樹脂を組み合わせることにより上記課題が解決できるとの知見を得た。本発明はかかる知見によるものである。即ち、本発明の要旨は以下のとおりである。 The inventors focused on epoxy resins and found that the above problems can be solved by combining multiple types of epoxy resins with different functional groups. The present invention is based on such findings. That is, the gist of the present invention is as follows.
[1] (A)エポキシ樹脂と、
(B)エポキシ樹脂硬化剤と、
(C)無機フィラーと、
を含んでなる硬化性樹脂組成物であって、
 前記(A)エポキシ樹脂は、官能基数または分子骨格構造が異なる少なくとも3種のエポキシ樹脂を含み、
 前記3種のエポキシ樹脂は、少なくとも、官能基数が2以下のエポキシ樹脂および官能基数が4以上の芳香環を有するエポキシ樹脂を含む、
ことを特徴とする、硬化性樹脂組成物。
[2] 前記官能基数が4以上のエポキシ樹脂は、室温で液状である、[1]に記載の硬化性樹脂組成物。
[3] 前記(A)エポキシ樹脂が、官能基数が3のエポキシ樹脂をさらに含む、[1]または[2]に記載の硬化性樹脂組成物。
[4] 前記(C)無機フィラーが、硬化性組成物の固形分全体に対して10~90質量%含まれる[3]に記載の硬化性樹脂組成物。
[5] 前記(C)無機フィラーがシリカを含む、[1]~[4]のいずれか一項に記載の硬化性樹脂組成物。
[6] プリント配線板の貫通孔または凹部の充填材として使用される、[1]~[5]のいずれか一項に記載の硬化性樹脂組成物。
[1] (A) an epoxy resin;
(B) an epoxy resin curing agent;
(C) an inorganic filler;
A curable resin composition comprising
The (A) epoxy resin contains at least three epoxy resins having different numbers of functional groups or different molecular skeleton structures,
The three types of epoxy resins include at least an epoxy resin having a functional group number of 2 or less and an epoxy resin having a functional group number of 4 or more and an aromatic ring.
A curable resin composition characterized by:
[2] The curable resin composition according to [1], wherein the epoxy resin having 4 or more functional groups is liquid at room temperature.
[3] The curable resin composition according to [1] or [2], wherein (A) the epoxy resin further contains an epoxy resin having 3 functional groups.
[4] The curable resin composition according to [3], wherein the (C) inorganic filler is contained in an amount of 10 to 90% by mass based on the total solid content of the curable composition.
[5] The curable resin composition according to any one of [1] to [4], wherein the inorganic filler (C) contains silica.
[6] The curable resin composition according to any one of [1] to [5], which is used as a filler for through holes or recesses in printed wiring boards.
 本発明によれば、官能基数や分子骨格構造が異なる3種以上のエポキシ樹脂を組み合わせて用いることにより、耐熱性、低CTE、クラック耐性が優れるとともに、充填性や銅めっきとの密着性にも優れる硬化性樹脂組成物を実現することができる。 According to the present invention, by using a combination of three or more epoxy resins with different numbers of functional groups and molecular skeleton structures, heat resistance, low CTE, and crack resistance are excellent, as well as filling properties and adhesion to copper plating. An excellent curable resin composition can be realized.
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、(A)エポキシ樹脂と(B)エポキシ樹脂硬化剤と(C)無機フィラーとを必須成分として含む。なお、本明細書において「液状」とは流動性を有する液状状態または半液体状態(ペースト状態)にあることをいうものとする。以下、各成分について詳述する。
<Curable resin composition>
The curable resin composition of the present invention contains (A) an epoxy resin, (B) an epoxy resin curing agent, and (C) an inorganic filler as essential components. In the present specification, the term "liquid" means a fluid state or a semi-liquid state (paste state). Each component will be described in detail below.
[エポキシ樹脂]
 本発明による硬化性樹脂組成物においては、硬化性成分であるエポキシ樹脂として、官能基数または分子骨格構造が異なる少なくとも3種のエポキシ樹脂を含む。なお、本明細書において官能基数とはエポキシ基(グリシジル基)を意味し、分子骨格構造とは当該エポキシ基を水素原子に置換した際の化合物を意味する。
[Epoxy resin]
The curable resin composition according to the present invention contains at least three types of epoxy resins having different numbers of functional groups or different molecular skeleton structures as epoxy resins which are curable components. In this specification, the number of functional groups means an epoxy group (glycidyl group), and the molecular skeleton structure means a compound obtained by substituting a hydrogen atom for the epoxy group.
 本発明において、これら3種のエポキシ樹脂のうち少なくとも2種は、官能基数が2以下のエポキシ樹脂および官能基数が4以上の芳香環を有するエポキシ樹脂である。硬化性成分として主としてエポキシ樹脂を含む硬化性樹脂組成物において、官能基数が2以下のエポキシ樹脂および官能基数が4以上の芳香環を有するエポキシ樹脂、ならびにこれら2種とは分子骨格構造が異なるエポキシ樹脂や官能基数が3のエポキシ樹脂を含むことにより、耐熱性、低CTE、およびクラック耐性のみならず、充填性や銅めっきとの密着性にも優れる硬化性樹脂組成物とすることができる。この理由は明らかではないが、官能基数が4以上である多官能の芳香環を有するエポキシ樹脂が含まれることにより、硬化物の架橋密度が高くなるため、硬化物の耐熱性が向上し、CTEが低下する。そのため、従来の硬化性樹脂組成物のように、大量の無機フィラーを配合する必要がなくなるため印刷適性が向上し、充填性が向上する。また、硬化時の体積収縮が抑えられクラック耐性が向上するとともに、デスミア工程でエッチングされやすくなり、その結果、表面凹凸効果によって銅めっきとの密着性も向上するものと推察できる。一方、4以上の多官能エポキシ樹脂のみを含む場合は、エッチング時のアミンによる吸水率が高くなり過ぎるため、却って銅めっきとの密着性が低下する。また、官能基数が2または3のエポキシ樹脂のみの組合せでは、体積収縮が大きくなるため硬化時のクラックが入り易くなり、十分にCTEが低下しない。 In the present invention, at least two of these three types of epoxy resins are an epoxy resin with a functional group number of 2 or less and an epoxy resin with a functional group number of 4 or more and an aromatic ring. In a curable resin composition mainly containing an epoxy resin as a curable component, an epoxy resin having a functional group number of 2 or less, an epoxy resin having a functional group number of 4 or more and an aromatic ring, and an epoxy having a different molecular skeleton structure from these two types By including a resin or an epoxy resin having a functional group of 3, it is possible to obtain a curable resin composition that is excellent not only in heat resistance, low CTE, and crack resistance, but also in filling properties and adhesion to copper plating. Although the reason for this is not clear, the inclusion of an epoxy resin having a polyfunctional aromatic ring with a number of functional groups of 4 or more increases the cross-linking density of the cured product, thereby improving the heat resistance of the cured product and improving the CTE. decreases. Therefore, unlike the conventional curable resin composition, it is not necessary to add a large amount of inorganic filler, so that the printability is improved and the filling property is improved. In addition, it can be inferred that the volume shrinkage at the time of curing is suppressed, the crack resistance is improved, and etching is facilitated in the desmear process, and as a result, the adhesion to the copper plating is improved due to the unevenness of the surface. On the other hand, when only the polyfunctional epoxy resin of 4 or more is contained, the water absorption rate due to the amine during etching becomes too high, so that the adhesion to the copper plating rather deteriorates. In addition, when only epoxy resins having 2 or 3 functional groups are used, the volume shrinkage increases, so that cracks tend to occur during curing, and the CTE is not lowered sufficiently.
<官能基数が2以下のエポキシ樹脂>
 官能基数が2以下のエポキシ樹脂のうち、官能基数が2であるエポキシ樹脂(以下、2官能エポキシ樹脂ともいう)としては、例えば、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、レゾルシンジグリシジルエーテル型エポキシ樹脂、ヒドロキノンジグリシジルエーテル型エポキシ樹脂、テレフタル酸ジグリシジルエステル型エポキシ樹脂、ビスフェノキシエタノールフルオレンジグリシジルエーテル型エポキシ樹脂、ビスフェノールフルオレンジグリシジルエーテル型エポキシ樹脂、ビスクレゾールフルオレンジグリシジルエーテル型エポキシ樹脂、ノボラックグリシジルエーテル型エポキシ樹脂、ヘキサヒドロフタル酸グリシジルエステル等の芳香族骨格を有するエポキシ樹脂、シクロヘキサンジメタノールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル等の脂肪族骨格を有するエポキシ樹脂が挙げられるが、これらに限定されるものではない。
<Epoxy resin having 2 or less functional groups>
Among epoxy resins having a functional group number of 2 or less, epoxy resins having a functional group number of 2 (hereinafter also referred to as bifunctional epoxy resins) include, for example, bisphenol A diglycidyl ether type epoxy resin and bisphenol F diglycidyl ether type epoxy resin. Resin, bisphenol E type epoxy resin, bisphenol S diglycidyl ether type epoxy resin, resorcin diglycidyl ether type epoxy resin, hydroquinone diglycidyl ether type epoxy resin, terephthalic acid diglycidyl ester type epoxy resin, bisphenoxyethanolfluorenediglycidyl ether type epoxy resin resins, bisphenol fluorenediglycidyl ether type epoxy resins, biscresol fluorenediglycidyl ether type epoxy resins, novolak glycidyl ether type epoxy resins, epoxy resins having an aromatic skeleton such as hexahydrophthalic acid glycidyl ester, cyclohexanedimethanol diglycidyl ether , butanediol diglycidyl ether, hexahydrophthalic acid diglycidyl ester, and other epoxy resins having an aliphatic skeleton, but are not limited to these.
 また、官能基数が1であるエポキシ樹脂(以下、1官能エポキシ樹脂ともいう)としては、炭素数が6~36のアルキルグリシジルエーテル、アルケニルグリシジルエーテル、アルキルグリシジルエステル、アルケニルグリシジルエステル等の脂肪族骨格を有するエポキシ樹脂、フェニルグリシジルエーテル、フェニルグリシジルエステル等の芳香族骨格を有するエポキシ樹脂が挙げられるが、これらに限定されるものではない。なお、アルキルの鎖長は通常、6~18程度である。 Epoxy resins having one functional group (hereinafter also referred to as monofunctional epoxy resins) include aliphatic skeletons having 6 to 36 carbon atoms, such as alkyl glycidyl ethers, alkenyl glycidyl ethers, alkyl glycidyl esters, and alkenyl glycidyl esters. and epoxy resins having an aromatic skeleton such as phenylglycidyl ether and phenylglycidyl ester, but are not limited thereto. The chain length of alkyl is usually about 6-18.
 上記した官能基数が2以下のエポキシ樹脂は、1種のみを用いてもよく、2種以上のエポキシ樹脂を併用してもよいが、本発明においては、クラック耐性や銅めっきの密着性の観点から、官能基数が2であるエポキシ樹脂を含むことが好ましい。 The above epoxy resins having a functional group number of 2 or less may be used alone, or two or more epoxy resins may be used in combination. Therefore, it preferably contains an epoxy resin having two functional groups.
 上記した官能基数が2以下のエポキシ樹脂は、クラック耐性や銅めっきの密着性の観点から、エポキシ樹脂の固形分全体を100質量部とした場合、5~70質量部含まれることが好ましく、10~50質量部含まれることがより好ましい。 From the viewpoint of crack resistance and adhesion of copper plating, the above-described epoxy resin having a functional group number of 2 or less is preferably contained in an amount of 5 to 70 parts by mass when the total solid content of the epoxy resin is 100 parts by mass. It is more preferable to contain up to 50 parts by mass.
<官能基数が4以上の芳香環を有するエポキシ樹脂>
 官能基数が4以上の芳香環を有するエポキシ樹脂のうち、官能基数が4である芳香環を有するエポキシ樹脂(以下、4官能エポキシ樹脂ともいう)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、メタキシレンジアミン型エポキシ樹脂等の室温で液状のエポキシ樹脂や、ビキシレノール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂等の室温で固体のエポキシ樹脂が挙げられるが、これらに限定されるものではない。
<Epoxy resin having an aromatic ring with 4 or more functional groups>
Among epoxy resins having an aromatic ring with a functional number of 4 or more, epoxy resins having an aromatic ring with a functional number of 4 (hereinafter also referred to as tetrafunctional epoxy resin) include bisphenol A type epoxy resins and bisphenol F type epoxy resins. resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, phenol novolac type epoxy resin, metaxylenediamine type epoxy resin, etc. Liquid epoxy resin at room temperature, bixylenol type Epoxy that is solid at room temperature such as epoxy resin, cresol novolac type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, tetraphenylethane type epoxy resin, etc. Examples include, but are not limited to, resins.
 官能基数が5である芳香環を有するエポキシ樹脂(以下、5官能エポキシ樹脂ともいう)としては、2,4,6-トリス[(4-ヒドロキシフェニル)メチル]-1,3-ベンゼンジオール型エポキシ樹脂等が挙げられる。 As the epoxy resin having an aromatic ring with 5 functional groups (hereinafter also referred to as pentafunctional epoxy resin), 2,4,6-tris[(4-hydroxyphenyl)methyl]-1,3-benzenediol type epoxy Resin etc. are mentioned.
 官能基数が6以上である芳香環を有するエポキシ樹脂(以下、6官能以上のエポキシ樹脂ともいう)としては、例えば、2,3,6,7,10,11-ヘキサグリシジルオキシトリフェニレン等が挙げられるが、これらに限定されるものではない。 Examples of the epoxy resin having an aromatic ring with 6 or more functional groups (hereinafter also referred to as a hexafunctional or higher epoxy resin) include 2,3,6,7,10,11-hexaglycidyloxytriphenylene and the like. However, it is not limited to these.
 上記した官能基数が4以上の芳香環を有するエポキシ樹脂は、1種のみを用いてもよく、2種以上のエポキシ樹脂を併用してもよいが、本発明においては、4官能エポキシ樹脂を使用することが好ましい。また、4官能エポキシ樹脂のなかでも、充填性(印刷適性)とクラック耐性とのバランスの観点からは、室温で液状の4官能エポキシ樹脂であることが好ましい。また、室温で液状の4官能エポキシ樹脂のなかでも、耐熱性の観点からメタキシレンジアミン型エポキシ樹脂等を好適に使用することができる。 The epoxy resin having an aromatic ring with a functional number of 4 or more may be used alone, or two or more epoxy resins may be used in combination. In the present invention, a tetrafunctional epoxy resin is used. preferably. Among tetrafunctional epoxy resins, tetrafunctional epoxy resins that are liquid at room temperature are preferred from the viewpoint of the balance between filling properties (printability) and crack resistance. Among the tetrafunctional epoxy resins that are liquid at room temperature, meta-xylene diamine type epoxy resins and the like can be preferably used from the viewpoint of heat resistance.
 上記した官能基数が4以上の芳香環を有するエポキシ樹脂は、耐熱性と低CTEの観点から、エポキシ樹脂の固形分全体を100質量部とした場合、5~50質量部含まれることが好ましく10~40質量部含まれることがより好ましい。 From the viewpoint of heat resistance and low CTE, the above-mentioned epoxy resin having an aromatic ring with 4 or more functional groups is preferably contained in an amount of 5 to 50 parts by mass when the total solid content of the epoxy resin is 100 parts by mass. It is more preferable to contain up to 40 parts by mass.
 上記した官能基数が2以下のエポキシ樹脂と官能基数が4以上の芳香環を有するエポキシ樹脂の配合比率は、固形分換算で90:10~10:90であることが好ましく、90:10~20:80であることがより好ましく、90:10~40:60であることがさらに好ましい。 The blending ratio of the epoxy resin having a functional group number of 2 or less and the epoxy resin having a functional group number of 4 or more and having an aromatic ring is preferably 90:10 to 10:90, preferably 90:10 to 20 in terms of solid content. :80, more preferably 90:10 to 40:60.
<その他のエポキシ樹脂>
 本発明による硬化性樹脂組成物は、上記した2種のエポキシ樹脂以外のエポキシ樹脂、を含む。ここでの「2種のエポキシ樹脂以外のエポキシ樹脂」とは、官能基数が2以下のエポキシ樹脂と官能基数が4以上の芳香環を有するエポキシ樹脂の2種のエポキシ樹脂を含む場合に、当該エポキシ樹脂と官能基の数は同じであるが、分子骨格構造が異なるエポキシ樹脂や、任意の分子骨格構造を有する官能基数が3であるエポキシ樹脂(以下、3官能エポキシ樹脂ともいう)等を意味する。本発明においては、エポキシ樹脂として、2官能エポキシ樹脂を1種以上と、4官能の芳香環を有するエポキシ樹脂を1種以上と、3官能エポキシ樹脂を1種以上含むことが好ましい。
<Other epoxy resins>
The curable resin composition according to the present invention contains an epoxy resin other than the two types of epoxy resins described above. Here, the term "epoxy resin other than two types of epoxy resins" refers to two types of epoxy resins, namely an epoxy resin having a functional group number of 2 or less and an epoxy resin having a functional group number of 4 or more and an aromatic ring. Epoxy resins that have the same number of functional groups as epoxy resins but have different molecular skeleton structures, or epoxy resins that have an arbitrary molecular skeleton structure and have three functional groups (hereinafter also referred to as trifunctional epoxy resins). do. In the present invention, the epoxy resin preferably contains one or more difunctional epoxy resins, one or more tetrafunctional aromatic ring-containing epoxy resins, and one or more trifunctional epoxy resins.
 3官能エポキシ樹脂としては、トリアジン骨格含有エポキシ樹脂、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂、トリフェニルグリシジルエーテルメタン型エポキシ樹脂等が挙げられるがこれらに限定されるものではない。これら3官能エポキシ樹脂は、1種のみを用いてもよく、2種以上のエポキシ樹脂を併用してもよい。 Examples of trifunctional epoxy resins include, but are not limited to, triazine skeleton-containing epoxy resins, aminophenol-type epoxy resins, aminocresol-type epoxy resins, triphenylglycidyl ether methane-type epoxy resins, and the like. Only one of these trifunctional epoxy resins may be used, or two or more epoxy resins may be used in combination.
 エポキシ樹脂として3官能エポキシ樹脂が含まれる場合、その配合割合としては、印刷適性や耐熱性の観点から、エポキシ樹脂の固形分全体を100質量部とした場合、10~50質量部含まれることが好ましく、20~40質量部含まれることがより好ましい。 When a trifunctional epoxy resin is included as the epoxy resin, the blending ratio is 10 to 50 parts by mass when the total solid content of the epoxy resin is 100 parts by mass, from the viewpoint of printability and heat resistance. Preferably, it is contained in an amount of 20 to 40 parts by mass.
 官能基数が3のエポキシを含む場合、官能基数が2以下のエポキシ樹脂と官能基数が3のエポキシ樹脂と官能基数が4以上の芳香環を有するエポキシ樹脂の配合量は、固形分換算で80~10:10~45:10~45であることが好ましく、70~10:15~45:15~45であることがより好ましい。 When an epoxy with a functional group number of 3 is included, the blending amount of the epoxy resin with a functional group number of 2 or less, the epoxy resin with a functional group number of 3, and the epoxy resin with a functional group number of 4 or more and an aromatic ring is 80 to 80 in terms of solid content. It is preferably 10:10-45:10-45, more preferably 70-10:15-45:15-45.
 また、官能基数が4以上の芳香環を有さないエポキシ樹脂が含まれていてもよい。これらのエポキシ樹脂としては、例えば、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジペンタエリスリトールヘキサグリシジルエーテル、ソルビトールヘキサグリシジルエーテル等が挙げられる。 In addition, an epoxy resin having no aromatic ring and having a functional group number of 4 or more may be included. Examples of these epoxy resins include alicyclic epoxy resins having an ester skeleton, cyclohexane-type epoxy resins, cyclohexanedimethanol-type epoxy resins, epoxy resins having a butadiene structure, dicyclopentadiene-type epoxy resins, and dipentaerythritol hexaglycidyl. ether, sorbitol hexaglycidyl ether and the like.
 エポキシ樹脂の固形分全体の配合量は、硬化性樹脂組成物の固形分全体に対して5~70質量部であることが好ましく、10~60質量部であることがより好ましい。 The total solid content of the epoxy resin is preferably 5 to 70 parts by mass, more preferably 10 to 60 parts by mass, based on the total solid content of the curable resin composition.
 また、硬化性樹脂組成物の塗膜形成性、すなわち印刷適性等の塗布性を考慮すると、本発明において使用するエポキシ樹脂は、固体状よりも液状であることが好ましい。特に、エポキシ樹脂の粘度は20Pa・s以下である好ましく、10Pa・s以下であることがより好ましく、5Pa・s以下であることがさらに好ましい。なお、ここでの粘度とはJIS K8803:2011の10 円すい-平板形回転粘度計による粘度測定方法に準拠し、コーンプレート型粘度計(東機産業株式会社製、TV-33H)を用いて25±1℃、5rpm、30秒値で測定した粘度を言うものとする。 In addition, considering the coating film-forming properties of the curable resin composition, that is, the coating properties such as printability, the epoxy resin used in the present invention is preferably liquid rather than solid. In particular, the viscosity of the epoxy resin is preferably 20 Pa·s or less, more preferably 10 Pa·s or less, and even more preferably 5 Pa·s or less. In addition, the viscosity here is JIS K8803: 25 using a cone-plate viscometer (manufactured by Toki Sangyo Co., Ltd., TV-33H) in accordance with the viscosity measurement method using a 10 cone-plate rotation viscometer of 2011. It refers to the viscosity measured at ±1°C, 5 rpm, 30 seconds value.
[(B)エポキシ樹脂硬化剤]
 (B)エポキシ樹脂硬化剤としては、エポキシ樹脂の硬化反応を促進する効果があれば特に制限なく使用でき、例えばアミン類、イミダゾール類、多官能フェノール類、酸無水物、イソシアネート類、およびこれらの官能基を含むポリマー類があり、必要に応じてこれらを複数用いても良い。アミン類としては、ジシアンジアミド、ジアミノジフェニルメタン等がある。イミダゾール類としては、アルキル置換イミダゾール、ベンゾイミダゾール等がある。また、イミダゾール化合物はイミダゾールアダクト体等のイミダゾール潜在性硬化剤であってもよい。多官能フェノール類としては、ヒドロキノン、レゾルシノール、ビスフェノールAおよびそのハロゲン化合物、さらに、これにアルデヒドとの縮合物であるノボラック、レゾール樹脂等がある。酸無水物としては、無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルナジック酸、ベンゾフェノンテトラカルボン酸等がある。イソシアネート類としては、トリレンジイソシアネート、イソホロンジイソシアネート等があり、このイソシアネートをフェノール類等でマスクしたものを使用しても良い。これら硬化剤は1種類を単独で用いてもよく、2種以上を併用してもよい。
[(B) Epoxy resin curing agent]
(B) The epoxy resin curing agent can be used without any particular limitation as long as it has the effect of accelerating the curing reaction of the epoxy resin. There are polymers containing functional groups, and more than one of these may be used if desired. Amines include dicyandiamide, diaminodiphenylmethane, and the like. Examples of imidazoles include alkyl-substituted imidazoles and benzimidazoles. The imidazole compound may also be an imidazole latent curing agent such as an imidazole adduct. Examples of polyfunctional phenols include hydroquinone, resorcinol, bisphenol A and their halogen compounds, and condensates of these with aldehydes such as novolak and resole resins. Acid anhydrides include phthalic anhydride, hexahydrophthalic anhydride, methylnadic anhydride, benzophenonetetracarboxylic acid and the like. Isocyanates include tolylene diisocyanate, isophorone diisocyanate, and the like, and these isocyanates may be used after being masked with phenols or the like. One type of these curing agents may be used alone, or two or more types may be used in combination.
 上記した硬化剤のなかでも、アミン類やイミダゾール類を導電部および絶縁部との密着性、保存安定性、耐熱性の観点から好適に使用することができる。炭素数2~6のアルキレンジアミン、炭素数2~6のポリアルキレンポリアミン、炭素数8~15である芳香環含有脂肪族ポリアミンなどの脂肪族ポリアミンのアダクト化合物、またはイソホロンジアミン、1,3-ビス(アミノメチル)シクロヘキサンなどの脂環式ポリアミンのアダクト化合物、または上記脂肪族ポリアミンのアダクト化合物と上記脂環式ポリアミンのアダクト化合物との混合物を主成分とするものが好ましい。 Among the curing agents described above, amines and imidazoles can be preferably used from the viewpoint of adhesion to the conductive portion and the insulating portion, storage stability, and heat resistance. Adduct compounds of aliphatic polyamines such as alkylenediamines having 2 to 6 carbon atoms, polyalkylenepolyamines having 2 to 6 carbon atoms, and aromatic ring-containing aliphatic polyamines having 8 to 15 carbon atoms, or isophoronediamine, 1,3-bis Preferably, the main component is an alicyclic polyamine adduct compound such as (aminomethyl)cyclohexane, or a mixture of the above aliphatic polyamine adduct compound and the above alicyclic polyamine adduct compound.
 上記脂肪族ポリアミンのアダクト化合物としては、当該脂肪族ポリアミンにアリールグリシジルエーテル(特にフェニルグリシジルエーテルまたはトリルグリシジルエーテル)またはアルキルグリシジルエーテルを付加反応させて得られるものが好ましい。また、上記脂環式ポリアミンのアダクト化合物としては、当該脂環式ポリアミンにn-ブチルグリシジルエーテル、ビスフェノールAジグリシジルエーテル等を付加反応させて得られるものが好ましい。 As the adduct compound of the aliphatic polyamine, those obtained by subjecting the aliphatic polyamine to addition reaction with aryl glycidyl ether (especially phenyl glycidyl ether or tolyl glycidyl ether) or alkyl glycidyl ether are preferable. Moreover, as the adduct compound of the alicyclic polyamine, those obtained by subjecting the alicyclic polyamine to addition reaction with n-butyl glycidyl ether, bisphenol A diglycidyl ether or the like are preferable.
 脂肪族ポリアミンとしては、エチレンジアミン、プロピレンジアミンなど炭素数2~6のアルキレンジアミン、ジエチレントリアミン、トリエチレントリアミンなど炭素数2~6のポリアルキレンポリアミン、キシリレンジアミンなど炭素数8~15の芳香環含有脂肪族ポリアミンなどが挙げられる。変性脂肪族ポリアミンの市販品の例としては、例えばフジキュアFXE-1000またはフジキュアFXR-1020、フジキュアFXR-1030、フジキュアFXR-1080、フジキュアFXR-1090M2(株式会社T&K TOKA製)、アンカミン2089K、サンマイドP-117、サンマイドX-4150、アンカミン2422、サーウェットR、サンマイドTX-3000、サンマイドA-100(エボニックジャパン株式会社製)等が挙げられる。 Aliphatic polyamines include alkylenediamines having 2 to 6 carbon atoms such as ethylenediamine and propylenediamine, polyalkylenepolyamines having 2 to 6 carbon atoms such as diethylenetriamine and triethylenetriamine, and aromatic ring-containing fats having 8 to 15 carbon atoms such as xylylenediamine. group polyamines. Examples of commercially available modified aliphatic polyamines include Fujicure FXE-1000, Fujicure FXR-1020, Fujicure FXR-1030, Fujicure FXR-1080, Fujicure FXR-1090M2 (manufactured by T&K TOKA Co., Ltd.), Ancamine 2089K, and Sunmide P. -117, Sunmide X-4150, Ancamine 2422, Serwet R, Sunmide TX-3000, Sunmide A-100 (manufactured by Evonik Japan Co., Ltd.) and the like.
 脂環式ポリアミンとしては、イソホロンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ラロミン等を例示することができる。変性脂環式ポリアミンの市販品としては、例えばアンカミン1618、アンカミン2074、アンカミン2596、アンカミン2199、サンマイドIM-544、サンマイドI-544、アンカミン2075、アンカミン2280、アンカミン1934、アンカミン2228(エボニックジャパン株式会社製)、ダイトクラールF-5197、ダイトクラールB-1616(大都産業株式会社製)、フジキュアFXD-821、フジキュア4233(株式会社T&K TOKA製)、jERキュア113(三菱ケミカル株式会社製)、ラロミンC-260(BASFジャパン株式会社製)等が挙げられる。その他、ポリアミン型硬化剤として、EH-5015S(株式会社ADEKA製)等が挙げられる。 Examples of alicyclic polyamines include isophoronediamine, 1,3-bis(aminomethyl)cyclohexane, bis(4-aminocyclohexyl)methane, norbornenediamine, 1,2-diaminocyclohexane, and lalomine. Commercially available modified alicyclic polyamines include, for example, Ancamine 1618, Ancamine 2074, Ancamine 2596, Ancamine 2199, Sunmide IM-544, Sunmide I-544, Ancamine 2075, Ancamine 2280, Ancamine 1934, and Ancamine 2228 (Evonik Japan Co., Ltd.). ), Daito Clar F-5197, Daito Clar B-1616 (manufactured by Daito Sangyo Co., Ltd.), Fuji Cure FXD-821, Fuji Cure 4233 (manufactured by T&K Toka Co., Ltd.), JER Cure 113 (manufactured by Mitsubishi Chemical Corporation), Lalomin C -260 (manufactured by BASF Japan Ltd.) and the like. In addition, EH-5015S (manufactured by ADEKA Co., Ltd.) and the like can be mentioned as a polyamine-type curing agent.
 イミダゾール類としては、例えば、エポキシ樹脂とイミダゾールの反応物等を言う。例えば、2-メチルイミダゾール、4-メチル-2-エチルイミダゾール、2-フェニルイミダゾール、4-メチル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール等を挙げることができる。イミダゾール化合物の市販品としては、例えば、2E4MZ、C11Z、C17Z、2PZ等のイミダゾール類や、2MZ-A、2E4MZ-A等のイミダゾールのAZINE(アジン)化合物、2MZ-OK、2PZ-OK等のイミダゾールのイソシアヌル酸塩、2PHZ、2P4MHZ等のイミダゾールヒドロキシメチル体(これらはいずれも四国化成工業株式会社製)等を挙げることができる。イミダゾール型潜在性硬化剤の市販品としては、例えば、キュアダクトP-0505(四国化成工業株式会社製)等を挙げることができる。 Examples of imidazoles include reaction products of epoxy resin and imidazole. For example, 2-methylimidazole, 4-methyl-2-ethylimidazole, 2-phenylimidazole, 4-methyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 1 -cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole and the like. Examples of commercially available imidazole compounds include imidazoles such as 2E4MZ, C11Z, C17Z, and 2PZ, imidazole AZINE compounds such as 2MZ-A and 2E4MZ-A, and imidazoles such as 2MZ-OK and 2PZ-OK. and imidazole hydroxymethyl compounds such as isocyanurate of 2PHZ and 2P4MHZ (all of which are manufactured by Shikoku Kasei Kogyo Co., Ltd.). Examples of commercially available imidazole-type latent curing agents include Cure Duct P-0505 (manufactured by Shikoku Kasei Kogyo Co., Ltd.).
 上記した硬化剤の配合量は、(A)エポキシ樹脂の固形分全体を100質量部とした場合、1~100質量部であることが好ましく、2~30質量部であることがより好ましく、特に3~20質量部であることがより好ましい。特に、(B)エポキシ樹脂硬化剤の配合量が3質量部以上の場合、一般に樹脂組成物の予備硬化速度が遅くならず、穴部深部の組成物の硬化が十分となる結果、クラックの発生を防ぐことができるため好ましい。また、(B)エポキシ樹脂硬化剤の配合量が50質量部以下の場合、保存安定性が良好となり、一般に樹脂組成物の予備硬化速度が早くなり過ぎず、硬化物にボイドが残留し難くなるので好ましい。 The amount of the above curing agent is preferably 1 to 100 parts by mass, more preferably 2 to 30 parts by mass, when the total solid content of the epoxy resin (A) is 100 parts by mass. It is more preferably 3 to 20 parts by mass. In particular, when the amount of (B) the epoxy resin curing agent is 3 parts by mass or more, the pre-curing speed of the resin composition generally does not slow down, and as a result, the composition in the deep part of the hole is sufficiently cured, resulting in the occurrence of cracks. It is preferable because it can prevent In addition, when the amount of the (B) epoxy resin curing agent is 50 parts by mass or less, the storage stability is improved, and generally the pre-curing speed of the resin composition does not become too fast, making it difficult for voids to remain in the cured product. Therefore, it is preferable.
[(C)無機フィラー]
 (C)無機フィラーとしては、充填材の硬化収縮による応力緩和や線膨張係数の調整のため無機フィラーが含まれる。無機フィラーとしては、通常の樹脂組成物に用いられる公知の無機フィラーを用いることができる。具体的には、例えば、シリカ、硫酸バリウム、炭酸カルシウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、アルミナ、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、マイカ、タルク、有機ベントナイトなどの非金属フィラーや、銅、金、銀、パラジウム、シリコン、合金、フェライトなどの金属フィラーが挙げられる。これら無機フィラーは1種類を単独で用いてもよく、2種以上を併用してもよい。
[(C) inorganic filler]
(C) The inorganic filler includes an inorganic filler for stress relaxation due to curing shrinkage of the filler and adjustment of the coefficient of linear expansion. As the inorganic filler, known inorganic fillers used in ordinary resin compositions can be used. Specifically, non-metals such as silica, barium sulfate, calcium carbonate, silicon nitride, aluminum nitride, boron nitride, alumina, magnesium oxide, aluminum hydroxide, magnesium hydroxide, titanium oxide, mica, talc, and organic bentonite. Examples include fillers and metal fillers such as copper, gold, silver, palladium, silicon, alloys, and ferrite. One type of these inorganic fillers may be used alone, or two or more types may be used in combination.
 これらの無機フィラーのなかでも、低吸湿性、低体積膨張性に優れる炭酸カルシウムやシリカ、硫酸バリウム、酸化アルミニウムが好適に用いられ、なかでもシリカがより好適に用いられる。シリカとしては、非晶質、結晶のいずれであってもよく、これらの混合物でもよい。特に非晶質(溶融)シリカが好ましい。 Among these inorganic fillers, calcium carbonate, silica, barium sulfate, and aluminum oxide, which are excellent in low hygroscopicity and low volume expansion, are preferably used, and silica is more preferably used. Silica may be amorphous, crystalline, or a mixture thereof. Amorphous (fused) silica is particularly preferred.
 無機フィラーの形状は、特に制限されるものではなく、球状、針状、板状、鱗片状、中空状、不定形状、六角状、キュービック状、薄片状など挙げられるが、無機フィラーの高配合の観点から球状が好ましい。 The shape of the inorganic filler is not particularly limited, and includes spherical, needle-like, plate-like, scale-like, hollow, irregular, hexagonal, cubic, and flaky shapes. A spherical shape is preferable from the point of view.
 また、これら無機フィラーの平均粒径は、無機フィラーの分散性、穴部への充填性、穴埋めした部分に配線層を形成した際の平滑性等を考慮すると、0.1μm~25μm、好ましくは0.1μm~15μmの範囲が適当である。より好ましくは、1μm~10μmである。なお、平均粒径とは平均一次粒径を意味し、平均粒径(D50)は、レーザー回折/散乱法により測定することができる。 The average particle size of these inorganic fillers is preferably 0.1 μm to 25 μm, preferably 0.1 μm to 25 μm, taking into account the dispersibility of the inorganic filler, the ability to fill holes, and the smoothness when a wiring layer is formed in the filled portion. A range of 0.1 μm to 15 μm is suitable. More preferably, it is 1 μm to 10 μm. The average particle size means the average primary particle size, and the average particle size (D50) can be measured by a laser diffraction/scattering method.
 無機フィラーの配合割合は、硬化物とした際の熱膨張係数、研磨性、密着性と、印刷性や穴埋め充填性とを両立させる観点から、硬化性樹脂組成物の固形分全体に対して10~90質量%であることが好ましく、20~80質量%であることがより好ましく、40~75質量%であることが特に好ましい。 The blending ratio of the inorganic filler is 10% with respect to the total solid content of the curable resin composition, from the viewpoint of achieving both the thermal expansion coefficient, polishability, and adhesiveness of the cured product, as well as printability and hole-filling properties. It is preferably up to 90% by mass, more preferably 20 to 80% by mass, and particularly preferably 40 to 75% by mass.
[その他の成分]
 本発明の硬化性樹脂組成物は、硬化性成分として、上記したエポキシ樹脂以外の硬化性樹脂を含んでいてもよく、例えば、イソシアネート化合物、ブロックイソシアネート化合物、アミノ樹脂、カルボジイミド樹脂、シクロカーボネート化合物、オキセタン化合物、エピスルフィド樹脂、ユリア(尿素)樹脂、メラミン樹脂などのトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド化合物などのマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、ベンゾオキサジン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ベンゾシクロブテン樹脂、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂などのシアネートエステル樹脂、シリコーン樹脂など公知慣用のものが挙げられる。これらは、単独でまたは2種以上を組み合わせて使用することができる。
[Other ingredients]
The curable resin composition of the present invention may contain, as a curable component, a curable resin other than the epoxy resins described above, such as isocyanate compounds, blocked isocyanate compounds, amino resins, carbodiimide resins, cyclocarbonate compounds, Oxetane compounds, episulfide resins, urea resins, resins with triazine rings such as melamine resins, unsaturated polyester resins, maleimide resins such as bismaleimide compounds, polyurethane resins, diallyl phthalate resins, benzoxazine resins, polyimide resins, polyamides Imide resin, benzocyclobutene resin, novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, cyanate ester resin such as bisphenol type cyanate resin such as tetramethylbisphenol F type cyanate resin, silicone resin etc. things are mentioned. These can be used alone or in combination of two or more.
 また、本発明の硬化性樹脂組成物には、チキソ性を付与するために脂肪酸で処理したフィラー、または有機ベントナイト、タルクなどの不定形フィラーを添加することができる。 In addition, to the curable resin composition of the present invention, a filler treated with a fatty acid or an amorphous filler such as organic bentonite or talc can be added to impart thixotropy.
 上記脂肪酸としては、一般式:(RCOO)-R(置換基Rは炭素数が5以上の炭化水素、置換基Rは水素または金属アルコキシド、金属であり、nが1~4である)で表される化合物を用いることができる。当該脂肪酸は、置換基Rの炭素数が5以上のとき、チキソ性付与の効果を発現させることができる。より好ましくはnが7以上である。 The above fatty acid has the general formula: (R 1 COO) n —R 2 (substituent R 1 is a hydrocarbon having 5 or more carbon atoms, substituent R 2 is hydrogen, a metal alkoxide, or a metal, and n is 1 to 4) can be used. The fatty acid can exhibit the effect of imparting thixotropy when the substituent R 1 has 5 or more carbon atoms. More preferably, n is 7 or more.
 脂肪酸としては、炭素鎖中に二重結合あるいは三重結合を有する不飽和脂肪酸であってもよいし、それらを含まない飽和脂肪酸であってもよい。例えば、ステアリン酸(炭素数と不飽和結合の数および括弧内はその位置による数値表現とする。18:0)、ヘキサン酸(6:0)、オレイン酸(18:1(9))、イコサン酸(20:0)、ドコサン酸(22:0)、メリシン酸(30:0)などが挙げられる。これら脂肪酸の置換基R1の炭素数は5~30が好ましい。より好ましくは、炭素数5~20である。また、例えば、置換基R2を、アルコキシル基でキャッピングされたチタネート系の置換基とした金属アルコキシドなど、カップリング剤系の構造で長い(炭素数が5以上の)脂肪鎖を有する骨格のものであってもよい。例えば、商品名KR-TTS(味の素ファインテクノ社株式会社製)などを用いることができる。その他、ステアリン酸アルミニウム、ステアリン酸バリウム(それぞれ川村化成工業株式会社製)など金属石鹸を用いることができる。その他の金属石鹸の元素としては、Ca、Zn、Li、Mg,Naなどがある。 The fatty acid may be an unsaturated fatty acid that has a double bond or triple bond in the carbon chain, or a saturated fatty acid that does not contain them. For example, stearic acid (the number of carbon atoms and the number of unsaturated bonds and the numbers in parentheses are represented by their positions. 18: 0), hexanoic acid (6: 0), oleic acid (18: 1 (9)), icosane acid (20:0), docosanoic acid (22:0), melissic acid (30:0) and the like. The substituent R1 of these fatty acids preferably has 5 to 30 carbon atoms. More preferably, it has 5 to 20 carbon atoms. Also, for example, a skeleton having a coupling agent-based structure and a long (having 5 or more carbon atoms) aliphatic chain, such as a metal alkoxide in which the substituent R2 is a titanate-based substituent capped with an alkoxyl group. There may be. For example, the product name KR-TTS (manufactured by Ajinomoto Fine-Techno Co., Inc.) can be used. In addition, metallic soaps such as aluminum stearate and barium stearate (each manufactured by Kawamura Kasei Co., Ltd.) can be used. Other metal soap elements include Ca, Zn, Li, Mg and Na.
 本発明の硬化性樹脂組成物が脂肪酸を含む場合、脂肪酸の配合割合は、チキソ性、埋め込み性、消泡性等の観点から、無機フィラー100質量部に対して0.1~2質量部の割合が適当である。 When the curable resin composition of the present invention contains a fatty acid, the blending ratio of the fatty acid is 0.1 to 2 parts by mass with respect to 100 parts by mass of the inorganic filler from the viewpoint of thixotropy, embedding, antifoaming, etc. Proportion is appropriate.
 脂肪酸は、予め脂肪酸で表面処理をした無機フィラーを用いることにより配合されてもよく、より効果的に硬化性樹脂組成物にチキソ性を付与することが可能となる。この場合、脂肪酸の配合割合は、未処理フィラーを用いた場合より低減することができ、無機フィラーを全て脂肪酸処理フィラーとした場合、脂肪酸の配合割合は、無機フィラー100質量部に対して0.1~1質量部とすることが好ましい。 The fatty acid may be incorporated by using an inorganic filler that has been surface-treated with a fatty acid in advance, making it possible to more effectively impart thixotropy to the curable resin composition. In this case, the blending ratio of the fatty acid can be lower than when the untreated filler is used. It is preferably 1 to 1 part by mass.
 また、本発明の硬化性樹脂組成物には、シラン系カップリング剤が含まれていてもよい。シラン系カップリング剤を配合することにより、無機フィラーとエポキシ樹脂との密着性を向上させ、その硬化物におけるクラックの発生を抑えることが可能となる。 In addition, the curable resin composition of the present invention may contain a silane coupling agent. By adding a silane-based coupling agent, it is possible to improve the adhesion between the inorganic filler and the epoxy resin and suppress the occurrence of cracks in the cured product.
 シラン系カップリング剤としては、例えば、エポキシシラン、ビニルシラン、イミダゾールシラン、メルカプトシラン、メタクリロキシシラン、アミノシラン、スチリルシラン、イソシアネートシラン、スルフィドシラン、ウレイドシランなどが挙げられる。また、シラン系カップリング剤は、予めシラン系カップリング剤で表面処理をした無機フィラーを用いることにより配合されてもよい。 Examples of silane-based coupling agents include epoxysilane, vinylsilane, imidazolesilane, mercaptosilane, methacryloxysilane, aminosilane, styrylsilane, isocyanatesilane, sulfidesilane, and ureidosilane. Also, the silane coupling agent may be blended by using an inorganic filler that has been surface-treated with a silane coupling agent in advance.
 本発明の硬化性樹脂組成物がシランカップリング剤を含む場合、シラン系カップリング剤の配合割合は、無機フィラーとエポキシ樹脂との密着性と消泡性とを両立させる観点から、無機フィラー100質量部に対して0.05~2.5質量部とすることが好ましい。 When the curable resin composition of the present invention contains a silane coupling agent, the mixing ratio of the silane coupling agent is 100% of the inorganic filler from the viewpoint of achieving both adhesion and defoaming properties between the inorganic filler and the epoxy resin. It is preferably 0.05 to 2.5 parts by weight per part by weight.
 本発明の硬化性樹脂組成物には、その他必要に応じて、フェノール化合物、ホルマリンおよび第一級アミンを反応させて得られるオキサジン環を有するオキサジン化合物を配合してもよい。オキサジン化合物を含有することにより、プリント配線板の穴部に充填された硬化性樹脂組成物を硬化した後、形成された硬化物上に無電解めっきを行なう際、過マンガン酸カリウム水溶液などによる硬化物の粗化を容易にし、めっきとのピール強度を向上させることができる。 The curable resin composition of the present invention may optionally contain an oxazine compound having an oxazine ring obtained by reacting a phenol compound, formalin and a primary amine. By containing an oxazine compound, after curing the curable resin composition filled in the holes of the printed wiring board, when electroless plating is performed on the formed cured product, curing with an aqueous solution of potassium permanganate or the like is avoided. It facilitates the roughening of the material and improves the peel strength of the plating.
 また、通常のスクリーン印刷用レジストインキに使用されているフタロシアニン・ブルー、フタロシアニン・グリーン、ジスアゾイエロー、酸化チタン、カーボンブラック、ナフタレンブラックなどの公知の着色剤を添加してもよい。 In addition, known colorants such as phthalocyanine blue, phthalocyanine green, disazo yellow, titanium oxide, carbon black, and naphthalene black, which are used in ordinary screen printing resist inks, may be added.
 また、保管時の保存安定性を付与するために、ハイドロキノン、ハイドロキノンモノメチルエーテル、tert-ブチルカテコール、ピロガロール、フェノチアジンなどの公知の熱重合禁止剤や、粘度などの調整のために、クレー、カオリン、有機ベントナイト、モンモリロナイトなどの公知の増粘剤、チキソトロピー剤を添加することができる。その他、シリコーン系、フッ素系、高分子系などの消泡剤、レベリング剤やイミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤などの密着性付与剤のような公知の添加剤類を配合することができる。特に、有機ベントナイトを用いた場合、穴部表面からはみ出した部分が研磨・除去し易い突出した状態に形成され易く、研磨性に優れたものとなるので好ましい。また、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の公知慣用の着色剤等を配合することもできる。 In addition, known thermal polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, tert-butyl catechol, pyrogallol, and phenothiazine for imparting storage stability during storage, and clay, kaolin, and the like for viscosity adjustment. Known thickeners and thixotropic agents such as organic bentonite and montmorillonite can be added. In addition, known additives such as silicone-based, fluorine-based, polymer-based antifoaming agents, leveling agents, imidazole-based, thiazole-based, triazole-based, silane coupling agents, and other adhesive agents are added. be able to. In particular, when organic bentonite is used, the portion protruding from the surface of the hole portion is easily formed into a protruding state that is easy to polish and remove, and is excellent in polishability, which is preferable. In addition, known and commonly used colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, etc., can also be blended.
 本発明の硬化性樹脂組成物においては、エポキシ樹脂として主として液状のエポキシ樹脂が含まれる場合、必ずしも希釈溶剤を用いる必要はないが、硬化性樹脂組成物の粘度を調整するために、ボイドが発生しない程度に希釈溶剤を添加してもよい。 In the curable resin composition of the present invention, when a liquid epoxy resin is mainly included as the epoxy resin, it is not always necessary to use a diluent solvent, but voids are generated in order to adjust the viscosity of the curable resin composition. A diluent solvent may be added to the extent that it does not
 希釈溶剤としては、メチルエチルケトン、シクロヘキサノンなどのケトン類; トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類; メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類; 酢酸エチル、酢酸ブチル、及び上記グリコールエーテル類の酢酸エステル化物などのエステル類; エタノール、プロパノール、エチレングリコール、プロピレングリコールなどのアルコール類; オクタン、デカンなどの脂肪族炭化水素; 石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサなどの石油系溶剤などが挙げられる。 Diluent solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol mono Glycol ethers such as ethyl ether and triethylene glycol monoethyl ether; Esters such as ethyl acetate, butyl acetate, and acetic esters of the above glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol and propylene glycol; Octane , aliphatic hydrocarbons such as decane; and petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha.
[硬化性樹脂組成物の用途]
 本発明による硬化性樹脂組成物は、広く一般的に使用することができるが、プリント配線板の硬化膜の形成用であることが好ましく、永久保護膜の形成用であることがより好ましく、ソルダーレジスト、層間絶縁層、カバーレイまたは穴埋め用の充填(材)として使用することがさらに好ましい。これらの用途のなかでも、穴埋め用充填材、具体的にはプリント配線板のスルーホール等の貫通孔や凹部の穴埋め用充填材として使用するのが特に好ましい。
[Use of curable resin composition]
The curable resin composition according to the present invention can be used widely and generally, but it is preferably used for forming a cured film of a printed wiring board, more preferably for forming a permanent protective film, and is used for soldering. More preferably, it is used as a resist, an interlayer insulating layer, a coverlay, or a filler (material) for filling holes. Among these uses, it is particularly preferable to use it as a filling material for filling holes, specifically, as a filling material for filling through holes such as through holes of printed wiring boards and recesses.
 上記した硬化性樹脂組成物を穴埋め用充填材として使用する場合、充填材は、スクリーン印刷法、ロールコーティング法、ダイコーティング法、真空印刷法など公知のパターニング方法を用いて、例えば多層プリント配線板の貫通孔の穴部や底部を有する凹部に充填することができる。硬化性樹脂組成物が充填される穴部や凹部の内径としては、特に限定されるものではないが、IC基板等のパッケージ基板やサーバー基板、車載基板等においては0.05~0.8mmであり、深さとしては0.4~10mmである。このとき、硬化性樹脂組成物を穴部や凹部から少しはみ出るように完全に充填することが好ましい。 When the curable resin composition described above is used as a filling material for filling holes, the filling material is formed using a known patterning method such as a screen printing method, a roll coating method, a die coating method, and a vacuum printing method, for example, a multilayer printed wiring board. through-holes and recesses with bottoms. The inner diameter of the hole or recess to be filled with the curable resin composition is not particularly limited, but it is 0.05 to 0.8 mm for package substrates such as IC substrates, server substrates, vehicle-mounted substrates, and the like. and the depth is 0.4 to 10 mm. At this time, it is preferable that the curable resin composition is completely filled so as to protrude slightly from the holes and recesses.
 このため、本発明の硬化性樹脂組成物は、25±1℃での粘度が100~1000dPa・sの範囲であることが好ましく、200~800dPa・sであることがより好ましく、200~600dPa・sであることが特に好ましい。このような範囲にすることにより、孔部の充填が容易に、且つ、ボイド等の発生なく良好に凹部および貫通孔に充填することができる。なお、ここでの粘度とは、JIS K8803:2011の10 円すい-平板形回転粘度計による粘度測定方法に準拠し、コーンプレート型粘度計(東機産業株式会社製、TV-33H)を用いて25℃、5rpm、30秒値にて測定した粘度を言うものとする。 Therefore, the curable resin composition of the present invention preferably has a viscosity at 25±1° C. in the range of 100 to 1000 dPa s, more preferably 200 to 800 dPa s, more preferably 200 to 600 dPa s. s is particularly preferred. With such a range, the holes can be easily filled, and the concave portions and the through holes can be satisfactorily filled without generating voids or the like. The viscosity here is based on JIS K8803: 2011 10 cone-plate type rotational viscometer viscosity measurement method, using a cone plate type viscometer (manufactured by Toki Sangyo Co., Ltd., TV-33H) It refers to the viscosity measured at 25°C, 5 rpm, 30 seconds value.
 穴部や凹部を硬化性樹脂組成物で充填した多層プリント配線板を、例えば80~160℃で30~180分程度加熱することにより、硬化性樹脂組成物が硬化し、硬化物が形成される。硬化物のうち穴埋め後に基板表面からはみ出している不必要部分を物理研磨により容易に除去する観点から、硬化性樹脂組成物の硬化は2段階で行ってもよい。すなわち、より低い温度で硬化性樹脂組成物を予備硬化させておき、その後に本硬化(仕上げ硬化)することができる。予備硬化としての条件は、80~110℃で30~180分程度の加熱が好ましい。予備硬化した硬化物の硬度は比較的に低いため、基板表面からはみ出している不必要部分を物理研磨により容易に除去でき、平坦面とすることができる。その後、加熱して本硬化させる。本硬化としての条件は、130~180℃で30~180分間程度の加熱が好ましい。 By heating the multilayer printed wiring board in which the holes and recesses are filled with the curable resin composition, for example, at 80 to 160 ° C. for about 30 to 180 minutes, the curable resin composition is cured and a cured product is formed. . The curing of the curable resin composition may be carried out in two stages from the viewpoint of easily removing unnecessary portions protruding from the surface of the substrate after filling the holes in the cured product by physical polishing. That is, the curable resin composition can be pre-cured at a lower temperature and then subjected to main curing (finish curing). Heating at 80 to 110° C. for about 30 to 180 minutes is preferable as the condition for pre-curing. Since the hardness of the pre-cured cured product is relatively low, the unnecessary portion protruding from the substrate surface can be easily removed by physical polishing, and the surface can be flattened. After that, it is heated to be fully cured. Heating at 130 to 180° C. for about 30 to 180 minutes is preferable as the condition for main curing.
 硬化は、予備硬化および本硬化のいずれにおいても、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより被硬化物に吹き付ける方式)を用いて行うことができる。この中でも特に、熱風循環式乾燥炉が好ましい。この際、低膨張性のために硬化物は殆ど膨張も収縮もせず、寸法安定性良く低吸湿性、密着性、電気絶縁性等に優れた最終硬化物となる。なお、予備硬化物の硬度は、予備硬化の加熱時間、加熱温度を変えることによってコントロールすることができる。 For both pre-curing and main curing, a hot air circulation drying oven, IR oven, hot plate, convection oven, etc. (equipped with a steam air heating type heat source) is used to heat the dryer in the countercurrent direction. A contact method and a method of spraying onto the material to be cured from a nozzle) can be used. Among these, a hot air circulation drying furnace is particularly preferable. At this time, the cured product hardly expands or contracts due to its low expansibility, and the final cured product is excellent in dimensional stability, low hygroscopicity, adhesion, electrical insulation and the like. The hardness of the pre-cured product can be controlled by changing the heating time and heating temperature for pre-curing.
 上記のようにして硬化性樹脂組成物を硬化させた後、プリント配線板の表面からはみ出した硬化物の不要部分を、公知の物理研磨方法により除去し、平坦化した後、表面の配線層を所定パターンにパターニングして、所定の回路パターンが形成される。なお、必要に応じて過マンガン酸カリウム水溶液などにより硬化物の表面粗化を行った後、無電解めっきなどにより硬化物上に配線層を形成してもよい。 After curing the curable resin composition as described above, unnecessary portions of the cured product protruding from the surface of the printed wiring board are removed by a known physical polishing method, planarized, and then the wiring layer on the surface is removed. A predetermined circuit pattern is formed by patterning into a predetermined pattern. If necessary, the surface of the cured product may be roughened with an aqueous solution of potassium permanganate or the like, and then a wiring layer may be formed on the cured product by electroless plating or the like.
 次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following description, "parts" and "%" are based on mass unless otherwise specified.
<硬化性樹脂組成物の調製>
 下記表1に示す種々の成分を各表に示す割合(質量部)にて配合し、攪拌機にて混合し、実施例1~7および比較例1~6の各硬化性樹脂組成物を調製した。
<Preparation of curable resin composition>
Various components shown in Table 1 below were blended in proportions (parts by mass) shown in each table and mixed with a stirrer to prepare curable resin compositions of Examples 1 to 7 and Comparative Examples 1 to 6. .
 なお、表1中の*1~*9は、以下の成分を表す。
 *1:2官能ビスフェノールA型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社、YD-127)
 *2:2官能ビフェノールF型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社、YDF-170)
 *3:3官能フェノール型エポキシ樹脂(三菱ケミカル株式会社製、jER-630)
 *4:4官能メタキシレンジアミン型エポキシ樹脂(三菱ガス化学株式会社製、TERTAD-X)
 *5:4官能ジアリルビスフェノールA型エポキシ樹脂(昭和電工カレンズ株式会社製、ショウフリー BATG)
 *6:4官能ペンタエリスリトールテトラアリルエーテル型エポキシ樹脂(昭和電工カレンズ株式会社製、ショウフリー PETG)
 *7:4官能ジアミノジフェニルメタン型エポキシ樹脂(三菱ケミカル株式会社製、jER-604)
 *8:5官能シロキサン骨格エポキシ樹脂(三菱ケミカル株式会社製、YL―9028)
 *9:イミダゾール系硬化剤(四国化成株式会社製、キュアゾール 2MZA-PW)
 *10:イミダゾール-エポキシアダクト型潜在性硬化剤(T&K TOKA株式会社製、フジキュア FXR-1121)
 *11:溶融シリカ(デンカ株式会社製、FB-7SDC)
 *12:重質炭酸カルシウム(丸尾カルシウム株式会社、スーパー4S)
Note that *1 to *9 in Table 1 represent the following components.
*1: Bifunctional bisphenol A type epoxy resin (Nippon Steel Chemical & Materials Co., Ltd., YD-127)
*2: Bifunctional biphenol F type epoxy resin (Nippon Steel Chemical & Materials Co., Ltd., YDF-170)
* 3: Trifunctional phenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER-630)
* 4: Tetrafunctional meta-xylene diamine type epoxy resin (Mitsubishi Gas Chemical Co., Ltd., TERTAD-X)
* 5: Tetrafunctional diallyl bisphenol A type epoxy resin (Showfree BATG manufactured by Showa Denko Karenz Co., Ltd.)
* 6: Tetrafunctional pentaerythritol tetraallyl ether type epoxy resin (Showfree PETG manufactured by Showa Denko Karens Co., Ltd.)
* 7: Tetrafunctional diaminodiphenylmethane type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER-604)
* 8: Pentafunctional siloxane skeleton epoxy resin (manufactured by Mitsubishi Chemical Corporation, YL-9028)
* 9: Imidazole-based curing agent (manufactured by Shikoku Kasei Co., Ltd., Curesol 2MZA-PW)
* 10: Imidazole-epoxy adduct type latent curing agent (Fujicure FXR-1121 manufactured by T&K TOKA Co., Ltd.)
*11: Fused silica (FB-7SDC manufactured by Denka Co., Ltd.)
*12: Heavy calcium carbonate (Maruo Calcium Co., Ltd., Super 4S)
<体積収縮率の評価>
 各実施例および比較例の硬化性樹脂組成物について硬化前の密度(D1)および硬化後の密度(D2)を測定した。測定は下記のようにして実施した。
<Evaluation of Volume Shrinkage>
The density (D1) before curing and the density (D2) after curing were measured for the curable resin compositions of each example and comparative example. Measurements were carried out as follows.
(硬化性樹脂組成物の硬化前の密度測定)
 各硬化性樹脂組成物を、真空撹拌、自転公転式の撹拌機により十分脱泡したのち、硬化性樹脂組成物の密度(D1)を、100cm容量の金属製ピクノメータを使用してピクノメータ法(JIS K5600-2-4:2014に準拠)により測定した。
(Density measurement before curing of curable resin composition)
After thoroughly defoaming each curable resin composition with a vacuum stirring and rotation-revolution stirrer, the density (D1) of the curable resin composition was measured by a pycnometer method using a 100 cm 3 capacity metal pycnometer ( Measured according to JIS K5600-2-4:2014).
(硬化性樹脂組成物の硬化後の密度測定)
 GTS-MP箔(古河サーキットフォイル株式会社製)の光沢面側(銅箔)上に、各硬化性樹脂組成物を、硬化前の塗布膜厚さが100~150μmとなるように、アプリケーターにより塗布し、熱風循環式乾燥炉にて150℃、60分間の加熱により硬化性樹脂組成物を硬化させ、得られた硬化物を銅箔より剥離して測定用のサンプルとした。得られたサンプルの密度(D2)を水中置換法(JIS K7112:1999に準拠)により測定した。
(Density measurement after curing of curable resin composition)
Each curable resin composition is applied to the glossy side (copper foil) of GTS-MP foil (manufactured by Furukawa Circuit Foil Co., Ltd.) with an applicator so that the coating thickness before curing is 100 to 150 μm. Then, the curable resin composition was cured by heating at 150° C. for 60 minutes in a hot air circulating drying oven, and the obtained cured product was peeled off from the copper foil to obtain a sample for measurement. The density (D2) of the obtained sample was measured by an underwater substitution method (according to JIS K7112:1999).
(体積収縮率の算出)
 上記のようにして測定したD1およびD2を用いて下記式により定義される体積収縮率を算出した。
 体積収縮率(%)=(D2-D1)/D2×100
 算出した体積収縮率は、下記の表1に示されるとおりであった。
(Calculation of volumetric shrinkage)
Using D1 and D2 measured as described above, the volumetric shrinkage defined by the following formula was calculated.
Volume shrinkage rate (%) = (D2-D1)/D2 x 100
The calculated volumetric shrinkage was as shown in Table 1 below.
<インキ粘度の評価>
 実施例および比較例の各硬化性樹脂組成物について、25℃での粘度を測定した。即ち、試料を0.2ml採取し、JIS K8803:2011の10に準拠し、コーンプレート型粘度計(東機産業株式会社製、TV-33H)を用いて、25℃、回転数5rpm、30秒値にて粘度の測定を行った。
<Evaluation of Ink Viscosity>
The viscosity at 25° C. was measured for each curable resin composition of Examples and Comparative Examples. That is, 0.2 ml of a sample is collected, and in accordance with JIS K8803: 2011 10, using a cone-plate viscometer (manufactured by Toki Sangyo Co., Ltd., TV-33H), 25 ° C., rotation speed 5 rpm, 30 seconds. The viscosity was measured at the value.
<評価基板の作製>
 ガラスエポキシ基板(パネルめっきにより導体層が形成されたスルーホールを有する厚さ1.6mm/スルーホール径0.15mm(めっき後)/ピッチ1mmのガラスエポキシ基板)の一方の面からスクリーン印刷法により、各実施例および比較例の硬化性樹脂組成物を、下記印刷条件にてスルーホール内に充填した。充填後、熱風循環式乾燥炉にて、110℃、30分間の加熱、およびそれに続く150℃、60分間の加熱により硬化性樹脂組成物を硬化させ、評価基板を得た。
(印刷条件)
  スキージ    :スキージ厚20mm平型スキージ(硬度70°)
  スクリーン版  :PET150メッシュバイアス版
  印圧      :50kg
  スキージスピード:10mm/Sec
  スキージ角度  :95°(アタック角度5°)
<Preparation of evaluation board>
Screen printing from one side of a glass epoxy substrate (thickness 1.6 mm with through-holes with conductor layers formed by panel plating/through-hole diameter 0.15 mm (after plating)/pitch 1 mm glass epoxy substrate) , the curable resin compositions of Examples and Comparative Examples were filled in the through-holes under the following printing conditions. After filling, the curable resin composition was cured by heating at 110° C. for 30 minutes and then heating at 150° C. for 60 minutes in a hot air circulating drying oven to obtain an evaluation substrate.
(Printing conditions)
Squeegee: squeegee thickness 20mm flat squeegee (hardness 70°)
Screen plate: PET150 mesh bias plate Printing pressure: 50 kg
Squeegee speed: 10mm/Sec
Squeegee angle: 95° (attack angle 5°)
<印刷適性の評価>
 <評価基板の作製>で作製した基板を用いて、印刷面と逆の面側の基板表面を光学顕微鏡により観察し、スルーホールから凸出しているインキの状態を確認した。スルーホール5000穴について観察し、印刷適性を評価した。評価基準は以下のとおりとした。
 ◎:全てのスルーホールから硬化性樹脂組成物が凸出している
 ○:硬化性樹脂組成物が凸出していないスルーホールが1~10穴発生
 △:硬化性樹脂組成物が凸出していないスルーホールが11~100穴発生
 ×:硬化性樹脂組成物が凸出していないスルーホールが101穴以上発生
 評価結果は下記の表1に示されるとおりであった。
<Evaluation of printability>
Using the substrate prepared in <Preparation of evaluation substrate>, the surface of the substrate on the side opposite to the printed surface was observed with an optical microscope to confirm the state of ink protruding from the through-holes. 5,000 through holes were observed to evaluate the printability. The evaluation criteria were as follows.
◎: The curable resin composition protrudes from all through-holes ○: 1 to 10 through-holes in which the curable resin composition does not protrude △: Through holes in which the curable resin composition does not protrude 11 to 100 holes were generated. ×: 101 or more through holes were generated in which the curable resin composition did not protrude. The evaluation results were as shown in Table 1 below.
<クラック耐性の評価>
 <評価基板の作製>で作製した基板を用いて、基板中のスルーホール中心を通る断面を精密切断機で裁断、研磨し、断面の表面状態を光学顕微鏡により観察した。スルーホール200穴について観察し、クラック耐性評価した。評価基準は以下のとおりとした。
 ◎:クラックの発生無し
 ○:クラックが1~2発生
 △:クラックが2~20発生
 ×:クラックが21以上発生
 評価結果は下記の表1に示されるとおりであった。
<Evaluation of crack resistance>
Using the substrate produced in <Preparation of evaluation substrate>, a cross section passing through the center of the through hole in the substrate was cut with a precision cutting machine and polished, and the surface state of the cross section was observed with an optical microscope. 200 through holes were observed and evaluated for crack resistance. The evaluation criteria were as follows.
A: No cracks O: 1 to 2 cracks B: 2 to 20 cracks C: 21 or more cracks The evaluation results are shown in Table 1 below.
<ガラス転移温度(Tg)および熱膨張係数(CTE(α1))の測定>
 GTS-MP箔(古河サーキットフォイル株式会社製)の光沢面側(銅箔)上に、各硬化性樹脂組成物を、硬化前の塗布膜厚さが100~150μmとなるように、アプリケーターにより塗布し、熱風循環式乾燥炉にて150℃、60分間加熱して硬化性樹脂組成物を硬化させた。得られた硬化物を銅箔より剥離し、測定サイズ(3mm×16mm)に切り出して測定用のサンプルとした。
 得られた測定用サンプルについて、熱機械分析装置(ティー・エイ・インスツルメント・ジャパン株式会社製、TMA Q400)を用いてTMA測定を実施した。TMA測定は、試験荷重5g、サンプルを10℃/分の昇温速度で室温より300℃まで昇温、連続して2回測定した。2回目における熱膨張係数の異なる2接線の交点をガラス転移温度(Tg)とした。また、ガラス転移温度未満の領域における熱膨張係数CTE(α1)を算出した。
<Measurement of glass transition temperature (Tg) and coefficient of thermal expansion (CTE (α1))>
Each curable resin composition is applied to the glossy side (copper foil) of GTS-MP foil (manufactured by Furukawa Circuit Foil Co., Ltd.) with an applicator so that the coating thickness before curing is 100 to 150 μm. Then, the curable resin composition was cured by heating at 150° C. for 60 minutes in a hot air circulating drying oven. The obtained cured product was peeled off from the copper foil and cut into a measurement size (3 mm×16 mm) to obtain a sample for measurement.
The obtained measurement sample was subjected to TMA measurement using a thermomechanical analyzer (TMA Q400, manufactured by TA Instruments Japan Co., Ltd.). In the TMA measurement, a test load of 5 g was applied, and the temperature of the sample was increased from room temperature to 300°C at a heating rate of 10°C/min, and the measurement was continuously performed twice. The intersection point of two tangent lines with different coefficients of thermal expansion in the second time was defined as the glass transition temperature (Tg). Also, the coefficient of thermal expansion CTE (α1) in the region below the glass transition temperature was calculated.
<耐熱性評価>
 上記のようにして測定したガラス転移温度(Tg)により、耐熱性の評価を行った。評価基準は、以下のとおりとした。
 ◎:Tgが180℃以上
 〇:Tgが170℃以上180℃未満
 △:Tgが150℃以上170℃未満
 ×:Tgが150℃未満
 評価結果は下記の表1に示されるとおりであった。
<Heat resistance evaluation>
The heat resistance was evaluated based on the glass transition temperature (Tg) measured as described above. The evaluation criteria were as follows.
⊙: Tg is 180°C or higher ◯: Tg is 170°C or higher and lower than 180°C Δ: Tg is 150°C or higher and lower than 170°C ×: Tg is lower than 150°C The evaluation results were as shown in Table 1 below.
<CTE評価>
 上記のようにして測定したCTE(α1)により、CTEの評価を行った。評価基準は、以下のとおりとした。
 ◎:CTE(α1)が20ppm未満
 ○:CTE(α1)が20ppm以上30ppm未満
 △:CTE(α1)が30ppm以上40ppm未満
 ×:CTE(α1)が40ppm以上
 評価結果は下記の表1に示されるとおりであった。
<CTE evaluation>
The CTE was evaluated using the CTE (α1) measured as described above. The evaluation criteria were as follows.
◎: CTE (α1) is less than 20 ppm ○: CTE (α1) is 20 ppm or more and less than 30 ppm △: CTE (α1) is 30 ppm or more and less than 40 ppm ×: CTE (α1) is 40 ppm or more The evaluation results are shown in Table 1 below. It was true.
<銅めっきとの密着性評価>
(密着性評価用の試験基板の作製)
 銅ベタ基板(板厚1.6mm)にCZ処理(メック株式会社製、CZ8101、エッチング量1.0μm)を行い、処理面に各実施例および比較例の硬化性樹脂組成物をスクリーン印刷法によりベタ印刷し、熱風循環式乾燥炉にて110℃、30分間の加熱、およびそれに続く150℃、60分間の加熱により硬化性樹脂組成物を硬化させた。その後、硬化物の表面をハイカットバフ#320で20μm程度研磨し、樹脂積層基板を得た。
 得られた積層基板の表面を、下記のようにして粗化処理(※1)、無電解銅めっき処理(※2)、電解銅めっき処理(※3)の順に処理を行った。次いで、熱風循環式乾燥炉にて180℃、60分間のアニール処理を行い、密着性評価用の試験基板を得た。
<Evaluation of adhesion with copper plating>
(Preparation of test substrate for adhesion evaluation)
A copper solid substrate (thickness 1.6 mm) was subjected to CZ treatment (manufactured by MEC Co., Ltd., CZ8101, etching amount 1.0 μm), and the curable resin composition of each example and comparative example was applied to the treated surface by screen printing. Solid printing was performed, and the curable resin composition was cured by heating in a hot air circulating drying oven at 110° C. for 30 minutes, followed by heating at 150° C. for 60 minutes. After that, the surface of the cured product was polished with a high-cut buff #320 to about 20 μm to obtain a resin laminated substrate.
The surface of the obtained laminated substrate was subjected to roughening treatment (*1), electroless copper plating treatment (*2), and electrolytic copper plating treatment (*3) in the following order. Then, an annealing treatment was performed at 180° C. for 60 minutes in a hot air circulating drying oven to obtain a test substrate for adhesion evaluation.
(粗化処理(※1))
 上記(密着性評価用の試験基板の作製)で得た樹脂積層基板を、市販の湿式過マンガン酸デスミア(アトテックジャパン株式会社社製、スウェリングディップ セキュリガントP)に60℃で5分間浸漬した後(膨潤処理)、過マンガン酸カリウム(アトテックジャパン株式会社社製、コンセントレート コンパクトCP)に80℃で10分浸漬し(粗化処理)、次いで中和液(アトテックジャパン株式会社社製、リダクションセキュリガントP500)に40℃で5分間浸漬し(還元処理)、その後、100℃で30分乾燥を行った。
(roughening treatment (*1))
The resin laminated substrate obtained in the above (Preparation of test substrate for adhesion evaluation) was immersed in a commercially available wet permanganate desmear (Swelling Dip Securigant P, manufactured by Atotech Japan Co., Ltd.) at 60 ° C. for 5 minutes. After (swelling treatment), immersed in potassium permanganate (Concentrate Compact CP, manufactured by Atotech Japan Co., Ltd.) for 10 minutes at 80 ° C. (roughening treatment), then neutralizing solution (manufactured by Atotech Japan Co., Ltd., reduction Securigant P500) at 40° C. for 5 minutes (reduction treatment), and then dried at 100° C. for 30 minutes.
(無電解めっき処理(※2))
 粗化処理を行った樹脂積層基板に対し、無電解銅めっき(スルカップPEA、上村工業社製)を行った。形成された無電解銅めっき層の厚さはおおよそ1μmであった。
(Electroless plating treatment (*2))
Electroless copper plating (Thrucup PEA, manufactured by Uyemura & Co., Ltd.) was performed on the roughened resin laminated substrate. The thickness of the formed electroless copper plating layer was approximately 1 μm.
(電解銅めっき処理(※3))
 無電解銅めっき層を形成した樹脂積層基板を150℃で30分間加熱した後、さらに、下記工程にて、硫酸銅電解めっきを行い、樹脂層上に厚さ25μmの無電解銅めっき層を形成した。
(Electrolytic copper plating treatment (*3))
After heating the resin laminated substrate on which the electroless copper plating layer is formed for 30 minutes at 150° C., copper sulfate electroplating is performed in the following steps to form an electroless copper plating layer with a thickness of 25 μm on the resin layer. bottom.
 上記(密着性評価用の試験基板の作製)のようにして得られた試験基板の銅めっき層に幅10mm、長さ60mmの切込みを入れ、この一方の端を剥がしてつかみ具にて挟み、卓上型引張試験器(島津製作所株式会社製、AG-X)にて90度の角度で、50mm/分の速度で銅めっき層を35mmの長さを引き剥がした時のピール強度(N/cm)を測定した。銅めっきとの密着性の評価基準は、以下のとおりとした。
 ◎:ピール強度が5.0以上
 ○:ピール強度が4.0以上5.0未満
 △:ピール強度が3.0以上4.0未満
 ×:ピール強度が3.0未満
 評価結果は下記の表1に示されるとおりであった。
A cut of 10 mm in width and 60 mm in length was made in the copper plating layer of the test board obtained as described above (Preparation of test board for adhesion evaluation), and one end was peeled off and pinched with a gripper, Peel strength (N/cm ) was measured. The evaluation criteria for adhesion to copper plating were as follows.
◎: Peel strength is 5.0 or more ○: Peel strength is 4.0 or more and less than 5.0 △: Peel strength is 3.0 or more and less than 4.0 ×: Peel strength is less than 3.0 The evaluation results are shown in the table below. 1 as shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の評価結果からも明らかなように、官能基数または分子骨格構造が異なる少なくとも3種のエポキシ樹脂を含み、かつ2官能以下のエポキシ樹脂および4官能以上の芳香環を有するエポキシ樹脂を含む硬化性樹脂組成物(実施例1~7)においては、耐熱性、低CTE、クラック耐性が優れるとともに、充填性や銅めっきとの密着性にも優れていることがわかる。
 一方、エポキシ樹脂として、2種のエポキシ樹脂を含むが3種以上のエポキシを含まない硬化性樹脂組成物や3種以上のエポキシ樹脂を含んでいても4官能以上の芳香環を有するエポキシ樹脂を含まない硬化性樹脂組成物(比較例1~6)では、耐熱性、低CTE、クラック耐性、耐熱性、充填性、銅めっきとの密着性のそれぞれをバランス良く向上させることができないことがわかる。
As is clear from the evaluation results in Table 1, curing containing at least three types of epoxy resins with different numbers of functional groups or different molecular skeleton structures, and containing an epoxy resin with a functionality of 2 or less and an epoxy resin with an aromatic ring of 4 or more functionality It can be seen that the flexible resin compositions (Examples 1 to 7) are excellent in heat resistance, low CTE and crack resistance, as well as excellent filling properties and adhesion to copper plating.
On the other hand, as the epoxy resin, a curable resin composition containing two types of epoxy resins but not containing three or more types of epoxy resins, or an epoxy resin containing three or more types of epoxy resins but having a tetrafunctional or more aromatic ring. It can be seen that the curable resin compositions that do not contain (Comparative Examples 1 to 6) cannot improve heat resistance, low CTE, crack resistance, heat resistance, filling properties, and adhesion to copper plating in a well-balanced manner. .

Claims (6)

  1. (A)エポキシ樹脂と、
    (B)エポキシ樹脂硬化剤と、
    (C)無機フィラーと、
    を含んでなる硬化性樹脂組成物であって、
     前記(A)エポキシ樹脂は、官能基数または分子骨格構造が異なる少なくとも3種のエポキシ樹脂を含み、
     前記3種のエポキシ樹脂は、少なくとも、官能基数が2以下のエポキシ樹脂および官能基数が4以上の芳香環を有するエポキシ樹脂を含む、
    ことを特徴とする、硬化性樹脂組成物。
    (A) an epoxy resin;
    (B) an epoxy resin curing agent;
    (C) an inorganic filler;
    A curable resin composition comprising
    The (A) epoxy resin contains at least three epoxy resins having different numbers of functional groups or different molecular skeleton structures,
    The three types of epoxy resins include at least an epoxy resin having a functional group number of 2 or less and an epoxy resin having a functional group number of 4 or more and an aromatic ring.
    A curable resin composition characterized by:
  2.  前記官能基数が4以上の芳香環を有するエポキシ樹脂は、室温で液状である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the epoxy resin having an aromatic ring with 4 or more functional groups is liquid at room temperature.
  3.  前記(A)エポキシ樹脂が、官能基数が3のエポキシ樹脂をさらに含む、請求項1または2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein (A) the epoxy resin further contains an epoxy resin having 3 functional groups.
  4.  前記(C)無機フィラーが、硬化性樹脂組成物の固形分全体に対して10~90質量%含まれる、請求項1または2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein (C) the inorganic filler is contained in an amount of 10 to 90% by mass based on the total solid content of the curable resin composition.
  5.  前記(C)無機フィラーがシリカを含む、請求項1または2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein the (C) inorganic filler contains silica.
  6.  プリント配線板の貫通孔または凹部の充填材として使用される、請求項1または2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, which is used as a filler for through-holes or recesses in printed wiring boards.
PCT/JP2022/048510 2022-01-07 2022-12-28 Curable resin composition WO2023132317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-001919 2022-01-07
JP2022001919 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023132317A1 true WO2023132317A1 (en) 2023-07-13

Family

ID=87073691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048510 WO2023132317A1 (en) 2022-01-07 2022-12-28 Curable resin composition

Country Status (2)

Country Link
TW (1) TW202342636A (en)
WO (1) WO2023132317A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007214A (en) * 2013-05-27 2015-01-15 Dic株式会社 Curable resin composition, cured product of the same, and heat-conductive adhesive
JP2019038930A (en) * 2017-08-24 2019-03-14 味の素株式会社 Resin composition
JP2019052278A (en) * 2017-09-19 2019-04-04 三菱ケミカル株式会社 Epoxy resin, epoxy resin composition, cured product, and laminate for electric-electronic circuit
JP2021512199A (en) * 2018-02-01 2021-05-13 ヘクセル コーポレイション Prepreg used to manufacture composite parts that can withstand high temperature and wet conditions
WO2021177089A1 (en) * 2020-03-06 2021-09-10 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2021531389A (en) * 2018-07-25 2021-11-18 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Fast Curing Epoxy Acrylic Liquid Sim

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007214A (en) * 2013-05-27 2015-01-15 Dic株式会社 Curable resin composition, cured product of the same, and heat-conductive adhesive
JP2019038930A (en) * 2017-08-24 2019-03-14 味の素株式会社 Resin composition
JP2019052278A (en) * 2017-09-19 2019-04-04 三菱ケミカル株式会社 Epoxy resin, epoxy resin composition, cured product, and laminate for electric-electronic circuit
JP2021512199A (en) * 2018-02-01 2021-05-13 ヘクセル コーポレイション Prepreg used to manufacture composite parts that can withstand high temperature and wet conditions
JP2021531389A (en) * 2018-07-25 2021-11-18 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Fast Curing Epoxy Acrylic Liquid Sim
WO2021177089A1 (en) * 2020-03-06 2021-09-10 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material

Also Published As

Publication number Publication date
TW202342636A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP7202691B2 (en) Resin compositions, films, laminates and semiconductor devices
JP5238342B2 (en) Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same
TW201105632A (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP7385344B2 (en) Thermosetting resin composition and multilayer substrate
JP2007224242A (en) Thermosetting resin composition, resin film in b stage and multilayer build-up base plate
CN111040378B (en) Solvent-free resin composition and application thereof
JP5901923B2 (en) Thermosetting resin filler and printed wiring board
WO2019188344A1 (en) Curable resin composition, cured product thereof and printed circuit board
JP2021127462A (en) Thermosetting resin composition, cured product of the same, and printed wiring board
JP6139172B2 (en) Thermosetting resin filler and printed wiring board obtained using the same
US20140162072A1 (en) Thermosetting resin compositions, resin films in b-stage, metal foils, copper clad boards and multi layer build-up boards
JP7441928B2 (en) Thermosetting resin filler, its cured product and multilayer printed wiring board
JP7295506B2 (en) Curable resin composition
JP6198483B2 (en) Thermosetting resin composition and printed wiring board
JP2021161211A (en) Liquid thermosetting resin composition
JP4100172B2 (en) Laminate or prepreg varnish, laminate or prepreg obtained from the varnish, and printed wiring board using the laminate or prepreg
WO2023132317A1 (en) Curable resin composition
CN109517333B (en) Solvent-free resin composition and use thereof
JP2020076006A (en) Solventless curable resin composition, cured article and electronic component thereof
JP2019112610A (en) Thermosetting resin filler, cured product of the same, and multilayer printed wiring board
JP2023068801A (en) Polyimide resin composition and cured product of the same
TW201433599A (en) Thermosetting resin compositions, resin films in b-stage (semi-cured stage), metal foils, copper-clad boards and multi-layer build-up boards

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918900

Country of ref document: EP

Kind code of ref document: A1