JP5238342B2 - Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same - Google Patents

Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same Download PDF

Info

Publication number
JP5238342B2
JP5238342B2 JP2008121456A JP2008121456A JP5238342B2 JP 5238342 B2 JP5238342 B2 JP 5238342B2 JP 2008121456 A JP2008121456 A JP 2008121456A JP 2008121456 A JP2008121456 A JP 2008121456A JP 5238342 B2 JP5238342 B2 JP 5238342B2
Authority
JP
Japan
Prior art keywords
epoxy resin
wiring board
hole
printed wiring
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008121456A
Other languages
Japanese (ja)
Other versions
JP2009269994A (en
Inventor
新 遠藤
大介 柴田
勝人 邑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Holdings Co Ltd filed Critical Taiyo Holdings Co Ltd
Priority to JP2008121456A priority Critical patent/JP5238342B2/en
Priority to CN2009101365223A priority patent/CN101575439B/en
Priority to TW098115003A priority patent/TWI455954B/en
Publication of JP2009269994A publication Critical patent/JP2009269994A/en
Application granted granted Critical
Publication of JP5238342B2 publication Critical patent/JP5238342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Epoxy Resins (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)

Description

本発明は、プリント配線板の穴埋め用熱硬化性樹脂組成物に関し、特に、多層基板や両面基板等のプリント配線板におけるスルーホールやバイアホール等の永久穴埋め用組成物として有用な液状の熱硬化性樹脂組成物に関する。さらに、本発明は、該組成物を用いてスルーホールやバイアホール等の永久穴埋めを行なったプリント配線板に関する。
なお、本明細書において、「穴部」とは、プリント配線板の製造過程で形成されるスルーホールやバイアホール等を総称する用語である。
The present invention relates to a thermosetting resin composition for filling a printed wiring board, particularly a liquid thermosetting useful as a composition for filling a permanent hole such as a through hole or a via hole in a printed wiring board such as a multilayer board or a double-sided board. The present invention relates to a functional resin composition. Furthermore, this invention relates to the printed wiring board which performed permanent hole filling, such as a through hole and a via hole, using this composition.
In this specification, the “hole” is a general term for a through hole, a via hole, or the like formed in the manufacturing process of the printed wiring board.

プリント配線板は、基材上に導体回路パターンを形成したものであり、導体回路のランド部には電子部品がはんだ付けによって搭載され、ランド以外の回路部分にはソルダーレジスト膜が導体保護のために被覆されている。このように、ソルダーレジスト膜は、プリント配線板に電子部品を搭載する際にはんだが不必要な部分に付着するのを防止するとともに、回路が酸化したり腐食したりするのを防止する機能を有する。   A printed wiring board is a circuit board with a conductor circuit pattern formed on it. Electronic parts are mounted on the land of the conductor circuit by soldering, and a solder resist film is used to protect the conductor on the circuit parts other than the land. Is covered. Thus, the solder resist film prevents solder from adhering to unnecessary parts when mounting electronic components on a printed wiring board, and also prevents the circuit from being oxidized or corroded. Have.

ところで、近年、プリント配線板の導体回路パターンの細線化と実装面積の縮小化が進んでおり、さらにプリント配線板を備える機器の小型化・高機能化に対応すべく、プリント配線板のさらなる軽薄短小化が望まれている。そのため、プリント配線基板に設けたスルーホールに樹脂充填剤を充填し、硬化して平滑面とした後、その配線基板上に層間樹脂絶縁層と導体回路層を交互に積層してなる多層プリント配線板、あるいはスルーホール等に樹脂充填剤を充填した基板に直接ソルダーレジスト膜を形成する多層プリント配線板が開発されている。このような状況下において、スルーホールやバイアホール等の穴部に充填するための充填性、研磨性、硬化物特性等に優れた永久穴埋め用組成物の開発が望まれている。   By the way, in recent years, the conductor circuit pattern of the printed wiring board has been thinned and the mounting area has been reduced, and further, the printed wiring board has been made lighter and thinner in order to cope with the downsizing and higher functionality of the equipment equipped with the printed wiring board. Shortening is desired. Therefore, after filling the through hole provided in the printed wiring board with a resin filler and curing it to make a smooth surface, multilayer printed wiring in which interlayer resin insulation layers and conductor circuit layers are alternately laminated on the wiring board A multilayer printed wiring board has been developed in which a solder resist film is directly formed on a board or a substrate in which through holes are filled with a resin filler. Under such circumstances, it is desired to develop a permanent hole filling composition excellent in filling properties, polishing properties, cured product characteristics, and the like for filling holes such as through holes and via holes.

また、特に台湾、アジア地域では、銅スルーホール配線板のような配線板の貫通孔の全てを液状ソルダーレジスト組成物で充填する仕様、即ちプリント配線板の穴埋めとソルダーレジスト膜の形成を同時に行う方法が主流となっている。しかしながら、従来の液状ソルダーレジスト組成物を、例えば銅スルーホール配線板のような配線板の貫通孔にも充填するような仕様で用いる場合、形成したソルダーレジスト膜は、はんだレベリング時にスルーホールの周辺部が浮きあがってしまうという現象(以下、「デラミ」と略称する)、あるいはポストキュアやはんだレベリング時にスルーホール中の塗膜が突出してしまうという現象を招き易いという問題があった。   Also, particularly in Taiwan and Asia, a specification that fills all the through holes of a wiring board such as a copper through-hole wiring board with a liquid solder resist composition, that is, filling a printed wiring board and forming a solder resist film simultaneously. The method has become mainstream. However, when the conventional liquid solder resist composition is used to fill the through holes of a wiring board such as a copper through-hole wiring board, for example, the formed solder resist film is formed around the through-holes during solder leveling. There is a problem that a phenomenon that a part floats (hereinafter abbreviated as “delamination”) or a phenomenon that a coating film in a through-hole protrudes during post-cure or solder leveling has occurred.

このような問題を解決するために、種々の方策が考えられており、例えば、用いる活性エネルギー線硬化性樹脂の組合せを特徴とするフォトソルダーレジスト組成物を用いることも提案されている(特許文献1参照)。しかしながら、フォトソルダーレジスト組成物を用いてプリント配線板の穴埋めとソルダーレジスト膜の形成を同時に行った場合、溶剤を含むため、硬化後の穴部絶縁層に硬化収縮やクラックが発生するという問題があった。また、スルーホールのアスペクト比が高いため、深部硬化性が不充分であり、またヒートサイクル時の熱膨張率の変化率が大きいという問題があった。   In order to solve such problems, various measures have been considered. For example, it has been proposed to use a photo solder resist composition characterized by a combination of active energy ray-curable resins to be used (Patent Literature). 1). However, when the hole in the printed wiring board and the formation of the solder resist film are simultaneously performed using the photo solder resist composition, since the solvent is included, there is a problem that curing shrinkage and cracks occur in the hole insulating layer after curing. there were. Moreover, since the aspect ratio of the through hole is high, there is a problem that the deep part curability is insufficient and the rate of change of the coefficient of thermal expansion during the heat cycle is large.

そこで、一般に、プリント配線板の穴埋めとソルダーレジスト膜の形成には別々の組成物が用いられている。プリント配線板の永久穴埋め用組成物としては、一般に、その硬化物が機械的、電気的、化学的性質に優れ、接着性も良好であることから、熱硬化型のエポキシ樹脂組成物が広く用いられている。この場合のプリント配線板の永久穴埋め加工は、エポキシ樹脂組成物をプリント配線板の穴部に充填する工程、該充填された組成物を加熱して研磨可能な状態に予備硬化する工程、予備硬化した組成物の穴部表面からはみ出している部分を研磨・除去する工程、及び予備硬化した組成物をさらに加熱して本硬化する工程からなる。   Therefore, generally, different compositions are used for filling a printed wiring board and forming a solder resist film. As a composition for permanent hole filling of a printed wiring board, a thermosetting epoxy resin composition is widely used because its cured product is generally excellent in mechanical, electrical and chemical properties and has good adhesion. It has been. In this case, the permanent filling process of the printed wiring board includes a step of filling the hole of the printed wiring board with the epoxy resin composition, a step of pre-curing the filled composition into a polishable state by heating, and pre-curing It comprises a step of polishing and removing a portion of the composition that protrudes from the hole surface, and a step of further heating and precuring the precured composition.

しかしながら、上記のように、プリント配線板の穴埋めにソルダーレジスト用組成物と異なるエポキシ樹脂組成物を用いた場合、硬化処理やはんだレベリングなどの高温条件下において、図2に示されるように、穴部絶縁層5にクラック(内部クラックY)が発生したり、穴部絶縁層5の周辺部で外層絶縁層6(ソルダーレジスト層や絶縁樹脂層)との間に剥離(デラミX)が発生するという問題があった。このようなクラックやデラミが発生すると、高温高湿下でのPCT耐性(プレッシャー・クッカー耐性)が低下し、また、プリント配線板の絶縁信頼性の悪化を招いてしまう。
国際公開WO2003/059975号公報(特許請求の範囲)
However, as described above, when an epoxy resin composition different from the solder resist composition is used for filling a hole in a printed wiring board, under high temperature conditions such as a curing process and solder leveling, as shown in FIG. Cracks (internal crack Y) are generated in the partial insulating layer 5, or peeling (delamination X) occurs between the outer insulating layer 6 (solder resist layer and insulating resin layer) in the peripheral portion of the hole insulating layer 5 There was a problem. When such cracks and delamination occur, the PCT resistance (pressure / cooker resistance) under high temperature and high humidity decreases, and the insulation reliability of the printed wiring board deteriorates.
International Publication WO2003 / 059975 (Claims)

本発明は、前述したような従来技術の問題点に鑑みてなされたものであり、その基本的な目的は、プリント配線板のスルーホールやバイアホール等の穴部への充填に最適であり、硬化処理やはんだレベリングなどの高温条件下において、穴部絶縁層にクラック(内部クラック)が発生したり、穴部絶縁層の周辺部で外層絶縁層(ソルダーレジスト層や絶縁樹脂層)との間に剥離(デラミ)が発生するという問題がなく、絶縁信頼性や耐熱性、耐湿性、PCT耐性等に優れる穴部絶縁層を形成できる熱硬化性樹脂組成物を提供することにある。
さらに本発明の目的は、ヒートサイクル時のクラック発生や、絶縁信頼性の悪化、穴部絶縁層周辺部の外層絶縁層(ソルダーレジスト層や絶縁樹脂層)の剥離(デラミ)等がなく、絶縁信頼性や耐熱性、耐湿性、PCT耐性等の特性に優れる高信頼性のプリント配線板を提供することにある。
The present invention has been made in view of the problems of the prior art as described above, and its basic purpose is optimal for filling holes such as through holes and via holes in a printed wiring board, Under high temperature conditions such as hardening treatment and solder leveling, cracks (internal cracks) occur in the hole insulating layer, or between the outer insulating layer (solder resist layer and insulating resin layer) around the hole insulating layer It is an object of the present invention to provide a thermosetting resin composition that can form a hole insulating layer having excellent insulation reliability, heat resistance, moisture resistance, PCT resistance, and the like.
Furthermore, the object of the present invention is that there is no occurrence of cracks during heat cycle, deterioration of insulation reliability, peeling of the outer insulating layer (solder resist layer or insulating resin layer) around the hole insulating layer (delamination), etc. An object of the present invention is to provide a highly reliable printed wiring board having excellent characteristics such as reliability, heat resistance, moisture resistance, and PCT resistance.

前記目的を達成するために、本発明によれば、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、及び(C)無機フィラーを含有し、プリント配線板の穴部に充填される熱硬化性樹脂組成物であって、上記エポキシ樹脂(A)は3官能以上のエポキシ樹脂(A−2)を液状の2官能エポキシ樹脂(A−1)に溶解したものであり、上記無機フィラー(C)は、シリカを含まず、周期律表のIIa族の元素の塩からなり、且つ、無機フィラー(C)の配合割合は組成物全体の45〜85質量%であることを特徴とする穴埋め用熱硬化性樹脂組成物が提供される。 In order to achieve the above object, according to the present invention, (A) an epoxy resin, (B) an epoxy resin curing agent, and (C) an inorganic filler, the thermosetting that fills the hole of the printed wiring board. The epoxy resin (A) is obtained by dissolving a trifunctional or higher functional epoxy resin (A-2) in a liquid bifunctional epoxy resin (A-1), and the inorganic filler (C ) is silica free of, Ri Do from the salts of group IIa elements of the periodic table, and, mixing ratio of the inorganic filler (C) is characterized in that 45 to 85% by weight of the total composition filling A thermosetting resin composition is provided.

好適な態様においては、前記エポキシ樹脂(A)は、3官能以上のエポキシ樹脂(A−2)を液状の2官能エポキシ樹脂(A−1)に溶解した後の粘度が25℃で5〜100dPa・sである。
さらに本発明によれば、プリント配線板の穴部が、前記熱硬化性樹脂組成物の硬化物で充填されていることを特徴とするプリント配線板も提供される。
In a preferred embodiment, the epoxy resin (A) has a viscosity after dissolving a trifunctional or higher functional epoxy resin (A-2) in a liquid bifunctional epoxy resin (A-1) at 25 ° C. 100 dPa · s.
Furthermore, according to this invention, the printed wiring board characterized by the hole part of a printed wiring board being filled with the hardened | cured material of the said thermosetting resin composition is also provided.

本発明の熱硬化性樹脂組成物は、組成物中のエポキシ樹脂(A)が3官能以上のエポキシ樹脂(A−2)を液状の2官能エポキシ樹脂(A−1)に溶解したものであり、前記フィラー(C)がシリカを含まず、周期律表のIIa族の元素の塩からなり、且つ、無機フィラー(C)の配合割合が組成物全体の45〜85質量%であるため、その硬化物は高いガラス転移点Tgを示し、且つ、ヒートサイクル時の熱膨張率の変化率が小さく、クラック発生や穴部絶縁層周辺部の外層絶縁層(ソルダーレジスト層や絶縁樹脂層)の剥離(デラミ)等の発生がないという特有の効果を奏する。
従って、例えば、プリント配線基板に設けたスルーホール等の穴部に樹脂充填剤を充填し、硬化した後、その配線基板上に層間樹脂絶縁層と導体回路層を交互に積層してなる多層プリント配線板や、スルーホールに樹脂充填剤を充填した基板に直接ソルダーレジスト膜を形成する多層プリント配線板において、樹脂充填剤として本発明の熱硬化性樹脂組成物を用いることにより、ヒートサイクル時のクラック発生や、絶縁信頼性の悪化、穴部絶縁層周辺部の外層絶縁層(ソルダーレジスト層や絶縁樹脂層)の剥離(デラミ)等がなく、絶縁信頼性や耐熱性、耐湿性、PCT耐性等の特性に優れる高信頼性のプリント配線板を提供することができる。
The thermosetting resin composition of the present invention has an epoxy resin in the composition (A) is 3 or more functional epoxy resin (A-2) was dissolved in bifunctional epoxy resin (A-1) liquid since the filler (C) does not contain silica, Ri Do from the salts of group IIa elements of the periodic table, and, mixing ratio of the inorganic filler (C) is 45 to 85% by weight of the total composition, The cured product shows a high glass transition point Tg, and the rate of change in the coefficient of thermal expansion during the heat cycle is small. The occurrence of cracks and the outer insulating layer (solder resist layer and insulating resin layer) around the hole insulating layer There is a specific effect that there is no occurrence of delamination or the like.
Therefore, for example, after filling a resin filler in a hole such as a through hole provided in a printed wiring board and curing it, a multilayer print in which interlayer resin insulation layers and conductor circuit layers are alternately laminated on the wiring board In a multilayer printed wiring board that directly forms a solder resist film on a wiring board or a substrate filled with a resin filler in a through hole, by using the thermosetting resin composition of the present invention as a resin filler, There is no generation of cracks, deterioration of insulation reliability, peeling of the outer insulation layer (solder resist layer or insulation resin layer) around the hole insulation layer (delamination), etc., insulation reliability, heat resistance, moisture resistance, PCT resistance It is possible to provide a highly reliable printed wiring board having excellent characteristics such as the above.

本発明者らは、プリント配線板のスルーホールやバイアホール等の穴部に充填した従来のエポキシ樹脂組成物の硬化物のクラック発生や穴部絶縁層周辺部の外層絶縁層(ソルダーレジスト層や絶縁樹脂層)の剥離(デラミ)等の原因について鋭意研究した結果、硬化物が低いガラス転移点Tgを示し、且つ、ヒートサイクル時の熱膨張率の変化率が大きいことに関係があり、これは主として、用いるエポキシ樹脂及び従来一般に用いられている無機フィラー(シリカ)に起因していることを見出した。そこで、この関係についてさらに研究を進めた結果、熱硬化性樹脂組成物中のエポキシ樹脂(A)が3官能以上のエポキシ樹脂(A−2)を液状の2官能エポキシ樹脂(A−1)に溶解したものからなり、且つ、無機フィラー(C)がシリカを含まず、周期律表のIIa族の元素の塩からなり、且つ、無機フィラー(C)の配合割合が組成物全体の45〜85質量%である場合、その硬化物は高いガラス転移点Tgを示し、且つ、ヒートサイクル時の熱膨張率の変化率が小さく、クラック発生や穴部絶縁層周辺部の外層絶縁層(ソルダーレジスト層や絶縁樹脂層)の剥離(デラミ)等の発生を抑制できることを見出し、本発明を完成するに至ったものである。 The present inventors have developed a crack in a cured product of a conventional epoxy resin composition filled in a hole portion such as a through hole or a via hole of a printed wiring board and an outer insulating layer (a solder resist layer or a peripheral portion around the hole insulating layer). As a result of earnest research on the cause of delamination, etc. of the insulating resin layer), the cured product shows a low glass transition point Tg and is related to a large rate of change of the thermal expansion coefficient during the heat cycle. Was found mainly due to the epoxy resin used and the inorganic filler (silica) that has been generally used. Therefore, as a result of further research on this relationship, the epoxy resin (A) in the thermosetting resin composition is changed from a trifunctional or higher functional epoxy resin (A-2) to a liquid bifunctional epoxy resin (A-1). made from those dissolved, and contains no inorganic filler (C) is silica, Ri Do from the salts of group IIa elements of the periodic table, and, mixing ratio of the inorganic filler (C) of the total composition 45 In the case of 85% by mass , the cured product exhibits a high glass transition point Tg, and the rate of change in the coefficient of thermal expansion during the heat cycle is small. The present inventors have found that the occurrence of peeling (delamination) or the like of a layer or an insulating resin layer) can be suppressed, and the present invention has been completed.

以下、本発明の熱硬化性樹脂組成物の各構成成分について詳しく説明する。
まず、前記エポキシ樹脂(A)としては、1分子中に2つのエポキシ基を有する2官能のエポキシ樹脂(A−1)と、1分子中に少なくとも3つ以上のエポキシ基を有する3官能以上のエポキシ樹脂(A−2)を組み合わせて用いる。2官能のエポキシ樹脂(A−1)としては、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂など、3官能以上のエポキシ樹脂(A−2)としてはフェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジグリシジルフタレート樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、又はそれらの臭素原子含有エポキシ樹脂やりん原子含有エポキシ樹脂、トリグリシジルイソシアヌレート等のエポキシ樹脂、脂環式エポキシ樹脂など公知慣用のものを、単独であるいは2種以上組み合わせて使用することができる。また、反応性希釈剤としての単官能エポキシ樹脂を含有していてもよい。
Hereinafter, each component of the thermosetting resin composition of the present invention will be described in detail.
First, as the epoxy resin (A), a bifunctional epoxy resin (A-1) having two epoxy groups in one molecule and a trifunctional or more functional group having at least three epoxy groups in one molecule. An epoxy resin (A-2) is used in combination. Examples of the bifunctional epoxy resin (A-1) include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, Trifunctional or higher functional epoxy resin (A-2) such as xylenol type epoxy resin, biphenol type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, bisphenol A novolak type epoxy resin, naphthalene type epoxy resin, dicyclo Pentadiene type epoxy resin, glycidylamine type epoxy resin, trihydroxyphenylmethane type epoxy resin, tetraphenylolethane type epoxy resin, diglycidyl phthalate resin, phenols and vinyl Epoxidized products of condensates with aromatic aldehydes having a norlic hydroxyl group, or bromine atom-containing epoxy resins, phosphorus atom-containing epoxy resins, epoxy resins such as triglycidyl isocyanurate, and alicyclic epoxy resins Can be used alone or in combination of two or more. Moreover, you may contain the monofunctional epoxy resin as a reactive diluent.

前記したようなエポキシ樹脂としては、特に、室温で液状の2官能エポキシ樹脂(A−1)に3官能以上のエポキシ樹脂(A−2)を溶解した混合物を用いた場合、低分子量の液状の2官能エポキシ樹脂が、得られる硬化皮膜の可撓性及び密着性向上に寄与し、3官能以上のエポキシ樹脂が、ガラス転移点を上昇させるのに寄与するので、これらの比率を調整することにより上記特性のバランスを調整することが可能となる。即ち、室温で液状の2官能エポキシ樹脂(A−1)に所定量の3官能以上のエポキシ樹脂(A−2)を溶解した混合物を用いることにより、得られる硬化物は高いガラス転移点Tgを示し、且つ、ヒートサイクル時の熱膨張率の変化率が小さく、クラック発生や穴部絶縁層周辺部の外層絶縁層(ソルダーレジスト層や絶縁樹脂層)の剥離(デラミ)等の発生を効果的に抑制できる。また、液状の2官能エポキシ樹脂(A−1)を用いることにより、組成物を無溶剤化することが可能となり、ボイドやクラックの発生抑制に効果的である。液状の2官能エポキシ樹脂(A−1)と3官能以上のエポキシ樹脂(A−2)の配合比率(質量基準)は、(A−1):(A−2)=100:5〜100:100の範囲の範囲、より好ましくは(A−1):(A−2)=100:10〜100:40の範囲である。   As the epoxy resin as described above, in particular, when a mixture of a trifunctional or higher functional epoxy resin (A-2) dissolved in a liquid bifunctional epoxy resin (A-1) at room temperature is used, a low molecular weight liquid resin is used. By adjusting these ratios, bifunctional epoxy resins contribute to improving the flexibility and adhesion of the resulting cured film, and trifunctional or higher epoxy resins contribute to raising the glass transition point. It becomes possible to adjust the balance of the above characteristics. That is, by using a mixture in which a predetermined amount of trifunctional or higher functional epoxy resin (A-2) is dissolved in a liquid bifunctional epoxy resin (A-1) at room temperature, the resulting cured product has a high glass transition point Tg. In addition, the rate of change in the coefficient of thermal expansion during the heat cycle is small, and it is effective to generate cracks and peeling (delamination) of the outer insulating layer (solder resist layer and insulating resin layer) around the hole insulating layer. Can be suppressed. Moreover, by using a liquid bifunctional epoxy resin (A-1), it becomes possible to make a composition solvent-free and it is effective in suppressing generation | occurrence | production of a void and a crack. The blending ratio (mass basis) of the liquid bifunctional epoxy resin (A-1) and the trifunctional or higher functional epoxy resin (A-2) is (A-1) :( A-2) = 100: 5 to 100: The range is 100, more preferably (A-1) :( A-2) = 100: 10 to 100: 40.

前記エポキシ樹脂硬化剤(B)としては、エポキシ樹脂の硬化反応を促進する効果があれば何れのものも使用でき、特定のものには限定されない。それらの中でもイミダゾール誘導体が好ましく、特に常温で固体のイミダゾール誘導体であり、150℃にて液状のエポキシ樹脂に融解するものが好ましい。イミダゾール誘導体の具体例としては、例えば2−メチルイミダゾール、4−メチル−2−エチルイミダゾール、2−フェニルイミダゾール、4−メチル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾールなどが挙げられる。市販されているものの具体例としては、商品名2E4MZ、C11Z、C17Z、2PZ等のイミダゾール類や、商品名2MZ−A、2E4MZ−A等のイミダゾールのAZINE化合物、商品名2MZ−OK、2PZ−OK等のイミダゾールのイソシアヌル酸塩、商品名2PHZ、2P4MHZ等のイミダゾールヒドロキシメチル体(前記商品名はいずれも四国化成工業(株)製)などが挙げられる。   Any epoxy resin curing agent (B) can be used as long as it has an effect of promoting the curing reaction of the epoxy resin, and is not limited to a specific one. Among these, an imidazole derivative is preferable, and an imidazole derivative that is solid at room temperature and that melts into a liquid epoxy resin at 150 ° C. is preferable. Specific examples of the imidazole derivative include, for example, 2-methylimidazole, 4-methyl-2-ethylimidazole, 2-phenylimidazole, 4-methyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 2-ethylimidazole. 2-isopropylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole and the like. Specific examples of commercially available products include imidazoles such as trade names 2E4MZ, C11Z, C17Z, and 2PZ, AZINE compounds of imidazoles such as trade names 2MZ-A and 2E4MZ-A, trade names 2MZ-OK, and 2PZ-OK. And imidazole hydroxymethyl compounds such as trade names 2PHZ and 2P4MHZ (the trade names are all manufactured by Shikoku Kasei Kogyo Co., Ltd.).

前記イミダゾール以外にも、ジシアンジアミドとその誘導体、メラミンとその誘導体、ジアミノマレオニトリルとその誘導体、ジエチレントリアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ビス(ヘキサメチレン)トリアミン、トリエタノーアミン、ジアミノジフェニルメタン、有機酸ヒドラジッド等のアミン類、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(商品名DBU、サンアプロ(株)製)、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン(商品名ATU、味の素(株)製)、又は、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリブチルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン化合物などを、単独で又は2種以上を組み合わせて使用できる。しかし、芳香族アミン類を用いた場合には加熱硬化後の樹脂組成物の収縮が大きく、硬化後にスルーホール壁との間に隙間が生じたり、穴埋め部の硬化物にボイドが生じ易いので好ましくない。これらの硬化触媒の中でも、ジシアンジアミド、メラミンや、アセトグアナミン、ベンゾグアナミン、3,9−ビス[2−(3,5−ジアミノ−2,4,6−トリアザフェニル)エチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のグアナミン及びその誘導体、及びこれらの有機酸塩やエポキシアダクトなどは、銅との密着性や防錆性を有することが知られており、エポキシ樹脂の硬化触媒として働くばかりでなく、プリント配線板の銅の変色防止に寄与することができる。   Besides imidazole, dicyandiamide and its derivatives, melamine and its derivatives, diaminomaleonitrile and its derivatives, diethylenetriamine, triethylenetetramine, tetramethylenepentamine, bis (hexamethylene) triamine, triethanolamine, diaminodiphenylmethane, organic acid Amines such as hydrazide, 1,8-diazabicyclo [5.4.0] undecene-7 (trade name DBU, manufactured by San Apro), 3,9-bis (3-aminopropyl) -2,4,8 , 10-tetraoxaspiro [5.5] undecane (trade name ATU, manufactured by Ajinomoto Co., Inc.) or organic phosphine compounds such as triphenylphosphine, tricyclohexylphosphine, tributylphosphine, and methyldiphenylphosphine alone Or two It can be used in combination with the above. However, when aromatic amines are used, the resin composition after heat-curing shrinks greatly, and a gap is likely to form between the through-hole wall after curing and voids are likely to occur in the cured product in the hole filling portion. Absent. Among these curing catalysts, dicyandiamide, melamine, acetoguanamine, benzoguanamine, 3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) ethyl] -2,4,8 , 10-tetraoxaspiro [5.5] undecane and derivatives thereof, and their organic acid salts and epoxy adducts are known to have adhesion and rust prevention properties with copper. In addition to acting as a curing catalyst for the resin, it can contribute to the prevention of discoloration of copper in the printed wiring board.

前記したようなエポキシ樹脂硬化剤(B)の配合量は、一般に、前記エポキシ樹脂(A)100質量部当り3質量部以上、20質量部以下、好ましくは5質量部以上、15質量部以下が適当である。エポキシ樹脂硬化剤(B)の配合量が3質量部未満の場合、一般に樹脂組成物の予備硬化速度が遅くなり、穴部深部の組成物の硬化が不十分となる結果、クラックの発生を生じ易くなるので好ましくない。一方、エポキシ樹脂硬化剤(B)の配合量が20質量部を超えて多量に配合すると、保存安定性が悪くなる他、一般に樹脂組成物の予備硬化速度が早くなり過ぎ、硬化物にボイドが残留し易くなるので好ましくない。   The amount of the epoxy resin curing agent (B) as described above is generally 3 parts by mass or more and 20 parts by mass or less, preferably 5 parts by mass or more and 15 parts by mass or less per 100 parts by mass of the epoxy resin (A). Is appropriate. When the compounding amount of the epoxy resin curing agent (B) is less than 3 parts by mass, generally the pre-curing speed of the resin composition is slowed down and the composition in the deep part of the hole is insufficiently cured, resulting in generation of cracks. Since it becomes easy, it is not preferable. On the other hand, when the compounding amount of the epoxy resin curing agent (B) exceeds 20 parts by mass, the storage stability is deteriorated and generally the pre-curing speed of the resin composition becomes too fast, and voids are present in the cured product. Since it remains easily, it is not preferable.

前記無機フィラー(C)としては、周期律表のIIa族の元素の塩、例えば炭酸カルシウム、硫酸バリウム、炭酸マグネシウム等を用いることができ、特に炭酸カルシウムが好ましい。従来、プリント配線板のスルーホール等の穴埋め用液状熱硬化性樹脂組成物では、無機フィラーとしてシリカが一般に用いられている。しかしながら、後述する表5に示されるように、無機フィラーとしてシリカを用いた場合、デラミが発生し易くなるので好ましくない。   As the inorganic filler (C), salts of Group IIa elements of the periodic table, such as calcium carbonate, barium sulfate, magnesium carbonate, etc., can be used, and calcium carbonate is particularly preferable. Conventionally, silica is generally used as an inorganic filler in liquid thermosetting resin compositions for filling holes such as through-holes in printed wiring boards. However, as shown in Table 5 described later, when silica is used as the inorganic filler, delamination is likely to occur, which is not preferable.

無機フィラー(C)の平均粒径は、0.1μm以上、25μm以下、好ましくは0.5〜10μm、より好ましくは1〜10μmであることが望ましい。
また、無機フィラー(C)の形状は、球状、針状、板状、鱗片状、中空状、不定形、六角状、キュービック状、薄片状等が挙げられるが、高充填性の点からは球状が好ましい。
The average particle size of the inorganic filler (C) is 0.1 μm or more and 25 μm or less, preferably 0.5 to 10 μm, more preferably 1 to 10 μm.
Examples of the shape of the inorganic filler (C) include a spherical shape, a needle shape, a plate shape, a scale shape, a hollow shape, an indeterminate shape, a hexagonal shape, a cubic shape, and a flake shape. Is preferred.

また、無機フィラー(C)の配合量は、組成物全体量の45〜85質量%が好ましい。45質量%未満では、デラミが発生し易くなり、一方、85質量%を超えると、液状ペースト化が難しく、印刷性、穴埋め充填性などが得られなくなる。   Moreover, the compounding quantity of an inorganic filler (C) has preferable 45-85 mass% of the composition whole quantity. If it is less than 45% by mass, delamination tends to occur. On the other hand, if it exceeds 85% by mass, it becomes difficult to form a liquid paste, and printability, hole filling and filling properties cannot be obtained.

本発明の液状熱硬化性樹脂組成物では、エポキシ樹脂として主として液状の2官能エポキシ樹脂を用いている場合、必ずしも希釈溶剤を用いる必要はないが、組成物の粘度を調整するために、ボイドが発生しない程度に希釈溶剤を添加してもよい。   In the liquid thermosetting resin composition of the present invention, when a liquid bifunctional epoxy resin is mainly used as an epoxy resin, it is not always necessary to use a diluting solvent. However, in order to adjust the viscosity of the composition, voids are not used. A diluting solvent may be added to such an extent that it does not occur.

希釈溶剤としては、メチルエチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類;酢酸エチル、酢酸ブチル、及び上記グリコールエーテル類の酢酸エステル化物などのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコールなどのアルコール類;オクタン、デカンなどの脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサなどの石油系溶剤などが挙げられる。   Diluting solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol mono Glycol ethers such as ethyl ether and triethylene glycol monoethyl ether; Esters such as ethyl acetate, butyl acetate and acetic acid ester of the above glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol and propylene glycol; Octane And aliphatic hydrocarbons such as decane; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha.

さらに本発明の熱硬化性樹脂組成物には、必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラックなどの公知慣用の着色剤、保管時の保存安定性を付与するためにハイドロキノン、ハイドロキノンモノメチルエーテル、tert−ブチルカテコール、ピロガロール、フェノチアジンなどの公知慣用の熱重合禁止剤、クレー、カオリン、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤もしくはチキソトロピー剤、シリコーン系、フッ素系、高分子系などの消泡剤及び/又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤などの密着性付与剤のような公知慣用の添加剤類を配合することができる。特に、有機ベントナイトを用いた場合、穴部表面からはみ出る予備硬化物部分が研磨・除去し易い突出した状態に形成され易く、研磨性に優れたものとなるので好ましい。   Further, the thermosetting resin composition of the present invention may be applied to known and commonly used colorings such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, and naphthalene black. In order to impart storage stability during storage, known conventional thermal polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, tert-butylcatechol, pyrogallol, phenothiazine, clay, kaolin, organic bentonite, montmorillonite, etc. Such as thickeners or thixotropic agents, silicone-based, fluorine-based, polymer-based antifoaming agents and / or leveling agents, imidazole-based, thiazole-based, triazole-based, silane coupling agents, etc. It can be blended additives such conventionally known. In particular, when organic bentonite is used, a precured product portion protruding from the surface of the hole portion is easily formed in a protruding state that can be easily polished and removed, and is excellent in polishing properties.

かくして得られる本発明の液状熱硬化性樹脂組成物は、従来より使用されている方法、例えばスクリーン印刷法、ロールコーティング法、ダイコーティング法等を利用してプリント配線板のバイアホールやスルーホール等の穴部に容易に充填することができる。
以下、添付図面を参照しながら、プリント配線板の穴部絶縁層及び外層絶縁層(ソルダーレジスト層や絶縁樹脂層)の形成について具体的に説明する。なお、添付図面は、コア基板として両面基板を用いた例を示しているが、多層プリント配線板についても同様に適用できる。
The liquid thermosetting resin composition of the present invention thus obtained is a conventionally used method such as a screen printing method, a roll coating method, a die coating method, etc. It is possible to easily fill the holes.
Hereinafter, the formation of the hole insulating layer and the outer insulating layer (solder resist layer and insulating resin layer) of the printed wiring board will be specifically described with reference to the accompanying drawings. The attached drawings show an example in which a double-sided board is used as a core board, but the present invention can be similarly applied to a multilayer printed wiring board.

(1)穴埋め
まず、図1(a)に示すようなコア基板1のめっきスルーホール3(コア基板として多層プリント配線板を用いる場合には、めっきスルーホールの他にさらにバイアホール等の穴部)に、図1(b)に示すように本発明の液状熱硬化性樹脂組成物を充填する。具体的には、スルーホール部分に開口を設けたマスクを基板上に載置し、印刷法等により塗布したり、ドット印刷法などにより、スルーホール内に容易に充填できる。コア基板1としては、銅箔をラミネートしたガラスエポキシ基板やポリイミド基板、ビスマレイミド−トリアジン樹脂基板、フッ素樹脂基板などの樹脂基板、セラミック基板、金属基板などの基板2にドリルで貫通孔を明け、貫通孔の壁面及び銅箔表面に無電解めっきあるいはさらに電解めっきを施して、めっきスルーホール3及び導体回路層4を形成したものを好適に用いることができる。めっきとしては銅めっきが一般に用いられる。
(1) Filling holes First, plated through holes 3 of the core substrate 1 as shown in FIG. 1A (in the case of using a multilayer printed wiring board as the core substrate, holes such as via holes in addition to the plated through holes) ) Is filled with the liquid thermosetting resin composition of the present invention as shown in FIG. Specifically, a mask having an opening in the through hole portion can be placed on the substrate and applied by a printing method or the like, or can be easily filled into the through hole by a dot printing method or the like. As the core substrate 1, a through hole is drilled in a substrate 2 such as a glass epoxy substrate laminated with copper foil, a polyimide substrate, a bismaleimide-triazine resin substrate, a fluororesin substrate, a ceramic substrate, a metal substrate, What formed the plated through hole 3 and the conductor circuit layer 4 by performing electroless plating or further electrolytic plating on the wall surface of the through hole and the copper foil surface can be suitably used. Copper plating is generally used as the plating.

(2)研磨
次に、充填物を予備硬化する。例えば約90〜130℃で約30〜90分程度加熱して予備硬化させる。好ましくは、約90〜110℃で一次予備硬化させた後、約110〜130℃で二次予備硬化させる。このようにして予備硬化された硬化物の硬度は比較的に低いため、基板表面からはみ出している不必要部分を物理研磨により容易に除去でき、平坦面とすることができる。なお、ここでいう「予備硬化」又は「予備硬化物」とは、一般に、エポキシの反応率が80%〜97%の状態のものをいう。また、上記予備硬化物の硬度は、予備硬化の加熱時間、加熱温度を変えることによってコントロールすることができる。その後、図1(c)に示すように、スルーホールからはみ出した予備硬化物5の不要部分を研磨により除去して平坦化する。研磨は、ベルトサンダーやバフ研磨等により好適に行なうことができる。
(2) Polishing Next, the filler is precured. For example, it is pre-cured by heating at about 90 to 130 ° C. for about 30 to 90 minutes. Preferably, the primary precuring is performed at about 90 to 110 ° C, followed by the secondary precuring at about 110 to 130 ° C. Since the hardness of the cured product preliminarily cured in this manner is relatively low, unnecessary portions protruding from the substrate surface can be easily removed by physical polishing, and a flat surface can be obtained. The “pre-cured” or “pre-cured product” as used herein generally refers to those having an epoxy reaction rate of 80% to 97%. The hardness of the precured product can be controlled by changing the precuring heating time and heating temperature. Then, as shown in FIG.1 (c), the unnecessary part of the precured material 5 which protruded from the through hole was removed by grinding | polishing, and it planarizes. Polishing can be suitably performed by belt sander, buffing or the like.

(3)外層絶縁層の形成
その後、基板表面を必要に応じてバフ研磨や粗化処理により前処理を施した後、図1(d)に示すように外層絶縁層6を形成する。この前処理によりアンカー効果に優れた粗化面が形成されるので、その後施される外層絶縁層6との密着性に優れたものとなる。外層絶縁層6は、その後に行われる処理に応じてソルダーレジスト層や絶縁樹脂層、あるいは保護マスクなどであり、従来公知の各種熱硬化性樹脂組成物や光硬化性・熱硬化性樹脂組成物等の硬化性樹脂組成物を塗布したり、あるいはこれらの硬化性樹脂組成物をキャリアフィルム上に塗布し、溶剤を乾燥させた樹脂シート(ドライフィルム)や、ガラスクロス、ガラス及びアラミド不織布等のシート状繊維質基材に塗工及び/叉は含浸させて半硬化させた樹脂シート(プリプレグシート)をラミネートして形成することができる。外層絶縁層に微細なパターンを形成する場合には、光硬化性・熱硬化性樹脂組成物やそのドライフィルムを用いることが好ましい。その後、約130〜180℃で約30〜90分程度加熱して本硬化(仕上げ硬化)し(外層絶縁層の形成に光硬化性・熱硬化性樹脂組成物を用いた場合には周知の方法に従って乾燥(仮硬化)し露光した後、本硬化し)、外層絶縁層6を形成する。なお、上記硬化性樹脂組成物に配合されるフィラーとしても、前記した理由により、前記穴埋め用の熱硬化性樹脂組成物と同様に周期律表のIIa族の元素の塩を用いることが好ましい。
(3) Formation of outer insulating layer After that, the substrate surface is pretreated by buffing or roughening as necessary, and then the outer insulating layer 6 is formed as shown in FIG. Since the roughened surface excellent in the anchor effect is formed by this pretreatment, the adhesiveness with the outer insulating layer 6 applied thereafter is excellent. The outer insulating layer 6 is a solder resist layer, an insulating resin layer, a protective mask, or the like depending on the processing performed thereafter, and various conventionally known thermosetting resin compositions and photocurable / thermosetting resin compositions. Such as resin sheet (dry film), glass cloth, glass and aramid non-woven fabric, etc. that are applied with a curable resin composition such as A sheet-like fibrous base material can be formed by laminating a resin sheet (prepreg sheet) that has been applied and / or impregnated and semi-cured. When a fine pattern is formed on the outer insulating layer, it is preferable to use a photocurable / thermosetting resin composition or a dry film thereof. Thereafter, the film is heated at about 130 to 180 ° C. for about 30 to 90 minutes to be fully cured (finish cured) (when a photocurable / thermosetting resin composition is used for forming the outer insulating layer, a known method is used). Then, the outer insulating layer 6 is formed by drying (temporary curing) and exposing to light followed by main curing. In addition, as a filler mix | blended with the said curable resin composition, it is preferable to use the salt of the IIa group element of a periodic table similarly to the said thermosetting resin composition for said hole filling for the reason mentioned above.

コア基板1として図1(a)に示すような両面基板を用いた場合には、さらに周知の方法に従って無電解めっき及び電解めっきによる導体回路層の形成と、層間樹脂絶縁層の形成を交互に繰り返し、必要に応じてバイアホールの形成(層間樹脂絶縁層が感光性樹脂を含有する場合には露光、現像処理にて行ない、熱硬化性樹脂や熱可塑性樹脂を含有する場合にはレーザ光にて行う)を行うことによって、多層プリント配線板を形成することもできる。
なお、層間樹脂絶縁層の材料としては、樹脂付き銅箔、ドライフィルム、プリプレグ等を用いることができる。
When a double-sided substrate as shown in FIG. 1 (a) is used as the core substrate 1, the formation of the conductor circuit layer by electroless plating and electrolytic plating and the formation of the interlayer resin insulation layer are alternately performed according to a well-known method. Repeatedly, if necessary, via holes are formed (if the interlayer resin insulation layer contains a photosensitive resin, it is exposed and developed, and if it contains a thermosetting resin or a thermoplastic resin, the laser beam is used. In this case, a multilayer printed wiring board can be formed.
In addition, as a material of an interlayer resin insulation layer, a copper foil with resin, a dry film, a prepreg, or the like can be used.

以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものでないことはもとよりである。なお、以下において「部」とあるのは、特に断りのない限り全て質量基準である。   EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following description, “parts” are all based on mass unless otherwise specified.

実施例1〜7
下記表1に列挙した各成分を表1に示す割合で配合し、予備混合した後、3本ロールミルで練肉分散させて熱硬化性樹脂組成物のペーストを得た。
Examples 1-7
The components listed in Table 1 below were blended in the proportions shown in Table 1, preliminarily mixed, and then kneaded with a three-roll mill to obtain a thermosetting resin composition paste.

Figure 0005238342
Figure 0005238342

比較例1〜5
下記表2に列挙した各成分を表2に示す割合で配合し、予備混合した後、3本ロールミルで練肉分散させて熱硬化性樹脂組成物のペーストを得た。
Comparative Examples 1-5
The components listed in Table 2 below were blended in the proportions shown in Table 2, premixed, and then kneaded with a three-roll mill to obtain a paste of a thermosetting resin composition.

Figure 0005238342
Figure 0005238342

前記実施例1〜7及び比較例1〜5の熱硬化性樹脂組成物に用いたエポキシ樹脂のみ(2種類のエポキシ樹脂を用いた場合にはそれらの混合物、単独のエポキシ樹脂を用いた場合にはそれ自体)について、以下の方法で25℃での粘度を測定した。また、実施例1〜7及び比較例4、5においては、液状の2官能エポキシ樹脂と、固形もしくは半固形の3官能以上のエポキシ樹脂を組み合わせて用いたので、液状エポキシ樹脂に対する固形もしくは半固形のエポキシ樹脂の溶解性を目視にて評価した。その試験結果を表3に示す。なお、実施例7の場合、25℃での粘度が高いため印刷等の作業性の点で好ましくないので、粘度調整を行うことが好ましい。   Only the epoxy resins used in the thermosetting resin compositions of Examples 1 to 7 and Comparative Examples 1 to 5 (in the case of using two types of epoxy resins, a mixture thereof, in the case of using a single epoxy resin) Itself), the viscosity at 25 ° C. was measured by the following method. In Examples 1 to 7 and Comparative Examples 4 and 5, since a liquid bifunctional epoxy resin and a solid or semisolid trifunctional or higher epoxy resin were used in combination, the solid or semisolid with respect to the liquid epoxy resin was used. The solubility of the epoxy resin was visually evaluated. The test results are shown in Table 3. In the case of Example 7, since the viscosity at 25 ° C. is high, it is not preferable from the viewpoint of workability such as printing, so it is preferable to adjust the viscosity.

25℃での粘度:
試料を0.2ml採取し、コーンプレート型粘度計(東機産業(株)製TV−33)を用いて、25℃、回転数5rpmの30秒値を粘度とした。
Viscosity at 25 ° C:
A sample of 0.2 ml was collected, and a 30 second value at 25 ° C. and a rotation speed of 5 rpm was defined as a viscosity using a cone plate viscometer (TV-33 manufactured by Toki Sangyo Co., Ltd.).

Figure 0005238342
Figure 0005238342

TMA(熱機械分析):
前記実施例1〜6及び比較例1、2の各穴埋め用熱硬化性樹脂組成物を、GTS−MP箔(古河サーキットフォイル社製)の光沢面側(銅箔)上にアプリケーターにより塗布し、熱風循環式乾燥炉にて150℃で60分間、硬化させた。その後、硬化物を銅箔より剥離した後、測定サイズにサンプルを切り出し、TMA測定に供した。
TMA測定は、サンプルを10℃/分の昇温速度で室温より300℃まで昇温して実施し、ガラス転移点Tg、及びTg以下の領域における熱膨張率CTE(α1)とTg以上の領域における熱膨張率CTE(α2)を測定した。
その結果を表4に示す。
TMA (Thermo-mechanical analysis):
The thermosetting resin compositions for filling holes in Examples 1 to 6 and Comparative Examples 1 and 2 were applied on the glossy surface side (copper foil) of GTS-MP foil (manufactured by Furukawa Circuit Foil) with an applicator, Curing was carried out at 150 ° C. for 60 minutes in a hot air circulating drying oven. Then, after peeling hardened | cured material from copper foil, the sample was cut out to measurement size and it used for the TMA measurement.
TMA measurement was performed by raising the temperature of the sample from room temperature to 300 ° C. at a heating rate of 10 ° C./min. The glass transition temperature Tg and the thermal expansion coefficient CTE (α1) in the region below Tg and the region above Tg The coefficient of thermal expansion CTE (α2) was measured.
The results are shown in Table 4.

Figure 0005238342
表4に示す結果から明らかなように、2官能の液状エポキシ樹脂のみを含有する液状熱硬化性樹脂組成物を用いた比較例1、2の場合、硬化物のガラス転移点Tgが実施例1〜6の場合に比べて低く、また、ヒートサイクルにより熱膨張率の変化率も大きかった。
Figure 0005238342
As is apparent from the results shown in Table 4, in the case of Comparative Examples 1 and 2 using a liquid thermosetting resin composition containing only a bifunctional liquid epoxy resin, the glass transition point Tg of the cured product is Example 1. It was low as compared with the case of ˜6, and the rate of change in the coefficient of thermal expansion was also large due to the heat cycle.

信頼性試験:
前記実施例1〜7及び比較例1〜5の各穴埋め用熱硬化性樹脂組成物を用いて、下記の方法で穴埋め+プリプレグ試験用基板及び穴埋め+ソルダーマスク形成基板を作製し、下記の試験方法で、図2に示すデラミXの発生や内部クラックYの発生の有無を調査した。
その結果を表5に示す。
Reliability test:
Using the thermosetting resin compositions for filling holes in Examples 1 to 7 and Comparative Examples 1 to 5, hole filling + prepreg test substrates and hole filling + solder mask forming substrates were prepared by the following methods, and the following tests were performed. The method was examined for the occurrence of delamination X and internal crack Y shown in FIG.
The results are shown in Table 5.

穴埋め+プリプレグ試験用基板の作製:
厚さ1.6mm、めっきスルーホール径0.25mm、スルーホール・ピッチ1mmの両面基板(パターン形成なし、スルーホール数25個)を前処理として酸洗した後、半自動印刷機(セリア社製)により熱硬化性樹脂組成物を穴埋め印刷した。次いで、熱風循環式乾燥炉にて150℃で60分間、硬化させた。その後、ハイカットバフ#320(住友3M社製)を用いたバフ研磨機((株)石井表記製)により、硬化物の基板表面からはみ出している部分を研磨した。
次いで、前処理としてMEC社製のCZ−8100(1μmエッチング)+CL−8300処理を行った後、基板両面に厚さ0.1mmのプリプレグ(松下電工(株)製R−1661 FR−4相当)及び銅箔(古河サーキットフォイル社製GTS−MP−18)をプレス機(北川精機(株)製KVHC−PRESS)によりプレス成型した。
Fabrication of hole filling + prepreg substrate:
After pickling a double-sided board with a thickness of 1.6 mm, plated through hole diameter of 0.25 mm, and through hole pitch of 1 mm (no pattern formation, 25 through holes) as a pretreatment, semi-automatic printing machine (manufactured by Ceria) The hole was printed with the thermosetting resin composition. Then, it was cured at 150 ° C. for 60 minutes in a hot air circulation type drying furnace. Then, the part which protruded from the board | substrate surface of hardened | cured material was grind | polished with the buff grinder (product made from Ishii Co., Ltd.) using high cut buff # 320 (made by Sumitomo 3M).
Next, after performing CZ-8100 (1 μm etching) + CL-8300 treatment made by MEC as pretreatment, a prepreg having a thickness of 0.1 mm on both sides of the substrate (equivalent to R-1661 FR-4 made by Matsushita Electric Works Co., Ltd.) And copper foil (GTS-MP-18 manufactured by Furukawa Circuit Foil Co., Ltd.) was press-molded with a press machine (KVHC-PRESS manufactured by Kitagawa Seiki Co., Ltd.).

穴埋め+プリプレグ試験用基板の試験・評価方法:
上記のようにプレス成型した試験用基板を、288℃のはんだ液中に10秒間、5回浸漬した後、室温まで放冷した。得られた試験用基板を断面観察用に研磨した後、光学顕微鏡で観察し、デラミ及び穴埋め硬化物の内部クラックの発生の有無を評価した。デラミについては、観察した穴数に対するデラミが発生したNG穴の割合で評価し、NG穴がない場合を○とした。内部クラックについては、クラックの発生がない場合を○、クラック発生ありの場合を×とした。
Method for testing and evaluating hole filling + substrate for prepreg testing:
The test substrate press-molded as described above was immersed in a 288 ° C. solder solution for 10 seconds 5 times, and then allowed to cool to room temperature. The obtained test substrate was polished for cross-sectional observation and then observed with an optical microscope to evaluate the presence of delamination and internal cracks in the hole-filled cured product. About delamination, it evaluated by the ratio of the NG hole which the delamination generate | occur | produced with respect to the number of holes observed, and set it as (circle) when there is no NG hole. As for the internal cracks, the case where no crack was generated was marked with ◯, and the case where crack was generated was marked with x.

穴埋め+ソルダーマスク試験用基板の作製:
厚さ1.6mm、めっきスルーホール径0.25mm、スルーホール・ピッチ1mmの両面基板(パターン形成なし、スルーホール数25個)を前処理として酸洗した後、半自動印刷機(セリア社製)により熱硬化性樹脂組成物を穴埋め印刷した。次いで、熱風循環式乾燥炉にて150℃で60分間、硬化させた。その後、ハイカットバフ#320(住友3M社製)を用いたバフ研磨機((株)石井表記製)により、硬化物の基板表面からはみ出している部分を研磨した。
次いで、前処理としてハイカットバフ#800(住友3M社製)を用いたバフ研磨機((株)石井表記製)により研磨処理を行った後、基板両面に太陽インキ製造(株)製のソルダーレジスト(PSR−4000SP08)をスプレーコートし、熱風循環式乾燥炉にて80℃で30分乾燥(仮硬化)させた後、ORC社製露光機(HMW−680)により露光量300mJ/cmで露光し、熱風循環式乾燥炉にて150℃で60分間本硬化を行った。
Fabrication of hole filling + solder mask test substrate:
After pickling a double-sided board with a thickness of 1.6 mm, plated through hole diameter of 0.25 mm, and through hole pitch of 1 mm (no pattern formation, 25 through holes) as a pretreatment, semi-automatic printing machine (manufactured by Ceria) The hole was printed with the thermosetting resin composition. Then, it was cured at 150 ° C. for 60 minutes in a hot air circulation type drying furnace. Then, the part which protruded from the board | substrate surface of hardened | cured material was grind | polished with the buff grinder (product made from Ishii Co., Ltd.) using high cut buff # 320 (made by Sumitomo 3M).
Next, after performing a polishing process with a buffing machine (manufactured by Ishii Co., Ltd.) using a high-cut buff # 800 (manufactured by Sumitomo 3M) as a pretreatment, a solder resist manufactured by Taiyo Ink Manufacturing Co., Ltd. is formed on both sides of the substrate. (PSR-4000SP08) is spray-coated and dried (preliminary curing) at 80 ° C. for 30 minutes in a hot-air circulating drying furnace, and then exposed at an exposure amount of 300 mJ / cm 2 using an ORC exposure machine (HMW-680). Then, main curing was performed at 150 ° C. for 60 minutes in a hot air circulation type drying furnace.

穴埋め+ソルダーマスク試験用基板の試験・評価方法:
上記のように作製した試験用基板を、260℃のはんだ液中に10秒間、5回浸漬した後、室温まで放冷した。得られた試験用基板を目視及び光学顕微鏡で観察し、剥離の程度を確認した。
Hole filling + solder mask test board testing and evaluation methods:
The test substrate prepared as described above was immersed in a 260 ° C. solder solution for 10 seconds 5 times, and then allowed to cool to room temperature. The obtained test substrate was observed visually and with an optical microscope to confirm the degree of peeling.

Figure 0005238342
表5に示す結果から明らかなように、本発明の実施例1〜7の液状熱硬化性樹脂組成物を用いて穴埋め硬化物層を形成した場合、その上にプリプレグ及びソルダーマスクのいずれの外層絶縁層を形成した場合にも、デラミや内部クラックは発生しなかった。これに対し、2官能の液状エポキシ樹脂のみを含有する液状熱硬化性樹脂組成物を用いて穴埋め硬化物層を形成した比較例1、2の場合、デラミや内部クラックが発生した。また、3官能以上のエポキシ樹脂のみを含有する液状熱硬化性樹脂組成物を用いて穴埋め硬化物層を形成した比較例3〜5の場合、内部クラックが発生した。
Figure 0005238342
As is clear from the results shown in Table 5, when the hole-filled cured product layer was formed using the liquid thermosetting resin compositions of Examples 1 to 7 of the present invention, any outer layer of the prepreg and the solder mask was formed thereon. Even when the insulating layer was formed, neither delamination nor internal cracks occurred. On the other hand, in the case of Comparative Examples 1 and 2 in which the hole-filled cured product layer was formed using the liquid thermosetting resin composition containing only the bifunctional liquid epoxy resin, delamination and internal cracks occurred. Moreover, in the case of Comparative Examples 3-5 which formed the hole-filling hardened | cured material layer using the liquid thermosetting resin composition containing only a trifunctional or more than epoxy resin, the internal crack generate | occur | produced.

プリント配線板の穴部絶縁層及び外層絶縁層の形成工程を示す概略断面図である。It is a schematic sectional drawing which shows the formation process of the hole part insulating layer and outer layer insulating layer of a printed wiring board. プリント配線板の穴部絶縁層周辺部と外層絶縁層のデラミの状態を示す概略断面図である。It is a schematic sectional drawing which shows the state of the delamination of the outer peripheral insulating layer and the peripheral part of a hole insulating layer of a printed wiring board.

符号の説明Explanation of symbols

1 コア基板
2 基板
3 めっきスルーホール
4 導体回路層
5 穴部絶縁層(熱硬化性樹脂組成物の硬化物)
6 外層絶縁層
X デラミ
Y 内部クラック
DESCRIPTION OF SYMBOLS 1 Core board | substrate 2 Board | substrate 3 Plating through hole 4 Conductor circuit layer 5 Hole part insulating layer (hardened | cured material of a thermosetting resin composition)
6 Outer insulation layer X Delami Y Internal crack

Claims (3)

(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、及び(C)無機フィラーを含有し、プリント配線板の穴部に充填される熱硬化性樹脂組成物であって、上記エポキシ樹脂(A)は3官能以上のエポキシ樹脂(A−2)を液状の2官能エポキシ樹脂(A−1)に溶解したものであり、上記無機フィラー(C)は、シリカを含まず、周期律表のIIa族の元素の塩からなり、且つ、無機フィラー(C)の配合割合は組成物全体の45〜85質量%であることを特徴とする穴埋め用熱硬化性樹脂組成物。 (A) An epoxy resin, (B) an epoxy resin curing agent, and (C) a thermosetting resin composition that contains an inorganic filler and is filled in a hole of a printed wiring board, the epoxy resin (A) Is a trifunctional or higher functional epoxy resin (A-2) dissolved in a liquid bifunctional epoxy resin (A-1), and the inorganic filler (C) does not contain silica and is a group IIa in the periodic table. of Ri Do from the salts of the elements, and, filling a thermosetting resin composition, wherein the mixing ratio is 45 to 85% by weight of the total composition of an inorganic filler (C). 前記エポキシ樹脂(A)は、3官能以上のエポキシ樹脂(A−2)を液状の2官能エポキシ樹脂(A−1)に溶解した後の粘度が25℃で5〜100dPa・sであることを特徴とする請求項1に記載の穴埋め用熱硬化性樹脂組成物。 The epoxy resin (A) has a viscosity of 5 to 100 dPa · s at 25 ° C. after the trifunctional or higher functional epoxy resin (A-2) is dissolved in the liquid bifunctional epoxy resin (A-1). The thermosetting resin composition for hole filling according to claim 1. プリント配線板の穴部が、前記請求項1又は2に記載の熱硬化性樹脂組成物の硬化物で充填されていることを特徴とするプリント配線板。   A printed wiring board, wherein a hole of the printed wiring board is filled with a cured product of the thermosetting resin composition according to claim 1 or 2.
JP2008121456A 2008-05-07 2008-05-07 Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same Active JP5238342B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008121456A JP5238342B2 (en) 2008-05-07 2008-05-07 Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same
CN2009101365223A CN101575439B (en) 2008-05-07 2009-05-06 Porefilling heat curing resin composition
TW098115003A TWI455954B (en) 2008-05-07 2009-05-06 a thermosetting resin composition for hole filling, a combination unit of the composition and a photocurable thermosetting resin composition for forming a solder resist layer, and a printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121456A JP5238342B2 (en) 2008-05-07 2008-05-07 Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2009269994A JP2009269994A (en) 2009-11-19
JP5238342B2 true JP5238342B2 (en) 2013-07-17

Family

ID=41270524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121456A Active JP5238342B2 (en) 2008-05-07 2008-05-07 Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same

Country Status (2)

Country Link
JP (1) JP5238342B2 (en)
CN (1) CN101575439B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739631B2 (en) * 2010-09-27 2015-06-24 太陽ホールディングス株式会社 Thermosetting resin filler
JP5758463B2 (en) * 2013-03-26 2015-08-05 太陽インキ製造株式会社 Epoxy resin composition, hole filling composition, and printed wiring board using the same
CN104072946B (en) * 2013-03-28 2017-03-22 太阳油墨(苏州)有限公司 Thermosetting resin composition and printed circuit board filled with the resin composition
CN104078547A (en) * 2013-03-28 2014-10-01 立诚光电股份有限公司 Film substrate and manufacturing method thereof
CN103709605B (en) * 2013-12-30 2016-04-20 景旺电子科技(龙川)有限公司 A kind of composition epoxy resin, preparation method and consent aluminium base
US9540529B2 (en) * 2015-01-13 2017-01-10 Xerox Corporation Solder mask compositions for aerosol jet printing
US10269623B2 (en) * 2015-06-22 2019-04-23 Intel Corporation Image tone-reversal with a dielectric using bottom-up cross-linking for back end of line (BEOL) interconnects
JP6098848B2 (en) * 2015-09-08 2017-03-22 山栄化学株式会社 Manufacturing method of hole-filled printed wiring board
TWI557177B (en) 2015-12-16 2016-11-11 財團法人工業技術研究院 Low dielectric constant and solventless resin composition and substrate structure
CN106847705B (en) * 2016-09-21 2019-05-07 新华三技术有限公司 By the method and chip-packaging structure of chip package PCB
CN108203497B (en) * 2016-12-20 2021-04-13 太阳油墨(苏州)有限公司 Epoxy resin composition for filling holes in printed wiring board, cured product, and printed wiring board using same
JP6179685B2 (en) * 2017-02-14 2017-08-16 山栄化学株式会社 Curable resin composition for hole filling
CN109429432B (en) * 2017-08-29 2021-09-10 湖北龙腾电子科技有限公司 PCB (printed circuit board) plugging plate processing technology
CN109843000A (en) * 2019-03-26 2019-06-04 新华三技术有限公司 The preparation method and pcb board of pcb board
CN114442425A (en) * 2020-10-30 2022-05-06 常州正洁智造科技有限公司 Curable resin composition, solder resist film formed from the same, interlayer insulating material, and printed wiring board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739600B2 (en) * 1999-07-06 2006-01-25 太陽インキ製造株式会社 Liquid thermosetting resin composition and method for permanently filling printed wiring board using the same
CN1182197C (en) * 2000-07-13 2004-12-29 日本特殊陶业株式会社 Size for filling through-hole and printing circuit board with the same size
KR100797061B1 (en) * 2000-11-29 2008-01-23 타이요 잉크 메뉴펙츄어링 컴퍼니, 리미티드 Liquid thermosetting resin composition, printed wiring boards and process for their production
JPWO2003059975A1 (en) * 2001-12-28 2005-05-19 太陽インキ製造株式会社 Photosensitive resin composition and printed wiring board
JP2005220341A (en) * 2004-01-08 2005-08-18 Ngk Spark Plug Co Ltd Filler, wiring board using the same, and producing method for the wiring board

Also Published As

Publication number Publication date
CN101575439A (en) 2009-11-11
JP2009269994A (en) 2009-11-19
CN101575439B (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5238342B2 (en) Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same
JP6268310B2 (en) Insulating thermosetting resin composition, dry film, cured product, and printed wiring board
JP4298291B2 (en) Liquid thermosetting resin composition and printed wiring board
JP5293598B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP5758463B2 (en) Epoxy resin composition, hole filling composition, and printed wiring board using the same
JPWO2008087972A1 (en) Insulating resin sheet laminate, multilayer printed wiring board formed by laminating the insulating resin sheet laminate
JP7478659B2 (en) CURABLE RESIN COMPOSITION, CURED PRODUCT THEREOF, AND PRINTED WIRING BOARD
JPWO2008126411A1 (en) Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for producing multilayer printed wiring board
TW200846412A (en) Thermosetting resin composition and method for manufacturing printed circuit substrate using the same
JP4620967B2 (en) Thermosetting resin composition for permanent hole filling
KR102235446B1 (en) Thermosetting resin composition, cured product thereof, and printed wiring board
JP5325462B2 (en) Thermosetting resin composition and printed wiring board
JPH11269355A (en) Liquid thermosetting composition for filler and permanent filling of printed circuit board with the same
JP2012069879A (en) Thermosetting resin filler
JP6198483B2 (en) Thermosetting resin composition and printed wiring board
KR20230156726A (en) Curable Resin Composition
CN108203497B (en) Epoxy resin composition for filling holes in printed wiring board, cured product, and printed wiring board using same
TWI656172B (en) Solvent-free resin composition and uses of the same
JP2013138124A (en) Multilayer printed board manufacturing method, multilayer printed board manufactured by the manufacturing method, and curable resin composition used in the manufacturing method
CN111378253A (en) Resin filler
CN111378252A (en) Resin filler
JP2013076004A (en) Thermosetting resin composition for laser beam machining, cured product, and printed wiring board
JP5112944B2 (en) Combination unit and printed wiring board of thermosetting resin composition for hole filling and photocurable / thermosetting resin composition for solder mask formation
JP2005317986A (en) Process for producing printed wiring board by use of liquid thermosetting resin composition
TW202342636A (en) Curable resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5238342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250