WO2023132183A1 - Stator of rotating electric machine, rotating electric machine, method for manufacturing stator of rotating electric machine, and method for manufacturing rotating electric machine - Google Patents

Stator of rotating electric machine, rotating electric machine, method for manufacturing stator of rotating electric machine, and method for manufacturing rotating electric machine Download PDF

Info

Publication number
WO2023132183A1
WO2023132183A1 PCT/JP2022/045240 JP2022045240W WO2023132183A1 WO 2023132183 A1 WO2023132183 A1 WO 2023132183A1 JP 2022045240 W JP2022045240 W JP 2022045240W WO 2023132183 A1 WO2023132183 A1 WO 2023132183A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
adhesive
electric machine
stator
laminated
Prior art date
Application number
PCT/JP2022/045240
Other languages
French (fr)
Japanese (ja)
Inventor
覚 袖岡
辰郎 日野
亮介 角木
諭 山代
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023572391A priority Critical patent/JPWO2023132183A1/ja
Publication of WO2023132183A1 publication Critical patent/WO2023132183A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • This application relates to a stator for a rotating electrical machine, a rotating electrical machine, a method for manufacturing a stator for a rotating electrical machine, and a method for manufacturing a rotating electrical machine.
  • a method for solving these problems a method is known in which an adhesive is applied to all core pieces continuously or intermittently on the side surface of the laminated core and cured to form a laminated core.
  • an adhesive is applied to all core pieces continuously or intermittently on the side surface of the laminated core and cured to form a laminated core.
  • Patent Document 1 For example, in the laminated core described in Patent Document 1, all the core pieces are bonded to all the core pieces continuously or intermittently in the axial direction on at least one of the surfaces forming the slot regions of the laminated core. are formed to form a laminated core.
  • a rotating electrical machine is presented in which an insulator is formed on the surface of a laminated core forming a slot region without being adhered to the adhesive portion, and a coil is formed in the slot region via the insulator.
  • the slot regions of the laminated core have adhesive portions and insulators, and thus the slot regions are pressed. , there is a problem that a sufficient coil space cannot be secured, which hinders the realization of a high-performance rotating electric machine.
  • insulators are placed in slot regions as insulating sheets and sandwiched between coils. There is a problem that the contact between the coil and the laminated core results in a defective withstand voltage to the ground, which hinders the realization of a high-performance rotating electric machine.
  • the present application discloses a technique for solving the above-described problems, and provides a high-performance rotating electric machine stator, rotating electric machine, and rotating electric machine without reducing the performance of electrical insulation between the coil and the laminated core. and a method for manufacturing a rotating electric machine.
  • the stator of the rotary electric machine disclosed in the present application is A core piece having an annular core-back portion and a plurality of tooth portions protruding radially inwardly from a core inner peripheral surface radially inward of the core-back portion at intervals in the axial direction.
  • each of the surfaces forming at least one of the slot regions is provided with the an adhesive portion for axially fixing the core pieces; axial end insulators that are in contact with one axial end and the other axial end of the bonding portion and are arranged at both axial ends of the laminated core; and a coil formed in the slot region by winding an electric wire around the teeth.
  • the rotating electric machine disclosed in the present application is The rotating electric machine includes a stator of the rotating electric machine, and a rotor arranged to face the stator with a gap therebetween.
  • a method for manufacturing a stator for a rotating electric machine disclosed in the present application includes: A punching step of punching out a plurality of the core pieces from a plate; an aligning step of axially laminating and aligning the punched core pieces; a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial direction; a dividing step of cutting the core pieces laminated in the axial direction into a plurality of the laminated cores by cutting them in a predetermined length in the axial direction; a disposing step of disposing the axial end insulators on both axial ends of the laminated core while being in contact with one axial end and the other axial end of the adhesive portion.
  • a method for manufacturing a stator for a rotating electric machine disclosed in the present application includes: A convex portion extending in the axial direction is provided on the surface of the bonding portion formed on the tooth portion, The wires forming the first layer of the coil are placed in contact with the radially adjacent protrusions.
  • the fixing step includes an application step of applying an adhesive to the surface forming the slot region; and a curing step of curing the adhesive,
  • the coating step includes A coating jig having a predetermined distance secured on the surface forming the slot region and having a concave portion formed in a portion of the bonding portion facing the convex portion is arranged to form the slot
  • the adhesive is spread in the gap of the distance between the surface and the application jig by capillary action to form a film thickness equal to or less than the gap, and the adhesive is applied to the concave portion of the application jig.
  • the convex portion is formed. Further, in a method for manufacturing a rotating electrical machine disclosed in the present application, the rotating electrical machine is manufactured using the stator manufactured using the method for manufacturing a stator for a rotating electrical machine.
  • a high-performance rotating electric machine can be obtained without deteriorating the performance of electrical insulation between the coil and the laminated core.
  • FIG. 1 is a cross-sectional view showing a configuration of a rotating electric machine according to Embodiment 1;
  • FIG. 2 is a cross-sectional view showing the configuration of the stator of the rotary electric machine shown in FIG. 1;
  • FIG. FIG. 3 is a cross-sectional view of the stator shown in FIG. 2 taken along line MM;
  • 4 is a diagram showing the configuration of one laminated core of the stator shown in FIG. 3;
  • FIG. FIG. 5 is a diagram showing a configuration of the laminated core shown in FIG. 4 before coil installation; 5 is a diagram showing another configuration of the laminated core shown in FIG. 4 before coil installation;
  • FIG. 2 is a flowchart showing a method of manufacturing the rotating electric machine shown in FIG. 1;
  • FIG. 1 is a cross-sectional view showing a configuration of a rotating electric machine according to Embodiment 1;
  • FIG. 2 is a cross-sectional view showing the configuration of the stator of the rotary electric machine shown in FIG
  • FIG. 2 is a diagram showing the configuration of the rotating electric machine manufacturing apparatus shown in FIG. 1 ;
  • FIG. 2 is a perspective view showing a configuration of the laminated core of the rotary electric machine shown in FIG. 1 before bonding;
  • FIG. 9 is a cross-sectional view showing a state of the manufacturing apparatus shown in FIG. 8 at the time of applying an adhesive along line NN;
  • FIG. 10 is a perspective view showing a state in which a shaft end insulator is attached to the laminated core shown in FIG. 9;
  • FIG. 10 is a diagram showing the configuration of one laminated core of the stator of the rotary electric machine according to Embodiment 2;
  • FIG. 13 is a diagram showing a configuration of the laminated core shown in FIG. 12 before coil installation;
  • FIG. 12 is a diagram showing a configuration of the laminated core shown in FIG. 12 before coil installation;
  • FIG. 14 is a perspective view showing the configuration of the laminated core shown in FIG. 13;
  • FIG. 15 is a cross-sectional view taken along line NN of the manufacturing apparatus shown in FIG. 8 in a state where the laminated core shown in FIG. 14 is coated with an adhesive;
  • FIG. 10 is a diagram showing the configuration of one laminated core of the stator of the rotary electric machine according to Embodiment 3;
  • 17 is a flow chart showing a method of manufacturing a rotating electric machine using the laminated core shown in FIG. 16;
  • FIG. 17 is a diagram showing the configuration of a sticking device that sticks an adhesive tape to the laminated core shown in FIG. 16;
  • FIG. 19 is a diagram showing the configuration of the sticking device shown in FIG. 18 at a viewpoint P;
  • FIG. 18 is a viewpoint P;
  • FIG. 6 is an enlarged partial cross-sectional view of the laminated core shown in FIG. 5 taken along line PP;
  • FIG. 12 is an enlarged cross-sectional view taken along the QQ line of a state in which the axial end insulator is attached to the laminated core shown in FIG. 11;
  • FIG. 11 is a perspective view showing a state where a shaft end insulator is attached to a laminated core according to Embodiment 4;
  • FIG. 23 is an enlarged cross-sectional view taken along line RR of a state in which a shaft end insulator is attached to the laminated core shown in FIG. 22;
  • FIG. 9 is a cross-sectional view showing a state of the manufacturing apparatus shown in FIG.
  • FIG. 11 is an enlarged cross-sectional view of a state in which a shaft end insulator is attached to a laminated core according to Embodiment 5;
  • each direction in the rotating electric machine is indicated as a circumferential direction Z, an axial direction Y, a radial direction X, an outer side X1 in the radial direction X, and an inner side X2 in the radial direction X. Therefore, the directions of the stator 10 and the rotor 20, as well as other parts, are the same, and each direction will be described with reference to that direction. Moreover, in each embodiment, a configuration in which the stator is divided for each tooth portion in the circumferential direction Z is shown as an example. Therefore, the one in which the stator is divided in the circumferential direction Z is indicated as a laminated core.
  • FIG. 1 is a cross-sectional view showing the configuration of a rotating electric machine according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing the configuration of the stator of the rotating electric machine shown in FIG.
  • FIG. 3 is a cross-sectional view of the stator shown in FIG. 2 taken along line MM.
  • 4 is a diagram showing the configuration of one laminated core of the stator shown in FIG. 3.
  • FIG. FIG. 5 is a diagram showing the configuration of the laminated core shown in FIG. 4 before coil installation.
  • FIG. 6 is a diagram showing another configuration of the laminated core shown in FIG. 4 before coil installation.
  • FIG. 7 is a flow chart showing a method of manufacturing the rotating electric machine shown in FIG.
  • FIG. 8 is a diagram showing the configuration of the manufacturing apparatus for the rotating electric machine shown in FIG. 1, which is a manufacturing apparatus that interlocks the punching process to the dividing process of the manufacturing method for the rotating electric machine shown in FIG.
  • FIG. 9 is a perspective view showing the configuration of the laminated core of the rotary electric machine shown in FIG. 1 before bonding.
  • FIG. 10 is a cross-sectional view showing a state of the manufacturing apparatus shown in FIG. 11 is a perspective view showing a state in which the axial end insulator is attached to the laminated core shown in FIG. 9.
  • FIG. FIG. 20 is an enlarged partial cross-sectional view of the laminated core shown in FIG. 5 taken along line PP.
  • 21 is an enlarged partial cross-sectional view taken along line QQ of a state in which the axial end insulator is attached to the laminated core shown in FIG. 11.
  • a rotating electrical machine 100 includes a cylindrical frame 1, an upper bracket 2 and a lower bracket 3 that close an opening in the frame 1, a stator 10 as an armature housed in a cylindrical portion of the frame 1, It is arranged in the axial direction Y through bearings 4 and 5 at the axial positions of the upper bracket 2 and the lower bracket 3 of the frame 1, and is fixed to a rotating shaft 6 that is rotatably supported.
  • a rotor 20 that is rotatably disposed on the inner peripheral side of the inner side X2 and that generates a magnetic field is provided.
  • the rotor 20 includes a rotor core 7 fixed to a rotating shaft 6 inserted at the axial position, and a rotor core 7 attached to the outer peripheral surface side of the rotor core 7 and arranged at a pitch set in the circumferential direction Z to form magnetic poles. It is a permanent magnet type rotor provided with a plurality of permanent magnets 8 constituting the rotor.
  • the rotor 20 is not limited to a permanent magnet type rotor, and may be a squirrel cage rotor in which non-insulated rotor conductors are accommodated in slots of the rotor iron core and both sides are short-circuited by short-circuit rings, or an insulated rotor. A wound rotor in which the conductor wires are mounted in the slot regions of the rotor core may also be used.
  • the stator 10 is annularly formed and fixed within the frame 1.
  • the stator 10 includes a laminated core 50 formed by laminating a predetermined number of core pieces 40 in the axial direction Y, and a wire as a core material 601 such as copper or aluminum as shown in FIG. Electrical insulation is provided between the coil 33 formed from the magnet wire as the electric wire 60 having an insulating film as the surface film 602 on the surface and the axial end sides of both ends in the axial direction Y of the laminated core 50 and the coil 33.
  • a shaft end insulator 34 having a function and a function of holding the coil 33 is provided.
  • the shaft end insulator 34 is made of a resin material such as nylon, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polybutylene terephthalate (PBT), or the like.
  • the bonding portion 9 having the function of electrically insulating between the slot region 30 side of the laminated core 50 and the coil 33 is provided.
  • the actual thickness is exaggerated and indicated by a thick black line. Moreover, since this also applies to the following embodiments, the description thereof will be omitted as appropriate.
  • a laminated core 50 is obtained by laminating a large number of core pieces 40 punched in the same shape from a belt-like electromagnetic steel sheet in the axial direction Y and integrating them.
  • the core piece 40 includes a core back portion 41 , tooth portions 42 and shoe portions 43 .
  • the core back portion 41 is formed in an arc shape.
  • the tooth portion 42 is formed extending from the center portion in the circumferential direction Z of the core inner peripheral surface 44 on the inner side X2 in the radial direction X of the core back portion 41 to the inner side X2 in the radial direction X.
  • the shoe portion 43 is formed to extend toward both sides in the circumferential direction Z from the side surface in the circumferential direction Z at the inner X2 end portion in the radial direction X of the tooth portion 42 .
  • the surface along the axial direction Y on the outer side X1 in the radial direction X of the core back portion 41 is defined as the core outer peripheral surface 47, and the inner side X2 in the radial direction X of the core back portion 41 in the axial direction Y.
  • a core inner circumferential surface 44 is defined as a surface along the .
  • the surfaces along the axial direction Y at both ends in the circumferential direction Z of the core back portion 41 are defined as core side surfaces 401 .
  • the surfaces of the core pieces 40 and the laminated core 50 along the axial direction Y at both ends in the circumferential direction Z of the tooth portions 42 are tooth side surfaces 45 .
  • the surface along the axial direction Y of the tip of the inner side X2 in the radial direction X of the tooth portion 42 is defined as the tip surface 48 .
  • a shoe outer peripheral surface 46 is defined as a surface along the axial direction Y on the outer side X1 in the radial direction X of the shoe portion 43 in the core pieces 40 and the laminated core 50 .
  • a surface along the axial direction Y of the circumferential direction Z of the shoe portion 43 is defined as a shoe side surface 49 .
  • a core outer peripheral groove 471 is provided in a part of the core outer peripheral surface 47 . However, it is conceivable that the core outer peripheral groove 471 is not formed.
  • a region surrounded by the core back portion 41, the teeth portion 42, and the shoe portion 43 of the core piece 40 becomes the slot region 30 in which the coil 33 is arranged. Accordingly, the surfaces of the core piece 40 forming the slot region 30 are the core inner peripheral surface 44 of the core back portion 41 , the tooth side surface 45 of the tooth portion 42 , and the shoe outer peripheral surface 46 of the shoe portion 43 .
  • Embodiment 1 a case where the core pieces 40 and the laminated core 50 are divided for each tooth portion 42 in the circumferential direction Z is shown.
  • the magnetic steel sheet that forms the core piece 40 is made of a material with high magnetic permeability and is coated with an insulating coating on its surface. Therefore, even if these are laminated in the axial direction Y, the core pieces 40 adjacent to each other in the axial direction Y are insulated and do not conduct. In order to fix each core piece 40 in this state, the three surfaces of the core inner peripheral surface 44, the tooth side surface 45, and the shoe outer peripheral surface 46, which are the surfaces forming the slot region 30 of the laminated core 50, are covered. Adhesive is continuously applied in the axial direction Y to form an adhesive portion 9, which will be described later, to fix the core pieces 40 in the axial direction Y between laminations.
  • the range in which the adhesive portion 9 is formed may extend not only to the core inner peripheral surface 44, tooth side surface 45, and shoe outer peripheral surface 46, but also to the shoe side surface 49 as shown in FIGS.
  • the bonding portion 9 may be extended to the tip surface 48 .
  • the axial direction Y is extended so as to cover each of the three surfaces of the core inner peripheral surface 44, the tooth side surface 45, and the shoe outer peripheral surface 46, which are the surfaces forming the slot region 30 of the laminated core 50. Since the lamination of the core pieces 40 in the axial direction Y is fixed and the state of insulation is maintained by fixing the adhesive portion 9 continuously formed in the axial direction Y, the eddy current is suppressed and the efficiency of the rotating electric machine can be improved.
  • the bonding portion 9 is formed by all the core pieces 40 laminated in the axial direction Y, that is, the core inner peripheral surfaces 44 of all the slot regions 30 of the laminated core 50, the tooth side surfaces 45, and the shoe outer peripheral surfaces 46. It is formed by coating continuously from one end side to the other end side in the axial direction Y so as to cover all three surfaces. Therefore, the coil 33 can be formed by directly winding the electric wire 60 multiple times around the bonding portion 9 without interposing another insulator.
  • the laminated core 50 is formed by fixing the core pieces 40 in the lamination direction Y (axial direction Y). By being formed continuously in the axial direction Y so as to cover all three surfaces of the outer peripheral surface 46 , it also has a function of electrical insulation between the wires 60 forming the coil 33 and the core pieces 40 . By controlling the thickness of the adhesive portion 9 and the type of adhesive, it is possible to easily satisfy the insulation performance required for the rotary electric machine.
  • a chamfered portion 402 is formed at the corner of the core inner peripheral surface 44 of the core piece 40 and the core side surface 401, and a reservoir portion 901 is formed on the chamfered portion 402.
  • An adhesive is applied and cured to form the adhesive portion 9 . If the pooled portion 901 is formed in the chamfered portion 402 in this way, the number of windings of the electric wire 60 is increased, and the distance between the coil 33 and the core side surface 401 cannot be secured, making it difficult to secure electrical insulation. 6, the insulation distance between the coil 33 and the core side surface 401 can be ensured, and the insulation performance can be ensured, as compared with the case shown in FIG.
  • R-chamfering or providing a step in the X1 direction on the core side surface 401 side of the core inner peripheral surface 44, and forming a reservoir portion 901 in the R-chamfering or the stepped portion are the same. expected to be effective.
  • the core pieces 40 are brought into close contact with each other in the axial direction Y and an adhesive is applied to form the adhesion portion 9 .
  • the adhesive does not enter between the lamination surfaces 411 of the core pieces 40 adjacent to each other in the Y-axis direction. Therefore, the core pieces 40 adjacent to each other in the axial direction Y have lamination surfaces 411 in contact with each other without the bonding portion 9 interposed therebetween.
  • the adhesive enters gaps 414 formed by sagging 412 and burrs 413 between core pieces 40 adjacent in the axial direction Y to form bonded portions 9 .
  • the core pieces 40 adjacent to each other in the axial direction Y can be stacked and fixed in close contact with each other in the axial direction Y without wasting space, and the size of the stator 10 in the axial direction Y can be reduced.
  • the adhesive portion 9 in the gap 414 can strengthen the fixing force.
  • a two-liquid curing adhesive may be used as the adhesive that forms the adhesive portion 9.
  • a two-liquid curing type adhesive consists of a main agent and a curing accelerator, and as the main agent, an epoxy adhesive, an acrylic adhesive, or the like is used. In such a configuration, since there is no heating process, the configuration of the manufacturing equipment can be made compact, and heat energy can be reduced, so that there is an effect of energy saving.
  • the adhesive for forming the adhesive portion 9 for example, a heat-curable adhesive represented by an epoxy-based adhesive may be used.
  • a heat-curable adhesive represented by an epoxy-based adhesive
  • the adhesive adhering to the manufacturing apparatus can be removed simply by wiping it off before thermal curing, thereby improving maintainability.
  • the heat-curable adhesive has a higher heat-resistant temperature than the room-temperature-curable adhesive, the heat resistance of the laminated core 50 is improved.
  • an ultraviolet curable adhesive may be used as the adhesive that forms the adhesive portion 9.
  • an ultraviolet curable adhesive may be used as the adhesive that forms the adhesive portion 9.
  • the bonding portion 9 may be configured by powder coating or electrodeposition coating.
  • the type of coating can be selected according to the usage environment, expanding the range of choices.
  • equipment can be shared with a painting apparatus for painting other parts such as the frame 1 or the brackets 2 and 3, so equipment investment can be suppressed.
  • a method of manufacturing the stator 10 and the rotating electric machine 100 of Embodiment 1 configured as described above will be described with reference to the flow chart of FIG. 7 and FIGS. 8 to 11 .
  • a plate material 301 made of an electromagnetic steel sheet wound in a reel shape is pulled out by an uncoiler, and a hydraulic or electric press machine is driven by a feeding device. 21 from the first direction A.
  • a predetermined shape of the core piece 40 is punched out by the die 22 in the press machine 21 .
  • the punched core pieces 40 are aligned and stacked in the stacking direction Y to form the laminated core 50 as shown in FIG.
  • Alignment can be performed below the pressing machine 21 or inside the mold 22, but as shown in FIG. You can bend it and then align it. Note that the stacking direction Y and the axial direction Y shown above are the same direction.
  • FIG. 10 is a cross section taken along line NN inside the bonding device 23 shown in FIG. 8, showing an example of a state during application of the adhesive. A plurality of core pieces 40 are moved forward in FIG.
  • the positioning jig 231 includes the core inner peripheral surface 44, the tooth side surface 45, the shoe outer peripheral surface 46, and the shoe side surface 49 of the core piece 40 where the adhesive is to be applied, and a gap with a preset distance. 234 is set and the application jig 232 is attached. Furthermore, a hole 233 communicating with the gap 234 is provided. Then, the adhesive 91 before hardening is supplied to the gap 234 through the hole 233 . The adhesive 91 supplied to the gap 234 spreads over the entire gap 234 due to capillary action.
  • the core piece 40 to which the adhesive 91 is applied then proceeds to a curing step ST4 in which heating or ultraviolet irradiation according to the adhesive 91 is performed, and the adhesive portion 9 is formed.
  • the relationship between the gap 234 and the thickness of the adhesive portion 9 is in the relationship of "the distance of the gap 234>the thickness of the adhesive portion 9" due to the influence of the adhesive 91 remaining on the application jig 232 side and the effect of curing shrinkage.
  • the thickness of the adhesive part 9 can be controlled by adjusting the distance of the gap 234 in order to obtain the required insulation performance.
  • the bonding portion 9 is cut by the dividing device 24 of FIG. 8 so as to have a predetermined length in the axial direction Y, discharged in the third direction C, and laminated.
  • a plurality of cores 50 are formed.
  • the bonding portion 9 may be cut by mechanically applying a shearing force, or may be burned off by laser irradiation or the like.
  • the axial end insulator 34 is attached to the laminated core 50 as shown in FIG. 11 by way of example.
  • portions of the bonding portion 9 shown in FIG. 11 that are continuously formed along the axial direction Y are not indicated by thick black lines.
  • the width H1 can be made as small as possible, that is, the width H1 can be brought closer to the width H2+H3, so that the slot region 30 in which the coil 33 is formed can be widened. 100 power can be improved.
  • the shaft end insulator 34 is fixed to the laminated core 50 by inserting the projection 341 of the shaft end insulator 34 into the core outer peripheral groove 471 of the laminated core 50 .
  • a method of inserting the shaft-end insulator 34 resin-molded in advance into the laminated core 50 is shown, but the present invention is not limited to this, and the laminated core 50 and the shaft-end insulator 34 are integrally molded by injection molding. may In that case, the resin flows in the core outer peripheral groove 471 or the like so as not to cover the bonding portion 9, and the pair of shaft end insulators 34 on both ends in the axial direction Y are connected to be integrally formed with the laminated core 50. can be considered.
  • the electric wire 60 is wound around the tooth portions 42 of the divided laminated core 50 to form the coil 33 .
  • the stator forming step ST8 of FIG. 7, as shown in FIG. The core outer peripheral surface 47 of the back portion 41 is fixed.
  • the rotating electric machine forming step ST9 in FIG. 7 the rotating shaft 6 of the rotor 20 is rotatably supported by the upper bracket 2 and the lower bracket 3 by the bearings 4 and 5 as shown in FIG. , a rotating electric machine 100 is formed by arranging a rotor 20 to face a stator 10 with a gap therebetween.
  • the method of performing the dividing step ST5 after the coating step ST3 and the curing step ST4 (fixing step ST30) is shown, but the method is not limited to this, and the coating is performed after the dividing step ST5.
  • Step ST3 and curing step ST4 (fixing step ST30) may be performed.
  • a core piece having an annular core-back portion and a plurality of tooth portions protruding radially inwardly from a core inner peripheral surface radially inward of the core-back portion at intervals in the axial direction.
  • each of the surfaces forming at least one of the slot regions is provided with the an adhesive portion for axially fixing the core pieces; axial end insulators that are in contact with one axial end and the other axial end of the bonding portion and are arranged at both axial ends of the laminated core; a coil formed in the slot region by winding an electric wire around the teeth,
  • a stator of the rotating electric machine, and a rotor arranged opposite to the stator with a gap therebetween According to the manufacturing method of the stator of the rotary electric machine, A punching step of punching out a plurality of the core pieces from a plate; an aligning step of axially laminating and aligning the punched core pieces; a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial
  • the slot area can be expanded, the number of coil turns and wire diameter can be increased, and the performance of the rotating electric machine can be improved.
  • the material cost and labor for assembling the insulator can be saved, and the cost can be suppressed.
  • the core pieces are laminated and fixed by forming an adhesive portion, there is no need to fix the core pieces by caulking or welding as in the conventional art, so it is possible to prevent deterioration in efficiency due to eddy currents and hysteresis loss.
  • the space factor of the core pieces can be increased and the efficiency can be improved compared to the case where the adhesive is impregnated between all the plate materials (electromagnetic steel sheets). Moreover, productivity can also be improved.
  • the adhesive portion is formed on the surface forming all of the slot regions, Electrical insulation can be maintained in all regions between the coil and the laminated core, and the performance of the rotating electric machine can be further improved.
  • the tooth portion has a shoe portion extending in a circumferential direction from a radially inner end, Since the slot region is formed surrounded by the tooth portion, the core-back portion, and the shoe portion, Even when the shoe portion is provided, electrical insulation can be maintained in the entire region between the coil and the laminated core, and the performance of the rotating electric machine can be further improved.
  • the stator of the rotary electric machine of Embodiment 1 Since the laminated core is formed by dividing each tooth portion in the circumferential direction, Since the laminated core is divided, the bonding portion can be easily formed.
  • the adhesive portion is composed of any one of an ultraviolet curable adhesive that is cured by irradiation with ultraviolet rays, an anaerobic adhesive, and a thermosetting adhesive, the adhesive portion can be reliably formed.
  • the fixing step includes an application step of applying an adhesive to the surface forming the slot region; and a curing step of curing the adhesive, A bonding portion can be reliably formed.
  • the coating step includes An application jig is placed on the surface forming the slot region so as to face each other with a predetermined distance therebetween, and the adhesive is filled in a gap of the distance between the surface forming the slot region and the application jig.
  • the adhesive portion can be reliably formed with the minimum required thickness.
  • the fixing step includes The core pieces are fixed in close contact with each other in the axial direction so that the core pieces adjacent to each other in the axial direction have lamination surfaces in contact with each other without an adhesive intervening therebetween.
  • the core pieces adjacent to each other in the axial direction can be stacked and fixed in close contact with each other in the axial direction without wasting space, and the size of the stator in the axial direction can be reduced.
  • a width H1 is the width in the circumferential direction of the portion of the shaft-end insulator facing the laminated core
  • the width of the tooth portion in the circumferential direction is the width H2
  • H1 ⁇ H2+H3 (Equation 1) is established so that The slot area can be widened, and the output of the rotating electric machine can be improved.
  • FIG. 12 is a diagram showing the configuration of the stator of the rotary electric machine according to the second embodiment.
  • 13 is a plan view showing the structure of the laminated core of FIG. 12.
  • FIG. 14 is a perspective view showing the configuration of the laminated core shown in FIG. 13.
  • the description of the points that are the same as in the first embodiment will be omitted as appropriate, and the description will focus on the points of difference. Further, the same reference numerals are given to the same parts as in the first embodiment, and the description thereof is omitted.
  • FIG. 1 One or a plurality (here, a plurality of examples are shown) of protrusions 902 extending in the axial direction Y are formed on the surface of the bonding portion 9 formed on the tooth side surface 45 .
  • the convex portion 902 is formed in a direction projecting from the tooth side surface 45 toward the slot region 30 .
  • the convex portion 902 is formed continuously from one end to the other end in the axial direction Y.
  • portions of the bonding portion 9 shown in FIG. 14 that are continuously formed along the axial direction Y are not indicated by thick black lines.
  • the electric wire 60 extends around the teeth portion 42 of the laminated core 50 made of the core pieces 40 from the side near the teeth portion 42 to the first layer 331, the second layer 332, the third layer 333, the fourth layer 334, and the fifth layer.
  • the coil 33 is formed by winding 335 in order.
  • the convex portion 902 functions as positioning of the electric wire 60 of the first layer 331 . That is, the convex portion 902 enters the concave space formed by the wires 60 adjacent to each other in the radial direction X on the tooth side surface 45 side, thereby preventing the positional displacement of the wires 60 of the first layer 331 .
  • the convex portion 902 may be formed corresponding to all of the concave spaces formed by the wires 60 adjacent in the radial direction X, or may be formed corresponding to a part of the concave spaces. If the positional deviation of the electric wire 60 of the first layer 331 can be prevented by the above method, the electric wire 60 of the second layer 332 wound thereon can be arranged in the first layer 331 adjacent in the radial direction X on the side opposite to the tooth side surface 45. It is stable because it is wound so as to drop into the concave portion formed by the electric wire 60 of .
  • the third layer 333, the fourth layer 334, and the fifth layer 335 which are wound from above the second layer 332, can be stably wound so as to fall into the recess one layer below, without winding disturbance. This facilitates the realization of aligned winding in which the wires 60 are stacked in bales.
  • FIG. 15 is a cross section taken along the line NN inside the bonding device 23 shown in FIG. 8, and is an example of the second embodiment showing a state during adhesive application.
  • the adhesive is applied to the core inner peripheral surface 44, the tooth side surface 45, the shoe outer peripheral surface 46, and the shoe side surface 49 of the core piece 40 on the positioning jig 231.
  • a gap 234 pre-opened with the part is set, and an application jig 232 is attached.
  • a concave portion 235 is formed in the depth direction of the paper surface, that is, in the axial direction Y in a portion of the application jig 232 that faces the convex portion 902 of the bonding portion 9 .
  • a hole 233 that connects to the gap 234 and the recess 235 is provided. Then, the adhesive 91 before hardening is supplied to the gap 234 through the hole 233 . The adhesive 91 supplied to the gap 234 spreads over the entire gap 234 and the recess 235 due to capillary action. The core piece 40 to which the adhesive 91 is applied then proceeds to a curing step ST4 in which heating or ultraviolet irradiation is performed according to the adhesive 91, and the adhesive portion 9 having the convex portions 902 is formed.
  • the same effects as those of the first embodiment can be obtained.
  • a convex portion extending in the axial direction is provided on the surface of the adhesive portion formed on the tooth portion, the wires forming the first layer of the coil are placed in contact with the convex portions adjacent in the radial direction; again, A punching step of punching out a plurality of the core pieces from a plate; an aligning step of axially laminating and aligning the punched core pieces; a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial direction; a dividing step of cutting the core pieces laminated in the axial direction into a plurality of the laminated cores by cutting them in a predetermined length in the axial direction; an arranging step of arranging the axial end insulators on
  • the adhesive is spread in the gap of the distance between the surface and the application jig by capillary action to form a film thickness equal to or less than the gap, and the adhesive is applied to the concave portion of the application jig. Since the convex portion is formed, The convex portion facilitates alignment winding of the coil, and productivity is improved by increasing the winding speed. In addition, since the coils can be wound in an aligned manner, even in the same slot area, the space factor of the coils can be increased, the number of turns can be increased, and the torque of the rotating electrical machine can be increased.
  • Embodiment 3. 16 is an enlarged view of one stator shown in FIG. 3 in Embodiment 3.
  • FIG. FIG. 17 is a flow chart showing a method for manufacturing a rotating electric machine according to the third embodiment.
  • FIG. 18 is a schematic diagram showing a sticking device for sticking an adhesive tape to a laminated core.
  • FIG. 19 is a schematic view of the sticking device shown in FIG. 18 at a viewpoint P.
  • FIG. In the following, the description of the points that are the same as those of the above-described embodiments will be omitted as appropriate, and the description will focus on the points of difference. Also, the same reference numerals are given to the same parts as in the above embodiments, and the description thereof is omitted.
  • an insulating adhesive tape 92 forming the adhesion portion 9 is used.
  • the axial direction Y is extended so as to cover all three surfaces of the core inner peripheral surface 44 , the tooth side surface 45 , and the shoe outer peripheral surface 46 , which are the surfaces forming the slot region 30 of the laminated core 50 .
  • An adhesive tape 92 is continuously attached to the . By attaching the adhesive tape 92, the space between the core pieces 40 in the axial direction Y in the axial direction Y (between laminations) is fixed.
  • the range of attachment of the adhesive tape 92 may extend not only to the core inner peripheral surface 44 , tooth side surface 45 and shoe outer peripheral surface 46 , but also to the shoe side surface 49 and further to the tip surface 48 .
  • the adhesive tape 92 is attached so as to completely cover the core inner peripheral surface 44, the tooth side surface 45, and the shoe outer peripheral surface 46, and the adhesive tape 92 is not attached to the other portions, leaving a little excess adhesive tape 92. You can also paste it like this:
  • the adhesive tape 92 for example, a tape made of a polyimide or polyvinyl chloride (PVC) film as a base material and a silicone or acrylic adhesive can be used.
  • the coil 33 is formed by directly winding the electric wire 60 multiple times around the adhesive tape 92 without interposing another insulator.
  • the laminated core 50 is formed by laminating and fixing the core pieces 40 in the axial direction Y, and the adhesive tape 92 responsible for the fixing is the inner peripheral surface of the core, which is the surface forming the slot region 30. 44 , tooth side surfaces 45 , and shoe outer peripheral surface 46 . It has the function of insulation. By selecting the optimum type and thickness of the adhesive tape 92, the insulation performance required for the rotating electric machine can be satisfied.
  • the attaching step ST31 is performed as the fixing step ST30.
  • ST1 to ST2 and ST5 to ST9 are the same as those in the above embodiments.
  • the sticking step ST31 performed using the sticking device for the adhesive tape 92 shown in FIGS. 18 and 19 will be described.
  • the plurality of core pieces 40 move forward in FIG. 18 and in the fourth direction D in FIG.
  • the sticking rollers 25 are arranged on both side surfaces of the advancing core piece 40 , and the adhesive tape 92 unwound in the fifth direction E from the adhesive tape roll 921 is applied to the inner core inside the side surface of the core piece 40 .
  • At least three surfaces of the peripheral surface 44, the tooth side surface 45, and the outer peripheral surface 46 of the shoe are adhered and fixed.
  • the flowchart of FIG. 17 shows a method of performing the dividing step ST5 after the attaching step ST31 (fixing step ST30).
  • the attaching step ST31 may be performed later.
  • the length of the adhesive tape 92 is cut to be longer than the length of the laminated core 50 in the axial direction Y, and the side surface of the laminated core 50 and both end surfaces of the laminated core 50 in the axial direction Y are continuously attached with the adhesive tape 92. Affixing becomes possible, and furthermore, the insulating performance can be improved.
  • the fixing step includes: Since an adhesive tape for insulation is adhered and fixed to the core pieces continuously in the axial direction on each of the surfaces forming the slot regions, This eliminates the need for the step of curing the adhesive, improving productivity. In addition, since the bonded portion formed with the adhesive tape is more difficult to cut than the bonded portion formed with adhesive, defects such as cracking of the laminated core during the manufacturing process can be reduced.
  • stator formed by concentrated winding in which a coil is wound around one tooth is shown, but the present invention is not limited to this, and the coil is wound across a plurality of teeth.
  • a stator formed by distributed winding can also be applied in the same manner as the above embodiments.
  • stator in which a plurality of laminated cores 50 each having an adhesive portion 9 fixed in the axial direction Y of the core piece 40 by the adhesive 91 or the adhesive tape 92 are arranged in the circumferential direction Z, the stator is limited to this.
  • a stator formed by laminating a plurality of laminated cores 50 in the axial direction Y can also be applied in the same manner as the above embodiments.
  • stator formed of the same type of laminated cores 50 divided in the circumferential direction Z
  • the present invention is not limited to this, and a stator is formed by combining a plurality of types of laminated cores 50.
  • laminated cores fixed by conventional caulking or the like are arranged and fixed by caulking or the like. It may be configured such that the slot portion of the stacked core is covered with the axial end insulator 34 .
  • FIG. 22 is a perspective view showing a state in which a shaft end insulator is attached to a laminated core according to Embodiment 4.
  • FIG. 23 is an enlarged cross-sectional view taken along line RR of the state in which the axial end insulator is attached to the laminated core shown in FIG. 22.
  • FIG. FIG. 24 is a cross-sectional view showing a state of the manufacturing apparatus shown in FIG. 8 according to Embodiment 4 when the adhesive is applied to both end sides in the axial direction of the laminated core along line NN.
  • the description of the points that are the same as those of the above-described embodiments will be omitted as appropriate, and the description will focus on the points of difference. Also, the same reference numerals are given to the same parts as in the above embodiments, and the description thereof is omitted.
  • the axial end insulators 34 are used to insulate a preset number of core pieces 40 on both end sides in the axial direction Y of the laminated core 50 .
  • the preset number is a number smaller than the number of the plurality of core pieces 40 of the laminated core 50.
  • Two pieces of each core piece 40 on both end sides of are shown as an example.
  • the bonding portion 9 has a preset number of pieces on both end sides of the laminated core 50 in the axial direction Y, here, the thickness H4 of the portion formed on the two core pieces 40 is It has a thin adhesive portion 900 formed thinner than the thickness H5 of the portion formed in the core piece 40 other than that.
  • the axial end insulator 34 is provided with an engaging portion 340 that engages on the thin adhesive portion 900 .
  • the engaging portion 340 is formed to protrude and extend in the axial direction Y toward the laminated core 50 .
  • the total value of the thickness H6 of the engaging portion 340 and the thickness H5 of the thin adhesive portion 900 is formed substantially equal to the thickness H4 of the adhesive portion 9 .
  • the engaging portions 340 of the shaft end insulators 34 engage with the portions of the thin adhesive portions 900 on both end sides in the axial direction Y of the laminated core 50. It covers the thin adhesive portion 900 and insulates the two core pieces 40 of the laminated core 50 at both ends in the axial direction Y. As shown in FIG.
  • the method of forming the thin adhesive portion 900 of the adhesive portion 9 is such that the thickness of the adhesive portion 9 is reduced from the gap 234 in comparison with the case shown in FIG. 10 of the above-described embodiment.
  • the thin adhesive portion 900 of the adhesive portion 9 is formed by narrowing the gap 236 to satisfy the relationship of gap 234>gap 236, applying and curing.
  • the insulation creepage distance L1 (see FIG. 23) between the coil 33 and the laminated core 50 can be ensured without reducing the slot area 30 around which the coil 33 is wound.
  • insulation performance can be secured.
  • the sum of the thickness H6 of the engaging portion 340 and the thickness H5 of the thin adhesive portion 900 is substantially the same as the thickness H4 of the adhesive portion 9, the slot area 30 around which the coil 33 is wound is reduced.
  • the rotary electric machine 100 can be miniaturized and reduced in loss.
  • the same effects as those of the above embodiments can be obtained.
  • the thickness of the portions formed on the predetermined number of core pieces on both axial end sides of the laminated core is formed to be thinner than the thickness of the portions formed on the other core pieces.
  • has a thin adhesive part Since the shaft end insulator has an engaging portion that engages on the thin adhesive portion, Since insulation performance can be ensured without reducing the slot area, it is possible to reduce the size and loss of the rotary electric machine.
  • FIG. 25 is a cross-sectional view showing a state in which the axial end insulator is attached to the laminated core according to the fifth embodiment.
  • the description of the points that are the same as those of the above-described embodiments will be omitted as appropriate, and the description will focus on the points of difference. Also, the same reference numerals are given to the same parts as in the above embodiments, and the description thereof is omitted.
  • the shaft end insulators 34 are used to insulate a preset number of core pieces 40 on both end sides of the laminated core 50 in the axial direction Y. do.
  • the preset number is a number smaller than the number of the plurality of core pieces 40 of the laminated core 50.
  • Two pieces of each core piece 40 on both end sides of are shown as an example.
  • the core pieces 40 of the laminated core 50 are composed of first core pieces 421 and second core pieces 422 .
  • the width H12 in the circumferential direction Z of the tooth portions 42 of the second core pieces 422 is formed longer than the width H11 in the circumferential direction Z of the tooth portions 42 of the first core pieces 421 .
  • the laminated core 50 is formed of the first core pieces 421 for a preset number of pieces on both end sides in the axial direction Y, here two pieces, and the second core pieces 422 for the rest.
  • the adhesive portions 9 formed on the first core piece 421 and the second core piece 422 are formed with substantially the same thickness.
  • the axial end insulator 34 is provided with an engaging portion 342 that engages with the tooth side surface 45 of the tooth portion 42 of the first core piece 421 via the adhesive portion 9 .
  • the engaging portion 342 is formed to protrude and extend in the axial direction Y toward the laminated core 50 .
  • the sum of the width H13 and the width H14 in the circumferential direction Z on both sides of the engaging portion 342 and the difference between the width H11 of the first core piece 421 and the width H12 of the second core piece 422 is approximately formed identically.
  • the engaging portions 342 of the axial end insulators 34 are positioned at the bonding portions 9 of the first core pieces 421 on both end sides of the laminated core 50 in the axial direction Y. to insulate the two first core pieces 421 of the laminated core 50 on both end sides in the axial direction Y.
  • the insulation creepage distance L2 (see FIG. 25) between the coil 33 and the laminated core 50 can be ensured without reducing the slot area 30 around which the coil 33 is wound.
  • insulation performance can be secured.
  • the sum of the width H13 and the width H14 in the circumferential direction Z of both sides of the engaging portion 342 in the circumferential direction Z and the difference between the width H11 of the first core piece 421 and the width H12 of the second core piece 422 are approximately Since the coils 33 are formed identically, it is possible to reduce the size and loss of the rotary electric machine 100 without reducing the slot area 30 around which the coil 33 is wound.
  • the stator of the rotating electrical machine the rotating electrical machine, the method of manufacturing the stator of the rotating electrical machine, and the method of manufacturing the rotating electrical machine of the fifth embodiment configured as described above, the same effects as those of the above embodiments can be obtained.
  • the core pieces of the laminated core have first core pieces and second core pieces, and the circumferential width of the tooth portions of the second core pieces is greater than the circumferential width of the tooth portions of the first core pieces.
  • the shaft end insulator includes an engaging portion that engages with the tooth side surface of the tooth portion of the first core piece via the adhesive portion, Since insulation performance can be ensured without reducing the slot area, it is possible to reduce the size and loss of the rotary electric machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The present invention comprises: a laminated core (50) that is formed by laminating a plurality of core pieces (40) in an axial direction (Y), each core piece having an annular core back part (41), and a plurality of tooth parts (42) at intervals in a circumferential direction (Z), the tooth parts protruding inward (X2) in a radial direction (X) from a core inner circumferential surface (44); an adhesion part (9) that fixes the core piece (40) in the axial direction (Y) in a continuous manner from one end to another end in the axial direction (Y) on each surface forming a slot region (30) surrounded by the core back part (41) and the tooth parts (42); an axial end insulator (34) that contacts one end and another end in the axial direction (Y) of the adhesion part (9) and is disposed at both ends in the axial direction (Y) of the laminated core (50); and a coil (33) that is wound around the tooth parts (42) and is formed in the slot region (30).

Description

回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法Rotating electric machine stator, rotating electric machine, manufacturing method of rotating electric machine stator, and manufacturing method of rotating electric machine
 本願は、回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法に関するものである。 This application relates to a stator for a rotating electrical machine, a rotating electrical machine, a method for manufacturing a stator for a rotating electrical machine, and a method for manufacturing a rotating electrical machine.
 近年、電動機、発電機などの回転電機には、小型高出力化が求められている。回転電機に用いられる電機子鉄心を電磁鋼板の積層コアである積層鉄心により構成することで、電機子鉄心に生じる渦電流を抑制して高効率化を図ることが、広く知られている。積層された電磁鋼板を固定する手段として、電磁鋼板同士をかしめる方法または溶接する方法があるが、固定部分で電磁鋼板間が積層方向に電気的に短絡するため、渦電流が発生して効率が悪化する問題があった。また、かしめた部分または溶接部には残留応力が生じるため、ヒステリシス損が増加して、回転電機の効率が悪化する問題があった。 In recent years, there has been a demand for smaller and higher output rotating electric machines such as electric motors and generators. 2. Description of the Related Art It is widely known that eddy currents generated in an armature core are suppressed and efficiency is improved by configuring an armature core used in a rotating electric machine with a laminated core that is a laminated core of magnetic steel sheets. As a means of fixing the laminated magnetic steel sheets, there is a method of crimping or welding the magnetic steel sheets together, but since the magnetic steel sheets are electrically short-circuited in the stacking direction at the fixed part, eddy currents are generated and efficiency is reduced. had a problem of exacerbation. In addition, since residual stress is generated in the crimped portion or the welded portion, hysteresis loss increases and the efficiency of the rotary electric machine deteriorates.
 これらの問題を解決する方法として、電磁鋼板同士を接着により固着する方法が知られているが、積層コアを構成する電磁鋼板間の全てに接着剤を充填する必要があるため、回転電機などに用いられる一般的な積層コアの電磁鋼板の積層枚数が数百枚にもおよぶことを考慮すると、数百か所の電磁鋼板間の全てに接着剤を含浸させる必要があり、生産性が低下するという問題点があった。 As a method of solving these problems, a method of fixing electromagnetic steel sheets together by adhesion is known. Considering that the number of laminated magnetic steel sheets in a typical laminated core is several hundred, it is necessary to impregnate the adhesive between several hundred electromagnetic steel sheets, which reduces productivity. There was a problem.
 これらの問題を解決する方法として、積層コアの側面に、軸方向に連続、あるいは断続して、全てのコア片に接着剤が塗布、硬化され、積層コアが形成される方法が知られている(例えば、特許文献1参照)。例えば、この特許文献1に記載の積層鉄心では、積層コアのスロット領域を形成する面の内、少なくともいずれかの面上に、軸方向に連続、あるいは断続して、全てのコア片に接着部が形成され積層コアが形成されている。更には、スロット領域を形成する積層コアの面上にインシュレータが、接着部とは接着されずに形成され、インシュレータを介してスロット領域にコイルが形成される回転電機が提示されている。 As a method for solving these problems, a method is known in which an adhesive is applied to all core pieces continuously or intermittently on the side surface of the laminated core and cured to form a laminated core. (See Patent Document 1, for example). For example, in the laminated core described in Patent Document 1, all the core pieces are bonded to all the core pieces continuously or intermittently in the axial direction on at least one of the surfaces forming the slot regions of the laminated core. are formed to form a laminated core. Furthermore, a rotating electrical machine is presented in which an insulator is formed on the surface of a laminated core forming a slot region without being adhered to the adhesive portion, and a coil is formed in the slot region via the insulator.
特開2021―111977号公報Japanese Patent Application Laid-Open No. 2021-111977
 従来の回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法では、積層コアのスロット領域に、接着部とインシュレータとが存在するため、スロット領域を圧迫し、十分なコイルスペースが確保できず、高性能な回転電機の実現の弊害になるという問題点があった。 In conventional rotating electric machine stators, rotating electric machines, methods of manufacturing stators of rotating electric machines, and methods of manufacturing rotating electric machines, the slot regions of the laminated core have adhesive portions and insulators, and thus the slot regions are pressed. , there is a problem that a sufficient coil space cannot be secured, which hinders the realization of a high-performance rotating electric machine.
 また、製造工程においては、インシュレータを絶縁シートとしてスロット領域に配置し、コイルで挟み込むタイプの固定子では、コイルの巻線時にインシュレータがずれ、コイルの巻乱れの発生による隣接するコイル間での耐圧不良、または、コイルと積層コアとが接触することでの対地間での耐圧不良となり、高性能な回転電機の実現の弊害になるという問題点があった。 In the manufacturing process, insulators are placed in slot regions as insulating sheets and sandwiched between coils. There is a problem that the contact between the coil and the laminated core results in a defective withstand voltage to the ground, which hinders the realization of a high-performance rotating electric machine.
 一方、樹脂材料の射出成形により、積層コアと一体となるインシュレータを一体成形するタイプの固定子では、スロット領域の接着部が射出成形の樹脂流動を阻害し、成形不良を引き起こし絶縁性能が低下するという問題点があった。 On the other hand, in a stator of the type in which an insulator is integrally molded with a laminated core by injection molding of a resin material, the adhesive part in the slot area hinders the resin flow in the injection molding, causing molding defects and degrading the insulation performance. There was a problem.
 本願は、上記のような課題を解決するための技術を開示するものであり、コイルと積層コアの電気的絶縁の性能を低下させることなく高性能な回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法を提供することを目的とする。 The present application discloses a technique for solving the above-described problems, and provides a high-performance rotating electric machine stator, rotating electric machine, and rotating electric machine without reducing the performance of electrical insulation between the coil and the laminated core. and a method for manufacturing a rotating electric machine.
 本願に開示される回転電機の固定子は、
環状のコアバック部、および、該コアバック部の径方向の内側のコア内周面から、径方向の内側に突出するティース部を周方向に間隔を隔てて複数個有するコア片を軸方向に複数枚積層した積層コアと、
前記積層コアの前記ティース部、および、前記コアバック部に囲まれたスロット領域の内、少なくとも1つの前記スロット領域を形成する面のそれぞれに、軸方向の一端から他端に連続して、前記コア片を軸方向に固定する接着部と、
前記接着部の軸方向の一端および他端に接するとともに前記積層コアの軸方向の両端部に配置された軸端インシュレータと、
電線が前記ティース部に巻回され前記スロット領域に形成されたコイルとを備えたものである。
 また、本願に開示される回転電機は、
上記回転電機の固定子と、前記固定子に空隙を介して対向配置された回転子とを備えたものである。
 また、本願に開示される回転電機の固定子の製造方法は、上記回転電機の固定子において、
板材から前記コア片を複数枚打ち抜く打ち抜き工程と、
打ち抜かれた前記コア片を軸方向に積層するとともに整列させる整列工程と、
前記スロット領域を形成する面のそれぞれに、軸方向に連続して前記接着部を配置して、前記コア片を軸方向に固定する固定工程と、
軸方向に積層された前記コア片を、軸方向にあらかじめ設定された長さにて切断して複数の前記積層コアに分割する分割工程と、
前記接着部の軸方向の一端および他端に接するとともに、前記積層コアの軸方向の両端に前記軸端インシュレータを配置する配置工程とを備えたものである。
 また、本願に開示される回転電機の固定子の製造方法は、上記回転電機の固定子において、
前記ティース部に形成された前記接着部の表面には、軸方向に延在する凸部を備え、
前記コイルの第1層を形成する前記電線は、径方向に隣り合う前記凸部に接して設置される、
板材から前記コア片を複数枚打ち抜く打ち抜き工程と、
打ち抜かれた前記コア片を軸方向に積層するとともに整列させる整列工程と、
前記スロット領域を形成する面のそれぞれに、軸方向に連続して前記接着部を配置して、前記コア片を軸方向に固定する固定工程と、
軸方向に積層された前記コア片を、軸方向にあらかじめ設定された長さにて切断して複数の前記積層コアに分割する分割工程と、
前記接着部の軸方向の一端および他端に接するとともに、前記積層コアの軸方向の両端に前記軸端インシュレータを配置する配置工程とを備え、
前記固定工程は、
前記スロット領域を形成する面に、接着剤を塗布する塗布工程と、
前記接着剤を硬化させる硬化工程とを有し、
前記塗布工程は、
前記スロット領域を形成する面に、あらかじめ設定された距離を確保するとともに、前記接着部の前記凸部に対向した部分には凹部が形成された塗布治具を配置し、前記スロット領域を形成する面と前記塗布治具との前記距離の隙間に、前記接着剤が、毛細管現象により塗り広げられ前記隙間以下の膜厚にて形成されるとともに、前記塗布治具の前記凹部では前記接着剤に前記凸部が形成されるものである。
 また、本願に開示される回転電機の製造方法は、上記回転電機の固定子の製造方法を用いて製造した前記固定子を用いて前記回転電機を製造する。
The stator of the rotary electric machine disclosed in the present application is
A core piece having an annular core-back portion and a plurality of tooth portions protruding radially inwardly from a core inner peripheral surface radially inward of the core-back portion at intervals in the axial direction. a laminated core in which a plurality of sheets are laminated;
Of the slot regions surrounded by the tooth portions and the core back portion of the laminated core, each of the surfaces forming at least one of the slot regions is provided with the an adhesive portion for axially fixing the core pieces;
axial end insulators that are in contact with one axial end and the other axial end of the bonding portion and are arranged at both axial ends of the laminated core;
and a coil formed in the slot region by winding an electric wire around the teeth.
Further, the rotating electric machine disclosed in the present application is
The rotating electric machine includes a stator of the rotating electric machine, and a rotor arranged to face the stator with a gap therebetween.
Further, a method for manufacturing a stator for a rotating electric machine disclosed in the present application includes:
A punching step of punching out a plurality of the core pieces from a plate;
an aligning step of axially laminating and aligning the punched core pieces;
a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial direction;
a dividing step of cutting the core pieces laminated in the axial direction into a plurality of the laminated cores by cutting them in a predetermined length in the axial direction;
a disposing step of disposing the axial end insulators on both axial ends of the laminated core while being in contact with one axial end and the other axial end of the adhesive portion.
Further, a method for manufacturing a stator for a rotating electric machine disclosed in the present application includes:
A convex portion extending in the axial direction is provided on the surface of the bonding portion formed on the tooth portion,
The wires forming the first layer of the coil are placed in contact with the radially adjacent protrusions.
A punching step of punching out a plurality of the core pieces from a plate;
an aligning step of axially laminating and aligning the punched core pieces;
a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial direction;
a dividing step of cutting the core pieces laminated in the axial direction into a plurality of the laminated cores by cutting them in a predetermined length in the axial direction;
an arranging step of arranging the axial end insulators on both axial ends of the laminated core while being in contact with one axial end and the other axial end of the adhesive portion;
The fixing step includes
an application step of applying an adhesive to the surface forming the slot region;
and a curing step of curing the adhesive,
The coating step includes
A coating jig having a predetermined distance secured on the surface forming the slot region and having a concave portion formed in a portion of the bonding portion facing the convex portion is arranged to form the slot region. The adhesive is spread in the gap of the distance between the surface and the application jig by capillary action to form a film thickness equal to or less than the gap, and the adhesive is applied to the concave portion of the application jig. The convex portion is formed.
Further, in a method for manufacturing a rotating electrical machine disclosed in the present application, the rotating electrical machine is manufactured using the stator manufactured using the method for manufacturing a stator for a rotating electrical machine.
 本願に開示される回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法によれば、
コイルと積層コアの電気的絶縁の性能を低下させることなく高性能な回転電機を得ることができる。
According to a rotating electrical machine stator, a rotating electrical machine, a method for manufacturing a stator for a rotating electrical machine, and a method for manufacturing a rotating electrical machine disclosed in the present application,
A high-performance rotating electric machine can be obtained without deteriorating the performance of electrical insulation between the coil and the laminated core.
実施の形態1における回転電機の構成を示す断面図である。1 is a cross-sectional view showing a configuration of a rotating electric machine according to Embodiment 1; FIG. 図1に示した回転電機の固定子の構成を示す断面図である。2 is a cross-sectional view showing the configuration of the stator of the rotary electric machine shown in FIG. 1; FIG. 図2に示した固定子のM-M線における断面図である。FIG. 3 is a cross-sectional view of the stator shown in FIG. 2 taken along line MM; 図3に示した固定子の1つの積層コアの構成を示す図である。4 is a diagram showing the configuration of one laminated core of the stator shown in FIG. 3; FIG. 図4に示した積層コアのコイル設置前の構成を示す図である。FIG. 5 is a diagram showing a configuration of the laminated core shown in FIG. 4 before coil installation; 図4に示した積層コアのコイル設置前の他の構成を示す図である。5 is a diagram showing another configuration of the laminated core shown in FIG. 4 before coil installation; FIG. 図1に示した回転電機の製造方法を示すフローチャートである。2 is a flowchart showing a method of manufacturing the rotating electric machine shown in FIG. 1; 図1に示した回転電機の製造装置の構成を示す図である。FIG. 2 is a diagram showing the configuration of the rotating electric machine manufacturing apparatus shown in FIG. 1 ; 図1に示した回転電機の積層コアの接着前の構成を示す斜視図である。FIG. 2 is a perspective view showing a configuration of the laminated core of the rotary electric machine shown in FIG. 1 before bonding; 図8に示した製造装置のN-N線における接着剤塗布時の状態を示す断面図である。FIG. 9 is a cross-sectional view showing a state of the manufacturing apparatus shown in FIG. 8 at the time of applying an adhesive along line NN; 図9に示した積層コアへ軸端インシュレータを取り付ける状態を示す斜視図である。FIG. 10 is a perspective view showing a state in which a shaft end insulator is attached to the laminated core shown in FIG. 9; 実施の形態2における回転電機の固定子の1つの積層コアの構成を示す図である。FIG. 10 is a diagram showing the configuration of one laminated core of the stator of the rotary electric machine according to Embodiment 2; 図12に示した積層コアのコイル設置前の構成を示す図である。FIG. 13 is a diagram showing a configuration of the laminated core shown in FIG. 12 before coil installation; 図13に示した積層コアの構成を示す斜視図である。FIG. 14 is a perspective view showing the configuration of the laminated core shown in FIG. 13; 図14に示した積層コアの接着剤塗布状態における図8に示した製造装置のN-N線における断面図である。FIG. 15 is a cross-sectional view taken along line NN of the manufacturing apparatus shown in FIG. 8 in a state where the laminated core shown in FIG. 14 is coated with an adhesive; 実施の形態3における回転電機の固定子の1つの積層コアの構成を示す図である。FIG. 10 is a diagram showing the configuration of one laminated core of the stator of the rotary electric machine according to Embodiment 3; 図16に示した積層コアを用いる回転電機の製造方法を示すフローチャートである。17 is a flow chart showing a method of manufacturing a rotating electric machine using the laminated core shown in FIG. 16; 図16に示した積層コアに粘着テープの貼付けを行う貼付け装置の構成を示す図である。FIG. 17 is a diagram showing the configuration of a sticking device that sticks an adhesive tape to the laminated core shown in FIG. 16; 図18に示した貼付け装置の視点Pにおける構成を示す図である。FIG. 19 is a diagram showing the configuration of the sticking device shown in FIG. 18 at a viewpoint P; 図5に示した積層コアのP-P線における拡大部分断面図である。FIG. 6 is an enlarged partial cross-sectional view of the laminated core shown in FIG. 5 taken along line PP; 図11に示した積層コアへ軸端インシュレータを取り付ける状態のQ-Q線における拡大断面図である。FIG. 12 is an enlarged cross-sectional view taken along the QQ line of a state in which the axial end insulator is attached to the laminated core shown in FIG. 11; 実施の形態4における積層コアへ軸端インシュレータを取り付ける状態を示す斜視図である。FIG. 11 is a perspective view showing a state where a shaft end insulator is attached to a laminated core according to Embodiment 4; 図22に示した積層コアへ軸端インシュレータを取り付ける状態のR-R線における拡大断面図である。FIG. 23 is an enlarged cross-sectional view taken along line RR of a state in which a shaft end insulator is attached to the laminated core shown in FIG. 22; 実施の形態4における図8に示した製造装置のN-N線の積層コアの軸方向の両端側における接着剤塗布時の状態を示す断面図である。FIG. 9 is a cross-sectional view showing a state of the manufacturing apparatus shown in FIG. 8 in Embodiment 4 when adhesive is applied on both axial end sides of the laminated core along line NN. 実施の形態5における積層コアへ軸端インシュレータを取り付ける状態の拡大断面図である。FIG. 11 is an enlarged cross-sectional view of a state in which a shaft end insulator is attached to a laminated core according to Embodiment 5;
 以下の説明において、回転電機における各方向を、それぞれ周方向Z、軸方向Y、径方向X、径方向Xの外側X1、径方向Xの内側X2として示す。よって、固定子10および回転子20、また、他の部分においても、これらの方向は同一方向となり、当該方向を基準として各方向を示して説明する。また、各実施の形態においては、固定子が周方向Zにおいてティース部毎に分割されている場合の構成を例に示す。よって、固定子が周方向Zにおいて分割された1つは積層コアとして示す。 In the following description, each direction in the rotating electric machine is indicated as a circumferential direction Z, an axial direction Y, a radial direction X, an outer side X1 in the radial direction X, and an inner side X2 in the radial direction X. Therefore, the directions of the stator 10 and the rotor 20, as well as other parts, are the same, and each direction will be described with reference to that direction. Moreover, in each embodiment, a configuration in which the stator is divided for each tooth portion in the circumferential direction Z is shown as an example. Therefore, the one in which the stator is divided in the circumferential direction Z is indicated as a laminated core.
実施の形態1.
 図1は、実施の形態1における回転電機の構成を示す断面図である。図2は、図1に示した回転電機の固定子の構成を示す断面図である。図3は、図2に示した固定子のM-M線における断面図である。図4は、図3に示した固定子の1つの積層コアの構成を示す図である。図5は、図4に示した積層コアのコイル設置前の構成を示す図である。図6は、図4に示した積層コアのコイル設置前の他の構成を示す図である。図7は、図1に示した回転電機の製造方法を示すフローチャートである。
Embodiment 1.
FIG. 1 is a cross-sectional view showing the configuration of a rotating electric machine according to Embodiment 1. FIG. FIG. 2 is a cross-sectional view showing the configuration of the stator of the rotating electric machine shown in FIG. FIG. 3 is a cross-sectional view of the stator shown in FIG. 2 taken along line MM. 4 is a diagram showing the configuration of one laminated core of the stator shown in FIG. 3. FIG. FIG. 5 is a diagram showing the configuration of the laminated core shown in FIG. 4 before coil installation. FIG. 6 is a diagram showing another configuration of the laminated core shown in FIG. 4 before coil installation. FIG. 7 is a flow chart showing a method of manufacturing the rotating electric machine shown in FIG.
 図8は、図1に示した回転電機の製造装置の構成を示す図であり、図7に示した回転電機の製造方法の打ち抜き工程から分割工程までを連動して行う製造装置である。図9は、図1に示した回転電機の積層コアの接着前の構成を示す斜視図である。図10は、図8に示した製造装置のN-N線における接着剤塗布時の状態を示す断面図である。図11は、図9に示した積層コアへ軸端インシュレータを取り付ける状態を示す斜視図である。図20は、図5に示した積層コアのP-P線における拡大部分断面図である。図21は、図11に示した積層コアへ軸端インシュレータを取り付ける状態のQ-Q線における拡大部分断面図である。 FIG. 8 is a diagram showing the configuration of the manufacturing apparatus for the rotating electric machine shown in FIG. 1, which is a manufacturing apparatus that interlocks the punching process to the dividing process of the manufacturing method for the rotating electric machine shown in FIG. FIG. 9 is a perspective view showing the configuration of the laminated core of the rotary electric machine shown in FIG. 1 before bonding. FIG. 10 is a cross-sectional view showing a state of the manufacturing apparatus shown in FIG. 11 is a perspective view showing a state in which the axial end insulator is attached to the laminated core shown in FIG. 9. FIG. FIG. 20 is an enlarged partial cross-sectional view of the laminated core shown in FIG. 5 taken along line PP. 21 is an enlarged partial cross-sectional view taken along line QQ of a state in which the axial end insulator is attached to the laminated core shown in FIG. 11. FIG.
 図1において、回転電機100は、円筒状のフレーム1およびフレーム1の開口を塞口する上ブラケット2、下ブラケット3と、フレーム1の円筒部内に収納された電機子としての固定子10と、フレーム1の上ブラケット2および下ブラケット3の軸心位置にベアリング4、5を介して軸方向Yに配置され、回転可能に支持された回転軸6に固着されて固定子10の径方向Xの内側X2の内周側に回転可能に配設された界磁を発生する回転子20とを備える。 In FIG. 1, a rotating electrical machine 100 includes a cylindrical frame 1, an upper bracket 2 and a lower bracket 3 that close an opening in the frame 1, a stator 10 as an armature housed in a cylindrical portion of the frame 1, It is arranged in the axial direction Y through bearings 4 and 5 at the axial positions of the upper bracket 2 and the lower bracket 3 of the frame 1, and is fixed to a rotating shaft 6 that is rotatably supported. A rotor 20 that is rotatably disposed on the inner peripheral side of the inner side X2 and that generates a magnetic field is provided.
 回転子20は、軸心位置に挿通された回転軸6に固着された回転子鉄心7と、回転子鉄心7の外周面側に貼付けられ周方向Zに設定されたピッチで配列され、磁極を構成する複数の永久磁石8とを備えた永久磁石型回転子である。なお、回転子20は、永久磁石型回転子に限定されず、絶縁しない回転子導体を、回転子鉄心のスロットに収納して、両側を短絡環で短絡した、かご型回転子、または、絶縁した導体線を回転子鉄心のスロット領域に装着した巻線型回転子を用いてもよい。 The rotor 20 includes a rotor core 7 fixed to a rotating shaft 6 inserted at the axial position, and a rotor core 7 attached to the outer peripheral surface side of the rotor core 7 and arranged at a pitch set in the circumferential direction Z to form magnetic poles. It is a permanent magnet type rotor provided with a plurality of permanent magnets 8 constituting the rotor. The rotor 20 is not limited to a permanent magnet type rotor, and may be a squirrel cage rotor in which non-insulated rotor conductors are accommodated in slots of the rotor iron core and both sides are short-circuited by short-circuit rings, or an insulated rotor. A wound rotor in which the conductor wires are mounted in the slot regions of the rotor core may also be used.
 図1から図3において、固定子10は環状に形成され、フレーム1内に固定される。固定子10は、あらかじめ設定された枚数のコア片40を軸方向Yに積層して形成された積層コア50と、図4に示すような、銅またはアルミなどの芯材601としての素線の表面に表面皮膜602としての絶縁皮膜を有する電線60としてのマグネットワイヤから形成されたコイル33と、積層コア50の軸方向Yの両端の軸端側とコイル33との間を電気的に絶縁する機能と、コイル33を保持する機能とを有する軸端インシュレータ34とを備える。 1 to 3, the stator 10 is annularly formed and fixed within the frame 1. As shown in FIG. The stator 10 includes a laminated core 50 formed by laminating a predetermined number of core pieces 40 in the axial direction Y, and a wire as a core material 601 such as copper or aluminum as shown in FIG. Electrical insulation is provided between the coil 33 formed from the magnet wire as the electric wire 60 having an insulating film as the surface film 602 on the surface and the axial end sides of both ends in the axial direction Y of the laminated core 50 and the coil 33. A shaft end insulator 34 having a function and a function of holding the coil 33 is provided.
 軸端インシュレータ34は樹脂材にて形成され、例えば、ナイロン、ポリフェニレンサルファイド(PPS、PolyPhenylene Sulfide)、液晶ポリマ(LCP、Liquid Crystal Polymer)、ポリブチレンテレフタレート(PBT、polybutyleneterephtalate)などである。一方、積層コア50の後述するスロット領域30側とコイル33との間を電気的に絶縁する機能を有する、接着部9を備える。なお、各図における、接着部9は、その形成箇所を明確とするために、実際の厚みを誇張し、黒太線にて示している。また、このことは以下の実施の形態においても同様であるため当該説明は適宜省略する。 The shaft end insulator 34 is made of a resin material such as nylon, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polybutylene terephthalate (PBT), or the like. On the other hand, the bonding portion 9 having the function of electrically insulating between the slot region 30 side of the laminated core 50 and the coil 33 is provided. In addition, in order to clarify the formation location of the adhesive portion 9 in each figure, the actual thickness is exaggerated and indicated by a thick black line. Moreover, since this also applies to the following embodiments, the description thereof will be omitted as appropriate.
 図4および図5において、帯状の電磁鋼板から同一形状に打ち抜かれたコア片40を、多数枚、軸方向Yに積層して一体化されたものが積層コア50である。コア片40はコアバック部41と、ティース部42と、シュー部43とを備える。コアバック部41は円弧形状にて形成される。ティース部42はコアバック部41の径方向Xの内側X2のコア内周面44の周方向Zの中央部から径方向Xの内側X2に延びて形成される。シュー部43は、ティース部42の径方向Xの内側X2端部における周方向Zの側面から周方向Zの両側に向かって延在して形成される。 In FIGS. 4 and 5, a laminated core 50 is obtained by laminating a large number of core pieces 40 punched in the same shape from a belt-like electromagnetic steel sheet in the axial direction Y and integrating them. The core piece 40 includes a core back portion 41 , tooth portions 42 and shoe portions 43 . The core back portion 41 is formed in an arc shape. The tooth portion 42 is formed extending from the center portion in the circumferential direction Z of the core inner peripheral surface 44 on the inner side X2 in the radial direction X of the core back portion 41 to the inner side X2 in the radial direction X. As shown in FIG. The shoe portion 43 is formed to extend toward both sides in the circumferential direction Z from the side surface in the circumferential direction Z at the inner X2 end portion in the radial direction X of the tooth portion 42 .
 コア片40および積層コア50における、コアバック部41の径方向Xの外側X1の軸方向Yに沿った面をコア外周面47とし、コアバック部41の径方向Xの内側X2の軸方向Yに沿った面をコア内周面44とする。また、コアバック部41の周方向Zの両端の軸方向Yに沿った面をコア側面401とする。コア片40および積層コア50における、ティース部42の周方向Zの両端の軸方向Yに沿った面をティース側面45とする。 In the core piece 40 and the laminated core 50, the surface along the axial direction Y on the outer side X1 in the radial direction X of the core back portion 41 is defined as the core outer peripheral surface 47, and the inner side X2 in the radial direction X of the core back portion 41 in the axial direction Y. A core inner circumferential surface 44 is defined as a surface along the . Also, the surfaces along the axial direction Y at both ends in the circumferential direction Z of the core back portion 41 are defined as core side surfaces 401 . The surfaces of the core pieces 40 and the laminated core 50 along the axial direction Y at both ends in the circumferential direction Z of the tooth portions 42 are tooth side surfaces 45 .
 また、ティース部42の径方向Xの内側X2の先端の軸方向Yに沿った面を先端面48とする。コア片40および積層コア50における、シュー部43の径方向Xの外側X1の軸方向Yに沿った面をシュー外周面46とする。また、シュー部43の周方向Zの軸方向Yに沿った面をシュー側面49とする。また、コア外周面47の一部にコア外周溝471を設ける。但し、コア外周溝471は形成しない場合も考えられる。 Also, the surface along the axial direction Y of the tip of the inner side X2 in the radial direction X of the tooth portion 42 is defined as the tip surface 48 . A shoe outer peripheral surface 46 is defined as a surface along the axial direction Y on the outer side X1 in the radial direction X of the shoe portion 43 in the core pieces 40 and the laminated core 50 . Further, a surface along the axial direction Y of the circumferential direction Z of the shoe portion 43 is defined as a shoe side surface 49 . A core outer peripheral groove 471 is provided in a part of the core outer peripheral surface 47 . However, it is conceivable that the core outer peripheral groove 471 is not formed.
 そして、コア片40のコアバック部41と、ティース部42と、シュー部43とに囲まれた領域がコイル33の配置されるスロット領域30となる。よって、スロット領域30を形成するコア片40の各面は、コアバック部41のコア内周面44と、ティース部42のティース側面45と、シュー部43のシュー外周面46となる。なお、本実施の形態1においては、コア片40および積層コア50として、周方向Zにおいてティース部42毎に分割された場合について示す。 A region surrounded by the core back portion 41, the teeth portion 42, and the shoe portion 43 of the core piece 40 becomes the slot region 30 in which the coil 33 is arranged. Accordingly, the surfaces of the core piece 40 forming the slot region 30 are the core inner peripheral surface 44 of the core back portion 41 , the tooth side surface 45 of the tooth portion 42 , and the shoe outer peripheral surface 46 of the shoe portion 43 . In addition, in Embodiment 1, a case where the core pieces 40 and the laminated core 50 are divided for each tooth portion 42 in the circumferential direction Z is shown.
 コア片40を形成する電磁鋼板は、高透磁率の材料の表面に絶縁コーティングが施されている。よって、これらを軸方向Yに積層しても、軸方向Yに隣接するコア片40同士は絶縁されるため導通しない。この状態で各コア片40を固定するために、積層コア50のスロット領域30を形成する面であるコア内周面44、ティース側面45、シュー外周面46の3つの面のそれぞれを覆うように軸方向Yに連続的に接着剤を塗布して後述する接着部9を形成し、軸方向Yのコア片40の積層間を固定する。 The magnetic steel sheet that forms the core piece 40 is made of a material with high magnetic permeability and is coated with an insulating coating on its surface. Therefore, even if these are laminated in the axial direction Y, the core pieces 40 adjacent to each other in the axial direction Y are insulated and do not conduct. In order to fix each core piece 40 in this state, the three surfaces of the core inner peripheral surface 44, the tooth side surface 45, and the shoe outer peripheral surface 46, which are the surfaces forming the slot region 30 of the laminated core 50, are covered. Adhesive is continuously applied in the axial direction Y to form an adhesive portion 9, which will be described later, to fix the core pieces 40 in the axial direction Y between laminations.
 接着部9を形成する範囲は、コア内周面44、ティース側面45、シュー外周面46だけでなく、図4および図5に示すように、シュー側面49にまで延伸してもよい。なお、当該図においては、先端面48に接着部9は形成していないが、先端面48まで接着部9を延伸してもよい。 The range in which the adhesive portion 9 is formed may extend not only to the core inner peripheral surface 44, tooth side surface 45, and shoe outer peripheral surface 46, but also to the shoe side surface 49 as shown in FIGS. In addition, although the bonding portion 9 is not formed on the tip surface 48 in the drawing, the bonding portion 9 may be extended to the tip surface 48 .
 従来までの軸方向Yの固定方法である、かしめまたは溶接による固定方法では、軸方向Yの積層間が導通するため、その部分に渦電流が発生し鉄損が大きくなっていた。しかしながら、本実施の形態1のように積層コア50のスロット領域30を形成する面であるコア内周面44、ティース側面45、シュー外周面46の3つの面のそれぞれを覆うように軸方向Yに連続的に形成された接着部9の固定により軸方向Yのコア片40の積層間が固定されかつ絶縁された状態が維持されるため、渦電流が抑制され、回転電機効率を向上できる。 In the conventional fixing method in the axial direction Y, which is the fixing method by caulking or welding, since the laminations in the axial direction Y are electrically connected, eddy current is generated in that part and the iron loss increases. However, as in the first embodiment, the axial direction Y is extended so as to cover each of the three surfaces of the core inner peripheral surface 44, the tooth side surface 45, and the shoe outer peripheral surface 46, which are the surfaces forming the slot region 30 of the laminated core 50. Since the lamination of the core pieces 40 in the axial direction Y is fixed and the state of insulation is maintained by fixing the adhesive portion 9 continuously formed in the axial direction Y, the eddy current is suppressed and the efficiency of the rotating electric machine can be improved.
 また、ここでは接着部9は、軸方向Yに積層される全てのコア片40即ち、積層コア50の全てのスロット領域30のコア内周面44、ティース側面45、およびシュー外周面46の3つの面の全てを覆うように軸方向Yの一端側から他端側に連続的に塗布され形成される。よって、当該接着部9の外側に、他の絶縁体を介することなく、直接、電線60が複数回巻かれることでコイル33を形成できる。 In addition, here, the bonding portion 9 is formed by all the core pieces 40 laminated in the axial direction Y, that is, the core inner peripheral surfaces 44 of all the slot regions 30 of the laminated core 50, the tooth side surfaces 45, and the shoe outer peripheral surfaces 46. It is formed by coating continuously from one end side to the other end side in the axial direction Y so as to cover all three surfaces. Therefore, the coil 33 can be formed by directly winding the electric wire 60 multiple times around the bonding portion 9 without interposing another insulator.
 即ち、コア片40を積層方向Y(軸方向Y)に固着することで積層コア50を形成しているが、その固着を担う接着部9が、コア内周面44、ティース側面45、およびシュー外周面46の3つの面の全てを覆うように軸方向Yに連続的に形成されることで、コイル33を形成する電線60と、コア片40との電気的絶縁の機能も有する。なお、接着部9の厚みのコントロールおよび接着剤の種類により、回転電機に求められる絶縁性能を簡便に満足できる。 That is, the laminated core 50 is formed by fixing the core pieces 40 in the lamination direction Y (axial direction Y). By being formed continuously in the axial direction Y so as to cover all three surfaces of the outer peripheral surface 46 , it also has a function of electrical insulation between the wires 60 forming the coil 33 and the core pieces 40 . By controlling the thickness of the adhesive portion 9 and the type of adhesive, it is possible to easily satisfy the insulation performance required for the rotary electric machine.
 また、他の例としては図6に示すように、コア片40のコア内周面44とコア側面401の角部に面取り部402を形成し、その面取り部402上に溜まり部901が形成されるように接着剤を塗布し、硬化させて接着部9を形成する。このように、面取り部402に溜まり部901を形成すれば、電線60の巻線回数が多くなり、コイル33とコア側面401との距離が確保できずに電気的絶縁を確保することが難しい場合、図5に示した場合よりも、図6に示した場合の方が、コイル33とコア側面401との絶縁距離を確保でき、絶縁性能を確保できる。 As another example, as shown in FIG. 6, a chamfered portion 402 is formed at the corner of the core inner peripheral surface 44 of the core piece 40 and the core side surface 401, and a reservoir portion 901 is formed on the chamfered portion 402. An adhesive is applied and cured to form the adhesive portion 9 . If the pooled portion 901 is formed in the chamfered portion 402 in this way, the number of windings of the electric wire 60 is increased, and the distance between the coil 33 and the core side surface 401 cannot be secured, making it difficult to secure electrical insulation. 6, the insulation distance between the coil 33 and the core side surface 401 can be ensured, and the insulation performance can be ensured, as compared with the case shown in FIG.
 なお、面取り部402の代わりに、R面取り、あるいは、コア内周面44のコア側面401側に、X1方向に段差を設け、R面取り、あるいは段差内に溜まり部901を形成した場合でも、同じ効果が期待できる。 It should be noted that instead of the chamfered portion 402, R-chamfering, or providing a step in the X1 direction on the core side surface 401 side of the core inner peripheral surface 44, and forming a reservoir portion 901 in the R-chamfering or the stepped portion are the same. expected to be effective.
 また、図20に示すように、軸方向Yにおいてコア片40同士を密着させて接着剤を塗布して接着部9を形成する。このことで、接着剤は軸方向Yに隣り合うコア片40の各積層面411間に入らない。よって、軸方向Yに隣り合うコア片40同士が接着部9を介さずに接する積層面411を有することとなる。なお、コア片40を打抜く際、コア片40の軸方向Yの一方にはダレ412、コア片40の軸方向Yの他方にカエリ413が発生する。よって、ここでは軸方向Yに隣り合うコア片40間のダレ412とカエリ413とでできる隙間414に、接着剤が入りこみ接着部9が形成される。これらのことにより、軸方向Yに隣り合うコア片40同士が無駄なスペースなく軸方向Yに密着して積み上げ固着でき、固定子10の軸方向Yの寸法を小さくできる。また、隙間414に入った接着部9により固着力を強固にできる。 Further, as shown in FIG. 20, the core pieces 40 are brought into close contact with each other in the axial direction Y and an adhesive is applied to form the adhesion portion 9 . As a result, the adhesive does not enter between the lamination surfaces 411 of the core pieces 40 adjacent to each other in the Y-axis direction. Therefore, the core pieces 40 adjacent to each other in the axial direction Y have lamination surfaces 411 in contact with each other without the bonding portion 9 interposed therebetween. When the core piece 40 is punched, sagging 412 is generated on one side of the core piece 40 in the axial direction Y, and burrs 413 are generated on the other side of the core piece 40 in the axial direction Y. Therefore, in this case, the adhesive enters gaps 414 formed by sagging 412 and burrs 413 between core pieces 40 adjacent in the axial direction Y to form bonded portions 9 . As a result, the core pieces 40 adjacent to each other in the axial direction Y can be stacked and fixed in close contact with each other in the axial direction Y without wasting space, and the size of the stator 10 in the axial direction Y can be reduced. Further, the adhesive portion 9 in the gap 414 can strengthen the fixing force.
 接着部9を形成する接着剤としては、例えば、2液硬化型の接着剤を用いるとよい。2液硬化型の接着剤は、主剤と硬化促進剤とからなり、主剤としては、エポキシ系接着剤、アクリル系接着剤、などが用いられる。このような構成とした場合、加熱プロセスがないため製造設備の構成をコンパクトにできるとともに、熱エネルギーを少なくできるため省エネの効果がある。 As the adhesive that forms the adhesive portion 9, for example, a two-liquid curing adhesive may be used. A two-liquid curing type adhesive consists of a main agent and a curing accelerator, and as the main agent, an epoxy adhesive, an acrylic adhesive, or the like is used. In such a configuration, since there is no heating process, the configuration of the manufacturing equipment can be made compact, and heat energy can be reduced, so that there is an effect of energy saving.
 また、接着部9を形成するための接着剤としては、例えば、エポキシ系接着剤に代表される加熱硬化型の接着剤を用いてもよい。この場合、製造設備に接着剤が付着しても熱を加えるまで固まらない。そのため、熱硬化させる前に、ふき取るだけで製造装置に付着した接着剤を除去でき、メンテナンス性が向上する。また、加熱硬化型の接着剤は、常温硬化型の接着剤と比較して、耐熱温度が高くなるため、積層コア50の耐熱性が向上する。 Also, as the adhesive for forming the adhesive portion 9, for example, a heat-curable adhesive represented by an epoxy-based adhesive may be used. In this case, even if the adhesive adheres to the manufacturing equipment, it will not harden until heat is applied. Therefore, the adhesive adhering to the manufacturing apparatus can be removed simply by wiping it off before thermal curing, thereby improving maintainability. In addition, since the heat-curable adhesive has a higher heat-resistant temperature than the room-temperature-curable adhesive, the heat resistance of the laminated core 50 is improved.
 また、接着部9を形成する接着剤としては、例えば、紫外線硬化型の接着剤を使用してもよい。この場合、製造設備に接着剤が付着しても紫外線を照射するまで固まらない。そのため、熱硬化させる前に、ふき取るだけで製造装置に付着した接着剤を除去でき、メンテナンス性が向上する。 Also, as the adhesive that forms the adhesive portion 9, for example, an ultraviolet curable adhesive may be used. In this case, even if the adhesive adheres to the manufacturing equipment, it will not harden until it is irradiated with ultraviolet rays. Therefore, the adhesive adhering to the manufacturing apparatus can be removed simply by wiping it off before thermal curing, thereby improving maintainability.
 また、接着部9を粉体塗装、もしくは電着塗装で構成してもよい。この場合、使用環境に合わせた塗装の種類を選択でき、選択の幅が広がる。また、例えば、フレーム1または各ブラケット2、3などの他部品を塗装する塗装装置と設備を共用できるので、設備投資を抑制できる。 Also, the bonding portion 9 may be configured by powder coating or electrodeposition coating. In this case, the type of coating can be selected according to the usage environment, expanding the range of choices. In addition, for example, equipment can be shared with a painting apparatus for painting other parts such as the frame 1 or the brackets 2 and 3, so equipment investment can be suppressed.
 次に、上記のように構成された実施の形態1の固定子10および回転電機100の製造方法について、図7のフローチャートおよび図8から図11を交えて説明する。まず、図7の打ち抜き工程ST1において、図8に示すように、リール状に巻かれた帯状にて形成される電磁鋼板にてなる板材301をアンコイラで引き出し、送り装置により油圧あるいは電動のプレス機21内に第1方向Aから送り込む。プレス機21内で金型22により、あらかじめ設定されたコア片40の形状に打ち抜く。 Next, a method of manufacturing the stator 10 and the rotating electric machine 100 of Embodiment 1 configured as described above will be described with reference to the flow chart of FIG. 7 and FIGS. 8 to 11 . First, in the punching step ST1 in FIG. 7, as shown in FIG. 8, a plate material 301 made of an electromagnetic steel sheet wound in a reel shape is pulled out by an uncoiler, and a hydraulic or electric press machine is driven by a feeding device. 21 from the first direction A. A predetermined shape of the core piece 40 is punched out by the die 22 in the press machine 21 .
 次に、図7の整列工程ST2において、打ち抜かれたコア片40を図9に示すように整列させながら積層方向Yに積層して積層コア50を形成する。整列はプレス機21の下方または、金型22の内部行うことも可能であるが、図8に示すように、プレス機21の外に第2方向Bに導出し、コア片40の進行方向を曲げてから整列させてもよい。なお、積層方向Yと、先に示した軸方向Yとは同一方向である。 Next, in the aligning step ST2 in FIG. 7, the punched core pieces 40 are aligned and stacked in the stacking direction Y to form the laminated core 50 as shown in FIG. Alignment can be performed below the pressing machine 21 or inside the mold 22, but as shown in FIG. You can bend it and then align it. Note that the stacking direction Y and the axial direction Y shown above are the same direction.
 次に、図7の固定工程ST30としての塗布工程ST3および硬化工程ST4について説明する。図8の接着装置23の内部には接着剤を塗布する機能と、塗布した接着剤を硬化させる機能を備える。図10は図8に示した接着装置23内部のN―N線における断面で、接着剤の塗布時の状態を示した一例である。複数のコア片40は位置決め治具231により整列を維持した状態で接着装置23内部を、プレス機21による打ち抜き工程ST1と連動して図10において紙面手前方向に進行する。 Next, the coating step ST3 and the curing step ST4 as the fixing step ST30 in FIG. 7 will be described. The inside of the bonding device 23 of FIG. 8 has a function of applying an adhesive and a function of curing the applied adhesive. FIG. 10 is a cross section taken along line NN inside the bonding device 23 shown in FIG. 8, showing an example of a state during application of the adhesive. A plurality of core pieces 40 are moved forward in FIG.
 また、位置決め治具231には、コア片40のコア内周面44、ティース側面45、シュー外周面46、シュー側面49の接着剤を塗布する部分と、あらかじめ設定された距離があけられた隙間234が設定され、塗布治具232が取り付けられる。更には、その隙間234に連通する穴233が設けられている。そして、その穴233を通じて硬化前の接着剤91が隙間234に供給される。隙間234に供給された接着剤91は毛細管現象により隙間234の全体に広がる。 Further, the positioning jig 231 includes the core inner peripheral surface 44, the tooth side surface 45, the shoe outer peripheral surface 46, and the shoe side surface 49 of the core piece 40 where the adhesive is to be applied, and a gap with a preset distance. 234 is set and the application jig 232 is attached. Furthermore, a hole 233 communicating with the gap 234 is provided. Then, the adhesive 91 before hardening is supplied to the gap 234 through the hole 233 . The adhesive 91 supplied to the gap 234 spreads over the entire gap 234 due to capillary action.
 接着剤91が塗布されたコア片40は、その後、接着剤91に応じた加熱または紫外線照射などを行う硬化工程ST4に進行し、接着部9が形成される。なお、隙間234と接着部9の厚みの関係は、塗布治具232側に残る接着剤91の影響と硬化収縮の影響により、「隙間234の距離>接着部9の厚み」の関係にあり、必要な絶縁性能を得るために隙間234の距離を調整し、接着部9の厚みをコントロールできる。 The core piece 40 to which the adhesive 91 is applied then proceeds to a curing step ST4 in which heating or ultraviolet irradiation according to the adhesive 91 is performed, and the adhesive portion 9 is formed. Note that the relationship between the gap 234 and the thickness of the adhesive portion 9 is in the relationship of "the distance of the gap 234>the thickness of the adhesive portion 9" due to the influence of the adhesive 91 remaining on the application jig 232 side and the effect of curing shrinkage. The thickness of the adhesive part 9 can be controlled by adjusting the distance of the gap 234 in order to obtain the required insulation performance.
 なお、塗布工程、硬化工程において、コア片40の接着剤91を塗布しないコア側面401、コア外周面47、先端面48(図5参照)に側圧をかけるとともに、図20の軸方向Yに、コア片40同士を密着させて接着剤91を塗布、硬化させることで、接着剤91が軸方向Yに隣り合うコア片40同士の積層面411に入らないように塗布、硬化させ接着部9を形成する。これにより、軸方向Yに隣り合うコア片40同士が無駄なスペースなく軸方向Yに密着して積み上げ固着できるため、固定子10の軸方向Yの寸法を小さくできる。 In addition, in the application process and the curing process, side pressure is applied to the core side surface 401, the core outer peripheral surface 47, and the tip end surface 48 (see FIG. 5) of the core piece 40 where the adhesive 91 is not applied, and in the axial direction Y in FIG. By applying and curing the adhesive 91 while the core pieces 40 are in close contact with each other, the adhesive 91 is applied and cured so that the adhesive 91 does not enter the laminated surface 411 of the core pieces 40 adjacent to each other in the axial direction Y, and the adhesive portion 9 is formed. Form. As a result, since the core pieces 40 adjacent to each other in the axial direction Y can be stacked and fixed in close contact with each other in the axial direction Y without wasting space, the size of the stator 10 in the axial direction Y can be reduced.
 次に、図7の分割工程ST5では、図8の分割装置24により、あらかじめ設定された軸方向Yにおける長さとなるように、接着部9を切断し、第3方向Cに排出して、積層コア50を複数個形成する。接着部9の切断方法としては、機械的にせん断力を加え切断してもよいし、レーザー照射等により、接着部9を焼き切ってもよい。次に、図7の配置工程ST6では、図11に一例を示すように、積層コア50へ軸端インシュレータ34を取り付ける。但し、図11における接着部9の内、軸方向Yに沿って連続して形成されている箇所は、黒太線にて示していない。 Next, in the dividing step ST5 of FIG. 7, the bonding portion 9 is cut by the dividing device 24 of FIG. 8 so as to have a predetermined length in the axial direction Y, discharged in the third direction C, and laminated. A plurality of cores 50 are formed. As a method for cutting the bonding portion 9, the bonding portion 9 may be cut by mechanically applying a shearing force, or may be burned off by laser irradiation or the like. Next, in the placement step ST6 of FIG. 7, the axial end insulator 34 is attached to the laminated core 50 as shown in FIG. 11 by way of example. However, portions of the bonding portion 9 shown in FIG. 11 that are continuously formed along the axial direction Y are not indicated by thick black lines.
 また、図21において、各箇所の周方向Zの幅に示すように、軸端インシュレータ34の積層コア50に対向する部分の周方向Zの幅を幅H1、ティース部42の周方向Zの幅を幅H2、ティース部42の周方向Zの両側に形成された接着部9の周方向Zの幅の合計値をH3とすると、以下に示す(式1)が成り立つように構成する。
H1≧H2+H3   ・・・(式1)
In FIG. 21, as shown in the width in the circumferential direction Z at each location, the width in the circumferential direction Z of the portion of the axial end insulator 34 facing the laminated core 50 is H1, and the width in the circumferential direction Z of the tooth portion 42 is is the width H2, and the total value of the widths in the circumferential direction Z of the bonding portions 9 formed on both sides of the tooth portion 42 in the circumferential direction Z is H3, (Equation 1) shown below is established.
H1≧H2+H3 (Formula 1)
 このように構成すれば、軸端インシュレータ34と接着部9とが確実に接し、積層コア50とコイル33との絶縁性能を確保できる。また、上記の(式1)が成り立つ上で、できる限り、幅H1を小さくする、つまり幅H1を幅H2+H3に近づけることで、コイル33を形成するスロット領域30を広くとることができ、回転電機100の出力を向上できる。 With this configuration, the axial end insulator 34 and the adhesive portion 9 are reliably brought into contact with each other, and the insulating performance between the laminated core 50 and the coil 33 can be ensured. Further, when the above (Equation 1) holds, the width H1 can be made as small as possible, that is, the width H1 can be brought closer to the width H2+H3, so that the slot region 30 in which the coil 33 is formed can be widened. 100 power can be improved.
 積層コア50のコア外周溝471に軸端インシュレータ34の凸部341を挿入することで軸端インシュレータ34が積層コア50に固定される。ここでは、事前に樹脂成形された軸端インシュレータ34を積層コア50に差し込む方法を示したが、これに限られることはなく、射出成形により、積層コア50と軸端インシュレータ34とを一体成形してもよい。その場合、接着部9を覆わないよう、コア外周溝471内等を樹脂が流動し、軸方向Yの両端の1対の軸端インシュレータ34をつなげて、積層コア50と一体的に形成することが考えられる。 The shaft end insulator 34 is fixed to the laminated core 50 by inserting the projection 341 of the shaft end insulator 34 into the core outer peripheral groove 471 of the laminated core 50 . Here, a method of inserting the shaft-end insulator 34 resin-molded in advance into the laminated core 50 is shown, but the present invention is not limited to this, and the laminated core 50 and the shaft-end insulator 34 are integrally molded by injection molding. may In that case, the resin flows in the core outer peripheral groove 471 or the like so as not to cover the bonding portion 9, and the pair of shaft end insulators 34 on both ends in the axial direction Y are connected to be integrally formed with the laminated core 50. can be considered.
 次に、図7のコイル形成工程ST7において、分割された積層コア50のティース部42に電線60を巻回し、コイル33を形成する。次に、図7の固定子形成工程ST8において、図3に示すように、軸端インシュレータ34およびコイル33が装着された複数の積層コア50を環状に配置し、フレーム1の内周面にコアバック部41のコア外周面47を固定する。次に、図7の回転電機形成工程ST9において、図1に示すように、軸受であるベアリング4、5によって、上ブラケット2、下ブラケット3に回転子20の回転軸6を回転自在に支持し、回転子20を固定子10に空隙を介して対向配置して回転電機100を形成する。 Next, in the coil forming step ST7 in FIG. 7, the electric wire 60 is wound around the tooth portions 42 of the divided laminated core 50 to form the coil 33 . Next, in the stator forming step ST8 of FIG. 7, as shown in FIG. The core outer peripheral surface 47 of the back portion 41 is fixed. Next, in the rotating electric machine forming step ST9 in FIG. 7, the rotating shaft 6 of the rotor 20 is rotatably supported by the upper bracket 2 and the lower bracket 3 by the bearings 4 and 5 as shown in FIG. , a rotating electric machine 100 is formed by arranging a rotor 20 to face a stator 10 with a gap therebetween.
 なお、上記実施の形態1においては、塗布工程ST3および硬化工程ST4(固定工程ST30)の後に、分割工程ST5を行う方法を示したが、これに限られることはなく、分割工程ST5の後に塗布工程ST3および硬化工程ST4(固定工程ST30)を行ってもよい。この場合、接着部9を積層コア50の側面だけでなく、積層コア50の軸方向両端面にまで連続的して延伸することが可能となり、更には絶縁性能を向上できる。 In the above first embodiment, the method of performing the dividing step ST5 after the coating step ST3 and the curing step ST4 (fixing step ST30) is shown, but the method is not limited to this, and the coating is performed after the dividing step ST5. Step ST3 and curing step ST4 (fixing step ST30) may be performed. In this case, it is possible to continuously extend the adhesive portion 9 not only to the side surfaces of the laminated core 50 but also to both axial end surfaces of the laminated core 50, thereby improving the insulation performance.
 上記のように構成された実施の形態1の回転電機の固定子によれば、
環状のコアバック部、および、該コアバック部の径方向の内側のコア内周面から、径方向の内側に突出するティース部を周方向に間隔を隔てて複数個有するコア片を軸方向に複数枚積層した積層コアと、
前記積層コアの前記ティース部、および、前記コアバック部に囲まれたスロット領域の内、少なくとも1つの前記スロット領域を形成する面のそれぞれに、軸方向の一端から他端に連続して、前記コア片を軸方向に固定する接着部と、
前記接着部の軸方向の一端および他端に接するとともに前記積層コアの軸方向の両端部に配置された軸端インシュレータと、
電線が前記ティース部に巻回され前記スロット領域に形成されたコイルとを備え、
また、回転電機によれば、
上記回転電機の固定子と、前記固定子に空隙を介して対向配置された回転子とを備え、
また、回転電機の固定子の製造方法によれば、
板材から前記コア片を複数枚打ち抜く打ち抜き工程と、
打ち抜かれた前記コア片を軸方向に積層するとともに整列させる整列工程と、
前記スロット領域を形成する面のそれぞれに、軸方向に連続して前記接着部を配置して、前記コア片を軸方向に固定する固定工程と、
軸方向に積層された前記コア片を、軸方向にあらかじめ設定された長さにて切断して複数の前記積層コアに分割する分割工程と、
前記接着部の軸方向の一端および他端に接するとともに、前記積層コアの軸方向の両端に前記軸端インシュレータを配置する配置工程とを備えたので、
また、回転電機の製造方法によれば、
上記記載の回転電機の固定子の製造方法を用いて製造した前記固定子を用いて前記回転電機を製造するので、
積層コアのスロット領域を形成する面に接着部を形成することで、積層コアのスロット領域にインシュレータを介さずとも、コイルと積層コアとの電気的絶縁を保つことができる。これにより、スロット領域を拡大でき、コイルの巻回数および線径を増加でき、回転電機の性能を向上できる。また、インシュレータの材料費および組付けの手間を省くことができ、コストを抑えることができる。また、コア片に接着部を形成し積層固定するため、コア片を従来のようにかしめまたは溶接により固定する必要がないため、渦電流およびヒステリシス損によって効率が悪化するのを防ぐことができる。また、コア片に接着部を形成し積層固定するため、板材(電磁鋼板)間全てに接着剤を含侵させる場合よりも、コア片の占積率を高めることができ高効率にできる。また、生産性も高めることができる。
According to the stator of the rotary electric machine of Embodiment 1 configured as described above,
A core piece having an annular core-back portion and a plurality of tooth portions protruding radially inwardly from a core inner peripheral surface radially inward of the core-back portion at intervals in the axial direction. a laminated core in which a plurality of sheets are laminated;
Of the slot regions surrounded by the tooth portions and the core back portion of the laminated core, each of the surfaces forming at least one of the slot regions is provided with the an adhesive portion for axially fixing the core pieces;
axial end insulators that are in contact with one axial end and the other axial end of the bonding portion and are arranged at both axial ends of the laminated core;
a coil formed in the slot region by winding an electric wire around the teeth,
Also, according to the rotary electric machine,
A stator of the rotating electric machine, and a rotor arranged opposite to the stator with a gap therebetween,
According to the manufacturing method of the stator of the rotary electric machine,
A punching step of punching out a plurality of the core pieces from a plate;
an aligning step of axially laminating and aligning the punched core pieces;
a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial direction;
a dividing step of cutting the core pieces laminated in the axial direction into a plurality of the laminated cores by cutting them in a predetermined length in the axial direction;
and an arranging step of arranging the axial end insulators on both axial ends of the laminated core while being in contact with one axial end and the other axial end of the adhesive portion,
Further, according to the manufacturing method of the rotary electric machine,
Since the rotating electrical machine is manufactured using the stator manufactured using the method for manufacturing a stator for a rotating electrical machine described above,
By forming the adhesive portion on the surface forming the slot region of the laminated core, electrical insulation between the coil and the laminated core can be maintained without interposing an insulator in the slot region of the laminated core. As a result, the slot area can be expanded, the number of coil turns and wire diameter can be increased, and the performance of the rotating electric machine can be improved. In addition, the material cost and labor for assembling the insulator can be saved, and the cost can be suppressed. In addition, since the core pieces are laminated and fixed by forming an adhesive portion, there is no need to fix the core pieces by caulking or welding as in the conventional art, so it is possible to prevent deterioration in efficiency due to eddy currents and hysteresis loss. In addition, since the core pieces are laminated and fixed by forming the adhesive portion, the space factor of the core pieces can be increased and the efficiency can be improved compared to the case where the adhesive is impregnated between all the plate materials (electromagnetic steel sheets). Moreover, productivity can also be improved.
 更には、実施の形態1の回転電機の固定子によれば、
前記接着部は、全ての前記スロット領域を形成する面に形成されたので、
コイルと積層コアとの全ての領域において電気的絶縁を保つことができ、回転電機の性能が更には向上できる。
Furthermore, according to the stator of the rotary electric machine of Embodiment 1,
Since the adhesive portion is formed on the surface forming all of the slot regions,
Electrical insulation can be maintained in all regions between the coil and the laminated core, and the performance of the rotating electric machine can be further improved.
 更には、実施の形態1の回転電機の固定子によれば、
前記ティース部は、径方向の内側端から周方向に延設されるシュー部を有し、
前記スロット領域は、前記ティース部、前記コアバック部、および前記シュー部に囲まれて形成されるので、
シュー部を有する場合でも、コイルと積層コアとの全ての領域において電気的絶縁を保つことができ、回転電機の性能が更には向上できる。
Furthermore, according to the stator of the rotary electric machine of Embodiment 1,
The tooth portion has a shoe portion extending in a circumferential direction from a radially inner end,
Since the slot region is formed surrounded by the tooth portion, the core-back portion, and the shoe portion,
Even when the shoe portion is provided, electrical insulation can be maintained in the entire region between the coil and the laminated core, and the performance of the rotating electric machine can be further improved.
 更には、実施の形態1の回転電機の固定子によれば、
前記積層コアは、前記ティース部毎に周方向に分割して形成されるので、
積層コアが分割されているため、接着部を簡便に形成できる。
Furthermore, according to the stator of the rotary electric machine of Embodiment 1,
Since the laminated core is formed by dividing each tooth portion in the circumferential direction,
Since the laminated core is divided, the bonding portion can be easily formed.
 更には、実施の形態1の回転電機の固定子によれば、
前記接着部は、紫外線の照射で硬化する紫外線硬化型の接着剤、嫌気性の接着剤、熱硬化性の接着剤のいずれかにて構成されるので
接着部を確実に形成できる。
Furthermore, according to the stator of the rotary electric machine of Embodiment 1,
Since the adhesive portion is composed of any one of an ultraviolet curable adhesive that is cured by irradiation with ultraviolet rays, an anaerobic adhesive, and a thermosetting adhesive, the adhesive portion can be reliably formed.
 更には、実施の形態1の回転電機の固定子の製造方法によれば、
前記固定工程は、
前記スロット領域を形成する面に、接着剤を塗布する塗布工程と、
前記接着剤を硬化させる硬化工程とを備えたので、
接着部を確実に形成できる。
Furthermore, according to the manufacturing method of the stator for the rotary electric machine of the first embodiment,
The fixing step includes
an application step of applying an adhesive to the surface forming the slot region;
and a curing step of curing the adhesive,
A bonding portion can be reliably formed.
 更には、実施の形態1の回転電機の固定子の製造方法によれば、
前記塗布工程は、
前記スロット領域を形成する面に、あらかじめ設定された距離を確保して対向する塗布治具を配置し、前記スロット領域を形成する面と前記塗布治具との前記距離の隙間に、前記接着剤が、毛細管現象により塗り広げられ前記隙間以下の膜厚にて形成されるので、
必要最小限の厚みにて接着部を確実に形成できる。
Furthermore, according to the manufacturing method of the stator for the rotary electric machine of the first embodiment,
The coating step includes
An application jig is placed on the surface forming the slot region so as to face each other with a predetermined distance therebetween, and the adhesive is filled in a gap of the distance between the surface forming the slot region and the application jig. However, since it is spread by capillary action and formed with a film thickness equal to or less than the gap,
The adhesive portion can be reliably formed with the minimum required thickness.
 更には、実施の形態1の回転電機の固定子によれば、
 軸方向に隣り合う前記コア片同士は、接着剤を介さずに接する積層面を有するので、
 また、実施の形態1の回転電機の固定子の製造方法によれば、
前記固定工程は、
軸方向に前記コア片同士を密着させながら固定させ、軸方向に隣り合う前記コア片同士が接着剤を介さずに接する積層面を有するように行われるので、
軸方向に隣り合うコア片同士が無駄なスペースなく軸方向に密着して積み上げ固着でき、固定子の軸方向の寸法を小さくできる。
Furthermore, according to the stator of the rotary electric machine of Embodiment 1,
Since the axially adjacent core pieces have lamination surfaces in contact with each other without an adhesive,
Further, according to the manufacturing method of the stator for the rotary electric machine of the first embodiment,
The fixing step includes
The core pieces are fixed in close contact with each other in the axial direction so that the core pieces adjacent to each other in the axial direction have lamination surfaces in contact with each other without an adhesive intervening therebetween.
The core pieces adjacent to each other in the axial direction can be stacked and fixed in close contact with each other in the axial direction without wasting space, and the size of the stator in the axial direction can be reduced.
 更には、実施の形態1の回転電機の固定子によれば、
 前記軸端インシュレータの前記積層コアに対向する部分の周方向の幅を幅H1、
前記ティース部の周方向の幅を幅H2、
前記ティース部の周方向の両側に形成された前記接着部の周方向の幅の合計の値をH3とすると、
H1≧H2+H3 ・・・(式1)
の(式1)が成り立つように構成されるので、
スロット領域を広くとることができ、回転電機の出力を向上できる。
Furthermore, according to the stator of the rotary electric machine of Embodiment 1,
A width H1 is the width in the circumferential direction of the portion of the shaft-end insulator facing the laminated core,
The width of the tooth portion in the circumferential direction is the width H2,
Assuming that the total value of the circumferential widths of the bonding portions formed on both sides of the tooth portion in the circumferential direction is H3,
H1≧H2+H3 (Formula 1)
(Equation 1) is established so that
The slot area can be widened, and the output of the rotating electric machine can be improved.
実施の形態2.
 図12は、実施の形態2における回転電機の固定子の構成を示す図である。図13は、図12の積層コアの構成を示す平面図である。図14は、図13に示した積層コアの構成を示す斜視図である。以下では、上記実施の形態1と同様である点の説明を適宜省略し、異なる点を中心に説明する。また、上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
Embodiment 2.
FIG. 12 is a diagram showing the configuration of the stator of the rotary electric machine according to the second embodiment. 13 is a plan view showing the structure of the laminated core of FIG. 12. FIG. 14 is a perspective view showing the configuration of the laminated core shown in FIG. 13. FIG. In the following, the description of the points that are the same as in the first embodiment will be omitted as appropriate, and the description will focus on the points of difference. Further, the same reference numerals are given to the same parts as in the first embodiment, and the description thereof is omitted.
 まず、図13と図14を用いて説明する。ティース側面45上に形成される接着部9の表面には、1つまたは複数(ここでは複数の例を示す)の軸方向Yに延在する凸部902が形成される。凸部902は、ティース側面45からスロット領域30の方向に突出する方向に形成されている。また、凸部902は図14に示すように、軸方向Yの一端から他端に連続して形成される。但し、図14における接着部9の内、軸方向Yに沿って連続して形成されている箇所は、黒太線にて示していない。 First, a description will be given using FIGS. 13 and 14. FIG. One or a plurality (here, a plurality of examples are shown) of protrusions 902 extending in the axial direction Y are formed on the surface of the bonding portion 9 formed on the tooth side surface 45 . The convex portion 902 is formed in a direction projecting from the tooth side surface 45 toward the slot region 30 . Moreover, as shown in FIG. 14, the convex portion 902 is formed continuously from one end to the other end in the axial direction Y. As shown in FIG. However, portions of the bonding portion 9 shown in FIG. 14 that are continuously formed along the axial direction Y are not indicated by thick black lines.
 次に、図12を用いて、凸部902の機能について説明する。電線60が、コア片40からなる積層コア50のティース部42の周囲をティース部42に近い側から、1層目331、2層目332、3層目333、4層目334、5層目335の順に巻かれることでコイル33が形成される。このとき、凸部902は1層目331の電線60の位置決めとして機能する。即ち、ティース側面45側において径方向Xに隣り合う電線60によって形成される凹部空間に凸部902が入り、1層目331の電線60の位置ずれを防止できる。 Next, the function of the convex portion 902 will be described using FIG. The electric wire 60 extends around the teeth portion 42 of the laminated core 50 made of the core pieces 40 from the side near the teeth portion 42 to the first layer 331, the second layer 332, the third layer 333, the fourth layer 334, and the fifth layer. The coil 33 is formed by winding 335 in order. At this time, the convex portion 902 functions as positioning of the electric wire 60 of the first layer 331 . That is, the convex portion 902 enters the concave space formed by the wires 60 adjacent to each other in the radial direction X on the tooth side surface 45 side, thereby preventing the positional displacement of the wires 60 of the first layer 331 .
 凸部902は、径方向Xに隣り合う電線60によって形成される凹部空間の全てに対応して形成してもよいし、一部の凹部空間に対応して形成してもよい。上記の方法で、1層目331の電線60の位置ずれが防止できれば、その上に巻かれる2層目332の電線60は、ティース側面45と反する側において径方向Xに隣り合う1層目331の電線60によって形成される凹部に落ち込むように巻かれるため安定する。2層目332の上から巻かれる3層目333、4層目334、5層目335についても同様に、1層下の当該凹部に落ち込むように安定して巻くことができ、巻乱れなく、電線60が俵積みされた整列巻の実現が容易になる。 The convex portion 902 may be formed corresponding to all of the concave spaces formed by the wires 60 adjacent in the radial direction X, or may be formed corresponding to a part of the concave spaces. If the positional deviation of the electric wire 60 of the first layer 331 can be prevented by the above method, the electric wire 60 of the second layer 332 wound thereon can be arranged in the first layer 331 adjacent in the radial direction X on the side opposite to the tooth side surface 45. It is stable because it is wound so as to drop into the concave portion formed by the electric wire 60 of . Similarly, the third layer 333, the fourth layer 334, and the fifth layer 335, which are wound from above the second layer 332, can be stably wound so as to fall into the recess one layer below, without winding disturbance. This facilitates the realization of aligned winding in which the wires 60 are stacked in bales.
 次に、上記のように構成された実施の形態2における回転電機100の製造方法について、上記実施の形態1と異なる接着剤の塗布工程ST3を中心に説明する。図15は図8に示した接着装置23内部のN―N線における断面で、接着剤の塗布時の状態を示した実施の形態2における一例である。図15に示すように、接着剤の塗布工程ST3において、位置決め治具231には、コア片40のコア内周面44、ティース側面45、シュー外周面46、シュー側面49の接着剤の塗布する部分とあらかじめあけられた隙間234が設定され、塗布治具232が取り付けられる。塗布治具232には、接着部9の凸部902に対向した部分には、紙面奥行き方向、即ち軸方向Yに凹部235が形成されている。 Next, a method for manufacturing the rotating electrical machine 100 according to the second embodiment configured as described above will be described, focusing on the adhesive application step ST3, which is different from the first embodiment. FIG. 15 is a cross section taken along the line NN inside the bonding device 23 shown in FIG. 8, and is an example of the second embodiment showing a state during adhesive application. As shown in FIG. 15, in the adhesive application step ST3, the adhesive is applied to the core inner peripheral surface 44, the tooth side surface 45, the shoe outer peripheral surface 46, and the shoe side surface 49 of the core piece 40 on the positioning jig 231. A gap 234 pre-opened with the part is set, and an application jig 232 is attached. A concave portion 235 is formed in the depth direction of the paper surface, that is, in the axial direction Y in a portion of the application jig 232 that faces the convex portion 902 of the bonding portion 9 .
 更には、その隙間234および凹部235につながる穴233が設けられている。そして、その穴233を通じて硬化前の接着剤91が隙間234に供給される。隙間234に供給された接着剤91は毛細管現象により隙間234および凹部235の全体に広がる。接着剤91が塗布されたコア片40は、その後、接着剤91に応じた加熱または紫外線照射などを行う硬化工程ST4に進行し、凸部902を有する接着部9が形成される。 Furthermore, a hole 233 that connects to the gap 234 and the recess 235 is provided. Then, the adhesive 91 before hardening is supplied to the gap 234 through the hole 233 . The adhesive 91 supplied to the gap 234 spreads over the entire gap 234 and the recess 235 due to capillary action. The core piece 40 to which the adhesive 91 is applied then proceeds to a curing step ST4 in which heating or ultraviolet irradiation is performed according to the adhesive 91, and the adhesive portion 9 having the convex portions 902 is formed.
 上記のように構成された実施の形態2の回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法によれば、上記実施の形態1と同様の効果を奏するとともに、
前記ティース部に形成された前記接着部の表面には、軸方向に延在する凸部を備え、
前記コイルの第1層を形成する前記電線は、径方向に隣り合う前記凸部に接して設置され、
また、
板材から前記コア片を複数枚打ち抜く打ち抜き工程と、
打ち抜かれた前記コア片を軸方向に積層するとともに整列させる整列工程と、
前記スロット領域を形成する面のそれぞれに、軸方向に連続して前記接着部を配置して、前記コア片を軸方向に固定する固定工程と、
軸方向に積層された前記コア片を、軸方向にあらかじめ設定された長さにて切断して複数の前記積層コアに分割する分割工程と、
前記接着部の軸方向の一端および他端に接するとともに、前記積層コアの軸方向の両端に前記軸端インシュレータを配置する配置工程とを備え、
前記固定工程は、
前記スロット領域を形成する面に、接着剤を塗布する塗布工程と、
前記接着剤を硬化させる硬化工程とを有し、
前記塗布工程は、
前記スロット領域を形成する面に、あらかじめ設定された距離を確保するとともに、前記接着部の前記凸部に対向した部分には凹部が形成された塗布治具を配置し、前記スロット領域を形成する面と前記塗布治具との前記距離の隙間に、前記接着剤が、毛細管現象により塗り広げられ前記隙間以下の膜厚にて形成されるとともに、前記塗布治具の前記凹部では前記接着剤に前記凸部が形成されるので、
凸部によりコイルの整列巻が容易にでき、巻線速度アップによる生産性が向上する。また、コイルの整列巻できるため、同じスロット領域であっても、コイルの占積率が高まり、巻回数を増やし、回転電機のトルクアップなど性能を高めることができる。
According to the stator of the rotating electrical machine, the rotating electrical machine, the method of manufacturing the stator of the rotating electrical machine, and the method of manufacturing the rotating electrical machine of the second embodiment configured as described above, the same effects as those of the first embodiment can be obtained. Along with playing
A convex portion extending in the axial direction is provided on the surface of the adhesive portion formed on the tooth portion,
the wires forming the first layer of the coil are placed in contact with the convex portions adjacent in the radial direction;
again,
A punching step of punching out a plurality of the core pieces from a plate;
an aligning step of axially laminating and aligning the punched core pieces;
a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial direction;
a dividing step of cutting the core pieces laminated in the axial direction into a plurality of the laminated cores by cutting them in a predetermined length in the axial direction;
an arranging step of arranging the axial end insulators on both axial ends of the laminated core while being in contact with one axial end and the other axial end of the adhesive portion;
The fixing step includes
an application step of applying an adhesive to the surface forming the slot region;
and a curing step of curing the adhesive,
The coating step includes
A coating jig having a predetermined distance secured on the surface forming the slot region and having a concave portion formed in a portion of the bonding portion facing the convex portion is arranged to form the slot region. The adhesive is spread in the gap of the distance between the surface and the application jig by capillary action to form a film thickness equal to or less than the gap, and the adhesive is applied to the concave portion of the application jig. Since the convex portion is formed,
The convex portion facilitates alignment winding of the coil, and productivity is improved by increasing the winding speed. In addition, since the coils can be wound in an aligned manner, even in the same slot area, the space factor of the coils can be increased, the number of turns can be increased, and the torque of the rotating electrical machine can be increased.
実施の形態3.
 図16は、実施の形態3における図3に示した1つの固定子の拡大図である。図17は、実施の形態3における回転電機の製造方法を示すフローチャートである。図18は、積層コアに粘着テープの貼付けを行う貼付け装置を示す概略図である。図19は、図18に示した貼付け装置の視点Pにおける概略図である。以下では、上記各実施の形態と同様である点の説明を適宜省略し、異なる点を中心に説明する。また、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。
Embodiment 3.
16 is an enlarged view of one stator shown in FIG. 3 in Embodiment 3. FIG. FIG. 17 is a flow chart showing a method for manufacturing a rotating electric machine according to the third embodiment. FIG. 18 is a schematic diagram showing a sticking device for sticking an adhesive tape to a laminated core. FIG. 19 is a schematic view of the sticking device shown in FIG. 18 at a viewpoint P. FIG. In the following, the description of the points that are the same as those of the above-described embodiments will be omitted as appropriate, and the description will focus on the points of difference. Also, the same reference numerals are given to the same parts as in the above embodiments, and the description thereof is omitted.
 まず、図16を用いて説明する。接着部9を形成する接着剤91を用いる代わりに、接着部9を形成する絶縁性を有する粘着テープ92が用いられる。各コア片40を固定するために、積層コア50のスロット領域30を形成する面であるコア内周面44、ティース側面45、シュー外周面46の3つの面の全てを覆うように軸方向Yに連続的に粘着テープ92が貼付けられている。粘着テープ92の貼付けによって、軸方向Yのコア片40の軸方向Y間(積層間)を固定する。 First, a description will be given using FIG. Instead of using the adhesive 91 forming the adhesion portion 9, an insulating adhesive tape 92 forming the adhesion portion 9 is used. In order to fix each core piece 40 , the axial direction Y is extended so as to cover all three surfaces of the core inner peripheral surface 44 , the tooth side surface 45 , and the shoe outer peripheral surface 46 , which are the surfaces forming the slot region 30 of the laminated core 50 . An adhesive tape 92 is continuously attached to the . By attaching the adhesive tape 92, the space between the core pieces 40 in the axial direction Y in the axial direction Y (between laminations) is fixed.
 粘着テープ92の貼付けの範囲は、コア内周面44、ティース側面45、シュー外周面46だけでなく、シュー側面49、更には、先端面48にまで延伸してもよい。あるいは、図16に示すように、コア内周面44、ティース側面45、シュー外周面46を完全に覆うように粘着テープ92を貼付け、それ以外の部分は貼付けずに、粘着テープ92が少し余るように貼付けてもよい。 The range of attachment of the adhesive tape 92 may extend not only to the core inner peripheral surface 44 , tooth side surface 45 and shoe outer peripheral surface 46 , but also to the shoe side surface 49 and further to the tip surface 48 . Alternatively, as shown in FIG. 16, the adhesive tape 92 is attached so as to completely cover the core inner peripheral surface 44, the tooth side surface 45, and the shoe outer peripheral surface 46, and the adhesive tape 92 is not attached to the other portions, leaving a little excess adhesive tape 92. You can also paste it like this:
 粘着テープ92としては、例えば、ポリイミド(Polyimide)、または、ポリ塩化ビニル(PVC、PolyvinylChloride)のフィルムを基材として、シリコーン系またはアクリル系等の粘着剤で構成されたテープを使用できる。その粘着テープ92の外側に、他の絶縁体を介することなく、直接、電線60が複数回巻かれることでコイル33を形成している。 As the adhesive tape 92, for example, a tape made of a polyimide or polyvinyl chloride (PVC) film as a base material and a silicone or acrylic adhesive can be used. The coil 33 is formed by directly winding the electric wire 60 multiple times around the adhesive tape 92 without interposing another insulator.
 即ち、コア片40を軸方向Yに積層して固着することで積層コア50を形成しているが、その固着を担う粘着テープ92が、スロット領域30を形成する面である、コア内周面44、ティース側面45、およびシュー外周面46の3つの面の全てを覆うように軸方向Yに連続的に形成されることで、コイル33を形成する電線60と、積層コア50との電気的絶縁の機能を有する。なお、粘着テープ92を最適な種類および厚みを選択することで、回転電機に求められる絶縁性能を満足できる。 That is, the laminated core 50 is formed by laminating and fixing the core pieces 40 in the axial direction Y, and the adhesive tape 92 responsible for the fixing is the inner peripheral surface of the core, which is the surface forming the slot region 30. 44 , tooth side surfaces 45 , and shoe outer peripheral surface 46 . It has the function of insulation. By selecting the optimum type and thickness of the adhesive tape 92, the insulation performance required for the rotating electric machine can be satisfied.
 次に、上記のように構成された実施の形態3における回転電機100の固定子の製造方法について、上記各実施の形態と異なる工程を中心に説明する。図17のフローチャートに示すように、塗布工程ST3および硬化工程ST4を有する固定工程ST30に変えて、固定工程ST30として貼付け工程ST31が行われる。それ以外のST1からST2、ST5からST9については、上記各実施の形態と同様である。 Next, a method of manufacturing the stator of the rotating electrical machine 100 according to the third embodiment configured as described above will be described, focusing on steps different from those of the above embodiments. As shown in the flowchart of FIG. 17, instead of the fixing step ST30 having the coating step ST3 and the curing step ST4, the attaching step ST31 is performed as the fixing step ST30. ST1 to ST2 and ST5 to ST9 are the same as those in the above embodiments.
 図18および図19に示した粘着テープ92の貼付け装置を用いて行う貼付け工程ST31について説明する。複数のコア片40は位置決め治具231により整列を維持した状態で貼付け装置内部をプレス機21による打ち抜き工程と連動して、図18における紙面手前方向、図19における第4方向Dに進行する。進行するコア片40の両側の側面には貼付けローラ25が配置されており、粘着テープ巻921から第5方向Eの向きに巻き解かれた粘着テープ92をコア片40の側面の内のコア内周面44、ティース側面45、シュー外周面46の3面に少なくとも貼付け、固定する。 The sticking step ST31 performed using the sticking device for the adhesive tape 92 shown in FIGS. 18 and 19 will be described. The plurality of core pieces 40 move forward in FIG. 18 and in the fourth direction D in FIG. The sticking rollers 25 are arranged on both side surfaces of the advancing core piece 40 , and the adhesive tape 92 unwound in the fifth direction E from the adhesive tape roll 921 is applied to the inner core inside the side surface of the core piece 40 . At least three surfaces of the peripheral surface 44, the tooth side surface 45, and the outer peripheral surface 46 of the shoe are adhered and fixed.
 なお、上記実施の形態2においては、図17のフローチャートにおいて、貼付け工程ST31(固定工程ST30)の後に、分割工程ST5を行う方法を示したが、これに限られることはなく、分割工程ST5の後に貼付け工程ST31(固定工程ST30)を行ってもよい。この場合、粘着テープ92の長さを積層コア50の軸方向Yの長さより余る程度に切断し、積層コア50の側面と積層コア50の軸方向Yの両端面を粘着テープ92で連続的に貼付けることが可能となり、更には絶縁性能を向上できる。 In the second embodiment, the flowchart of FIG. 17 shows a method of performing the dividing step ST5 after the attaching step ST31 (fixing step ST30). The attaching step ST31 (fixing step ST30) may be performed later. In this case, the length of the adhesive tape 92 is cut to be longer than the length of the laminated core 50 in the axial direction Y, and the side surface of the laminated core 50 and both end surfaces of the laminated core 50 in the axial direction Y are continuously attached with the adhesive tape 92. Affixing becomes possible, and furthermore, the insulating performance can be improved.
 上記のように構成された実施の形態3の回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法によれば、上記各実施の形態と同様の効果を奏するとともに、
前記接着部は、絶縁性を有する粘着テープにて構成され、
また、前記固定工程は、
前記スロット領域を形成する面のそれぞれに、軸方向に連続して、前記コア片に絶縁の粘着テープが貼付固定される貼付工程を有するので、
接着剤を硬化させる工程が不要となり、生産性が向上する。また、接着剤にて形成された接着部に比べて粘着テープにて形成された接着部の方が切れにくいことから、製造工程の中に積層コアが割れるなどの不良を低減できる。
According to the stator of the rotating electrical machine, the rotating electrical machine, the method of manufacturing the stator of the rotating electrical machine, and the method of manufacturing the rotating electrical machine of the third embodiment configured as described above, the same effects as those of the above embodiments can be obtained. Along with playing
The adhesive portion is composed of an insulating adhesive tape,
In addition, the fixing step includes:
Since an adhesive tape for insulation is adhered and fixed to the core pieces continuously in the axial direction on each of the surfaces forming the slot regions,
This eliminates the need for the step of curing the adhesive, improving productivity. In addition, since the bonded portion formed with the adhesive tape is more difficult to cut than the bonded portion formed with adhesive, defects such as cracking of the laminated core during the manufacturing process can be reduced.
 なお、上記各実施の形態においては、周方向Zにおいて1つのティース毎に分割された積層コア50の例を示したが、これに限られることはなく、周方向Zにおいて分割されていない場合、または、1箇所のみで分割されている場合、複数のティース毎に分割されている場合など様々な例が考えられる。 In each of the above-described embodiments, an example of the laminated core 50 that is divided into each tooth in the circumferential direction Z is shown, but the present invention is not limited to this. Alternatively, various examples can be considered, such as the case where it is divided only at one place, the case where it is divided for each of a plurality of teeth, and the like.
 また、上記各実施の形態においては、1つのティースにコイルを巻く集中巻きにて形成される固定子の例を示したが、これに限られることはなく、複数のティースにまたがってコイルを巻く分布巻きにて形成される固定子でも、上記各実施の形態と同様に適用可能である。 Further, in each of the above-described embodiments, an example of a stator formed by concentrated winding in which a coil is wound around one tooth is shown, but the present invention is not limited to this, and the coil is wound across a plurality of teeth. A stator formed by distributed winding can also be applied in the same manner as the above embodiments.
 また、接着部9を接着剤91または粘着テープ92によってコア片40の軸方向Yを固定した1つの積層コア50を、周方向Zに複数配置した固定子の例を示したが、これに限られることはなく、軸方向Yに複数の積層コア50を積層させて形成される固定子でも、上記各実施の形態と同様に適用可能である。 In addition, although an example of a stator in which a plurality of laminated cores 50 each having an adhesive portion 9 fixed in the axial direction Y of the core piece 40 by the adhesive 91 or the adhesive tape 92 are arranged in the circumferential direction Z, the stator is limited to this. A stator formed by laminating a plurality of laminated cores 50 in the axial direction Y can also be applied in the same manner as the above embodiments.
 また、同一種類の周方向Zに分割された積層コア50にて形成される固定子の例を示したが、これに限られることはなく、複数種類の積層コア50を組み合わせ固定子を形成することも可能である。例えば、上記実施の形態にて示した接着部9で軸方向Yが固定された積層コア50の軸方向Yの両端に、従来のかしめ等により固定された積層コアを配置し、かしめ等により固定された積層コアのスロット部を軸端インシュレータ34で覆うような構成してもよい。 Moreover, although an example of a stator formed of the same type of laminated cores 50 divided in the circumferential direction Z has been shown, the present invention is not limited to this, and a stator is formed by combining a plurality of types of laminated cores 50. is also possible. For example, at both ends in the axial direction Y of the laminated core 50 fixed in the axial direction Y by the bonding portion 9 shown in the above embodiment, laminated cores fixed by conventional caulking or the like are arranged and fixed by caulking or the like. It may be configured such that the slot portion of the stacked core is covered with the axial end insulator 34 .
実施の形態4.
 図22は、実施の形態4における積層コアへ軸端インシュレータを取り付ける状態を示す斜視図である。図23は、図22に示した積層コアへ軸端インシュレータを取り付ける状態のR-R線における拡大断面図である。図24は、実施の形態4における図8に示した製造装置のN-N線における積層コアの軸方向の両端側における接着剤塗布時の状態を示す断面図である。以下では、上記各実施の形態と同様である点の説明を適宜省略し、異なる点を中心に説明する。また、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。
Embodiment 4.
FIG. 22 is a perspective view showing a state in which a shaft end insulator is attached to a laminated core according to Embodiment 4. FIG. 23 is an enlarged cross-sectional view taken along line RR of the state in which the axial end insulator is attached to the laminated core shown in FIG. 22. FIG. FIG. 24 is a cross-sectional view showing a state of the manufacturing apparatus shown in FIG. 8 according to Embodiment 4 when the adhesive is applied to both end sides in the axial direction of the laminated core along line NN. In the following, the description of the points that are the same as those of the above-described embodiments will be omitted as appropriate, and the description will focus on the points of difference. Also, the same reference numerals are given to the same parts as in the above embodiments, and the description thereof is omitted.
 本実施の形態4では、軸端インシュレータ34を用いて、積層コア50の軸方向Yの両端側のあらかじめ設定された枚数のコア片40を絶縁する場合について説明する。なお、当然のことながら、あらかじめ設定された枚数とは、積層コア50の複数枚のコア片40の数よりも少ない数であり、図においては、あらかじめ設定された枚数の例として、軸方向Yの両端側のそれぞれのコア片40の2枚を例に示している。 In the fourth embodiment, a case will be described in which the axial end insulators 34 are used to insulate a preset number of core pieces 40 on both end sides in the axial direction Y of the laminated core 50 . As a matter of course, the preset number is a number smaller than the number of the plurality of core pieces 40 of the laminated core 50. In the figure, as an example of the preset number, Two pieces of each core piece 40 on both end sides of are shown as an example.
 図22および図23に示すように、接着部9は、積層コア50の軸方向Yの両端側のあらかじめ設定された枚数、ここでは2枚のコア片40に形成された部分の厚みH4が、それ以外のコア片40に形成された部分の厚みH5よりも薄く形成された薄接着部900を有する。そして、軸端インシュレータ34には、薄接着部900上に係合する係合部340を備える。係合部340は、積層コア50に向かって、軸方向Yに突出して延在して形成される。そして、係合部340の厚みH6と薄接着部900の厚みH5との合計の値が、接着部9の厚みH4とほぼ同一に形成される。 As shown in FIGS. 22 and 23, the bonding portion 9 has a preset number of pieces on both end sides of the laminated core 50 in the axial direction Y, here, the thickness H4 of the portion formed on the two core pieces 40 is It has a thin adhesive portion 900 formed thinner than the thickness H5 of the portion formed in the core piece 40 other than that. The axial end insulator 34 is provided with an engaging portion 340 that engages on the thin adhesive portion 900 . The engaging portion 340 is formed to protrude and extend in the axial direction Y toward the laminated core 50 . The total value of the thickness H6 of the engaging portion 340 and the thickness H5 of the thin adhesive portion 900 is formed substantially equal to the thickness H4 of the adhesive portion 9 .
 そして、積層コア50へ軸端インシュレータ34を取り付けると、軸端インシュレータ34の係合部340が、積層コア50の軸方向Yの両端側にて薄接着部900の部分と係合するように、薄接着部900にかぶせて、軸方向Yの両端側にて積層コア50の2枚のコア片40を絶縁する。 When the shaft end insulators 34 are attached to the laminated core 50, the engaging portions 340 of the shaft end insulators 34 engage with the portions of the thin adhesive portions 900 on both end sides in the axial direction Y of the laminated core 50. It covers the thin adhesive portion 900 and insulates the two core pieces 40 of the laminated core 50 at both ends in the axial direction Y. As shown in FIG.
 接着部9の薄接着部900の形成方法は、図24に示したように、上記実施の形態の図10に示した場合と比較して、接着部9の厚みを形成する場合の隙間234よりも狭い隙間236、すなわち、隙間234>隙間236の関係となるように狭めて、塗布および硬化することで、接着部9の薄接着部900を形成する。 As shown in FIG. 24, the method of forming the thin adhesive portion 900 of the adhesive portion 9 is such that the thickness of the adhesive portion 9 is reduced from the gap 234 in comparison with the case shown in FIG. 10 of the above-described embodiment. The thin adhesive portion 900 of the adhesive portion 9 is formed by narrowing the gap 236 to satisfy the relationship of gap 234>gap 236, applying and curing.
 これにより、コイル33を配置した状態で、コイル33と積層コア50と間の絶縁沿面距離L1(図23参照)を、コイル33が巻回されるスロット領域30を縮小することなく確保でき、小型でありながら絶縁性能を確保できる。また、係合部340の厚みH6と薄接着部900の厚みH5との合計が、接着部9の厚みH4とほぼ同一に形成されているため、コイル33が巻き回されるスロット領域30を縮小することなく、回転電機100を小型化、および低損失化できる。 As a result, with the coil 33 arranged, the insulation creepage distance L1 (see FIG. 23) between the coil 33 and the laminated core 50 can be ensured without reducing the slot area 30 around which the coil 33 is wound. However, insulation performance can be secured. In addition, since the sum of the thickness H6 of the engaging portion 340 and the thickness H5 of the thin adhesive portion 900 is substantially the same as the thickness H4 of the adhesive portion 9, the slot area 30 around which the coil 33 is wound is reduced. The rotary electric machine 100 can be miniaturized and reduced in loss.
 上記のように構成された実施の形態4の回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法によれば、上記各実施の形態と同様の効果を奏するとともに、
 前記接着部は、前記積層コアの軸方向の両端側のあらかじめ設定された枚数の前記コア片に形成された部分の厚みが、それ以外の前記コア片に形成された部分の厚みよりも薄く形成された薄接着部を有し、
前記軸端インシュレータは、前記薄接着部上に係合する係合部を備えたので、
スロット領域を縮小すること無く、絶縁性能が確保できるため、回転電機の小型化、および低損失化が可能となる。
According to the stator of the rotating electrical machine, the rotating electrical machine, the method of manufacturing the stator of the rotating electrical machine, and the method of manufacturing the rotating electrical machine of the fourth embodiment configured as described above, the same effects as those of the above embodiments can be obtained. Along with playing
In the adhesive portion, the thickness of the portions formed on the predetermined number of core pieces on both axial end sides of the laminated core is formed to be thinner than the thickness of the portions formed on the other core pieces. has a thin adhesive part,
Since the shaft end insulator has an engaging portion that engages on the thin adhesive portion,
Since insulation performance can be ensured without reducing the slot area, it is possible to reduce the size and loss of the rotary electric machine.
実施の形態5.
 図25は、実施の形態5における積層コアへ軸端インシュレータを取り付ける状態を示す断面図である。以下では、上記各実施の形態と同様である点の説明を適宜省略し、異なる点を中心に説明する。また、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。
Embodiment 5.
FIG. 25 is a cross-sectional view showing a state in which the axial end insulator is attached to the laminated core according to the fifth embodiment. In the following, the description of the points that are the same as those of the above-described embodiments will be omitted as appropriate, and the description will focus on the points of difference. Also, the same reference numerals are given to the same parts as in the above embodiments, and the description thereof is omitted.
 本実施の形態5では、上記実施の形態4と同様に、軸端インシュレータ34を用いて、積層コア50の軸方向Yの両端側のあらかじめ設定された枚数のコア片40を絶縁する場合について説明する。なお、当然のことながら、あらかじめ設定された枚数とは、積層コア50の複数枚のコア片40の数よりも少ない数であり、図においては、あらかじめ設定された枚数の例として、軸方向Yの両端側のそれぞれのコア片40の2枚を例に示している。 In the fifth embodiment, similarly to the fourth embodiment, the shaft end insulators 34 are used to insulate a preset number of core pieces 40 on both end sides of the laminated core 50 in the axial direction Y. do. As a matter of course, the preset number is a number smaller than the number of the plurality of core pieces 40 of the laminated core 50. In the figure, as an example of the preset number, Two pieces of each core piece 40 on both end sides of are shown as an example.
 図25に示すように、積層コア50のコア片40は、第1コア片421と第2コア片422とから構成される。第1コア片421のティース部42の周方向Zの幅H11よりも第2コア片422のティース部42の周方向Zの幅H12が長く形成される。そして、積層コア50は、軸方向Yの両端側のあらかじめ設定された枚数、ここでは2枚を第1コア片421にて形成され、それ以外を第2コア片422にて形成される。第1コア片421および第2コア片422に形成される接着部9は略同一厚さにて形成される。 As shown in FIG. 25, the core pieces 40 of the laminated core 50 are composed of first core pieces 421 and second core pieces 422 . The width H12 in the circumferential direction Z of the tooth portions 42 of the second core pieces 422 is formed longer than the width H11 in the circumferential direction Z of the tooth portions 42 of the first core pieces 421 . The laminated core 50 is formed of the first core pieces 421 for a preset number of pieces on both end sides in the axial direction Y, here two pieces, and the second core pieces 422 for the rest. The adhesive portions 9 formed on the first core piece 421 and the second core piece 422 are formed with substantially the same thickness.
 そして、軸端インシュレータ34は、第1コア片421のティース部42のティース側面45上に接着部9を介して係合する係合部342を備える。係合部342は、積層コア50に向かって、軸方向Yに突出して延在して形成される。そして、係合部342の周方向Zの両側の周方向Zの幅H13および幅H14の合計と、第1コア片421の幅H11と第2コア片422の幅H12との差とは、ほぼ同一に形成される。 The axial end insulator 34 is provided with an engaging portion 342 that engages with the tooth side surface 45 of the tooth portion 42 of the first core piece 421 via the adhesive portion 9 . The engaging portion 342 is formed to protrude and extend in the axial direction Y toward the laminated core 50 . The sum of the width H13 and the width H14 in the circumferential direction Z on both sides of the engaging portion 342 and the difference between the width H11 of the first core piece 421 and the width H12 of the second core piece 422 is approximately formed identically.
 そして、積層コア50へ軸端インシュレータ34を取り付けた後には、軸端インシュレータ34の係合部342が、積層コア50の軸方向Yの両端側にて第1コア片421の接着部9の部分と係合するように、接着部9にかぶせて、軸方向Yの両端側にて積層コア50の2枚の第1コア片421を絶縁する。 After the axial end insulators 34 are attached to the laminated core 50 , the engaging portions 342 of the axial end insulators 34 are positioned at the bonding portions 9 of the first core pieces 421 on both end sides of the laminated core 50 in the axial direction Y. to insulate the two first core pieces 421 of the laminated core 50 on both end sides in the axial direction Y.
これにより、コイル33を配置した状態で、コイル33と積層コア50と間の絶縁沿面距離L2(図25参照)を、コイル33が巻回されるスロット領域30を縮小することなく確保でき、小型でありながら絶縁性能を確保できる。また、係合部342の周方向Zの両側の周方向Zの幅H13および幅H14の合計と、第1コア片421の幅H11と第2コア片422の幅H12との差とは、ほぼ同一に形成するので、コイル33が巻き回されるスロット領域30を縮小することなく、回転電機100を小型化、および低損失化できる。 As a result, with the coil 33 arranged, the insulation creepage distance L2 (see FIG. 25) between the coil 33 and the laminated core 50 can be ensured without reducing the slot area 30 around which the coil 33 is wound. However, insulation performance can be secured. In addition, the sum of the width H13 and the width H14 in the circumferential direction Z of both sides of the engaging portion 342 in the circumferential direction Z and the difference between the width H11 of the first core piece 421 and the width H12 of the second core piece 422 are approximately Since the coils 33 are formed identically, it is possible to reduce the size and loss of the rotary electric machine 100 without reducing the slot area 30 around which the coil 33 is wound.
 上記のように構成された実施の形態5の回転電機の固定子、回転電機、回転電機の固定子の製造方法、および回転電機の製造方法によれば、上記各実施の形態と同様の効果を奏するとともに、
 前記積層コアの前記コア片は、第1コア片および第2コア片を有し、前記第1コア片のティース部の周方向の幅よりも前記第2コア片のティース部の周方向の幅が長く形成され、前記積層コアは、軸方向の両端側のあらかじめ設定された枚数を前記第1コア片、それ以外を前記第2コア片にて構成され、
前記軸端インシュレータは、前記第1コア片の前記ティース部のティース側面上に前記接着部を介して係合する係合部を備えたので、
スロット領域を縮小すること無く、絶縁性能が確保できるため、回転電機の小型化、および低損失化が可能となる。
According to the stator of the rotating electrical machine, the rotating electrical machine, the method of manufacturing the stator of the rotating electrical machine, and the method of manufacturing the rotating electrical machine of the fifth embodiment configured as described above, the same effects as those of the above embodiments can be obtained. Along with playing
The core pieces of the laminated core have first core pieces and second core pieces, and the circumferential width of the tooth portions of the second core pieces is greater than the circumferential width of the tooth portions of the first core pieces. is formed long, and the laminated core is composed of the first core pieces for a predetermined number on both ends in the axial direction and the second core pieces for the rest,
Since the shaft end insulator includes an engaging portion that engages with the tooth side surface of the tooth portion of the first core piece via the adhesive portion,
Since insulation performance can be ensured without reducing the slot area, it is possible to reduce the size and loss of the rotary electric machine.
 以上に示したように、例示されていない無数の変形例が、当該技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものである。 As shown above, countless variations not illustrated are envisioned within the scope of the art. For example, modification, addition, or omission of at least one component is included.
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、更には、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
While this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may not apply to particular embodiments. can be applied to the embodiments singly or in various combinations.
Therefore, countless modifications not illustrated are envisioned within the scope of the technology disclosed in the present application. For example, modification, addition or omission of at least one component, extraction of at least one component, and combination with components of other embodiments shall be included.
 1 フレーム、10 固定子、100 回転電機、2 上ブラケット、20 回転子、21 プレス機、22 金型、23 接着装置、231 位置決め治具、232 塗布治具、233 穴、234 隙間、235 凹部、236 隙間、24 分割装置、25 貼付けローラ、3 下ブラケット、30 スロット領域、301 板材、33 コイル、34 軸端インシュレータ、340 係合部、341 凸部、342 係合部、4 ベアリング、40 コア片、401 コア側面、402 面取り部、41 コアバック部、411 積層面、412 ダレ、413 カエリ、414 隙間、42 ティース部、421 第1コア片、422 第2コア片、43 シュー部、44 コア内周面、45 ティース側面、46 シュー外周面、47 コア外周面、471 コア外周溝、48 先端面、49 シュー側面、5 ベアリング、50 積層コア、6 回転軸、60 電線、601 芯材、602 表面皮膜、7 回転子鉄心、8 永久磁石、9 接着部、901 溜まり部、902 凸部、91 接着剤、92 粘着テープ、900 薄接着部、921 粘着テープ巻、A 第1方向、B 第2方向、C 第3方向、D 第4方向、E 第5方向、X 径方向、X1 外側、X2 内側、Y 軸方向、Y 積層方向、Z 周方向。 1 Frame, 10 Stator, 100 Rotating electric machine, 2 Upper bracket, 20 Rotor, 21 Press machine, 22 Mold, 23 Bonding device, 231 Positioning jig, 232 Application jig, 233 Hole, 234 Gap, 235 Recess, 236 gap, 24 dividing device, 25 pasting roller, 3 lower bracket, 30 slot area, 301 plate material, 33 coil, 34 axial end insulator, 340 engaging portion, 341 convex portion, 342 engaging portion, 4 bearing, 40 core piece , 401 core side surface, 402 chamfered portion, 41 core back portion, 411 lamination surface, 412 sag, 413 burr, 414 gap, 42 tooth portion, 421 first core piece, 422 second core piece, 43 shoe portion, 44 inside core Peripheral surface, 45 Teeth side surface, 46 Shoe outer peripheral surface, 47 Core outer peripheral surface, 471 Core outer peripheral groove, 48 Tip surface, 49 Shoe side surface, 5 Bearing, 50 Laminated core, 6 Rotating shaft, 60 Electric wire, 601 Core material, 602 Surface Film, 7 Rotor core, 8 Permanent magnet, 9 Adhesive part, 901 Reservoir part, 902 Convex part, 91 Adhesive, 92 Adhesive tape, 900 Thin adhesive part, 921 Adhesive tape winding, A First direction, B Second direction , C third direction, D fourth direction, E fifth direction, X radial direction, X1 outer side, X2 inner side, Y axial direction, Y stacking direction, Z circumferential direction.

Claims (19)

  1. 環状のコアバック部、および、該コアバック部の径方向の内側のコア内周面から、径方向の内側に突出するティース部を周方向に間隔を隔てて複数個有するコア片を軸方向に複数枚積層した積層コアと、
    前記積層コアの前記ティース部、および、前記コアバック部に囲まれたスロット領域の内、少なくとも1つの前記スロット領域を形成する面のそれぞれに、軸方向の一端から他端に連続して、前記コア片を軸方向に固定する接着部と、
    前記接着部の軸方向の一端および他端に接するとともに前記積層コアの軸方向の両端部に配置された軸端インシュレータと、
    電線が前記ティース部に巻回され前記スロット領域に形成されたコイルとを備えた回転電機の固定子。
    A core piece having an annular core-back portion and a plurality of tooth portions protruding radially inwardly from a core inner peripheral surface radially inward of the core-back portion at intervals in the axial direction. a laminated core in which a plurality of sheets are laminated;
    Of the slot regions surrounded by the tooth portions and the core back portion of the laminated core, each of the surfaces forming at least one of the slot regions is provided with the an adhesive portion for axially fixing the core pieces;
    axial end insulators that are in contact with one axial end and the other axial end of the bonding portion and are arranged at both axial ends of the laminated core;
    A stator for a rotary electric machine, comprising: a coil formed in the slot region by winding an electric wire around the tooth portion.
  2.  軸方向に隣り合う前記コア片同士は、接着剤を介さずに接する積層面を有する請求項1に記載の回転電機の固定子。 The stator for a rotary electric machine according to claim 1, wherein the axially adjacent core pieces have lamination surfaces in contact with each other without an adhesive.
  3.  前記軸端インシュレータの前記積層コアに対向する部分の周方向の幅を幅H1、
    前記ティース部の周方向の幅を幅H2、
    前記ティース部の周方向の両側に形成された前記接着部の周方向の幅の合計の値をH3とすると、
    H1≧H2+H3 ・・・(式1)
    の(式1)が成り立つように構成される請求項1または請求項2に記載の回転電機の固定子。
    A width H1 is the width in the circumferential direction of the portion of the shaft-end insulator facing the laminated core,
    The width of the tooth portion in the circumferential direction is the width H2,
    Assuming that the total value of the circumferential widths of the bonding portions formed on both sides of the tooth portion in the circumferential direction is H3,
    H1≧H2+H3 (Formula 1)
    3. The stator for a rotary electric machine according to claim 1, wherein the stator of a rotary electric machine is constructed so that (Equation 1) of is satisfied.
  4.  前記接着部は、前記積層コアの軸方向の両端側のあらかじめ設定された枚数の前記コア片に形成された部分の厚みが、それ以外の前記コア片に形成された部分の厚みよりも薄く形成された薄接着部を有し、
    前記軸端インシュレータは、前記薄接着部上に係合する係合部を備えた請求項1または請求項2に記載の回転電機の固定子。
    In the adhesive portion, the thickness of the portions formed on the predetermined number of core pieces on both axial end sides of the laminated core is formed to be thinner than the thickness of the portions formed on the other core pieces. has a thin adhesive part,
    3. The stator for a rotary electric machine according to claim 1, wherein said shaft end insulator has an engaging portion that engages on said thin adhesive portion.
  5.  前記積層コアの前記コア片は、第1コア片および第2コア片を有し、前記第1コア片のティース部の周方向の幅よりも前記第2コア片のティース部の周方向の幅が長く形成され、
    前記積層コアは、軸方向の両端側のあらかじめ設定された枚数を前記第1コア片、それ以外を前記第2コア片にて構成され、
    前記軸端インシュレータは、前記第1コア片の前記ティース部のティース側面上に前記接着部を介して係合する係合部を備えた請求項1または請求項2に記載の回転電機の固定子。
    The core pieces of the laminated core have first core pieces and second core pieces, and the circumferential width of the tooth portions of the second core pieces is greater than the circumferential width of the tooth portions of the first core pieces. formed long,
    The laminated core comprises a predetermined number of the first core pieces on both ends in the axial direction, and the second core pieces on the rest,
    3. The stator for a rotary electric machine according to claim 1, wherein the shaft-end insulator includes an engaging portion that engages with a tooth side surface of the tooth portion of the first core piece through the adhesive portion. .
  6. 前記接着部は、全ての前記スロット領域を形成する面に形成された請求項1から請求項5のいずれか1項に記載の回転電機の固定子。 The stator for a rotary electric machine according to any one of claims 1 to 5, wherein the adhesive portion is formed on a surface forming all of the slot regions.
  7. 前記ティース部は、径方向の内側端から周方向に延設されるシュー部を有し、
    前記スロット領域は、前記ティース部、前記コアバック部、および前記シュー部に囲まれて形成される請求項1から請求項6のいずれか1項に記載の回転電機の固定子。
    The tooth portion has a shoe portion extending in a circumferential direction from a radially inner end,
    The stator for a rotary electric machine according to any one of claims 1 to 6, wherein the slot region is formed surrounded by the tooth portion, the core-back portion, and the shoe portion.
  8. 前記積層コアは、前記ティース部毎に周方向に分割して形成される請求項1から請求項7のいずれか1項に記載の回転電機の固定子。 The stator for a rotary electric machine according to any one of claims 1 to 7, wherein the laminated core is formed by dividing each tooth portion in the circumferential direction.
  9. 前記接着部は、紫外線の照射で硬化する紫外線硬化型の接着剤、嫌気性の接着剤、熱硬化性の接着剤のいずれかにて構成される請求項1から請求項8のいずれか1項に記載の回転電機の固定子。 9. The adhesive portion according to any one of claims 1 to 8, wherein the adhesive portion is composed of any one of an ultraviolet curable adhesive that is cured by irradiation with ultraviolet rays, an anaerobic adhesive, and a thermosetting adhesive. The stator of the rotary electric machine according to .
  10. 前記ティース部に形成された前記接着部の表面には、軸方向に延在する凸部を備え、
    前記コイルの第1層を形成する前記電線は、径方向に隣り合う前記凸部に接して設置される請求項9に記載の回転電機の固定子。
    A convex portion extending in the axial direction is provided on the surface of the adhesive portion formed on the tooth portion,
    10. The stator of a rotary electric machine according to claim 9, wherein the wires forming the first layer of the coil are installed in contact with the radially adjacent projections.
  11. 前記接着部は、絶縁性を有する粘着テープにて構成される請求項1から請求項8のいずれか1項に記載の回転電機の固定子。 The stator for a rotary electric machine according to any one of claims 1 to 8, wherein the adhesive portion is composed of an insulating adhesive tape.
  12. 請求項1から請求項11のいずれか1項に記載の回転電機の固定子と、前記固定子に空隙を介して対向配置された回転子とを備えた回転電機。 A rotary electric machine comprising: the stator for the rotary electric machine according to any one of claims 1 to 11; and a rotor facing the stator with a gap therebetween.
  13. 請求項1から請求項12のいずれか1項に記載の回転電機の固定子の製造方法において、
    板材から前記コア片を複数枚打ち抜く打ち抜き工程と、
    打ち抜かれた前記コア片を軸方向に積層するとともに整列させる整列工程と、
    前記スロット領域を形成する面のそれぞれに、軸方向に連続して前記接着部を配置して、前記コア片を軸方向に固定する固定工程と、
    軸方向に積層された前記コア片を、軸方向にあらかじめ設定された長さにて切断して複数の前記積層コアに分割する分割工程と、
    前記接着部の軸方向の一端および他端に接するとともに、前記積層コアの軸方向の両端に前記軸端インシュレータを配置する配置工程とを備えた回転電機の固定子の製造方法。
    In the method for manufacturing a stator for a rotary electric machine according to any one of claims 1 to 12,
    A punching step of punching out a plurality of the core pieces from a plate;
    an aligning step of axially laminating and aligning the punched core pieces;
    a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial direction;
    a dividing step of cutting the core pieces laminated in the axial direction into a plurality of the laminated cores by cutting them in a predetermined length in the axial direction;
    A method of manufacturing a stator for a rotating electrical machine, comprising: placing the axial end insulators in contact with one axial end and the other axial end of the bonded portion and arranging the shaft end insulators at both axial ends of the laminated core.
  14. 前記固定工程は、
    軸方向に前記コア片同士を密着させながら固定させ、軸方向に隣り合う前記コア片同士が接着剤を介さずに接する積層面を有するように行われる請求項13に記載の回転電機の固定子の製造方法。
    The fixing step includes
    14. The stator for a rotary electric machine according to claim 13, wherein the core pieces are fixed in close contact with each other in the axial direction so that the axially adjacent core pieces have laminated surfaces in contact with each other without an adhesive. manufacturing method.
  15. 前記固定工程は、
    前記スロット領域を形成する面に、接着剤を塗布する塗布工程と、
    前記接着剤を硬化させる硬化工程とを備えた請求項13または請求項14に記載の回転電機の固定子の製造方法。
    The fixing step includes
    an application step of applying an adhesive to the surface forming the slot region;
    15. The method of manufacturing a stator for a rotary electric machine according to claim 13, further comprising a curing step of curing said adhesive.
  16. 前記塗布工程は、
    前記スロット領域を形成する面に、あらかじめ設定された距離を確保して対向する塗布治具を配置し、前記スロット領域を形成する面と前記塗布治具との前記距離の隙間に、前記接着剤が、毛細管現象により塗り広げられ前記隙間以下の膜厚にて形成される請求項15に記載の回転電機の固定子の製造方法。
    The coating step includes
    An application jig is placed on the surface forming the slot region so as to face each other with a predetermined distance therebetween, and the adhesive is filled in a gap of the distance between the surface forming the slot region and the application jig. 16. The method of manufacturing a stator for a rotary electric machine according to claim 15, wherein the coating is spread by capillary action and formed with a film thickness equal to or less than the gap.
  17. 前記固定工程は、
    前記スロット領域を形成する面のそれぞれに、軸方向に連続して、前記コア片に絶縁の粘着テープが貼付固定される貼付工程を有する請求項13または請求項14に記載の回転電機の固定子の製造方法。
    The fixing step includes
    15. The stator for a rotary electric machine according to claim 13, further comprising an affixing step of affixing an insulating adhesive tape to the core pieces continuously in the axial direction on each of the surfaces forming the slot regions. manufacturing method.
  18. 請求項10に記載の回転電機の固定子の製造方法において、
    板材から前記コア片を複数枚打ち抜く打ち抜き工程と、
    打ち抜かれた前記コア片を軸方向に積層するとともに整列させる整列工程と、
    前記スロット領域を形成する面のそれぞれに、軸方向に連続して前記接着部を配置して、前記コア片を軸方向に固定する固定工程と、
    軸方向に積層された前記コア片を、軸方向にあらかじめ設定された長さにて切断して複数の前記積層コアに分割する分割工程と、
    前記接着部の軸方向の一端および他端に接するとともに、前記積層コアの軸方向の両端に前記軸端インシュレータを配置する配置工程とを備え、
    前記固定工程は、
    前記スロット領域を形成する面に、接着剤を塗布する塗布工程と、
    前記接着剤を硬化させる硬化工程とを有し、
    前記塗布工程は、
    前記スロット領域を形成する面に、あらかじめ設定された距離を確保するとともに、前記接着部の前記凸部に対向した部分には凹部が形成された塗布治具を配置し、前記スロット領域を形成する面と前記塗布治具との前記距離の隙間に、前記接着剤が、毛細管現象により塗り広げられ前記隙間以下の膜厚にて形成されるとともに、前記塗布治具の前記凹部では前記接着剤に前記凸部が形成される回転電機の固定子の製造方法。
    In the method for manufacturing a stator for a rotary electric machine according to claim 10,
    A punching step of punching out a plurality of the core pieces from a plate;
    an aligning step of axially laminating and aligning the punched core pieces;
    a fixing step of axially arranging the adhesive portions continuously on each of the surfaces forming the slot regions to fix the core pieces in the axial direction;
    a dividing step of cutting the core pieces laminated in the axial direction into a plurality of the laminated cores by cutting them in a predetermined length in the axial direction;
    an arranging step of arranging the axial end insulators on both axial ends of the laminated core while being in contact with one axial end and the other axial end of the adhesive portion;
    The fixing step includes
    an application step of applying an adhesive to the surface forming the slot region;
    and a curing step of curing the adhesive,
    The coating step includes
    A coating jig having a predetermined distance secured on the surface forming the slot region and having a concave portion formed in a portion of the bonding portion facing the convex portion is arranged to form the slot region. The adhesive is spread in the gap of the distance between the surface and the application jig by capillary action to form a film thickness equal to or less than the gap, and the adhesive is applied to the concave portion of the application jig. A method of manufacturing a stator for a rotary electric machine in which the convex portion is formed.
  19. 請求項13から請求項18のいずれか1項に記載の回転電機の固定子の製造方法を用いて製造した前記固定子を用いて前記回転電機を製造する回転電機の製造方法。 A method for manufacturing a rotating electric machine, wherein the rotating electric machine is manufactured using the stator manufactured using the method for manufacturing a stator for a rotating electric machine according to any one of claims 13 to 18.
PCT/JP2022/045240 2022-01-06 2022-12-08 Stator of rotating electric machine, rotating electric machine, method for manufacturing stator of rotating electric machine, and method for manufacturing rotating electric machine WO2023132183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023572391A JPWO2023132183A1 (en) 2022-01-06 2022-12-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-000965 2022-01-06
JP2022000965 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132183A1 true WO2023132183A1 (en) 2023-07-13

Family

ID=87073503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045240 WO2023132183A1 (en) 2022-01-06 2022-12-08 Stator of rotating electric machine, rotating electric machine, method for manufacturing stator of rotating electric machine, and method for manufacturing rotating electric machine

Country Status (2)

Country Link
JP (1) JPWO2023132183A1 (en)
WO (1) WO2023132183A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324869A (en) * 2002-05-08 2003-11-14 Daikin Ind Ltd Motor and compressor
JP2005130540A (en) * 2003-10-21 2005-05-19 Mitsubishi Electric Corp Motor
JP2007267492A (en) * 2006-03-28 2007-10-11 Asmo Co Ltd Insulator for motor, armature core equipped with insulator for motor, and motor
JP2011066987A (en) * 2009-09-16 2011-03-31 Denso Corp Method of manufacturing laminated core, laminated core, and rotary electric machine
WO2014192558A1 (en) * 2013-05-31 2014-12-04 株式会社Top Rotary machine
JP2019187056A (en) * 2018-04-09 2019-10-24 三菱電機株式会社 Core of rotary electric machine, and method of manufacturing core of rotary electric mashine
JP2021111977A (en) * 2020-01-06 2021-08-02 三菱電機株式会社 Stator core of rotary electric machine, stator of rotary electric machine, rotary electric machine, method of manufacturing stator core of rotary electric machine, and method of manufacturing rotary electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324869A (en) * 2002-05-08 2003-11-14 Daikin Ind Ltd Motor and compressor
JP2005130540A (en) * 2003-10-21 2005-05-19 Mitsubishi Electric Corp Motor
JP2007267492A (en) * 2006-03-28 2007-10-11 Asmo Co Ltd Insulator for motor, armature core equipped with insulator for motor, and motor
JP2011066987A (en) * 2009-09-16 2011-03-31 Denso Corp Method of manufacturing laminated core, laminated core, and rotary electric machine
WO2014192558A1 (en) * 2013-05-31 2014-12-04 株式会社Top Rotary machine
JP2019187056A (en) * 2018-04-09 2019-10-24 三菱電機株式会社 Core of rotary electric machine, and method of manufacturing core of rotary electric mashine
JP2021111977A (en) * 2020-01-06 2021-08-02 三菱電機株式会社 Stator core of rotary electric machine, stator of rotary electric machine, rotary electric machine, method of manufacturing stator core of rotary electric machine, and method of manufacturing rotary electric machine

Also Published As

Publication number Publication date
JPWO2023132183A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
CN109643940B (en) Laminated core, method for manufacturing laminated core, and armature using laminated core
US11444502B2 (en) Coil bobbin, stator core of distributed winding radial gap-type rotating electric machine, and distributed winding radial gap-type rotating electric machine
US7936116B2 (en) Motor stator with improved end surface insulating plate, motor including the motor stator, pump including the motor stator, and manufacturing the motor stator
US11616407B2 (en) Segment-core coupled body and method of manufacturing armature
US20090015094A1 (en) Electrical rotary machine and method of manufacturing the same
KR20130118955A (en) Stator for rotating electrical machine, and method for producing same
JP2011066987A (en) Method of manufacturing laminated core, laminated core, and rotary electric machine
CN108370187B (en) Armature of rotating electric machine
JP2006042500A (en) Rotary electric machine
JP2019187056A (en) Core of rotary electric machine, and method of manufacturing core of rotary electric mashine
WO2023132183A1 (en) Stator of rotating electric machine, rotating electric machine, method for manufacturing stator of rotating electric machine, and method for manufacturing rotating electric machine
JP7418216B2 (en) A stator core for a rotating electrical machine, a stator for a rotating electrical machine, a rotating electrical machine, a method for manufacturing a stator core for a rotating electrical machine, and a method for producing a rotating electrical machine
JPH07135745A (en) Core of motor
TWI780795B (en) Stator core of rotating electric machine, stator of rotating electric machine, rotating electric machine, manufacturing method of stator core of rotating electric machine, and manufacturing method of rotating electric machine
CN111066227B (en) Stator of rotating electric machine and method for manufacturing stator
JP5991011B2 (en) Motor stator structure and manufacturing method thereof
US10992210B2 (en) Stator, motor, and stator manufacturing method
CN115336142A (en) Stator of rotating electric machine
JP2020092531A (en) Stator, rotating electric machine using stator, and method for manufacturing stator
JP7402761B2 (en) Manufacturing method of stator of rotating electric machine
WO2022059626A1 (en) Core portion of rotating electrical machine
JP2018117440A (en) Rotary electric machine
JP2021193866A (en) Core part for rotary electric machine
CN115917681A (en) Coil, stator and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023572391

Country of ref document: JP