WO2022059626A1 - Core portion of rotating electrical machine - Google Patents

Core portion of rotating electrical machine Download PDF

Info

Publication number
WO2022059626A1
WO2022059626A1 PCT/JP2021/033410 JP2021033410W WO2022059626A1 WO 2022059626 A1 WO2022059626 A1 WO 2022059626A1 JP 2021033410 W JP2021033410 W JP 2021033410W WO 2022059626 A1 WO2022059626 A1 WO 2022059626A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
iron core
block
insulator
electric machine
Prior art date
Application number
PCT/JP2021/033410
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 馬場
昇吾 手塚
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Publication of WO2022059626A1 publication Critical patent/WO2022059626A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • This disclosure relates to the core part of the rotary electric machine.
  • a laminated iron core is generally used for the core portion in which the coil is arranged.
  • the coil is arranged by being wound around the teeth portion of the laminated iron core.
  • the contact between the untreated iron core end face and the coil may damage the insulating coating of the coil.
  • Patent Document 1 a rotary electric machine in which an insulator such as insulating paper is interposed between a tooth portion of an iron core and a coil arranged in a slot between the teeth portions.
  • the core part is known.
  • the laminated iron core forming the core portion one formed by laminating a plurality of block cores and spot welding the plurality of block cores may be used.
  • the block iron core is an iron core formed by laminating and connecting a plurality of thin plates made of a magnetic metal material, or an iron core formed by connecting a predetermined number of thin plates made of a magnetic metal material by caulking or the like. be.
  • the block iron core may be formed by connecting a plurality of thin plates constituting the block iron core by caulking or the like. Therefore, the strength of the block iron core against the force in the torsional direction was not very high. The torsional strength of the laminated core combined with the block core was also not high. As a result, consideration is required such as preventing an excessive force from being applied to the laminated iron core in the core portion manufacturing process and the post-process such as coil winding, so that there is a problem in improving the manufacturing efficiency.
  • the core portion of the rotary electric machine according to the present disclosure is the core portion of the rotary electric machine, which has at least an iron core main body formed by further laminating a plurality of block iron cores formed by laminating and connecting a plurality of thin plates made of a magnetic metal material.
  • the iron core main body includes an annular yoke portion and a plurality of teeth portions protruding from the yoke portions, and faces the slot with respect to a slot generated between the yoke portion of the iron core main body and the adjacent teeth portions.
  • a resin insulating portion to be joined to each side surface of the yoke portion and the tooth portion is provided, and the insulating portion is a concave portion on each side surface of the tooth portion, at least on one of the block iron core and the thin plate. Is arranged so as to fill all of them.
  • each side surface of the tooth portion is provided so as to fill all the concave portions at least in either the block iron core space or the thin plate space, the side surface of the tooth portion and the insulating portion joined to the concave portion are completely filled. There is no gap between and.
  • the conducting wire forming the coil is inserted into the slot, the heat generated by the conducting wire can be transferred to the iron core body through the insulating part joined to the iron core body, so that the efficiency of heat transfer from the coil to the outside can be improved. It can be improved to promote heat dissipation, suppress the temperature rise of the coil, and stabilize the operation of the rotary electric machine.
  • the outer edge portion of the insulating portion is joined so as to follow the shape of each surface facing the slot of the iron core main body.
  • the insulating portion particularly penetrates into the concave portion on the side surface of the tooth portion and adheres to each other, so that the connection between the thin plates forming the block core and the block cores forming the core body can be strengthened, so that the twist of the core body can be strengthened. Strength is improved.
  • FIG. 2 is an enlarged cross-sectional view taken along the line AA of FIG. It is an enlarged view of the main part of the iron core body before the insulator arrangement in the core part which concerns on 1st Embodiment of this disclosure. It is explanatory drawing which shows the state before resin injection into the slit at the time of manufacturing a core part which concerns on 1st Embodiment of this disclosure.
  • the core portion 10 of the rotary electric machine according to the present embodiment is formed by laminating and connecting a plurality of thin plates 11a made of a magnetic metal material and further laminating a plurality of block iron cores 12, and the iron core main body.
  • the rotary electric machine using the core portion 10 includes a stator in which a coil is arranged around the core portion 10 in a wound state, and a rotor rotatably arranged inside the stator. Since it is a known configuration including a hollow box-shaped case that covers the stator and the rotor, detailed description thereof will be omitted.
  • the iron core main body 11 is a laminated iron core formed by laminating a plurality of block cores 12, preferably three or more block cores 12.
  • Each block iron core 12 is formed by laminating a plurality of thin plates 11a made of a magnetic metal material.
  • the thin plate 11a forming the block iron core 12 is formed by punching from a thin plate material made of electromagnetic steel, an amorphous alloy, or the like.
  • the laminated thin plates 11a are connected to each other by adhesion with an adhesive.
  • the method of connecting the thin plates 11a is not limited to this.
  • the thin plates 11a can be connected to each other by using any one or two or more methods such as fixing with a resin such as a thermosetting resin or a thermoplastic resin, or welding the thin plates to each other.
  • the purpose is to cancel the plate thickness deviation of the thin plate 11a and suppress the variation in the thickness in the stacking direction for each part of the iron core main body 11.
  • the transshipment is performed. The transshipment is performed every time the block iron core 12 formed by laminating a plurality of thin plates 11a is stacked.
  • the block cores 12 to be overlapped are rotated by a predetermined angle in the circumferential direction with respect to the block cores 12 to be overlapped, so that the block cores 12 are overlapped in a state where the angles of the block cores 12 are deviated from each other. ..
  • the rolling process can be performed more quickly than in the case of performing the rolling in units of the thin plates 11a. Can be done.
  • the iron core main body 11 is configured by connecting the stacked block iron cores 12 to each other by spot welding.
  • the means for connecting the block iron cores 12 to each other is not limited to this.
  • the block iron cores 12 can be connected to each other by fixing with a resin such as a thermosetting resin or a thermoplastic resin, or by adhering with an adhesive.
  • the laminated state of the block cores 12 can be maintained until the insulator 15 is molded and provided in the teeth portion 11c, the block cores 12 may not be connected to each other.
  • a plurality of slots 13 for providing a coil composed of a plurality of conducting wires 51 are provided at equal intervals on the inner peripheral portion of the iron core main body 11.
  • Each of the slots 13 leads to a space portion that is a rotor arrangement position in the center of the iron core main body 11. In the iron core body, not all slots need to be provided at equal intervals, and some slots may be provided at different intervals.
  • the iron core main body 11 includes a yoke portion 11b having an annular shape and a teeth portion 11c protruding inward in the radial direction from the inner circumference of the yoke portion 11b.
  • the slot 13 is formed by the tooth portion 11c protruding inward in the radial direction from the inner circumference of the yoke portion 11b.
  • the shape of the yoke portion 11b and the teeth portion 11c of the core body 11 may be the same over the entire axial direction of the core body 11.
  • the iron core main body 11 may include a portion whose cross-sectional shape changes in the axial direction.
  • the width of the teeth portion 11c is formed so as to decrease inward in the radial direction, except for the tip portion of the teeth portion 11c.
  • the width of the slot 13 hardly changes inward in the radial direction except for the portion corresponding to the tip portion of the tooth portion 11c.
  • the sides of the two teeth portions 11c forming one slot 13 are substantially parallel to each other.
  • each slot 13 is composed of a side surface (inner peripheral surface) of the yoke portion 11b and a side surface of the teeth portion 11c.
  • An insulator 15 made of an insulating resin material is provided on each side surface constituting each slot 13.
  • the insulator 15 is a solidified resin material having an insulating property, for example, an epoxy-based thermosetting resin. Further, the slot 13 has a space portion 13a forming a part thereof, and the insulator 15 has a shape surrounding the space portion 13a.
  • the space portion 13a is a portion of the slot 13 that remains without the insulator 15.
  • the space portion 13a is configured so that a plurality of conducting wires 51 forming the coil can be inserted through the space portion 13a.
  • the insulator 15 occupies the remaining portion of the slot 13 excluding the space portion 13a in which the conducting wire 51 exists.
  • the insulator 15 is interposed as an insulator between the conducting wire 51 and the iron core main body 11 (yoke portion 11b and teeth portion 11c).
  • the insulator 15 is joined to each side surface of the iron core main body 11 facing the slot 13.
  • the plurality of block iron cores 12 forming the iron core main body 11 are laminated with deviation, and the ends of the thin plates 11a constituting the block iron core 12 are also unevenly laminated, so that the insulator 15 is used.
  • the side surface of the iron core body 11 to be joined is not a smooth continuous surface.
  • a step is generated at the boundary portion of the block iron core 12 on the side surface of the tooth portion 11c due to misalignment. That is, there are irregularities on the side surface of the slot 13 formed by the plurality of block iron cores 12. Further, since the thin plates 11a forming the block core 12 may also be laminated in a displaced state, the side surface itself of the block core 12 also has irregularities.
  • the insulator 15 has irregularities (an example of a concave portion) existing on the side surface of the slot 13 formed by the block iron core 12 on each side surface of the yoke portion 11b and the teeth portion 11c, and the block iron core formed by the thin plate 11a. It is arranged so as to fill all the unevenness of 12 (another example of the concave portion). Since the thickness of the insulator 15 is 0.1 mm to 0.5 mm, the deviation of the block iron core 12 is sufficiently large as compared with the deviation of several ⁇ m to several tens of ⁇ m, and the above concave portion is filled without any problem and a step is formed. Can be resolved.
  • the thickness of the insulator 15 is different for each side surface of the block iron core 12.
  • the surface of the insulator 15 joined to the space portion 13a of the slot 13 forms a continuous substantially flat surface that stands upright in the axial direction of the core body regardless of the displacement between the block cores.
  • the thicknesses of the insulators 15 on the side surfaces of the teeth portion 11c facing each other across the space portion 13a of the slot 13 are different from each other. At this time, the distance between the insulators 15 facing each other across the space 13a, that is, the size of the space 13a of the slot 13 is uniform, and the coils can be evenly arranged without bias.
  • the side surface of the block iron core 12 has a concave portion due to the presence of a step, but the surface of the space portion 13a formed by providing the insulator 15 in the slot 13 is substantially flush with each other. be.
  • the width of the slot 13 is W s
  • the width of the space portion 13 a is W c .
  • the thickness of the insulator provided on the left hand side of the slot 13 displayed on the left side in FIG. 3 is t 1
  • the thickness of the insulator corresponding to t 1 and the insulator facing each other across the slot 13 is t 2 . ..
  • the thickness of the insulator provided on the left hand side of the slot 13 displayed on the right side in FIG. 3 is t 3
  • the thickness of the insulator corresponding to t 3 and the insulator facing each other across the slot 13 is t 4 . do.
  • the sum of the thicknesses of the opposing insulators 15 is always constant at any place in the slot 13.
  • W s is constant in each slot 13
  • the insulator 15 may protrude in the axial direction by a predetermined amount (for example, about 0.2 mm to 3 mm) from one end face or both end faces in the axial direction of the iron core body 11, or may be recessed.
  • the conducting wire 51 provided in the space portion 13a of the insulator 15 is a metal wire-like body having an insulating film formed on its surface, and functions as a coil by being wound around the teeth portion 11c.
  • the conducting wire 51 for example, a flat wire which is a metal rod-shaped body having a rectangular or square cross section having an insulating film formed on its surface may be used.
  • the conductor 51 functions as a coil by connecting the plurality of conductors 51 after inserting the conductor 51 into the space portion 13a of the insulator 15.
  • a plurality of (for example, six) conducting wires 51 which are flat wires, may be inserted into one space portion 13a.
  • the conducting wire 51 is arranged in the space portion 13a in a state where the surfaces on the adjacent sides of the conducting wire 51 are in contact with each other, so that the space factor in the space portion 13a of the conducting wire 51 becomes large, and a plurality of conductors 51 are arranged.
  • the conducting wire 51 can be aligned in the radial direction of the iron core body 11. It is desirable that the conducting wire 51 is provided so as to minimize the gap between the conducting wire 51 and the insulator 15. Since the amount of air interposed between the conductor 51 and the insulator 15 is reduced, heat transfer from the coil formed by the conductor 51 to the iron core body 11 can be promoted.
  • a method of manufacturing the core portion according to the present embodiment will be described.
  • a plurality of thin plates 11a punched out from the thin plate material are laminated in advance by a known manufacturing method by adhesion or the like to form a block iron core 12.
  • the iron core main body 11 in which three or more block iron cores 12 are laminated is obtained by laminating the block iron cores 12 while rolling them.
  • a step is generated due to the deviation at the boundary portion of each block core 12 in the obtained iron core main body 11, particularly at the boundary portion of the block core 12 on the side surface of the teeth portion 11c.
  • the process of forming and providing the insulator 15 in the slot 13 of the iron core main body 11 will be described. Even if a step of correcting the deviation of the block iron core 12 or the thin plate 11a generated during the transportation of the iron core body is executed by, for example, applying a rod to the iron core body 11 from the outer shape side before the step of forming the insulator 15. good.
  • the insulator 15 is formed and provided inside the slot 13 by the molding device 30.
  • the mold device 30 is configured to be insertable and closable in the upper mold 31 and the lower mold 32 that sandwich the iron core main body 11 from both sides in the axial direction, and the space portion 13a in each slot 13 of the iron core main body 11.
  • a resin flow path 35 (for example, a runner, a gate hole) for guiding the resin to each slot 13 is formed in the cal plate 37 arranged between the upper mold 31 and the iron core main body 11.
  • the upper die 31 and the lower die 32 are provided on both sides of the iron core main body 11 arranged at a predetermined position of the mold device 30 in the axial direction.
  • the cal plate 37 is in contact with the upper end surface of the iron core body 11 so as to be pressed by the upper mold 31.
  • the separation plate 38 supported by the lower mold 32 and the core base portion 36 is in contact with the lower end surface of the iron core main body 11.
  • the core 34 is inserted into each slot 13 from below through the opening of the separation plate 38 provided on the lower mold 32.
  • the radial opening of the iron core body 11 in the slot 13 is closed at the end of the core 34.
  • each slot 13 When each slot 13 is closed, the molding process is performed. Specifically, as shown in FIGS. 5 and 6, a space closed by the cal plate 37, the separation plate 38, and the core 34, that is, the iron core main body facing the outer peripheral surface of the core 34 and the slot 13. The resin is injected into the gap between the side surface of the eleven.
  • the resin is injected by extruding the resin material contained in the resin storage pot (not shown) provided in the molding device 30 from the resin storage pot by pressing with a plunger.
  • the resin material extruded from the resin reservoir pot is press-fitted into the gap between the core 34 and the side surface of the iron core main body 11 through the resin flow path 35.
  • the mold device 30 applies a predetermined load to the iron core body 11 in the axial direction and the radial direction, and the space between the iron core body 11 and each part of the mold device in contact with the core body 11 may open and the resin may leak out. Try not to.
  • the size of the gap between the outer peripheral surface of the core 34 and the side surface of the iron core main body 11 facing the slot 13 is 0.1 mm to 0.5 mm, which corresponds to the thickness of the insulator 15. At this time, the mixture such as the filler contained in the resin is not clogged, the fluidity of the resin can be ensured, and the resin can be spread evenly and reasonably over the entire gap, which is suitable for the distribution of the injected resin. It is a gap.
  • the core 34 is inserted from below into each slot 13 of the iron core main body 11, but the present disclosure is not limited to this example.
  • the core 34 may be inserted into each slot 13 from above.
  • the resin may be injected from either the upper or lower side of the iron core main body 11.
  • the gate position for resin injection in the molding device 30 may be provided at a position facing the gap portion corresponding to the thick portion of the insulator 15. desirable.
  • the resin flows from a portion having a wide gap corresponding to the portion where the insulator 15 is provided thickly to a portion having a narrow gap corresponding to the portion where the insulator 15 is provided thinly. Since the resin can reach the place where the gap is narrowed through the place where the gap is wide, problems such as unfilling of the resin are less likely to occur.
  • the formed insulator 15 has a shape protruding from both end faces in the axial direction of the iron core main body 11 or a shape protruding along both end faces in the axial direction of the iron core main body 11.
  • the cross-sectional area of the resin flow path can be increased by providing the recesses of the cal plate 37 and the separation plate 38.
  • the resin can be more effectively reached in the entire gap into which the resin should be injected, including a portion where the resin is difficult to spread, such as near the tip of the tooth portion 11c.
  • a convex portion may be formed at a portion corresponding to the core 34 on the surfaces of the cal plate 37 and the separation plate 38 that come into contact with the iron core main body 11.
  • the formed insulator 15 has a shape recessed from both end faces in the axial direction of the iron core main body 11 to the inside of the iron core main body 11.
  • the recess of the insulator 15 with respect to the end surface of the iron core body 11 is within the plate thickness of the thin plate 11a. At this time, by joining the insulator 15 to the thin plates 11a, the strength of the connection between the thin plates 11a can be increased.
  • an insulator 15 joined to both side surfaces of the teeth portion 11c and the inner peripheral surface of the yoke portion 11b is formed.
  • the core portion 10 is completed by providing the insulator 15 in each slot 13 of the iron core main body 11.
  • the core portion 10 is released by the molding device 30 separating the upper mold 31, the cal plate 37, the core 34, the lower mold 32, and the separation plate 38 from the iron core main body 11 with respect to the core portion 10. ..
  • the core portion 10 is supplied to a process such as coil arrangement.
  • steps such as coil arrangement the conducting wire 51 is inserted into each slot 13 of the core portion 10.
  • the conducting wire 51 is inserted into the space portion 13a of the slot 13 so as to be surrounded by the insulator 15.
  • the frictional force of the core portion 10 with respect to the conducting wire 51 of the insulator 15 is smaller than the frictional force of the insulating paper provided in the core portion with respect to the conducting wire 51 as in Patent Document 1. Therefore, when the conductor 51 is inserted into the slot 13, the conductor 51 is less likely to receive resistance even if it comes into contact with the insulator 15, and the conductor 51 can be smoothly inserted.
  • the conducting wires 51 inserted into each slot 13 of the core portion 10 are electrically connected to each other by connecting the conducting wires 51 inserted into the slots 13 inserted in several (or adjacent to each other in the circumferential direction) slots 13 in the circumferential direction. It is connected to form a coil. Finally, the core portion and the coil are in a state where they can be used as a stator of a rotary electric machine by wiring windings or attaching them to a case.
  • the insulator 15 is provided by the molding device 30.
  • the thickness of the insulator 15 is 0.1 mm to 0.5 mm. Since the thickness of the insulator 15 is thinner than that of the insulating paper used for the insulation between the conventional coil and the core, the conductor 51 is less likely to be caught by the insulator 15 when the conductor 51 is inserted into the space 13a of the slot 13. As a result, the lead wire 51 can be smoothly inserted. Further, since the ratio of the insulating portion (insulator 15) to each slot 13 can be reduced as compared with the case where the insulating paper is used, the space portion 13a becomes wider.
  • the occupancy rate of the coil (conductor) in the slot 13 becomes higher. Therefore, since a larger amount of current can be passed through the coil, the output of the rotary electric machine can be improved.
  • the connecting strength of the iron core main body 11 is improved. If it is possible to maintain the laminated state of the thin plates 11a and the block iron cores 12 until the process in which the insulator 15 is provided, the thin plates 11a are connected to each other by adhesion or caulking, or the block iron cores 12 are connected to each other by welding or the like. The step may be omitted. After the insulator 15 is provided, it becomes easier to maintain the connection between the thin plates 11a and the block iron cores 12, so that a state in which the thin plates 11a can be used as the iron core main body 11 can be ensured. As described above, when the steps related to the connection between the thin plates 11a and the connection between the block iron cores 12 before the insulator 15 is arranged are not performed, the manufacturing efficiency can be improved and the manufacturing cost can be suppressed.
  • the heat generated in the coil is transmitted from the conducting wire 51 of the portion of the coil contained in the space 13a of the slot 13 to the insulator 15 in close contact with the surface thereof, and further from the insulator 15 to the iron core main body 11 in close contact with the insulator 15. It is transmitted to the case where the iron core main body 11 is housed.
  • the insulator 15 which is an insulating portion is provided so as to closely cover each side surface of the iron core main body 11 facing the slot 13.
  • the thickness of the insulator 15 is adjusted for each side surface of each block iron core 12 so that the shape of the surface of the insulator 15 facing the space portion 13a stands up in the axial direction of the iron core body 11 and becomes a continuous substantially flat surface. Therefore, the straightness of the surface can be ensured without being affected by the step due to the displacement between the block iron cores 12 on the side surface of the teeth portion 11c of the iron core main body 11 and the unevenness between the thin plate ends.
  • the conductor 51 when the conductor 51 is inserted into the slot 13, for example, the surface of the conductor 51 and the surface of the insulator 15 are almost parallel to each other, so that there is a gap between the conductor 51 and the insulator 15 due to unevenness or inclination of the surface of the insulator 15. Is unlikely to occur. As a result, the amount of air interposed between the conductor 51 and the insulator 15 can be reduced, so that the heat transfer efficiency between the conductor 51 and the iron core main body 11 via the insulator 15 can be improved.
  • the insulator 15 is provided so as to fill all the unevenness (concave portion) existing on the side surface of the slot 13 formed by the block iron core 12 or the thin plate 11a on each side surface of the tooth portion 11c.
  • each side surface of the tooth portion 11c and the insulator 15 are in close contact with each other without any gap.
  • the thin plate 11a is formed by punching, burrs and sagging may remain at the end of the thin plate 11a.
  • a small concave portion may be formed on the side surface of the slot 13 formed by the thin plates 11a.
  • the insulator 15 is provided without a gap even in such a concave portion.
  • the insulator 15 can be formed with high accuracy. Since the dimensional error of the insulator 15 can be reduced, it is not necessary to set a large clearance for insertion around the space portion 13a in which the conducting wire 51 enters. That is, since the clearance between the conductor 51 inserted into the space 13a and the insulator 15 can be reduced, the layer of air interposed between the conductor 51 and the iron core body 11 becomes thinner. As a result, the heat transfer efficiency between the conducting wire 51 and the iron core main body 11 can be improved.
  • the insulator 15 is provided so as to fill the unevenness (concave portion) existing on the side surface of the slot 13 formed by the block iron core 12 or the thin plate 11a. There is. Since there is no gap between the side surface of the teeth portion 11c and the insulator 15, air that hinders heat transfer between the conducting wire 51 forming the coil and the iron core body 11 exists between the side surface of the teeth portion 11c and the insulator 15. Hateful. This makes it possible to provide the core portion 10 of the rotary electric machine in which the heat transfer efficiency from the coil to the core portion 10 side is promoted.
  • the insulator 15 is provided for the teeth portion 11c of the iron core main body 11, the insulator 15 assists the connection between the block iron cores 12 constituting the teeth portion 11c and the thin plates 11a. .. That is, since the connection between the block iron cores 12 and the thin plates 11a is strengthened, the torsional strength of the iron core main body 11 is improved, and therefore, the core portion 10 of the rotary electric machine with improved strength can be provided.
  • the circumferential thickness of the insulator 15 which is an insulating portion provided in one teeth portion 11c is set to t1, and the circumferential direction of the insulator 15 provided in the other teeth portion 11c.
  • the thickness is t2
  • t1 + t2 is constant.
  • the total thickness of the insulators in each slot 13 becomes constant, so that the heat transfer performance from the coil to the iron core main body 11 in each slot 13 can be made constant.
  • the circumferential thickness t1 of the insulator 15 may be different from the circumferential thickness t2 of the insulator 15. If t1 + t2 are constant, the heat transfer performance from the coil in each slot 13 to the iron core main body 11 can be constant.
  • the rotary electric machine to which the core portion according to the embodiment is applied is an electric machine, but the electric machine is not limited to this, and the rotary electric machine may be a generator.
  • the core portion according to the embodiment is a part of the stator in the inner rotor structure, but is not limited to this, and may be applied as a part of the stator in the outer rotor structure.
  • the core portion may be used not only as a stator but also as a core of a winding type rotor.
  • the insulator 15 on the side surface of the teeth portion 11c has a substantially flat surface in which the surface of the insulator 15 facing the space portion 13a in the slot 13 is continuous in the axial direction of the iron core body 11.
  • the present disclosure is not limited to the example of the present embodiment.
  • a plurality of grooves continuous in the axial direction of the iron core body 11 may be formed on the surface of the insulator 15 facing the space portion 13a in the slot 13.
  • a plurality of grooves provided on the surface of the insulator 15 shall be used as a flow path for a liquid such as a cooling medium to be flowed between the coil (conductor 51) and the insulator 15. Therefore, the liquid can be circulated around the coil to improve the heat dissipation efficiency of the coil.
  • the corner portion of the insulator 15 on the side where the conductor 51 is inserted may be chamfered.
  • the conducting wire 51 can be invited, so that the conducting wire 51 can be easily inserted, and the process of inserting the conducting wire into the core portion 10 can be shortened and labor can be saved.
  • a sewn portion may be provided at a corner portion of the insulator 15 near the base end portion of the tooth portion 11c.
  • the core portion of the rotary electric machine according to the second embodiment will be described.
  • the description of the member having the same reference number as the member already described in the description of the embodiment will be omitted.
  • the thin plate 11a laminated in each block iron core 12 forming the iron core body 11 is the circumference of the iron core body 11. The difference is that they are stacked by shifting them in the direction. At this time, as shown in FIGS.
  • the side surface of the tooth portion 11c formed by each block iron core 12 and the thin plate 11a is formed as a side surface inclined stepwise with respect to the stacking direction of the thin plate 11a.
  • the insulator 15 may be arranged in close contact with the stepped side surface of the teeth portion 11c of the block iron core 12.
  • the insulator 15 is provided on the inclined side surface of the teeth portion 11c formed by each block iron core. Since the area where the side surface of the block core 12 and the insulator 15 are joined is larger than that of the core portion 10 according to the first embodiment, the connection between the block cores 12 is further strengthened. As a result, the strength of the iron core body 11 can be increased.
  • the thickness of the insulator 15 is preferably 0.1 mm to 0.5 mm. In this case, since the cumulative amount of misalignment due to caulking is sufficiently large as compared with the cumulative amount of several ⁇ m, the misalignment of the thin plate 11a can be filled.
  • the angle ⁇ formed by the inclined side surface of the tooth portion in one block core and the axial end surface on the block core side of the other block core is an acute angle.
  • the inclined side surface of the teeth portion is a virtual plane obtained by connecting the ridges (corners) of the plurality of thin plates 11a forming the teeth portion.
  • the insulator 15 molded and arranged along the side surface of the tooth portion 11c is provided by biting into the recess 12a having an acute angle between the block cores 12, so that the area where the insulator 15 and the block core 12 are joined is large. Therefore, the torsional strength of the iron core body 11 is improved.
  • the insulator 15 is provided so as to bite into the narrow recess 12a on the side surface of the teeth portion 11c, it is possible to reduce the room for air to intervene between the side surface of the teeth portion 11c and the insulator 15. As a result, heat can be efficiently transferred from the insulator 15 to the teeth portion 11c side.
  • the iron core body 11 is formed by laminating three or more block iron cores 12. Since the number of laminated thin plates 11a per block core 12 is relatively small, the difference in the total amount of displacement of the thin plates 11a in one block core 12 can be reduced. As a result, the minimum thickness of the insulator 15 required to make the surface of the insulator 15 a continuous substantially flat surface can be reduced.
  • the configuration is not limited to directly crimping the thin plates 11a, and a method of preventing the caulking shape from remaining on the block core 12 is adopted.
  • a caulking block (scrap portion) is provided on the outer peripheral portion or the inner peripheral portion of each thin plate 11a, and the caulking blocks of the thin plates 11a adjacent to each other in the stacking direction are caulked and joined to connect the thin plates 11a and then caulking.
  • a technique such as removing the block from the thin plate 11a may be used.
  • the core portion according to the first embodiment and the second embodiment is subjected to a treatment for removing oil adhering to the surface of the thin plate, a heat treatment for removing strain (internal stress) associated with processing such as punching of the thin plate, and rust prevention.
  • a bluing treatment or the like for forming a film of triiron tetroxide may be performed on the edge of the thin plate or the like.
  • the thin plate 11a forming the iron core body 11 is an electromagnetic steel plate
  • heat treatment annealing
  • an insulator 15 on the iron core body 11 may be provided.
  • each of the insulators 15 is provided at the end of each thin plate 11a constituting the side surface of the slot 13 (the end where the metal surface is newly exposed by the punching process of the electromagnetic steel sheet covered with the insulating film).
  • the end of the thin plate 11a is covered with the insulator 15.
  • the side surface of the slot 13 is in a state where a rust preventive effect is imparted.
  • the thin plate 11a forming the iron core main body 11 after the heat treatment is subjected to rust prevention treatment such as bluing, and a rust preventive film such as triiron tetroxide is formed on the edge of the thin plate and the like, and then the insulator 15 is formed. It may be provided. In this case, since the surface of the end portion of the thin plate 11a on which the insulator 15 is provided does not change in state such as oxidation due to the formation of the rust-preventive film, the insulator 15 and the thin plate 11a can be easily joined.
  • a core portion 10 of a rotary electric machine having an iron core body 11 extending in the axial direction, in which a plurality of block iron cores 12 in which a plurality of thin plates 11a made of a magnetic metal material are laminated and connected are laminated.
  • the iron core body 11 includes an annular yoke portion 11b and a plurality of teeth portions 11c protruding from the yoke portions 11b, and a slot 13 is provided between the yoke portions 11b and a pair of adjacent teeth portions 11c. It is formed and is provided with a resin insulating portion that closely covers each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c.
  • a resin insulating portion (insulator 15) is provided so as to closely cover each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c. Therefore, the amount of air interposed between each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c and the insulating portion can be reduced. This makes it possible to provide the core portion 10 of the rotary electric machine capable of promoting heat transfer from the coil to the core portion 10 side.
  • the block iron cores 12 constituting the iron core main body 11 and the blocks are provided.
  • the connection between the thin plates 11a constituting the iron core 12 is strengthened.
  • the torsional strength of the block iron core 12 is improved, and the core portion 10 of the rotary electric machine having increased strength can be provided.
  • the outer surface of the insulating portion covering the teeth portion 11c is flat.
  • the side surface of the block iron core 12 formed by laminating the thin plates 11a and the side surface of the iron core main body 11 formed by laminating the block iron core 12 have irregularities due to an error during laminating. Since the outer surface of the insulating portion covering the teeth portion 11c of the rotary electric machine according to the present embodiment is flat, the conducting wire 51 constituting the coil can be smoothly inserted along the insulating portion.
  • the iron core main body 11 is preferably formed by rolling a plurality of block iron cores 12. Since the core body 11 is formed by rolling a plurality of block cores 12, the block core 12 can be formed by offsetting the dimensional error of the block core 12. It should be noted that when the rolling is performed, unevenness is more likely to occur, but the insulating portion is provided so as to fill the unevenness on the side surface of the block iron core 12 and the side surface of the iron core body 11, and is provided along the axial direction of the iron core body 11. When the surface is flat, the conductor 51 can be smoothly inserted along the insulating portion.
  • the block iron core 12 is laminated with a plurality of thin plates 11a displaced from each other in the circumferential direction of the iron core main body 11, and the plurality of thin plates 11a form the side surface of the teeth portion 11c inclined in a stepped manner. Since the plurality of thin plates 11a form the side surface of the tooth portion 11c inclined in a stepped manner, the insulating portion is provided on the side surface inclined in a stepped manner. By the way, since the thin plates 11a are laminated so as to be offset in the circumferential direction of the iron core main body 11, the area where the stepped side surface and the insulating portion are joined increases. As a result, the torsional strength of the iron core body 11 is further improved.
  • one block iron core 12 is laminated with the other block iron core 12 shifted in the circumferential direction of the iron core main body 11, and the stairs of the teeth portion 11c formed by the one block iron core 12 are formed.
  • the angle formed by the side surface inclined in the shape and the end surface of the other block iron core 12 is an acute angle. Since the angle formed by the stepped side surface of the tooth portion 11c formed by one block core 12 and the end surface of the other block core 12 is an acute angle, an insulating portion is also provided at the acute angle portion. , The joint area between the block iron cores 12 becomes wider. As a result, the connection between the block cores 12 is strengthened, so that the torsional strength of the core body 11 is further improved.
  • the iron core main body 11 is preferably formed by laminating at least three or more block iron cores 12. As the number of block iron cores 12 constituting the iron core main body 11 increases, the number of thin plates 11a constituting the block iron core 12 decreases. As a result, the difference in the total amount of unevenness existing in one block core 12 can be made as uniform as possible, so that the insulating portion provided for each uneven block core 12 for each block core 12 can be thinned. This makes it possible to easily insert the conducting wire 51 while suppressing the manufacturing cost for providing the insulating portion.
  • the thickness of the insulating portion is preferably 0.1 mm to 0.5 mm. Since the insulating portion is sufficiently thicker than the unevenness generated on the block iron core 12, the insulating portion can sufficiently cover each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c.
  • the circumferential thickness t1 of the insulating portion may be different from the circumferential thickness t2 of the insulating portion. Even if the circumferential thickness t1 of the insulating portion and the circumferential thickness t2 of the insulating portion are different, if t1 + t2 is constant, the heat transfer performance from the coil to the iron core main body 11 can be made constant.
  • the method for manufacturing the core portion 10 of the rotary electric machine according to any one of (1) to (9) is to stack a plurality of block iron cores 12 to form an iron core main body 11 and to form a thin plate 11a.
  • the iron core body 11 is heat-treated so that the crystal grain size is uniform, and after the heat treatment, the insulating portion covers each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c. May include the provision of. According to the above method, it is possible to achieve improvement of heat transfer performance and improvement of strength of the core portion 10 by removing internal stress and forming an insulating portion.

Abstract

This core portion of a rotating electrical machine includes, at least, an iron core main body formed by stacking a plurality of block iron cores (12) in which a plurality of thin plates (11a) made from a magnetic metal material are stacked and connected to one another, wherein: the iron core main body is provided with an annular yoke portion and a plurality of tooth portions (11c) projecting from the yoke portion; resin insulating portions joined to each side surface of the yoke portion and the tooth portions (11c) facing slots (13) created between the yoke portion and the adjacent tooth portions (11c) of the iron core main body are provided in the slots (13); and the insulating portions are disposed in such a way as to fill all recessed parts on at least one of the block iron cores (12) and the thin plates (11a) on each side surface of the tooth portions (11c).

Description

回転電機のコア部Core part of rotary electric machine
 本開示は、回転電機のコア部に関する。 This disclosure relates to the core part of the rotary electric machine.
 電動機や発電機といった回転電機の固定子又は回転子において、コイルが配設されるコア部には、積層鉄心が一般に用いられる。コイルは積層鉄心のティース部に巻回されることによって配設される。打ち抜き加工等によって形成された鉄心にコイルが配設される際に、処理されていない鉄心端面とコイルとが接触することで、コイルの絶縁被膜の損傷することがある。この対策の一例として、特許文献1のように、鉄心のティース部と、ティース部間のスロットに配置されるコイルとの間に、絶縁紙等のインシュレーター(絶縁体)を介在させた回転電機のコア部が知られている。 In the stator or rotor of a rotating electric machine such as an electric motor or a generator, a laminated iron core is generally used for the core portion in which the coil is arranged. The coil is arranged by being wound around the teeth portion of the laminated iron core. When the coil is arranged on the iron core formed by punching or the like, the contact between the untreated iron core end face and the coil may damage the insulating coating of the coil. As an example of this countermeasure, as in Patent Document 1, a rotary electric machine in which an insulator such as insulating paper is interposed between a tooth portion of an iron core and a coil arranged in a slot between the teeth portions. The core part is known.
日本国特許第6277892号公報Japanese Patent No. 6277892
 特許文献1に示す回転電機のコアには、コイルとティース部との間に絶縁紙が設けられている。このような回転電機のコア部を製造する場合、ティース部にコイルが配設される前に、絶縁紙をティース部間のスロットに挿入する工程などが必要となるので、製造能率の向上の面で課題があった。 In the core of the rotary electric machine shown in Patent Document 1, an insulating paper is provided between the coil and the teeth portion. When manufacturing the core part of such a rotary electric machine, it is necessary to insert the insulating paper into the slot between the teeth parts before the coil is arranged in the teeth part, so that the manufacturing efficiency is improved. There was a problem in.
 コア部をなす積層鉄心として、複数のブロック鉄心を積層して、該複数のブロック鉄心を点溶接することにより形成されたものが用いられることがある。ここでブロック鉄心とは、磁性金属材料製の薄板を複数積層して連結した鉄心や、磁性金属材料製の薄板を所定枚数積層したものをかしめ等により連結することにより形成された鉄心のことである。 As the laminated iron core forming the core portion, one formed by laminating a plurality of block cores and spot welding the plurality of block cores may be used. Here, the block iron core is an iron core formed by laminating and connecting a plurality of thin plates made of a magnetic metal material, or an iron core formed by connecting a predetermined number of thin plates made of a magnetic metal material by caulking or the like. be.
 ブロック鉄心を複数積層して積層鉄心を形成する場合、複数のブロック鉄心同士が重なる部分は、完全に重ね合わせることは難しく、ずれによる段差が生じることがある。段差がある場合、積層鉄心におけるティース部等のコイルに面する部分に絶縁紙を配置する際、積層鉄心と絶縁紙との間には部分的な隙間が生じる場合がある。この隙間に空気が介在することで、コイルから鉄心への伝熱性能が悪化して、コイルからの放熱が適切に行えなくなることがある。 When a plurality of block cores are laminated to form a laminated core, it is difficult to completely overlap the parts where the plurality of block cores overlap each other, and a step may occur due to misalignment. When there is a step, when the insulating paper is placed on the portion of the laminated iron core facing the coil such as the teeth portion, a partial gap may occur between the laminated iron core and the insulating paper. If air intervenes in this gap, the heat transfer performance from the coil to the iron core deteriorates, and heat can not be properly dissipated from the coil.
 さらに、ブロック鉄心は、これを構成する複数の薄板間がかしめ等により連結されることにより形成されていることがある。このため、ブロック鉄心のねじり方向の力に対する強度はあまり高くなかった。ブロック鉄心を組み合わせた積層鉄心のねじり強度についても、同様に高くはなかった。これにより、コア部製造工程やコイル巻回等の後工程で積層鉄心に過大な力が加わらないようにするなど、配慮を要するため、製造効率の向上の面で課題があった。 Further, the block iron core may be formed by connecting a plurality of thin plates constituting the block iron core by caulking or the like. Therefore, the strength of the block iron core against the force in the torsional direction was not very high. The torsional strength of the laminated core combined with the block core was also not high. As a result, consideration is required such as preventing an excessive force from being applied to the laminated iron core in the core portion manufacturing process and the post-process such as coil winding, so that there is a problem in improving the manufacturing efficiency.
 本開示は、コイルからコア部側への伝熱を促進すると共に、強度が向上した、回転電機のコア部を提供することを目的とする。 It is an object of the present disclosure to provide a core portion of a rotary electric machine, which promotes heat transfer from the coil to the core portion side and has improved strength.
 本開示に係る回転電機のコア部は、磁性金属材料製の薄板が複数積層されて連結したブロック鉄心を、さらに複数積層して形成される鉄心本体を少なくとも有する、回転電機のコア部において、前記鉄心本体は、環状のヨーク部と、前記ヨーク部から突出する複数のティース部とを備え、前記鉄心本体の前記ヨーク部及び隣り合う前記ティース部の間に生じるスロットに対し、前記スロットに面する前記ヨーク部及び前記ティース部の各側面に接合する樹脂製の絶縁部が設けられ、前記絶縁部が、前記ティース部の各側面で、少なくとも前記ブロック鉄心及び前記薄板のいずれか一方にある凹状部分を全て埋めるように配設される。 The core portion of the rotary electric machine according to the present disclosure is the core portion of the rotary electric machine, which has at least an iron core main body formed by further laminating a plurality of block iron cores formed by laminating and connecting a plurality of thin plates made of a magnetic metal material. The iron core main body includes an annular yoke portion and a plurality of teeth portions protruding from the yoke portions, and faces the slot with respect to a slot generated between the yoke portion of the iron core main body and the adjacent teeth portions. A resin insulating portion to be joined to each side surface of the yoke portion and the tooth portion is provided, and the insulating portion is a concave portion on each side surface of the tooth portion, at least on one of the block iron core and the thin plate. Is arranged so as to fill all of them.
 このように本開示によれば、ティース部の各側面で、少なくともブロック鉄心間及び薄板間のいずれか一方にある凹状部分を全て埋めるように設けられるので、ティース部側面とこれに接合する絶縁部との間に隙間が生じない。コイルをなす導線がスロットに挿入された状態では、鉄心本体に接合する絶縁部を介して、導線で発生する熱を鉄心本体へ伝えられることができるので、コイルから外部へ向かう伝熱の効率を向上させて放熱を促進させられ、コイルの温度上昇を抑えて、回転電機の作動をより安定化できる。
 また、鉄心本体に対して絶縁部が設けられることにより、絶縁部の外縁部を鉄心本体のスロットに面する各面の形状に追随させて接合する。これにより、絶縁部は特にティース部の側面の凹状部分に入り込んで密着するので、ブロック鉄心をなす各薄板同士及び鉄心本体を成すブロック鉄心同士の連結を強化することができるので、鉄心本体のねじり強度が向上する。
As described above, according to the present disclosure, since each side surface of the tooth portion is provided so as to fill all the concave portions at least in either the block iron core space or the thin plate space, the side surface of the tooth portion and the insulating portion joined to the concave portion are completely filled. There is no gap between and. When the conducting wire forming the coil is inserted into the slot, the heat generated by the conducting wire can be transferred to the iron core body through the insulating part joined to the iron core body, so that the efficiency of heat transfer from the coil to the outside can be improved. It can be improved to promote heat dissipation, suppress the temperature rise of the coil, and stabilize the operation of the rotary electric machine.
Further, by providing the insulating portion with respect to the iron core main body, the outer edge portion of the insulating portion is joined so as to follow the shape of each surface facing the slot of the iron core main body. As a result, the insulating portion particularly penetrates into the concave portion on the side surface of the tooth portion and adheres to each other, so that the connection between the thin plates forming the block core and the block cores forming the core body can be strengthened, so that the twist of the core body can be strengthened. Strength is improved.
本開示の第1の実施形態に係るコア部の平面図である。It is a top view of the core part which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係るコア部の要部拡大図である。It is an enlarged view of the main part of the core part which concerns on 1st Embodiment of this disclosure. 図2のA-A断面拡大図である。FIG. 2 is an enlarged cross-sectional view taken along the line AA of FIG. 本開示の第1の実施形態に係るコア部におけるインシュレーター配設前の鉄心本体の要部拡大図である。It is an enlarged view of the main part of the iron core body before the insulator arrangement in the core part which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係るコア部製造時におけるスリットへの樹脂注入前の状態を示す説明図である。It is explanatory drawing which shows the state before resin injection into the slit at the time of manufacturing a core part which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係るコア部製造時における鉄心本体のモールド装置への装着状態を示す概略説明図である。It is a schematic explanatory drawing which shows the mounting state of the iron core body to the mold apparatus at the time of manufacturing a core part which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係るコア部における他のインシュレーターの配設状態を示す説明図である。It is explanatory drawing which shows the arrangement state of another insulator in the core part which concerns on 1st Embodiment of this disclosure. 本開示の第2の実施形態に係るコア部における鉄心本体の要部断面拡大図である。It is a cross-sectional enlarged view of the main part of the iron core body in the core part which concerns on the 2nd Embodiment of this disclosure. 本開示の第2の実施形態に係るコア部の要部断面拡大図である。It is a cross-sectional enlarged view of the main part of the core part which concerns on the 2nd Embodiment of this disclosure.
(本開示の第1の実施形態)
 以下、本開示の第1の実施形態に係る回転電機のコア部を図1から図6に基づいて説明する。本実施形態においては、回転電機としての電動機の固定子をなすコアの例について説明する。
(First Embodiment of the present disclosure)
Hereinafter, the core portion of the rotary electric machine according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 6. In this embodiment, an example of a core forming a stator of a motor as a rotary electric machine will be described.
 各図において本実施形態に係る回転電機のコア部10は、磁性金属材料製の薄板11aを複数積層し連結したブロック鉄心12を、さらに複数積層して形成される鉄心本体11と、この鉄心本体11に複数設けられる各スロット13に面する鉄心本体11の各側面に設けられ、絶縁部をなす絶縁樹脂材料製のインシュレーター15とを備える。 In each figure, the core portion 10 of the rotary electric machine according to the present embodiment is formed by laminating and connecting a plurality of thin plates 11a made of a magnetic metal material and further laminating a plurality of block iron cores 12, and the iron core main body. An insulator 15 made of an insulating resin material, which is provided on each side surface of the iron core main body 11 facing each of the plurality of slots 13 provided in the 11 and forms an insulating portion, is provided.
 本実施形態に係るコア部10を用いる回転電機は、コア部10にコイルを巻回状態で配設してなる固定子と、この固定子の内側に回転可能に配設される回転子と、これら固定子及び回転子を覆う中空箱状のケースとを備える公知の構成であるので、詳細な説明を省略する。 The rotary electric machine using the core portion 10 according to the present embodiment includes a stator in which a coil is arranged around the core portion 10 in a wound state, and a rotor rotatably arranged inside the stator. Since it is a known configuration including a hollow box-shaped case that covers the stator and the rotor, detailed description thereof will be omitted.
 鉄心本体11は、複数のブロック鉄心12、好ましくは、三つ以上のブロック鉄心12、を積層して形成される積層鉄心である。そして、各ブロック鉄心12は、複数の磁性金属材料製の薄板11aを積層して形成されたものである。 The iron core main body 11 is a laminated iron core formed by laminating a plurality of block cores 12, preferably three or more block cores 12. Each block iron core 12 is formed by laminating a plurality of thin plates 11a made of a magnetic metal material.
 ブロック鉄心12をなす薄板11aは、電磁鋼やアモルファス合金等からなる薄板材から打抜き形成される。
 重ね合わされた薄板11a同士は、接着剤による接着で連結される。ただし、薄板11a同士の連結方法はこれに限られない。例えば、熱硬化性樹脂や熱可塑性樹脂等の樹脂による固定、及び、薄板同士の溶接、などのいずれか1又は2以上の手法を用いて、薄板11a同士を連結することもできる。
The thin plate 11a forming the block iron core 12 is formed by punching from a thin plate material made of electromagnetic steel, an amorphous alloy, or the like.
The laminated thin plates 11a are connected to each other by adhesion with an adhesive. However, the method of connecting the thin plates 11a is not limited to this. For example, the thin plates 11a can be connected to each other by using any one or two or more methods such as fixing with a resin such as a thermosetting resin or a thermoplastic resin, or welding the thin plates to each other.
 複数のブロック鉄心12を積層して鉄心本体11を形成する際には、薄板11aの板厚偏差を相殺し、鉄心本体11の各部位ごとの積層方向の厚さのばらつきを抑えることを目的とする転積が実行される。転積は、複数の薄板11aを積層して形成されたブロック鉄心12を積み重ねるごとに行われる。転籍の工程では、重ねる対象のブロック鉄心12に対して、重ねようとするブロック鉄心12を周方向に所定角度回転させることにより、ブロック鉄心12同士の角度がずれた状態でブロック鉄心12が重ねられる。
 このように、鉄心本体11をなす複数のブロック鉄心12が、ブロック鉄心12ごとに転積されつつ積層されるので、薄板11a単位で転積を行う場合に比べて、転積の工程を速やかに実行できる。
When forming the iron core main body 11 by laminating a plurality of block iron cores 12, the purpose is to cancel the plate thickness deviation of the thin plate 11a and suppress the variation in the thickness in the stacking direction for each part of the iron core main body 11. The transshipment is performed. The transshipment is performed every time the block iron core 12 formed by laminating a plurality of thin plates 11a is stacked. In the transfer process, the block cores 12 to be overlapped are rotated by a predetermined angle in the circumferential direction with respect to the block cores 12 to be overlapped, so that the block cores 12 are overlapped in a state where the angles of the block cores 12 are deviated from each other. ..
In this way, since the plurality of block iron cores 12 forming the iron core main body 11 are stacked while being transferred for each block iron core 12, the rolling process can be performed more quickly than in the case of performing the rolling in units of the thin plates 11a. Can be done.
 ブロック鉄心12を転積せずに複数積層して鉄心本体11とする場合、理想的にはブロック鉄心12同士がずれなく重なることで、ブロック鉄心12の側面が面一になることが望ましい。しかし、現実としてブロック鉄心12同士の若干のずれをもって重なることは避けられない。特に、ブロック鉄心12を転積する場合は、ブロック鉄心12同士の端面を完全に一致させて重ね合わされることは極めてまれであり、ブロック鉄心12同士において若干のずれが発生することは通常避けられない。このため、鉄心本体11を複数のブロック鉄心12の積層により形成する場合、ブロック鉄心12が重なる境界部分、特にティース部11cの側面におけるブロック鉄心12の境界部分には、ずれによる段差が生じている。 When a plurality of block cores 12 are stacked without being transposed to form the core body 11, it is ideal that the block cores 12 overlap each other without misalignment so that the side surfaces of the block cores 12 are flush with each other. However, in reality, it is inevitable that the block iron cores 12 will overlap with each other with a slight deviation. In particular, when the block cores 12 are transposed, it is extremely rare that the end faces of the block cores 12 are completely aligned and overlapped with each other, and it is usually avoided that the block cores 12 are slightly displaced from each other. do not have. For this reason, when the iron core body 11 is formed by laminating a plurality of block cores 12, a step due to misalignment occurs at the boundary portion where the block cores 12 overlap, particularly at the boundary portion of the block core 12 on the side surface of the teeth portion 11c. ..
 鉄心本体11は、重ね合わせたブロック鉄心12同士を、点溶接で連結して構成されている。ただし、ブロック鉄心12同士の連結手段はこれに限られない。例えば、熱硬化性樹脂や熱可塑性樹脂等の樹脂による固定、接着剤による接着等を用いてブロック鉄心12同士を連結することもできる。この他、インシュレーター15を成型されてティース部11cに設けられるまでブロック鉄心12の積層状態を維持可能であれば、ブロック鉄心12同士を連結しなくてもよい。 The iron core main body 11 is configured by connecting the stacked block iron cores 12 to each other by spot welding. However, the means for connecting the block iron cores 12 to each other is not limited to this. For example, the block iron cores 12 can be connected to each other by fixing with a resin such as a thermosetting resin or a thermoplastic resin, or by adhering with an adhesive. In addition, if the laminated state of the block cores 12 can be maintained until the insulator 15 is molded and provided in the teeth portion 11c, the block cores 12 may not be connected to each other.
 鉄心本体11の内周部には、複数の導線51からなるコイルを設けるための複数のスロット13が等間隔で設けられている。各スロット13は、いずれも鉄心本体11中央の回転子配設位置となる空間部分に通じている。なお、鉄心本体において、全てのスロットが等間隔で設けられる必要はなく、一部のスロットが異なる間隔で設けられてもよい。 A plurality of slots 13 for providing a coil composed of a plurality of conducting wires 51 are provided at equal intervals on the inner peripheral portion of the iron core main body 11. Each of the slots 13 leads to a space portion that is a rotor arrangement position in the center of the iron core main body 11. In the iron core body, not all slots need to be provided at equal intervals, and some slots may be provided at different intervals.
 鉄心本体11は、環状の形状を有するヨーク部11bと、ヨーク部11bの内周から径方向内方に突出するティース部11cとを備える。ヨーク部11bの内周からティース部11cが径方向内方に突出することにより、スロット13が形成されている。この鉄心本体11のヨーク部11bとティース部11cとの形状は、鉄心本体11の軸方向の全体にわたって同一の形状であってもよい。逆に、鉄心本体11は、軸方向にわたって断面形状が変化する部分を含んでいてもよい。 The iron core main body 11 includes a yoke portion 11b having an annular shape and a teeth portion 11c protruding inward in the radial direction from the inner circumference of the yoke portion 11b. The slot 13 is formed by the tooth portion 11c protruding inward in the radial direction from the inner circumference of the yoke portion 11b. The shape of the yoke portion 11b and the teeth portion 11c of the core body 11 may be the same over the entire axial direction of the core body 11. On the contrary, the iron core main body 11 may include a portion whose cross-sectional shape changes in the axial direction.
 図4に示すように、ティース部11cの先端部を除いて、ティース部11cの幅は、径方向内方に向かうにつれて縮小するように形成されている。一方、ティース部11cの先端部に対応する部分を除いて、スロット13の幅は、径方向内方に向かってもほとんど変化しない。換言すれば、一つのスロット13を形成する二つのティース部11cの側面同士は、略平行である。 As shown in FIG. 4, the width of the teeth portion 11c is formed so as to decrease inward in the radial direction, except for the tip portion of the teeth portion 11c. On the other hand, the width of the slot 13 hardly changes inward in the radial direction except for the portion corresponding to the tip portion of the tooth portion 11c. In other words, the sides of the two teeth portions 11c forming one slot 13 are substantially parallel to each other.
 このように、各スロット13は、ヨーク部11bの側面(内周面)及びティース部11cの側面により構成されている。そして、各スロット13を構成する各側面には、絶縁樹脂材料製のインシュレーター15が設けられている。 As described above, each slot 13 is composed of a side surface (inner peripheral surface) of the yoke portion 11b and a side surface of the teeth portion 11c. An insulator 15 made of an insulating resin material is provided on each side surface constituting each slot 13.
 インシュレーター15は、絶縁性のある樹脂材料、例えば、エポキシ系の熱硬化性樹脂など、を固化させたものである。また、スロット13は、その一部をなす空間部13aを有し、インシュレーター15は空間部13aを取り囲む形状を有する。 The insulator 15 is a solidified resin material having an insulating property, for example, an epoxy-based thermosetting resin. Further, the slot 13 has a space portion 13a forming a part thereof, and the insulator 15 has a shape surrounding the space portion 13a.
 空間部13aは、スロット13のうちインシュレーター15が設けられずに残った部分である。空間部13aは、前記コイルをなす複数の導線51を挿通可能に構成されている。この空間部13aに導線51が挿通されている状態では、導線51の存在する空間部13aを除いたスロット13の残り部分を、インシュレーター15が占めている。換言すると、導線51と鉄心本体11(ヨーク部11b及びティース部11c)との間に、インシュレーター15が絶縁物として介在する。 The space portion 13a is a portion of the slot 13 that remains without the insulator 15. The space portion 13a is configured so that a plurality of conducting wires 51 forming the coil can be inserted through the space portion 13a. In a state where the conducting wire 51 is inserted through the space portion 13a, the insulator 15 occupies the remaining portion of the slot 13 excluding the space portion 13a in which the conducting wire 51 exists. In other words, the insulator 15 is interposed as an insulator between the conducting wire 51 and the iron core main body 11 (yoke portion 11b and teeth portion 11c).
 インシュレーター15は、スロット13に面する鉄心本体11の各側面に接合されている。ところで前述の通り、鉄心本体11をなす複数のブロック鉄心12は、ずれを伴って積層され、また、ブロック鉄心12を構成する薄板11aの端部も、不揃いに積層されているので、インシュレーター15が接合される鉄心本体11の側面は、平滑な連続面とはなっていない。 The insulator 15 is joined to each side surface of the iron core main body 11 facing the slot 13. By the way, as described above, the plurality of block iron cores 12 forming the iron core main body 11 are laminated with deviation, and the ends of the thin plates 11a constituting the block iron core 12 are also unevenly laminated, so that the insulator 15 is used. The side surface of the iron core body 11 to be joined is not a smooth continuous surface.
 例えば、図3に示すように、ティース部11cの側面におけるブロック鉄心12の境界部分には、ずれによる段差が生じている。つまり、複数のブロック鉄心12が形成するスロット13の側面には凹凸が存在する。また、ブロック鉄心12を形成する薄板11aも同様に、ずれた状態で積層されることがあるので、ブロック鉄心12の側面自体も、凹凸が生じている。 For example, as shown in FIG. 3, a step is generated at the boundary portion of the block iron core 12 on the side surface of the tooth portion 11c due to misalignment. That is, there are irregularities on the side surface of the slot 13 formed by the plurality of block iron cores 12. Further, since the thin plates 11a forming the block core 12 may also be laminated in a displaced state, the side surface itself of the block core 12 also has irregularities.
 これに対し、インシュレーター15は、ヨーク部11b及びティース部11cの各側面で、ブロック鉄心12が形成するスロット13の側面に存在する凹凸(凹状部分の一例)や、薄板11aによって形成されたブロック鉄心12の凹凸(凹状部分の別の例)を全て埋めるように配設される。インシュレーター15の厚さは、0.1mmから0.5mmであるので、ブロック鉄心12のずれが数μmから数十μmであるのと比較して十分大きく、上記の凹状部分を問題なく埋めて段差を解消できる。 On the other hand, the insulator 15 has irregularities (an example of a concave portion) existing on the side surface of the slot 13 formed by the block iron core 12 on each side surface of the yoke portion 11b and the teeth portion 11c, and the block iron core formed by the thin plate 11a. It is arranged so as to fill all the unevenness of 12 (another example of the concave portion). Since the thickness of the insulator 15 is 0.1 mm to 0.5 mm, the deviation of the block iron core 12 is sufficiently large as compared with the deviation of several μm to several tens of μm, and the above concave portion is filled without any problem and a step is formed. Can be resolved.
 この場合、インシュレーター15の厚さは、各ブロック鉄心12の側面ごとに異なる。スロット13の空間部13aに接合されたインシュレーター15の表面は、ブロック鉄心同士のずれに関わりなく、鉄心本体の軸方向に起立する連続した略平面を形成する。 In this case, the thickness of the insulator 15 is different for each side surface of the block iron core 12. The surface of the insulator 15 joined to the space portion 13a of the slot 13 forms a continuous substantially flat surface that stands upright in the axial direction of the core body regardless of the displacement between the block cores.
 また、スロット13の空間部13aを挟んで対向するティース部11c側面のインシュレーター15の厚さは、互いに異なっている。このとき、空間部13aを挟んで対向するインシュレーター15間の間隔、すなわち、スロット13の空間部13aの大きさが一様となっており、コイルを偏りなく均等に配設できる。 Further, the thicknesses of the insulators 15 on the side surfaces of the teeth portion 11c facing each other across the space portion 13a of the slot 13 are different from each other. At this time, the distance between the insulators 15 facing each other across the space 13a, that is, the size of the space 13a of the slot 13 is uniform, and the coils can be evenly arranged without bias.
 ブロック鉄心12の側面に接合して設けられるインシュレーターの厚みと空間部13aの幅との関係について、さらに詳述する。図3に示すように、ブロック鉄心12の側面は段差が存在することにより、凹状部分が存在するが、インシュレーター15がスロット13に設けられることにより形成された空間部13aの表面は略面一である。 The relationship between the thickness of the insulator provided joined to the side surface of the block iron core 12 and the width of the space portion 13a will be described in more detail. As shown in FIG. 3, the side surface of the block iron core 12 has a concave portion due to the presence of a step, but the surface of the space portion 13a formed by providing the insulator 15 in the slot 13 is substantially flush with each other. be.
 ここで、スロット13の幅をW、空間部13aの幅をWとする。さらに、図3において左側に表示されたスロット13の左手側に設けられているインシュレーターの厚みをtとし、tに相当するインシュレーターとスロット13を挟んで対向するインシュレーターの厚みをtとする。同様に、図3において右側に表示されたスロット13の左手側に設けられているインシュレーターの厚みをtとし、tに相当するインシュレーターとスロット13を挟んで対向するインシュレーターの厚みをtとする。 Here, the width of the slot 13 is W s , and the width of the space portion 13 a is W c . Further, the thickness of the insulator provided on the left hand side of the slot 13 displayed on the left side in FIG. 3 is t 1, and the thickness of the insulator corresponding to t 1 and the insulator facing each other across the slot 13 is t 2 . .. Similarly, the thickness of the insulator provided on the left hand side of the slot 13 displayed on the right side in FIG. 3 is t 3, and the thickness of the insulator corresponding to t 3 and the insulator facing each other across the slot 13 is t 4 . do.
 このとき、対向するインシュレーター15の厚みの和は、スロット13のどの場所においても常に一定である。具体的には、t+t=t+t=W-W=(一定)を常に満たすように、インシュレーター15は設けられている。このとき、各スロット13において、Wが一定である場合は、t+t=t+tも一定であるので、空間部13aの幅Wも一定である。 At this time, the sum of the thicknesses of the opposing insulators 15 is always constant at any place in the slot 13. Specifically, the insulator 15 is provided so as to always satisfy t 1 + t 2 = t 3 + t 4 = W s − W c = (constant). At this time, when W s is constant in each slot 13, t 1 + t 2 = t 3 + t 4 is also constant, so that the width W c of the space portion 13a is also constant.
 この他、インシュレーター15は、鉄心本体11の軸方向の片側の端面あるいは両側の端面から軸方向へ所定量(例えば、0.2mmないし3mm程度)突出していても、凹んでいてもよい。 In addition, the insulator 15 may protrude in the axial direction by a predetermined amount (for example, about 0.2 mm to 3 mm) from one end face or both end faces in the axial direction of the iron core body 11, or may be recessed.
 インシュレーター15の空間部13aに設けられている導線51は、表面に絶縁皮膜が形成された金属製線状体であり、ティース部11c周囲に巻回されることでコイルとして機能する。 The conducting wire 51 provided in the space portion 13a of the insulator 15 is a metal wire-like body having an insulating film formed on its surface, and functions as a coil by being wound around the teeth portion 11c.
 導線51として、例えば、表面に絶縁皮膜が形成された矩形又は方形断面の金属製棒状体である平角線が用いられてもよい。この場合、導線51をインシュレーター15の空間部13aに挿入した後に、複数の導線51を連結することで、導線51がコイルとして機能する。図2に示すように、平角線である導線51は、1つの空間部13aに複数本(例えば、6本)挿入されてもよい。これにより、導線51は、導線51の隣り合う側の面同士が当接した状態で空間部13aに配置されるので、導線51の空間部13aにおける占積率が大きくなり、また、複数本の導線51を鉄心本体11の径方向に整列させることができる。
 導線51は、インシュレーター15との隙間をなるべく少なくするように設けられることが望ましい。導線51とインシュレーター15との間に介在する空気が減少するので、導線51がなすコイルから鉄心本体11への伝熱を促進させることができる。
As the conducting wire 51, for example, a flat wire which is a metal rod-shaped body having a rectangular or square cross section having an insulating film formed on its surface may be used. In this case, the conductor 51 functions as a coil by connecting the plurality of conductors 51 after inserting the conductor 51 into the space portion 13a of the insulator 15. As shown in FIG. 2, a plurality of (for example, six) conducting wires 51, which are flat wires, may be inserted into one space portion 13a. As a result, the conducting wire 51 is arranged in the space portion 13a in a state where the surfaces on the adjacent sides of the conducting wire 51 are in contact with each other, so that the space factor in the space portion 13a of the conducting wire 51 becomes large, and a plurality of conductors 51 are arranged. The conducting wire 51 can be aligned in the radial direction of the iron core body 11.
It is desirable that the conducting wire 51 is provided so as to minimize the gap between the conducting wire 51 and the insulator 15. Since the amount of air interposed between the conductor 51 and the insulator 15 is reduced, heat transfer from the coil formed by the conductor 51 to the iron core body 11 can be promoted.
 次に、本実施形態に係るコア部の製造方法について説明する。
 前提として、あらかじめ、公知の製法により、薄板材から打抜いた複数の薄板11aが接着等により積層されてブロック鉄心12が形成されている。さらにブロック鉄心12を転積しつつ積層することにより、三つ以上のブロック鉄心12が積層された鉄心本体11が得られているものとする。
 そして、前述の通り、得られた鉄心本体11における各ブロック鉄心12の境界部分、特にティース部11cの側面におけるブロック鉄心12の境界部分には、ずれによる段差が生じているものとする。
 そこで本実施形態においては、鉄心本体11のスロット13にインシュレーター15を成形して設ける工程から説明する。なお、インシュレーター15を成形する工程の前に、鉄心本体11に対しその外形側から棒を当てるなどして、鉄心本体搬送時に生じたブロック鉄心12又は薄板11aのずれを直す工程が実行されてもよい。
Next, a method of manufacturing the core portion according to the present embodiment will be described.
As a premise, a plurality of thin plates 11a punched out from the thin plate material are laminated in advance by a known manufacturing method by adhesion or the like to form a block iron core 12. Further, it is assumed that the iron core main body 11 in which three or more block iron cores 12 are laminated is obtained by laminating the block iron cores 12 while rolling them.
Then, as described above, it is assumed that a step is generated due to the deviation at the boundary portion of each block core 12 in the obtained iron core main body 11, particularly at the boundary portion of the block core 12 on the side surface of the teeth portion 11c.
Therefore, in the present embodiment, the process of forming and providing the insulator 15 in the slot 13 of the iron core main body 11 will be described. Even if a step of correcting the deviation of the block iron core 12 or the thin plate 11a generated during the transportation of the iron core body is executed by, for example, applying a rod to the iron core body 11 from the outer shape side before the step of forming the insulator 15. good.
 インシュレーター15は、モールド装置30によってスロット13内部に成形されて設けられる。図6に示すように、モールド装置30は、鉄心本体11をその軸方向の両側から挟み込む上型31及び下型32と、鉄心本体11の各スロット13における空間部13aに挿抜可能に構成されている中子34と、下型32に沿うように設けられていて中子34を支持可能に構成されている中子基部36と、上型31と鉄心本体11との間に配置されるカルプレート37と、中子基部36と鉄心本体11との間に配置される分離プレート38とを有する。上型31と鉄心本体11との間に配置されるカルプレート37には、樹脂を各スロット13に導く樹脂流路35(例えば、ランナー、ゲート孔)が形成されている。 The insulator 15 is formed and provided inside the slot 13 by the molding device 30. As shown in FIG. 6, the mold device 30 is configured to be insertable and closable in the upper mold 31 and the lower mold 32 that sandwich the iron core main body 11 from both sides in the axial direction, and the space portion 13a in each slot 13 of the iron core main body 11. A core plate 34, a core base 36 that is provided along the lower mold 32 and is configured to support the core 34, and a cal plate arranged between the upper mold 31 and the iron core body 11. It has 37 and a separation plate 38 arranged between the core base 36 and the iron core body 11. A resin flow path 35 (for example, a runner, a gate hole) for guiding the resin to each slot 13 is formed in the cal plate 37 arranged between the upper mold 31 and the iron core main body 11.
 モールド装置30の所定位置に配置された鉄心本体11の軸方向の両側に、上型31と下型32とがそれぞれ設けられている。カルプレート37は、鉄心本体11の上端面に、上型31によって押し付けられるようにして当接している。また、下型32と中子基部36とで支持される分離プレート38は、鉄心本体11の下端面に当接している。これにより、スロット13における鉄心本体11の軸方向の開口部を、後述する中子34の配置領域を除いて全て閉塞できる。 The upper die 31 and the lower die 32 are provided on both sides of the iron core main body 11 arranged at a predetermined position of the mold device 30 in the axial direction. The cal plate 37 is in contact with the upper end surface of the iron core body 11 so as to be pressed by the upper mold 31. Further, the separation plate 38 supported by the lower mold 32 and the core base portion 36 is in contact with the lower end surface of the iron core main body 11. As a result, the axial opening of the iron core main body 11 in the slot 13 can be completely closed except for the arrangement region of the core 34, which will be described later.
 下型32上に設けられた分離プレート38の開口を通じて、各スロット13にそれぞれ中子34を下から挿入する。スロット13における鉄心本体11の径方向の開口部は、この中子34の端部で閉塞される。 The core 34 is inserted into each slot 13 from below through the opening of the separation plate 38 provided on the lower mold 32. The radial opening of the iron core body 11 in the slot 13 is closed at the end of the core 34.
 各スロット13が閉塞されると、成型工程が行われる。具体的には、図5及び図6に示すように、カルプレート37及び分離プレート38と、中子34とで閉じられた空間、すなわち、中子34の外周面とスロット13に面する鉄心本体11の側面との間の隙間に、樹脂が注入される。 When each slot 13 is closed, the molding process is performed. Specifically, as shown in FIGS. 5 and 6, a space closed by the cal plate 37, the separation plate 38, and the core 34, that is, the iron core main body facing the outer peripheral surface of the core 34 and the slot 13. The resin is injected into the gap between the side surface of the eleven.
 樹脂の注入は、モールド装置30に設けられる図示しない樹脂溜めポット内に収容された樹脂材料を、プランジャーによる押圧で樹脂溜めポットから押出すことにより行われる。樹脂溜めポットから押し出された樹脂材料は、樹脂流路35を通じて、中子34と鉄心本体11の側面との間の隙間に圧入される。樹脂の注入に際しては、モールド装置30によって、鉄心本体11に対しその軸方向や径方向に所定荷重を加え、鉄心本体11とこれに接するモールド装置各部との間が開いて樹脂が漏れ出すことがないようにする。 The resin is injected by extruding the resin material contained in the resin storage pot (not shown) provided in the molding device 30 from the resin storage pot by pressing with a plunger. The resin material extruded from the resin reservoir pot is press-fitted into the gap between the core 34 and the side surface of the iron core main body 11 through the resin flow path 35. When injecting the resin, the mold device 30 applies a predetermined load to the iron core body 11 in the axial direction and the radial direction, and the space between the iron core body 11 and each part of the mold device in contact with the core body 11 may open and the resin may leak out. Try not to.
 中子34の外周面とスロット13に面する鉄心本体11の側面との間の隙間の大きさは、インシュレーター15の厚さに相当する0.1mmないし0.5mmである。このとき、樹脂に含まれるフィラー等の混合物が詰まることも無く、樹脂の流動性を確保して、隙間全域に樹脂を無理なく均一に行き渡らせることができるので、注入される樹脂の流通に適した隙間となっている。 The size of the gap between the outer peripheral surface of the core 34 and the side surface of the iron core main body 11 facing the slot 13 is 0.1 mm to 0.5 mm, which corresponds to the thickness of the insulator 15. At this time, the mixture such as the filler contained in the resin is not clogged, the fluidity of the resin can be ensured, and the resin can be spread evenly and reasonably over the entire gap, which is suitable for the distribution of the injected resin. It is a gap.
 なお、本実施形態に係るモールド装置30においては、鉄心本体11の各スロット13に対し、それぞれ中子34を下から挿入しているが、本開示はこの例に限られない。例えば、各スロット13に対し、それぞれ中子34を上から挿入してもよい。また、プランジャーによる押圧により圧入される樹脂の注入方向についても、鉄心本体11の上下のいずれかから樹脂が注入されてもよい。 In the molding apparatus 30 according to the present embodiment, the core 34 is inserted from below into each slot 13 of the iron core main body 11, but the present disclosure is not limited to this example. For example, the core 34 may be inserted into each slot 13 from above. Further, regarding the injection direction of the resin press-fitted by pressing with the plunger, the resin may be injected from either the upper or lower side of the iron core main body 11.
 また、インシュレーター15の厚さがブロック鉄心12ごとに異なる場合、モールド装置30における樹脂注入用のゲート位置が、インシュレーター15の厚さの大きい箇所に対応する隙間部分に面する位置に設けられることが望ましい。この場合、樹脂は、インシュレーター15が厚く設けられる部分に対応する隙間の広い箇所から、インシュレーター15が薄く設けられる部分対応する隙間の狭い箇所へ向けて流動する。隙間の広い箇所を通じて、隙間の狭くなった箇所まで樹脂を到達させられるので、樹脂の未充填等の問題が生じにくくなる。 Further, when the thickness of the insulator 15 is different for each block iron core 12, the gate position for resin injection in the molding device 30 may be provided at a position facing the gap portion corresponding to the thick portion of the insulator 15. desirable. In this case, the resin flows from a portion having a wide gap corresponding to the portion where the insulator 15 is provided thickly to a portion having a narrow gap corresponding to the portion where the insulator 15 is provided thinly. Since the resin can reach the place where the gap is narrowed through the place where the gap is wide, problems such as unfilling of the resin are less likely to occur.
 鉄心本体11と当接するカルプレート37及び分離プレート38の面のうち、中子34に対応する箇所に鉄心本体11から離れる方向に凹部が形成されてもよい。これにより、形成されたインシュレーター15は、鉄心本体11の軸方向の両端面から突出する形状、あるいは、鉄心本体11の軸方向の両端面に沿ってはみ出す形状をなしている。 Of the surfaces of the cal plate 37 and the separation plate 38 that come into contact with the core body 11, a recess may be formed in a portion corresponding to the core 34 in a direction away from the core body 11. As a result, the formed insulator 15 has a shape protruding from both end faces in the axial direction of the iron core main body 11 or a shape protruding along both end faces in the axial direction of the iron core main body 11.
 特に後者の場合、カルプレート37や分離プレート38の凹部が設けられることにより、樹脂流路の断面積を大きくすることができる。これにより、ティース部11cの先端付近など樹脂が行き渡りにくい箇所を含む、樹脂を注入すべき隙間の全体に、樹脂をより効果的に到達させることができる。 Particularly in the latter case, the cross-sectional area of the resin flow path can be increased by providing the recesses of the cal plate 37 and the separation plate 38. As a result, the resin can be more effectively reached in the entire gap into which the resin should be injected, including a portion where the resin is difficult to spread, such as near the tip of the tooth portion 11c.
 逆に、鉄心本体11と当接するカルプレート37及び分離プレート38の面のうち、中子34に対応する箇所に凸部が形成されてもよい。これにより、形成されたインシュレーター15は、鉄心本体11の軸方向の両端面から鉄心本体11の内側に窪んだ形状をなしている。 On the contrary, a convex portion may be formed at a portion corresponding to the core 34 on the surfaces of the cal plate 37 and the separation plate 38 that come into contact with the iron core main body 11. As a result, the formed insulator 15 has a shape recessed from both end faces in the axial direction of the iron core main body 11 to the inside of the iron core main body 11.
 この場合、図7に示すように、樹脂材料の圧入の際には、カルプレート37等の凸部がスロット13の空間部13a端部に入り込んで閉塞しているので、インシュレーター15は、空間部13aの内部に収容された状態で形成されている。これにより、樹脂材料の圧入後に、樹脂が空間部13aの端から鉄心本体11の軸方向の端面に沿うように漏れ出すことを低減できる。鉄心本体11端面に余分に付着した樹脂の除去工程を省略できるので、作業性が向上する。なお、インシュレーター15の鉄心本体11端面に対する窪みは、薄板11aの板厚以内であることが望ましい。このとき、薄板11aに対しインシュレーター15が接合されることにより、薄板11a同士の連結の強度を高めることができる。 In this case, as shown in FIG. 7, when the resin material is press-fitted, the convex portion of the cal plate 37 or the like enters the end portion of the space portion 13a of the slot 13 and is closed, so that the insulator 15 is closed by the space portion. It is formed in a state of being housed inside 13a. As a result, it is possible to reduce the leakage of the resin from the end of the space portion 13a along the axial end surface of the iron core main body 11 after the resin material is press-fitted. Since the step of removing excess resin adhering to the end face of the iron core main body 11 can be omitted, workability is improved. It is desirable that the recess of the insulator 15 with respect to the end surface of the iron core body 11 is within the plate thickness of the thin plate 11a. At this time, by joining the insulator 15 to the thin plates 11a, the strength of the connection between the thin plates 11a can be increased.
 注入された樹脂を固化させることで、ティース部11cの両側面とヨーク部11bの内周面に接合したインシュレーター15が形成される。鉄心本体11の各スロット13にインシュレーター15が設けられることによりコア部10が完成する。 By solidifying the injected resin, an insulator 15 joined to both side surfaces of the teeth portion 11c and the inner peripheral surface of the yoke portion 11b is formed. The core portion 10 is completed by providing the insulator 15 in each slot 13 of the iron core main body 11.
 そして、コア部10に対し、モールド装置30が、鉄心本体11から上型31、カルプレート37、中子34、下型32、及び分離プレート38をそれぞれ離隔させることによりコア部10が解放される。コア部10は、モールド装置30から取り出された後、コイルの配設等の工程に供給される。コイルの配設等の工程では、コア部10の各スロット13に導線51が挿入される。換言すれば、導線51は、スロット13の空間部13aに挿通されることにより、インシュレーター15に取り囲まれた状態となる。 Then, the core portion 10 is released by the molding device 30 separating the upper mold 31, the cal plate 37, the core 34, the lower mold 32, and the separation plate 38 from the iron core main body 11 with respect to the core portion 10. .. After being taken out from the molding device 30, the core portion 10 is supplied to a process such as coil arrangement. In steps such as coil arrangement, the conducting wire 51 is inserted into each slot 13 of the core portion 10. In other words, the conducting wire 51 is inserted into the space portion 13a of the slot 13 so as to be surrounded by the insulator 15.
 コア部10のインシュレーター15の導線51に対する摩擦力は、特許文献1のようなコア部に設けられた絶縁紙の導線51に対する摩擦力と比べて小さい。このため、導線51をスロット13に挿通する際、導線51はインシュレーター15と接触しても抵抗を受けにくく、導線51をスムーズに挿通できる。 The frictional force of the core portion 10 with respect to the conducting wire 51 of the insulator 15 is smaller than the frictional force of the insulating paper provided in the core portion with respect to the conducting wire 51 as in Patent Document 1. Therefore, when the conductor 51 is inserted into the slot 13, the conductor 51 is less likely to receive resistance even if it comes into contact with the insulator 15, and the conductor 51 can be smoothly inserted.
 コア部10の各スロット13に挿入された導線51は、周方向に数個おきの(又は、周方向に隣り合う)スロット13に挿入された導線51同士と結線されることにより、電気的に接続されてコイルとされる。最終的に、コア部とコイルとは、巻線が配線されたりやケースへ取り付けられたりすることで、回転電機の固定子として使用可能な状態となる。 The conducting wires 51 inserted into each slot 13 of the core portion 10 are electrically connected to each other by connecting the conducting wires 51 inserted into the slots 13 inserted in several (or adjacent to each other in the circumferential direction) slots 13 in the circumferential direction. It is connected to form a coil. Finally, the core portion and the coil are in a state where they can be used as a stator of a rotary electric machine by wiring windings or attaching them to a case.
 インシュレーター15は、モールド装置30によって設けられる。また、インシュレーター15の厚さは0.1mmから0.5mmである。インシュレーター15の厚さは、従来のコイルとコア間の絶縁に用いられていた絶縁紙より薄いので、スロット13の空間部13aに導線51を挿入する時に、導線51がインシュレーター15に引っ掛かりにくい。これにより、導線51の挿入をスムーズに行うことができる。
 また、絶縁紙を用いた場合と比べて、各スロット13に占める絶縁部(インシュレーター15)の割合を少なくすることができるので、空間部13aはより広くなる。換言すると、導線51を設けることができる面積がより大きくなるので、スロット13におけるコイル(導線)の占有率は高くなる。したがって、より多くの電流をコイルに流すことができるので、回転電機の出力を向上させることができる。
The insulator 15 is provided by the molding device 30. The thickness of the insulator 15 is 0.1 mm to 0.5 mm. Since the thickness of the insulator 15 is thinner than that of the insulating paper used for the insulation between the conventional coil and the core, the conductor 51 is less likely to be caught by the insulator 15 when the conductor 51 is inserted into the space 13a of the slot 13. As a result, the lead wire 51 can be smoothly inserted.
Further, since the ratio of the insulating portion (insulator 15) to each slot 13 can be reduced as compared with the case where the insulating paper is used, the space portion 13a becomes wider. In other words, since the area where the conductor 51 can be provided becomes larger, the occupancy rate of the coil (conductor) in the slot 13 becomes higher. Therefore, since a larger amount of current can be passed through the coil, the output of the rotary electric machine can be improved.
 また、インシュレーター15が鉄心本体11に設けられることにより、鉄心本体11の連結強度は向上する。インシュレーター15が設けられる工程まで薄板11a及びブロック鉄心12の積層状態を維持することが可能であれば、薄板11a同士を接着やかしめ等によって連結する工程や、ブロック鉄心12同士を溶接等により連結する工程が省略されてもよい。インシュレーター15が設けられた後は、薄板11a同士やブロック鉄心12同士の連結を維持することがより容易になるので、鉄心本体11として使用できる状態を確保できる。このように、インシュレーター15配設前の薄板11a同士の連結やブロック鉄心12同士の連結に係る工程を行わない場合、製造の効率化が図れ、製造コストを抑えられる。 Further, by providing the insulator 15 on the iron core main body 11, the connecting strength of the iron core main body 11 is improved. If it is possible to maintain the laminated state of the thin plates 11a and the block iron cores 12 until the process in which the insulator 15 is provided, the thin plates 11a are connected to each other by adhesion or caulking, or the block iron cores 12 are connected to each other by welding or the like. The step may be omitted. After the insulator 15 is provided, it becomes easier to maintain the connection between the thin plates 11a and the block iron cores 12, so that a state in which the thin plates 11a can be used as the iron core main body 11 can be ensured. As described above, when the steps related to the connection between the thin plates 11a and the connection between the block iron cores 12 before the insulator 15 is arranged are not performed, the manufacturing efficiency can be improved and the manufacturing cost can be suppressed.
 続いて、本実施形態に係るコア部を適用した回転電機における、コイルからコア部への伝熱状態について説明する。
 回転電機を作動させ、導線51に電流が流れると、導線51に熱が発生する。導線51で生じた熱は、導線51と鉄心本体11との間に介在するインシュレーター15における熱伝導性が、コイル周囲の空気における熱伝導性より優れることから、主にインシュレーター15を介して鉄心本体11へ伝わる。
Subsequently, the heat transfer state from the coil to the core portion in the rotary electric machine to which the core portion according to the present embodiment is applied will be described.
When the rotary electric machine is operated and a current flows through the conducting wire 51, heat is generated in the conducting wire 51. The heat generated in the conductor 51 is mainly via the insulator 15 because the heat conductivity in the insulator 15 interposed between the conductor 51 and the iron core body 11 is superior to the heat conductivity in the air around the coil. It is transmitted to 11.
 すなわち、コイルで生じた熱は、コイルのうちスロット13の空間部13aに収まった部分の導線51から、その表面に密着するインシュレーター15に伝わり、さらに、インシュレーター15から、これと密着する鉄心本体11に伝わり、さらに鉄心本体11が収容されるケース等に伝わる。 That is, the heat generated in the coil is transmitted from the conducting wire 51 of the portion of the coil contained in the space 13a of the slot 13 to the insulator 15 in close contact with the surface thereof, and further from the insulator 15 to the iron core main body 11 in close contact with the insulator 15. It is transmitted to the case where the iron core main body 11 is housed.
 絶縁部であるインシュレーター15は、鉄心本体11のスロット13に面する各側面に密着して覆うように設けられている。このインシュレーター15の空間部13aに面する表面の形状は、鉄心本体11の軸方向に起立し連続する略平面となるように、インシュレーター15の厚さを各ブロック鉄心12の側面ごとに調整されていることから、鉄心本体11のティース部11c側面におけるブロック鉄心12同士のずれによる段差や薄板端部間の凹凸に影響を受けることなく、面の真直度を確保できる。 The insulator 15 which is an insulating portion is provided so as to closely cover each side surface of the iron core main body 11 facing the slot 13. The thickness of the insulator 15 is adjusted for each side surface of each block iron core 12 so that the shape of the surface of the insulator 15 facing the space portion 13a stands up in the axial direction of the iron core body 11 and becomes a continuous substantially flat surface. Therefore, the straightness of the surface can be ensured without being affected by the step due to the displacement between the block iron cores 12 on the side surface of the teeth portion 11c of the iron core main body 11 and the unevenness between the thin plate ends.
 よって、導線51がスロット13に挿通された状態では、例えば導線51表面とインシュレーター15の表面とがほとんど平行であるため、導線51とインシュレーター15間に、インシュレーター15表面の凹凸や傾きに起因する隙間が生じにくい。これにより、導線51とインシュレーター15との間に介在する空気の量を低減できるので、インシュレーター15を介した導線51と鉄心本体11との間における伝熱効率を向上させられる。 Therefore, when the conductor 51 is inserted into the slot 13, for example, the surface of the conductor 51 and the surface of the insulator 15 are almost parallel to each other, so that there is a gap between the conductor 51 and the insulator 15 due to unevenness or inclination of the surface of the insulator 15. Is unlikely to occur. As a result, the amount of air interposed between the conductor 51 and the insulator 15 can be reduced, so that the heat transfer efficiency between the conductor 51 and the iron core main body 11 via the insulator 15 can be improved.
 また、インシュレーター15は、ティース部11cの各側面で、ブロック鉄心12あるいは薄板11aが形成するスロット13の側面に存在する凹凸(凹状部分)を全て埋めるように設けられている。これにより、ティース部11cの各側面とインシュレーター15との間に隙間を介在させることなく密着する。例えば、薄板11aを打ち抜き加工で形成した場合、薄板11a端部にバリやダレが残る場合がある。このとき、薄板11aを積層すると、薄板11aがなすスロット13の側面に小さな凹状部分を生じることがある。本実施形態においては、こうした凹状部分にもインシュレーター15を隙間なく設けている。 Further, the insulator 15 is provided so as to fill all the unevenness (concave portion) existing on the side surface of the slot 13 formed by the block iron core 12 or the thin plate 11a on each side surface of the tooth portion 11c. As a result, each side surface of the tooth portion 11c and the insulator 15 are in close contact with each other without any gap. For example, when the thin plate 11a is formed by punching, burrs and sagging may remain at the end of the thin plate 11a. At this time, when the thin plates 11a are laminated, a small concave portion may be formed on the side surface of the slot 13 formed by the thin plates 11a. In the present embodiment, the insulator 15 is provided without a gap even in such a concave portion.
 これにより、インシュレーター15とティース部11cの側面との間には空気が存在しにくい。コイルをなす導線51がスロット13に挿入された状態では、鉄心本体11に設けられたインシュレーター15を介して、導線51で発生する熱を鉄心本体11へ伝えられる。このとき、インシュレーター15とティース部11cの側面との間には空気が存在しにくいので、コイルから外部へ向かう伝熱の効率を向上させて放熱を促進させられる。 This makes it difficult for air to exist between the insulator 15 and the side surface of the teeth portion 11c. In the state where the conducting wire 51 forming the coil is inserted into the slot 13, the heat generated in the conducting wire 51 is transferred to the iron core main body 11 via the insulator 15 provided in the iron core main body 11. At this time, since air is unlikely to exist between the insulator 15 and the side surface of the teeth portion 11c, the efficiency of heat transfer from the coil to the outside can be improved and heat dissipation can be promoted.
 インシュレーター15がモールド装置30で設けられることで、インシュレーター15を精度よく形成することができる。インシュレーター15の寸法の誤差を小さくできるので、導線51の入る空間部13aの周りに挿通のためのクリアランスを大きく設定する必要がない。つまり、空間部13aに挿通する導線51とインシュレーター15との間のクリアランスを小さくすることができるので、導線51と鉄心本体11との間に介在する空気の層をより薄くなる。これにより、導線51と鉄心本体11との間における伝熱効率を向上させられる。 By providing the insulator 15 in the molding device 30, the insulator 15 can be formed with high accuracy. Since the dimensional error of the insulator 15 can be reduced, it is not necessary to set a large clearance for insertion around the space portion 13a in which the conducting wire 51 enters. That is, since the clearance between the conductor 51 inserted into the space 13a and the insulator 15 can be reduced, the layer of air interposed between the conductor 51 and the iron core body 11 becomes thinner. As a result, the heat transfer efficiency between the conducting wire 51 and the iron core main body 11 can be improved.
 このように、本実施形態に係る回転電機のコア部10においては、ブロック鉄心12あるいは薄板11aが形成するスロット13の側面に存在する凹凸(凹状部分)が埋められるようにインシュレーター15が設けられている。ティース部11c側面とインシュレーター15との間に隙間が生じないので、コイルを成す導線51と鉄心本体11との間の伝熱を阻害する空気がティース部11cの側面とインシュレーター15の間に存在しにくい。これにより、コイルからコア部10側への伝熱効率が促進する回転電機のコア部10を提供できる。 As described above, in the core portion 10 of the rotary electric machine according to the present embodiment, the insulator 15 is provided so as to fill the unevenness (concave portion) existing on the side surface of the slot 13 formed by the block iron core 12 or the thin plate 11a. There is. Since there is no gap between the side surface of the teeth portion 11c and the insulator 15, air that hinders heat transfer between the conducting wire 51 forming the coil and the iron core body 11 exists between the side surface of the teeth portion 11c and the insulator 15. Hateful. This makes it possible to provide the core portion 10 of the rotary electric machine in which the heat transfer efficiency from the coil to the core portion 10 side is promoted.
 また、鉄心本体11のティース部11cに対してインシュレーター15が設けられているので、は、ティース部11cを構成しているブロック鉄心12同士及び各薄板11a同士の連結がインシュレーター15によって補助されている。つまり、ブロック鉄心12同士及び各薄板11a同士の連結が強化されているので、鉄心本体11のねじり強度が向上し、したがって、強度が向上した回転電機のコア部10を提供することができる。 Further, since the insulator 15 is provided for the teeth portion 11c of the iron core main body 11, the insulator 15 assists the connection between the block iron cores 12 constituting the teeth portion 11c and the thin plates 11a. .. That is, since the connection between the block iron cores 12 and the thin plates 11a is strengthened, the torsional strength of the iron core main body 11 is improved, and therefore, the core portion 10 of the rotary electric machine with improved strength can be provided.
 本実施形態に係る回転電機のコア部10において、一方のティース部11cに設けられた絶縁部であるインシュレーター15の周方向厚みをt1とし、他方のティース部11cに設けられたインシュレーター15の周方向厚みをt2としたとき、t1+t2は一定である。これにより、各スロット13におけるインシュレーターの厚みの合計が一定となるので、各スロット13におけるコイルから鉄心本体11への伝熱性能を一定とすることができる。 In the core portion 10 of the rotary electric machine according to the present embodiment, the circumferential thickness of the insulator 15 which is an insulating portion provided in one teeth portion 11c is set to t1, and the circumferential direction of the insulator 15 provided in the other teeth portion 11c. When the thickness is t2, t1 + t2 is constant. As a result, the total thickness of the insulators in each slot 13 becomes constant, so that the heat transfer performance from the coil to the iron core main body 11 in each slot 13 can be made constant.
 本実施形態に係る回転電機のコア部10において、インシュレーター15の周方向厚みt1は、インシュレーター15の周方向厚みt2と異なっていてもよい。t1+t2が一定であれば、各スロット13におけるコイルから鉄心本体11への伝熱性能を一定とすることができる。 In the core portion 10 of the rotary electric machine according to the present embodiment, the circumferential thickness t1 of the insulator 15 may be different from the circumferential thickness t2 of the insulator 15. If t1 + t2 are constant, the heat transfer performance from the coil in each slot 13 to the iron core main body 11 can be constant.
 なお、実施形態に係るコア部を適用する回転電機を電動機としているが、これに限らず、回転電機は発電機であってもかまわない。また、実施形態に係るコア部は、インナーロータ構造における固定子の一部であるが、これに限られるものではなく、アウターロータ構造における固定子の一部として適用されてもよい。加えて、コア部は、固定子としてだけでなく、巻線タイプのロータのコアとして用いられてもよい。 Note that the rotary electric machine to which the core portion according to the embodiment is applied is an electric machine, but the electric machine is not limited to this, and the rotary electric machine may be a generator. Further, the core portion according to the embodiment is a part of the stator in the inner rotor structure, but is not limited to this, and may be applied as a part of the stator in the outer rotor structure. In addition, the core portion may be used not only as a stator but also as a core of a winding type rotor.
 また、実施形態に係る回転電機のコア部においては、ティース部11c側面のインシュレーター15は、スロット13内の空間部13aに面するインシュレーター15の表面が、鉄心本体11の軸方向に連続する略平面となるように設けられているが、本開示は本実施形態の例に限られない。例えばスロット13内の空間部13aに面するインシュレーター15の表面に、鉄心本体11の軸方向に連続する溝が複数設けるように形成されてもよい。この場合、導線挿入の際に、インシュレーター15の表面と導線51外周面との接触面積を減らせるので、導線51の挿入に伴う摩擦抵抗を抑えることができる。これにより、導線51を空間部13aにスムーズに挿入できる。 Further, in the core portion of the rotary electric machine according to the embodiment, the insulator 15 on the side surface of the teeth portion 11c has a substantially flat surface in which the surface of the insulator 15 facing the space portion 13a in the slot 13 is continuous in the axial direction of the iron core body 11. However, the present disclosure is not limited to the example of the present embodiment. For example, a plurality of grooves continuous in the axial direction of the iron core body 11 may be formed on the surface of the insulator 15 facing the space portion 13a in the slot 13. In this case, since the contact area between the surface of the insulator 15 and the outer peripheral surface of the conductor 51 can be reduced when the conductor is inserted, the frictional resistance associated with the insertion of the conductor 51 can be suppressed. As a result, the conducting wire 51 can be smoothly inserted into the space portion 13a.
 また、完成後のコア部10を用いた回転電機において、インシュレーター15表面に設けられる複数の溝を、コイル(導線51)とインシュレーター15間に流動させる冷却用媒体等の液体の流路とすることで、液体をコイル周囲に流通させて、コイルの熱の放熱効率を向上させられる。 Further, in a rotary electric machine using the completed core portion 10, a plurality of grooves provided on the surface of the insulator 15 shall be used as a flow path for a liquid such as a cooling medium to be flowed between the coil (conductor 51) and the insulator 15. Therefore, the liquid can be circulated around the coil to improve the heat dissipation efficiency of the coil.
 また、導線51の空間部13aへの挿入を容易にするために、導線51が挿入される側(例えば、上側)のインシュレーター15の角部に面取り加工が施されてもよい。このような面取り加工で得られた面取り部では、導線51の誘い込みが可能となるので、導線51を容易に挿入でき、コア部10への導線挿通工程の短縮化や省力化が図れる。 Further, in order to facilitate the insertion of the conductor 51 into the space portion 13a, the corner portion of the insulator 15 on the side where the conductor 51 is inserted (for example, the upper side) may be chamfered. In the chamfered portion obtained by such chamfering, the conducting wire 51 can be invited, so that the conducting wire 51 can be easily inserted, and the process of inserting the conducting wire into the core portion 10 can be shortened and labor can be saved.
 さらに、インシュレーター15におけるティース部11c基端部寄りの隅部に、ヌスミ部が設けられてもよい。このようにヌスミ部が設けられることで、導線51が平角線の場合に、導線51の角部がインシュレーター15の隅部に接触して摩擦抵抗が生じることを回避できる。これにより、導線51を空間部13aにスムーズに挿入することができるので、コア部10への導線挿通工程の短縮化や省力化が図れる。 Further, a sewn portion may be provided at a corner portion of the insulator 15 near the base end portion of the tooth portion 11c. By providing the trace portion in this way, it is possible to prevent the corner portion of the conductor 51 from coming into contact with the corner portion of the insulator 15 and causing frictional resistance when the conductor 51 is a flat wire. As a result, the conductor 51 can be smoothly inserted into the space portion 13a, so that the process of inserting the conductor into the core portion 10 can be shortened and labor can be saved.
(本開示の第2の実施形態)
 次に、第2の実施形態に係る回転電機のコア部について説明する。なお、実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。
 第2の実施形態に係る回転電機のコア部は、第1の実施形態に係るコア部10と比較して、鉄心本体11をなす各ブロック鉄心12における積層される薄板11aが鉄心本体11の周方向にずらして積層される点が異なっている。このとき、図8及び図9に示すように、各ブロック鉄心12および薄板11aが構成するティース部11c側面は、薄板11aの積層方向に対して階段状に傾斜した側面として形成されている。インシュレーター15をこのブロック鉄心12におけるティース部11cの階段状に傾斜した側面に密着させて配設する構成とすることもできる。そして、このように各ブロック鉄心12のティース部11cの側面を階段状に傾斜した面とする場合、ブロック鉄心12における積層される薄板11a同士を、かしめで連結することができる。
(Second Embodiment of the present disclosure)
Next, the core portion of the rotary electric machine according to the second embodiment will be described. For convenience of explanation, the description of the member having the same reference number as the member already described in the description of the embodiment will be omitted.
In the core portion of the rotary electric machine according to the second embodiment, as compared with the core portion 10 according to the first embodiment, the thin plate 11a laminated in each block iron core 12 forming the iron core body 11 is the circumference of the iron core body 11. The difference is that they are stacked by shifting them in the direction. At this time, as shown in FIGS. 8 and 9, the side surface of the tooth portion 11c formed by each block iron core 12 and the thin plate 11a is formed as a side surface inclined stepwise with respect to the stacking direction of the thin plate 11a. The insulator 15 may be arranged in close contact with the stepped side surface of the teeth portion 11c of the block iron core 12. When the side surface of the tooth portion 11c of each block core 12 is inclined in a stepped manner in this way, the laminated thin plates 11a in the block core 12 can be connected by caulking.
 このようにかしめによって薄板11a同士を連結した場合、かしめたことに起因して薄板11a同士の間にわずかな位置ずれが生じてしまう。互いをかしめた複数の薄板11aでブロック鉄心12を構成すると、この位置ずれによってティース部11cの側面が階段状になってしまう。しかしながら、本実施形態によれば、この階段状のティース部11cの側面はインシュレーター15によって覆われるため、回転電気のコア部として不都合が生じない。 When the thin plates 11a are connected to each other by caulking in this way, a slight misalignment occurs between the thin plates 11a due to the caulking. When the block iron core 12 is composed of a plurality of thin plates 11a that are crimped to each other, the side surface of the tooth portion 11c becomes stepped due to this positional deviation. However, according to the present embodiment, since the side surface of the stepped teeth portion 11c is covered by the insulator 15, there is no inconvenience as a core portion of rotary electricity.
 インシュレーター15は、各ブロック鉄心が構成するティース部11cの傾斜した側面に設けられている。第一実施形態に係るコア部10と比べると、ブロック鉄心12の側面とインシュレーター15とが接合する面積が大きいので、ブロック鉄心12同士の連結がさらに強化される。これにより、鉄心本体11の強度を高められる。なお、インシュレーター15の厚さは、0.1mmから0.5mmであることが望ましい。この場合、かしめによる位置ずれの累積量が数μmであるのと比較して十分大きいので、薄板11aのずれを埋めることができる。 The insulator 15 is provided on the inclined side surface of the teeth portion 11c formed by each block iron core. Since the area where the side surface of the block core 12 and the insulator 15 are joined is larger than that of the core portion 10 according to the first embodiment, the connection between the block cores 12 is further strengthened. As a result, the strength of the iron core body 11 can be increased. The thickness of the insulator 15 is preferably 0.1 mm to 0.5 mm. In this case, since the cumulative amount of misalignment due to caulking is sufficiently large as compared with the cumulative amount of several μm, the misalignment of the thin plate 11a can be filled.
 また、ブロック鉄心12の境界部分におけるずれによって、ティース部11cの側面に鉄心本体11の周方向への段差が生じている。 Further, due to the deviation at the boundary portion of the block iron core 12, a step in the circumferential direction of the iron core main body 11 is generated on the side surface of the tooth portion 11c.
 鉄心本体11において、一のブロック鉄心におけるティース部の傾斜した側面と、他のブロック鉄心のブロック鉄心側の軸方向端面とがなす角αは鋭角である。ここで、ティース部の傾斜した側面とは、ティース部をなす複数の薄板11aの稜線(角)を結んで得られる仮想的な平面である。簡易的には、ティース部の側面に直線状の定規を当てたとき、この定規の直線と、他のブロック鉄心のブロック鉄心側の軸方向端面とがなす角αが鋭角である。この場合、ティース部11c側面に沿って成型配設されるインシュレーター15は、ブロック鉄心12間の鋭角となった凹部12aに食い込んで設けられるので、インシュレーター15とブロック鉄心12とが接合する面積が大きくなるので、鉄心本体11のねじり強度が向上する。 In the core body 11, the angle α formed by the inclined side surface of the tooth portion in one block core and the axial end surface on the block core side of the other block core is an acute angle. Here, the inclined side surface of the teeth portion is a virtual plane obtained by connecting the ridges (corners) of the plurality of thin plates 11a forming the teeth portion. Simply, when a straight ruler is applied to the side surface of the tooth portion, the angle α formed by the straight line of this ruler and the axial end surface of another block core on the block core side is an acute angle. In this case, the insulator 15 molded and arranged along the side surface of the tooth portion 11c is provided by biting into the recess 12a having an acute angle between the block cores 12, so that the area where the insulator 15 and the block core 12 are joined is large. Therefore, the torsional strength of the iron core body 11 is improved.
 また、インシュレーター15がティース部11c側面の狭い凹部12aにも食い込むように設けられるので、ティース部11c側面とインシュレーター15との間に空気の介在する余地を低減できる。これにより、インシュレーター15からティース部11c側へ熱を効率よく伝えることができる。 Further, since the insulator 15 is provided so as to bite into the narrow recess 12a on the side surface of the teeth portion 11c, it is possible to reduce the room for air to intervene between the side surface of the teeth portion 11c and the insulator 15. As a result, heat can be efficiently transferred from the insulator 15 to the teeth portion 11c side.
 鉄心本体11は、ブロック鉄心12を三つ以上積層して形成されている。ブロック鉄心12一つあたりの薄板11aの積層数が相対的に少なくなるので、一つのブロック鉄心12における薄板11aのずれの総量の差を小さくできる。これにより、インシュレーター15の表面を連続する略平面とするために最低限必要なインシュレーター15の厚さを小さくすることができる。 The iron core body 11 is formed by laminating three or more block iron cores 12. Since the number of laminated thin plates 11a per block core 12 is relatively small, the difference in the total amount of displacement of the thin plates 11a in one block core 12 can be reduced. As a result, the minimum thickness of the insulator 15 required to make the surface of the insulator 15 a continuous substantially flat surface can be reduced.
 なお、ブロック鉄心12を構成する薄板11a同士をかしめで連結する場合、薄板11aに直接かしめを付与する構成に限られるものではなく、ブロック鉄心12にかしめ形状が残らないようにする方法が採用されてもよい。例えば、各薄板11aの外周部又は内周部にかしめブロック(スクラップ部)を設けて、積層方向に隣り合う各薄板11aのかしめブロック同士をかしめ接合することにより各薄板11aを連結した後に、かしめブロックを薄板11aから取り除く、といった手法が用いられてもよい。 When connecting the thin plates 11a constituting the block core 12 by caulking, the configuration is not limited to directly crimping the thin plates 11a, and a method of preventing the caulking shape from remaining on the block core 12 is adopted. You may. For example, a caulking block (scrap portion) is provided on the outer peripheral portion or the inner peripheral portion of each thin plate 11a, and the caulking blocks of the thin plates 11a adjacent to each other in the stacking direction are caulked and joined to connect the thin plates 11a and then caulking. A technique such as removing the block from the thin plate 11a may be used.
(本開示の第3の実施形態)
 第1の実施形態及び第2の実施形態に係るコア部に、薄板表面に付着した油分を除去する処理や、薄板の打ち抜き等の加工に伴う歪(内部応力)を除去する熱処理、防錆を目的として薄板端部等に四酸化三鉄の被膜を生成するブルーイング処理などが行われてもよい。
(Third Embodiment of the present disclosure)
The core portion according to the first embodiment and the second embodiment is subjected to a treatment for removing oil adhering to the surface of the thin plate, a heat treatment for removing strain (internal stress) associated with processing such as punching of the thin plate, and rust prevention. For the purpose, a bluing treatment or the like for forming a film of triiron tetroxide may be performed on the edge of the thin plate or the like.
 鉄心本体11をなす薄板11aが電磁鋼板の場合、歪除去のために各薄板端部近傍の結晶粒径を他部分の結晶粒径と略同一となるまで回復させる熱処理(焼鈍)が行われる。このような鉄心本体11への熱処理の後に、鉄心本体11へのインシュレーター15が設けられてもよい。 When the thin plate 11a forming the iron core body 11 is an electromagnetic steel plate, heat treatment (annealing) is performed to restore the crystal grain size near the end of each thin plate until it becomes substantially the same as the crystal grain size of the other parts in order to remove strain. After such a heat treatment on the iron core body 11, an insulator 15 on the iron core body 11 may be provided.
 また、インシュレーター15がスロット13の側面を構成する各薄板11aの端部(絶縁被膜で覆われていた電磁鋼板の打ち抜き加工により新たに金属面が露出している端部)に設けられるので、各薄板11a端部はインシュレーター15で覆われている状態である。この場合、薄板11aの端部は空気と接触しないので、スロット13の側面は、防錆効果が付与された状態である。これにより、鉄心本体11に対して熱処理後の防錆のためのブルーイング等の防錆処理工程における作業を軽減し、製造コストを抑えられる。 Further, since the insulator 15 is provided at the end of each thin plate 11a constituting the side surface of the slot 13 (the end where the metal surface is newly exposed by the punching process of the electromagnetic steel sheet covered with the insulating film), each of the insulators 15 is provided. The end of the thin plate 11a is covered with the insulator 15. In this case, since the end portion of the thin plate 11a does not come into contact with air, the side surface of the slot 13 is in a state where a rust preventive effect is imparted. As a result, it is possible to reduce the work in the rust prevention treatment step such as brewing for rust prevention after the heat treatment of the iron core main body 11, and the manufacturing cost can be suppressed.
 他方、熱処理後の鉄心本体11をなす薄板11aに対して、ブルーイング等の防錆処理を行い、薄板端部他に四酸化三鉄等の防錆用の被膜を形成した後に、インシュレーター15が設けられてもよい。
 この場合、防錆用の被膜形成により、インシュレーター15が設けられる薄板11aの端部等の表面が酸化等の状態変化がないので、インシュレーター15と薄板11aとの接合を容易に行うことができる。
On the other hand, the thin plate 11a forming the iron core main body 11 after the heat treatment is subjected to rust prevention treatment such as bluing, and a rust preventive film such as triiron tetroxide is formed on the edge of the thin plate and the like, and then the insulator 15 is formed. It may be provided.
In this case, since the surface of the end portion of the thin plate 11a on which the insulator 15 is provided does not change in state such as oxidation due to the formation of the rust-preventive film, the insulator 15 and the thin plate 11a can be easily joined.
 本開示の内容を換言すると、以下のように表すことができる。
 (1)軸方向に延びる鉄心本体11を有する、回転電機のコア部10であって、鉄心本体11は、磁性金属材料製の薄板11aが複数積層されて連結されたブロック鉄心12が複数積層されて形成されており、鉄心本体11は、環状のヨーク部11bと、ヨーク部11bから突出する複数のティース部11cとを備え、ヨーク部11b及び隣り合う一対のティース部11cの間にスロット13が形成されており、スロット13に面するヨーク部11b及び一対のティース部11cの各側面に密着して覆う樹脂製の絶縁部が設けられている。
 スロット13と絶縁部との間に空気が介在すると伝熱性能が低下する可能性がある。しかし、本実施形態に係る回転電機のコア部10においては、スロット13に面するヨーク部11b及び一対のティース部11cの各側面に密着して覆う樹脂製の絶縁部(インシュレーター15)が設けられているので、スロット13に面するヨーク部11b及び一対のティース部11cの各側面と絶縁部との間に介在する空気の量を低減することができる。これにより、コイルからコア部10側への伝熱を促進することが可能な回転電機のコア部10を提供できる。
 また、スロット13に面するヨーク部11b及び一対のティース部11cの各側面に密着して覆う樹脂製の絶縁部が設けられているので、鉄心本体11を構成するブロック鉄心12同士、および、ブロック鉄心12を構成する薄板11a同士の連結が強化される。これにより、ブロック鉄心12のねじれ強度が向上し、強度が増した回転電機のコア部10を提供できる。
In other words, the content of this disclosure can be expressed as follows.
(1) A core portion 10 of a rotary electric machine having an iron core body 11 extending in the axial direction, in which a plurality of block iron cores 12 in which a plurality of thin plates 11a made of a magnetic metal material are laminated and connected are laminated. The iron core body 11 includes an annular yoke portion 11b and a plurality of teeth portions 11c protruding from the yoke portions 11b, and a slot 13 is provided between the yoke portions 11b and a pair of adjacent teeth portions 11c. It is formed and is provided with a resin insulating portion that closely covers each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c.
If air is present between the slot 13 and the insulating portion, the heat transfer performance may be deteriorated. However, in the core portion 10 of the rotary electric machine according to the present embodiment, a resin insulating portion (insulator 15) is provided so as to closely cover each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c. Therefore, the amount of air interposed between each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c and the insulating portion can be reduced. This makes it possible to provide the core portion 10 of the rotary electric machine capable of promoting heat transfer from the coil to the core portion 10 side.
Further, since a resin insulating portion is provided so as to closely cover each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c, the block iron cores 12 constituting the iron core main body 11 and the blocks are provided. The connection between the thin plates 11a constituting the iron core 12 is strengthened. As a result, the torsional strength of the block iron core 12 is improved, and the core portion 10 of the rotary electric machine having increased strength can be provided.
 (2)ティース部11cを覆う絶縁部の外表面は平面をなしていることが好ましい。
 通常、薄板11aを積層して構成されるブロック鉄心12の側面、および、ブロック鉄心12を積層して構成される鉄心本体11の側面は、積層時の誤差によって凹凸が存在する。本実施形態に係る回転電機のティース部11cを覆う絶縁部の外表面は平面をなしているので、コイルを構成する導線51を絶縁部に沿ってスムーズに挿入することができる。
(2) It is preferable that the outer surface of the insulating portion covering the teeth portion 11c is flat.
Usually, the side surface of the block iron core 12 formed by laminating the thin plates 11a and the side surface of the iron core main body 11 formed by laminating the block iron core 12 have irregularities due to an error during laminating. Since the outer surface of the insulating portion covering the teeth portion 11c of the rotary electric machine according to the present embodiment is flat, the conducting wire 51 constituting the coil can be smoothly inserted along the insulating portion.
 (3)鉄心本体11は、複数のブロック鉄心12が転積されることにより形成されていることが好ましい。
 鉄心本体11は、複数のブロック鉄心12が転積されることにより形成されているので、ブロック鉄心12の寸法誤差を相殺してブロック鉄心12を形成することができる。なお、転積を行うと、さらに凹凸が生じやすくなるが、絶縁部が、ブロック鉄心12の側面および鉄心本体11の側面の凹凸を埋めるように設けられて、鉄心本体11の軸方向に沿った平面を成している場合は、導線51を絶縁部に沿ってスムーズに挿入することができる。
(3) The iron core main body 11 is preferably formed by rolling a plurality of block iron cores 12.
Since the core body 11 is formed by rolling a plurality of block cores 12, the block core 12 can be formed by offsetting the dimensional error of the block core 12. It should be noted that when the rolling is performed, unevenness is more likely to occur, but the insulating portion is provided so as to fill the unevenness on the side surface of the block iron core 12 and the side surface of the iron core body 11, and is provided along the axial direction of the iron core body 11. When the surface is flat, the conductor 51 can be smoothly inserted along the insulating portion.
 (4)ブロック鉄心12は複数の薄板11aを互いに鉄心本体11の周方向にずらして積層され、複数の薄板11aは階段状に傾斜したティース部11cの側面をなしていることが好ましい。
 複数の薄板11aは階段状に傾斜したティース部11cの側面をなしているので、絶縁部は階段状に傾斜した側面に設けられる。ところで、薄板11aは鉄心本体11の周方向にずらして積層されているので、階段状に傾斜した側面と絶縁部とが接合する面積が増加する。これにより、鉄心本体11のねじれ強度がさらに向上する。
(4) It is preferable that the block iron core 12 is laminated with a plurality of thin plates 11a displaced from each other in the circumferential direction of the iron core main body 11, and the plurality of thin plates 11a form the side surface of the teeth portion 11c inclined in a stepped manner.
Since the plurality of thin plates 11a form the side surface of the tooth portion 11c inclined in a stepped manner, the insulating portion is provided on the side surface inclined in a stepped manner. By the way, since the thin plates 11a are laminated so as to be offset in the circumferential direction of the iron core main body 11, the area where the stepped side surface and the insulating portion are joined increases. As a result, the torsional strength of the iron core body 11 is further improved.
 (5)鉄心本体11は、一つのブロック鉄心12が他の一つのブロック鉄心12に対して鉄心本体11の周方向にずらして積層されており、一つのブロック鉄心12がなすティース部11cの階段状に傾斜した側面と、他の一つのブロック鉄心12の端面と、がなす角は鋭角であることが好ましい。
 一つのブロック鉄心12がなすティース部11cの階段状に傾斜した側面と、他の一つのブロック鉄心12の端面と、がなす角は鋭角であるので、鋭角部分にも絶縁部が設けられることにより、ブロック鉄心12同士における接合面積が広くなる。これによりブロック鉄心12同士の連結が強化されるので、鉄心本体11のねじれ強度がさらに向上する。
(5) In the iron core main body 11, one block iron core 12 is laminated with the other block iron core 12 shifted in the circumferential direction of the iron core main body 11, and the stairs of the teeth portion 11c formed by the one block iron core 12 are formed. It is preferable that the angle formed by the side surface inclined in the shape and the end surface of the other block iron core 12 is an acute angle.
Since the angle formed by the stepped side surface of the tooth portion 11c formed by one block core 12 and the end surface of the other block core 12 is an acute angle, an insulating portion is also provided at the acute angle portion. , The joint area between the block iron cores 12 becomes wider. As a result, the connection between the block cores 12 is strengthened, so that the torsional strength of the core body 11 is further improved.
 (6)鉄心本体11は、少なくとも3つ以上のブロック鉄心12が積層して形成されていることが好ましい。
 鉄心本体11を構成するブロック鉄心12の個数が増えると、ブロック鉄心12を構成する薄板11aの枚数は少なくなる。これにより、1つのブロック鉄心12において存在する凹凸の総量の差をなるべく均一にできるので、ブロック鉄心12ごとの凹凸のブロック鉄心12ごとに設けられる絶縁部を薄くすることができる。これにより、絶縁部を設けるための製造コストを抑えつつ、導線51の挿入も容易にすることができる。
(6) The iron core main body 11 is preferably formed by laminating at least three or more block iron cores 12.
As the number of block iron cores 12 constituting the iron core main body 11 increases, the number of thin plates 11a constituting the block iron core 12 decreases. As a result, the difference in the total amount of unevenness existing in one block core 12 can be made as uniform as possible, so that the insulating portion provided for each uneven block core 12 for each block core 12 can be thinned. This makes it possible to easily insert the conducting wire 51 while suppressing the manufacturing cost for providing the insulating portion.
 (7)絶縁部の厚みは、0.1mmから0.5mmであることが望ましい。
 ブロック鉄心12に生じる凹凸と比べて絶縁部は十分に厚いので、絶縁部は、スロット13に面するヨーク部11b及び一対のティース部11cの各側面を十分に覆うことができる。
(7) The thickness of the insulating portion is preferably 0.1 mm to 0.5 mm.
Since the insulating portion is sufficiently thicker than the unevenness generated on the block iron core 12, the insulating portion can sufficiently cover each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c.
 (8)一のスロット13を構成する一対のティース部11cをなす各々のブロック鉄心12について、一方のティース部11cに設けられた絶縁部の周方向厚みをt1とし、他方のティース部11cに設けられた絶縁部の周方向厚みをt2としたとき、t1+t2は一定であることが望ましい。
 この場合、絶縁部の厚みの合計が、どのスロット13においても一定となるので、各スロット13におけるコイルから鉄心本体11への伝熱性能を一定にすることができる。
(8) For each block iron core 12 forming a pair of teeth portions 11c constituting one slot 13, the circumferential thickness of the insulating portion provided in one teeth portion 11c is t1, and the other teeth portion 11c is provided. It is desirable that t1 + t2 is constant when the circumferential thickness of the insulated portion is t2.
In this case, since the total thickness of the insulating portions is constant in any slot 13, the heat transfer performance from the coil to the iron core main body 11 in each slot 13 can be made constant.
 (9)(8)の回転電機のコア部10において、絶縁部の周方向厚みt1は、絶縁部の周方向厚みt2と異なっていてもよい。
 絶縁部の周方向厚みt1と絶縁部の周方向厚みt2と異なっていても、t1+t2は一定であれば、コイルから鉄心本体11への伝熱性能を一定にすることができる。
(9) In the core portion 10 of the rotary electric machine according to (8), the circumferential thickness t1 of the insulating portion may be different from the circumferential thickness t2 of the insulating portion.
Even if the circumferential thickness t1 of the insulating portion and the circumferential thickness t2 of the insulating portion are different, if t1 + t2 is constant, the heat transfer performance from the coil to the iron core main body 11 can be made constant.
 (10)(1)~(9)のいずれか一項に記載の回転電機のコア部10を製造する方法は、複数のブロック鉄心12を積層して鉄心本体11を形成することと、薄板11aの結晶粒径が均一になるように、鉄心本体11に対して熱処理を行うことと、熱処理の後に、スロット13に面するヨーク部11b及び一対のティース部11cの各側面を覆うように絶縁部を設けることと、を含んでいてもよい。
 上記の方法によれば、内部応力の除去と絶縁部の形成による伝熱性能の向上とコア部10の強度の向上とを達成することができる。
(10) The method for manufacturing the core portion 10 of the rotary electric machine according to any one of (1) to (9) is to stack a plurality of block iron cores 12 to form an iron core main body 11 and to form a thin plate 11a. The iron core body 11 is heat-treated so that the crystal grain size is uniform, and after the heat treatment, the insulating portion covers each side surface of the yoke portion 11b facing the slot 13 and the pair of teeth portions 11c. May include the provision of.
According to the above method, it is possible to achieve improvement of heat transfer performance and improvement of strength of the core portion 10 by removing internal stress and forming an insulating portion.
 本開示は、2020年9月15日に出願された日本国特許出願(日本国特願2020-154710号)に開示された内容を適宜援用する。 This disclosure appropriately incorporates the contents disclosed in the Japanese patent application (Japanese Patent Application No. 2020-154710) filed on September 15, 2020.
 10       コア部
 11       鉄心本体
 11a      薄板
 11b      ヨーク部
 11c      ティース部
 12       ブロック鉄心
 12a      凹部
 13       スロット
 13a      空間部
 15       インシュレーター
 30       モールド装置
 31       上型
 32       下型
 34       中子
 35       樹脂流路
 36       中子基部
 37       カルプレート
 38       分離プレート
 51       導線
10 Core part 11 Iron core body 11a Thin plate 11b York part 11c Teeth part 12 Block iron core 12a Recessed part 13 Slot 13a Space part 15 Insulator 30 Molding device 31 Upper type 32 Lower type 34 Core 35 Resin flow path 36 Core base 37 Cal plate 38 Separation plate 51 Lead wire

Claims (10)

  1.  磁性金属材料製の薄板が複数積層されて連結したブロック鉄心を、さらに複数積層して形成される鉄心本体を少なくとも有する、回転電機のコア部において、
     前記鉄心本体は、環状のヨーク部と、前記ヨーク部から突出する複数のティース部とを備え、
     前記鉄心本体の前記ヨーク部及び隣り合う前記ティース部の間に生じるスロットに対し、前記スロットに面する前記ヨーク部及び前記ティース部の各側面に接合する樹脂製の絶縁部が設けられ、
     前記絶縁部が、前記ティース部の各側面で、少なくとも前記ブロック鉄心及び前記薄板のいずれか一方にある凹状部分を全て埋めるように配設される、
     回転電機のコア部。
    In the core portion of a rotary electric machine having at least an iron core body formed by further laminating and connecting a plurality of thin plates made of a magnetic metal material and connecting them.
    The iron core body includes an annular yoke portion and a plurality of teeth portions protruding from the yoke portion.
    For the slot generated between the yoke portion of the iron core body and the adjacent teeth portion, a resin insulating portion to be joined to each side surface of the yoke portion facing the slot and the teeth portion is provided.
    The insulating portion is arranged so as to fill all the concave portions on at least one of the block iron core and the thin plate on each side surface of the tooth portion.
    The core of the rotary electric machine.
  2.  前記ティース部を覆う前記絶縁部の外表面は平面をなしている、
     請求項1に記載の回転電機のコア部。
    The outer surface of the insulating portion that covers the teeth portion is flat.
    The core portion of the rotary electric machine according to claim 1.
  3.  前記鉄心本体は、複数の前記ブロック鉄心が転積されている、
     請求項1または2に記載の回転電機のコア部。
    In the iron core body, a plurality of the block iron cores are transposed.
    The core portion of the rotary electric machine according to claim 1 or 2.
  4.  前記ブロック鉄心は複数の前記薄板を互いに前記鉄心本体の周方向にずらして積層され、複数の前記薄板は階段状に傾斜した前記ティース部の側面をなしている、
     請求項1~3のいずれか一項に記載の回転電機のコア部。
    In the block iron core, a plurality of the thin plates are laminated so as to be displaced from each other in the circumferential direction of the core body, and the plurality of the thin plates form a side surface of the teeth portion inclined in a stepped manner.
    The core portion of the rotary electric machine according to any one of claims 1 to 3.
  5.  前記鉄心本体は、一つの前記ブロック鉄心が他の一つの前記ブロック鉄心に対して前記鉄心本体の周方向にずらして積層されており、
     前記一つのブロック鉄心がなす前記ティース部の階段状に傾斜した側面と、前記他の一つのブロック鉄心の端面と、がなす角は鋭角である、
     請求項4に記載の回転電機のコア部。
    In the core body, one block core is laminated so as to be offset in the circumferential direction of the core body with respect to the other block core.
    The angle formed by the stepped side surface of the tooth portion formed by the one block core and the end surface of the other block core is an acute angle.
    The core portion of the rotary electric machine according to claim 4.
  6.  前記鉄心本体は、少なくとも3つ以上の前記ブロック鉄心が積層されている、
     請求項1~5のいずれか一項に記載の回転電機のコア部。
    At least three or more of the block iron cores are laminated on the iron core body.
    The core portion of the rotary electric machine according to any one of claims 1 to 5.
  7.  前記絶縁部の厚みは、0.1mmから0.5mmである、
     請求項1~6のいずれか一項に記載の回転電機のコア部。
    The thickness of the insulating portion is 0.1 mm to 0.5 mm.
    The core portion of the rotary electric machine according to any one of claims 1 to 6.
  8.  一つの前記スロットを構成する一対の前記ティース部をなす各々の前記ブロック鉄心について、
     一方の前記ティース部に設けられた前記絶縁部の周方向厚みをt1とし、
     他方の前記ティース部に設けられた前記絶縁部の周方向厚みをt2としたとき、
     t1+t2は一定である、
     請求項7に記載の回転電機のコア部。
    For each of the block iron cores forming the pair of teeth portions constituting one slot,
    The circumferential thickness of the insulating portion provided on one of the teeth portions is t1.
    When the circumferential thickness of the insulating portion provided on the other teeth portion is t2,
    t1 + t2 is constant,
    The core portion of the rotary electric machine according to claim 7.
  9.  前記絶縁部の周方向厚みt1は、前記絶縁部の周方向厚みt2と異なっている、
     請求項8に記載の回転電機のコア部。
    The circumferential thickness t1 of the insulating portion is different from the circumferential thickness t2 of the insulating portion.
    The core portion of the rotary electric machine according to claim 8.
  10.  請求項1~9のいずれか一項に記載の回転電機のコア部を製造する方法であって、
     複数の前記ブロック鉄心を積層して前記鉄心本体を形成することと、
     前記薄板の結晶粒径が均一になるように、前記鉄心本体に対して熱処理を行うことと、
     熱処理の後に、前記スロットに面する前記ヨーク部及び一対の前記ティース部の各側面を覆うように前記絶縁部を設けることと、
     を含む回転電機のコア部の製造方法。
    The method for manufacturing a core portion of a rotary electric machine according to any one of claims 1 to 9.
    By stacking a plurality of the block iron cores to form the iron core body,
    The iron core body is heat-treated so that the crystal grain size of the thin plate becomes uniform.
    After the heat treatment, the insulating portion is provided so as to cover each side surface of the yoke portion facing the slot and the pair of teeth portions.
    Manufacturing method of the core part of the rotary electric machine including.
PCT/JP2021/033410 2020-09-15 2021-09-10 Core portion of rotating electrical machine WO2022059626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154710 2020-09-15
JP2020154710A JP2022048726A (en) 2020-09-15 2020-09-15 Core portion of rotary electric machine

Publications (1)

Publication Number Publication Date
WO2022059626A1 true WO2022059626A1 (en) 2022-03-24

Family

ID=80776674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033410 WO2022059626A1 (en) 2020-09-15 2021-09-10 Core portion of rotating electrical machine

Country Status (2)

Country Link
JP (1) JP2022048726A (en)
WO (1) WO2022059626A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125276A (en) * 2006-11-14 2008-05-29 Mitsuba Corp Brushless motor
JP2014212646A (en) * 2013-04-19 2014-11-13 株式会社東芝 Rotary electric machine and manufacturing method of the same
JP2016146739A (en) * 2015-02-03 2016-08-12 東芝産業機器システム株式会社 Laminated core and manufacturing method of same
WO2017126053A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Permanent magnet synchronous motor, compressor and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125276A (en) * 2006-11-14 2008-05-29 Mitsuba Corp Brushless motor
JP2014212646A (en) * 2013-04-19 2014-11-13 株式会社東芝 Rotary electric machine and manufacturing method of the same
JP2016146739A (en) * 2015-02-03 2016-08-12 東芝産業機器システム株式会社 Laminated core and manufacturing method of same
WO2017126053A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Permanent magnet synchronous motor, compressor and air conditioner

Also Published As

Publication number Publication date
JP2022048726A (en) 2022-03-28

Similar Documents

Publication Publication Date Title
US7260880B2 (en) Method for manufacturing a stator core for a dynamoelectric machine
US10116180B2 (en) Rotary electric machine stator
US6897594B2 (en) Stator for a vehicular rotary electric machine and a manufacturing method thereof
CN101405928A (en) Stator for rotating electrical machine, part to be used for stator and method for manufacturing stator for rotating electrical machine
JP2005160143A (en) Stator for dynamo-electric machine
JP2008167593A (en) Stator of motor and coil manufacturing method of motor
US9893594B2 (en) Armature of rotating electrical machine and method for manufacturing same
US20130193798A1 (en) Rotary electric machine
JP2006042500A (en) Rotary electric machine
WO2022059626A1 (en) Core portion of rotating electrical machine
JP2004153874A (en) Stator for motor
JP3903849B2 (en) Stator structure of electric motor and manufacturing method thereof
JP6818900B2 (en) Manufacturing method of stator and stator of rotary electric machine
JP5442585B2 (en) Electric motor stator and method of manufacturing the same
JP5035334B2 (en) Stator manufacturing method
WO2021241113A1 (en) Coil, stator comprising same, and motor
WO2021166497A1 (en) Stator
JP2000217291A (en) Stator of low-voltage electric machine
JP4624663B2 (en) Stator manufacturing method
WO2023132183A1 (en) Stator of rotating electric machine, rotating electric machine, method for manufacturing stator of rotating electric machine, and method for manufacturing rotating electric machine
JP7463995B2 (en) Armature and method for manufacturing the same
US11108309B2 (en) Squirrel cage rotor
JPWO2021241113A5 (en)
JP2021193866A (en) Core part for rotary electric machine
CN112003390A (en) Motor stator core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869313

Country of ref document: EP

Kind code of ref document: A1