WO2023132010A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2023132010A1
WO2023132010A1 PCT/JP2022/000097 JP2022000097W WO2023132010A1 WO 2023132010 A1 WO2023132010 A1 WO 2023132010A1 JP 2022000097 W JP2022000097 W JP 2022000097W WO 2023132010 A1 WO2023132010 A1 WO 2023132010A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
detection device
air conditioner
pressure
temperature
Prior art date
Application number
PCT/JP2022/000097
Other languages
French (fr)
Japanese (ja)
Inventor
亮宗 石村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023572278A priority Critical patent/JPWO2023132010A1/ja
Priority to PCT/JP2022/000097 priority patent/WO2023132010A1/en
Publication of WO2023132010A1 publication Critical patent/WO2023132010A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure

Definitions

  • the present disclosure relates to air conditioners applied to multi-air conditioners for buildings and the like.
  • an outdoor unit which is a heat source unit arranged outside the building, and a plurality of indoor units arranged inside the building are connected with refrigerant pipes to form a refrigerant circuit. to circulate the refrigerant.
  • the total length of the refrigerant pipes connecting the outdoor unit and the plurality of indoor units is several hundred meters, and accordingly the amount of refrigerant used is extremely large. Therefore, in order to prevent a large amount of refrigerant from being released into the atmosphere when a refrigerant leak occurs from an air conditioner, a technique has been proposed for estimating the presence or absence of refrigerant leakage from the operating state of the air conditioner. (See Patent Document 1, for example).
  • Patent Document 1 it is necessary to set the operation mode to the cooling operation mode, and refrigerant leakage cannot be determined in the interim period when the air conditioner is not operated or in the winter when the heating operation is performed. I had a problem.
  • the present disclosure has been made to solve the above problems, and provides an air conditioner that can detect the occurrence of refrigerant leakage from the air conditioner regardless of the operating state of the air conditioner. It is an object.
  • An air conditioner includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, a throttle device, and a load side heat exchanger are connected in order by piping, and non-azeotropic refrigerant is used as a refrigerant in the refrigerant circuit.
  • An air conditioner in which mixed refrigerant is sealed comprising: a first pressure detection device for detecting the pressure of the refrigerant on the discharge side of the compressor or the pressure of the refrigerant on the suction side of the compressor; An outside air temperature detection device for detecting temperature, and when the air conditioner is stopped, the presence or absence of refrigerant leakage is detected based on the pressure detected by the first pressure detection device and the outside air temperature detected by the outside temperature detection device. and a control device having a refrigerant leakage detection function for performing determination.
  • the air conditioner when the air conditioner is stopped, the presence or absence of refrigerant leakage is determined based on the pressure detected by the first pressure detection device and the outside temperature detected by the outside temperature detection device. conduct. Therefore, refrigerant leakage can be detected throughout the year regardless of the season, and the occurrence of refrigerant leakage from the air conditioner can be detected regardless of the operating state of the air conditioner.
  • FIG. 1 is a schematic configuration diagram showing an example configuration of an air conditioner according to an embodiment
  • FIG. 1 is a refrigerant circuit diagram showing an example of a circuit configuration of an air conditioner according to an embodiment
  • FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant during cooling operation of the air conditioner according to the embodiment.
  • FIG. 4 is a refrigerant circuit diagram showing the flow of refrigerant during heating operation of the air conditioner according to the embodiment. 4 is a flow chart showing the operation of the refrigerant leakage detection function of the air conditioner according to the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example configuration of an air conditioner 100 according to an embodiment. The configuration of the air conditioner 100 according to Embodiment 1 will be described below with reference to FIG.
  • the air conditioner 100 uses 68.9 [wt%] and 31.1 [wt% ] is circulated in the refrigerant circuit (see FIG. 2 to be described later) to perform air conditioning using the refrigeration cycle. Further, the air conditioner 100 can select a cooling only operation mode in which all indoor units are operated for cooling or a heating only operation mode in which all indoor units are operated for heating, such as a multi air conditioner for buildings.
  • the air conditioner 100 includes one outdoor unit 1 and two indoor units 2a and 2b. They are connected by a refrigerant main pipe 3 and refrigerant branch pipes 4a and 4b.
  • the indoor units 2a and 2b are installed in air-conditioned spaces 60a and 60b, respectively.
  • the number of outdoor units 1 is one and the number of indoor units 2a and 2b is two.
  • the number of indoor units 2a and 2b may be one or three or more.
  • FIG. 2 is a refrigerant circuit diagram showing an example of the air conditioner 100 according to the embodiment.
  • the air conditioner 100 includes a refrigerant circuit through which refrigerant flows.
  • the refrigerant circuit includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, expansion devices 41a and 41b, load side heat exchangers 40a and 40b, and an accumulator 13. It is configured to be connected by pipes including branch pipes 4 a and 4 b and refrigerant pipe 5 .
  • the outdoor unit 1 includes a compressor 10 , a refrigerant flow switching device 11 , a heat source side heat exchanger 12 and an accumulator 13 .
  • a heat source side blower 14 configured by, for example, a fan is provided near the heat source side heat exchanger 12 , and the heat source side blower 14 blows air to the heat source side heat exchanger 12 .
  • Compressor 10 , refrigerant flow switching device 11 , heat source side heat exchanger 12 , and accumulator 13 are connected by refrigerant pipe 5 .
  • the compressor 10 draws in a low-temperature, low-pressure refrigerant and compresses the refrigerant to a high-temperature, high-pressure state.
  • the refrigerant flow switching device 11 is, for example, a four-way valve, and switches between refrigerant flow in the cooling operation mode and refrigerant flow in the heating operation mode.
  • the heat source side heat exchanger 12 functions as a condenser in the cooling operation mode and as an evaporator in the heating operation mode, and performs heat exchange between the air supplied from the heat source side blower 14 and the refrigerant. .
  • the accumulator 13 is provided on the suction side of the compressor 10, and is used to store surplus refrigerant caused by the difference in operating conditions between the cooling operation mode and the heating operation mode, or surplus refrigerant due to transient changes in operation. It is.
  • the outdoor unit 1 also includes a discharge pressure detection device 20 and a suction pressure detection device 21 .
  • the discharge pressure detection device 20 is provided in the refrigerant pipe 5 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and detects the pressure of the high-temperature, high-pressure refrigerant on the discharge side of the compressor 10. be.
  • the suction pressure detection device 21 is provided in the refrigerant pipe 5 that connects the refrigerant flow switching device 11 and the suction side of the compressor 10, and detects the pressure of the low-temperature, low-pressure refrigerant on the suction side of the compressor 10. It is.
  • the discharge pressure detection device 20 and the suction pressure detection device 21 are, for example, pressure sensors.
  • the outdoor unit 1 includes an outside air temperature detection device 22 and a first temperature detection device 23.
  • the outside air temperature detection device 22 is provided in an air intake portion (not shown) of the outdoor unit 1, and detects the air temperature (hereinafter referred to as the outside air temperature) at the location where the outdoor unit 1 is installed. be.
  • the first temperature detection device 23 is provided in the refrigerant pipe 5 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and detects the temperature of the high-temperature and high-pressure refrigerant on the discharge side of the compressor 10 (hereinafter referred to as the discharge temperature).
  • the outside air temperature detection device 22 and the first temperature detection device 23 are, for example, thermistors.
  • the indoor units 2a and 2b respectively include load-side heat exchangers 40a and 40b and expansion devices 41a and 41b.
  • load-side blowers 42a and 42b composed of, for example, fans are provided near the load-side heat exchangers 40a and 40b. to blow air.
  • the indoor units 2a and 2b are connected to the outdoor unit 1 via a refrigerant main pipe 3, so that refrigerant flows in and out.
  • the load-side heat exchangers 40a, 40b exchange heat between the air supplied from the load-side fans 42a, 42b and the refrigerant, and generate heating air or cooling air to be supplied to the indoor space.
  • the expansion devices 41a and 41b function as pressure reducing valves or expansion valves, and reduce the pressure of the refrigerant to expand it. do it.
  • the indoor units 2a and 2b are provided with second temperature detection devices 50a and 50b, third temperature detection devices 51a and 51b, and fourth temperature detection devices 52a and 52b, respectively.
  • the second temperature detection devices 50a and 50b are provided in the refrigerant branch pipes 4a and 4b that connect the expansion devices 41a and 41b and the load side heat exchangers 40a and 40b, and detect the load side heat exchangers 40a and 40b in the cooling operation mode. It detects the temperature of the coolant flowing into 40b.
  • the third temperature detection devices 51a and 51b are provided in the refrigerant branch pipes 4a and 4b on the opposite side of the expansion devices 41a and 41b with respect to the load side heat exchangers 40a and 40b.
  • the fourth temperature detectors 52a, 52b are provided in the air intake portions (not shown) of the load-side heat exchangers 40a, 40b, and detect the indoor air temperature.
  • the second temperature detection devices 50a, 50b, the third temperature detection devices 51a, 51b, and the fourth temperature detection devices 52a, 52b are, for example, thermistors.
  • the indoor units 2a and 2b, the load-side heat exchangers 40a and 40b, the expansion devices 41a and 41b, and the load-side fans 42a and 42b are collectively referred to as the indoor unit 2 and the load-side heat exchanger 40, respectively.
  • an expansion device 41 and a load-side blower 42 an expansion device 41 and a load-side blower 42 .
  • the second temperature detection devices 50a and 50b, the third temperature detection devices 51a and 51b, and the fourth temperature detection devices 52a and 52b are collectively referred to as the second temperature detection device 50, the third temperature detection device 51, and a fourth temperature detection device 52 .
  • one of the discharge pressure detection device 20 and the suction pressure detection device 21 is also called a first pressure detection device.
  • the discharge pressure detection device 20 and the suction pressure detection device 21 are collectively referred to as a pressure detection device.
  • the air conditioner 100 also includes a control device 30 configured by a microcomputer or the like.
  • the control device 30 determines the frequency of the compressor 10, the number of rotations of the heat source side blower 14 of the heat source side heat exchanger 12 (the heat source side blower 14 ON/OFF ), the switching of the refrigerant flow switching device 11, the opening degree of the expansion device 41, and the like, and each operation mode, which will be described later, is executed.
  • the control device 30 may be provided in the indoor unit 2 or may be provided in both the outdoor unit 1 and the indoor unit 2 .
  • FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant in the cooling operation mode of the air conditioner 100 according to the embodiment.
  • the flow direction of the refrigerant is indicated by solid arrows.
  • the cooling operation mode of the air conditioner 100 according to the embodiment will be described with reference to FIG.
  • the refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 . Then, the low-temperature, low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature, high-pressure gas refrigerant. The high-temperature, high-pressure gas refrigerant discharged from the compressor 10 flows through the refrigerant flow switching device 11 into the heat source side heat exchanger 12 . The high-temperature, high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 is condensed while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed into the indoor units 2a and 2b is decompressed by the expansion devices 41a and 41b into low-temperature and low-pressure two-phase refrigerant, and then flows into the load-side heat exchangers 40a and 40b that act as evaporators. By absorbing heat from the air, it cools the indoor air and becomes a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant flowing out of the load-side heat exchangers 40 a and 40 b flows into the outdoor unit 1 through the refrigerant branch pipes 4 a and 4 b and the refrigerant main pipe 3 .
  • the refrigerant that has flowed into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 .
  • the degree of opening of the throttling devices 41a and 41b is superheat ( The degree of superheat) is controlled by the controller 30 so as to be constant. By doing so, the capacity corresponding to the heat load in the room can be exhibited, and efficient operation can be performed.
  • FIG. 4 is a refrigerant circuit diagram showing the flow of refrigerant in the heating operation mode of the air conditioner 100, and the direction of refrigerant flow is indicated by solid arrows. In addition, in FIG. 4, the flow direction of the refrigerant is indicated by solid arrows.
  • the heating operation of the air conditioner 100 according to the embodiment will be described below with reference to FIG. 4, taking as an example a case where a thermal load is generated in the load-side heat exchangers 40a and 40b.
  • the refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the load side heat exchangers 40a and 40b. Then, the low-temperature, low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature, high-pressure gas refrigerant.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11, the main refrigerant pipe 3 and the refrigerant branch pipes 4a, 4b, and flows into the indoor units 2a, 2b.
  • the high-temperature, high-pressure gas refrigerant that has flowed into the indoor units 2a, 2b radiates heat to the indoor air in the load-side heat exchangers 40a, 40b, becomes high-pressure liquid refrigerant, and flows into the expansion devices 41a, 41b.
  • the refrigerant flows out of the indoor units 2a and 2b, passes through the refrigerant branch pipes 4a and 4b and the refrigerant main pipe 3, and flows into the outdoor unit 1.
  • the low-temperature, low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 and absorbs heat from the outdoor air to become a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 .
  • the degree of opening of the expansion devices 41a and 41b is the difference between the saturated liquid temperature of the refrigerant calculated from the pressure detected by the discharge pressure detection device 20 and the temperature detected by the second temperature detection devices 50a and 50b. It is controlled by the control device 30 so that the subcooling (degree of supercooling) obtained as is constant. By doing so, the capacity corresponding to the heat load in the room can be exhibited, and efficient operation can be performed.
  • the refrigerant leakage detection function is one of the functions of the control device 30, and when the air conditioner 100 is in a stopped state, the detection value of the pressure detection device mounted on the outdoor unit 1 and the detection value of the outside air temperature detection device 22 It is a function to detect the presence or absence of refrigerant leakage based on the value.
  • FIG. 5 is a flow chart showing the operation of the refrigerant leakage detection function of the air conditioner 100 according to the embodiment. The operation of the refrigerant leakage detection function of the air conditioner 100 according to the embodiment will be described below with reference to FIG.
  • Step S1 Control device 30 determines whether air conditioner 100 is in a stopped state.
  • the state in which the air conditioner 100 is stopped means a state in which the compressor 10 is stopped.
  • the process proceeds to step S2.
  • the control device 30 determines that the air conditioner 100 is not in the stopped state (NO)
  • the process repeats step S1.
  • Step S2 The control device 30 determines whether or not a predetermined period of time (hereinafter, also referred to as a preset first period of time) has elapsed since the air conditioner 100 was stopped.
  • the control device 30 has a timer function for measuring time.
  • the control device 30 determines that the air conditioner 100 has been stopped and the predetermined time or longer has passed (YES)
  • the process proceeds to step S3.
  • the control device 30 determines that the air conditioner 100 has been stopped and the predetermined time or longer has not elapsed (NO)
  • the process returns to step S1.
  • the control device 30 has a timer function in the embodiment, it is not limited to this, and a real-time clock or the like may be provided outside the control device 30, for example.
  • Step S3 The control device 30 determines whether the outside air temperature detected by the outside air temperature detection device 22 is stable.
  • whether or not the outside air temperature detected by the outside temperature detection device 22 is stable is determined, for example, by whether the outside temperature detected by the outside temperature detection device 22 is within a predetermined range for a predetermined period of time. based on When the control device 30 determines that the outside air temperature detected by the outside air temperature detection device 22 is stable (YES), the process proceeds to step S4. On the other hand, when the control device 30 determines that the outside air temperature detected by the outside air temperature detection device 22 is not stable (NO), the process returns to step S1.
  • Step S4 The control device 30 calculates the saturation temperature of the refrigerant from the detection value of the discharge pressure detection device 20 .
  • the saturated vapor temperature and saturated liquid temperature at the same pressure are different, so the definition of which saturation temperature to use or the average value of those two saturation temperatures should be clarified. need to keep Any of the saturated vapor temperature, the saturated liquid temperature, and the average value of these two saturated temperatures may be used in the stop-time refrigerant leakage function according to the embodiment.
  • the discharge pressure detection device 20 is used to calculate the saturation temperature of the refrigerant. good too.
  • Step S5 The control device 30 determines whether the difference between the refrigerant saturation temperature calculated in step S4 and the outside air temperature detected by the outside air temperature detection device 22 is equal to or greater than a predetermined value.
  • control device 30 determines that the difference between the refrigerant saturation temperature and the outside air temperature is equal to or greater than the predetermined value (YES)
  • the process proceeds to step S6.
  • control device 30 determines that the difference between the saturation temperature of the refrigerant and the outside air temperature is not equal to or greater than the predetermined value (NO)
  • the process returns to step S1.
  • Step S6 The control device 30 determines that refrigerant leakage has occurred from the air conditioner 100, and the process ends. After that, the control device 30 executes, for example, a refrigerant leakage reporting function, which will be described later.
  • the refrigerant sealed in the refrigerant circuit of the air conditioner 100 according to the embodiment is a non-azeotropic refrigerant mixture.
  • a non-azeotropic refrigerant mixture is composed of a plurality of types of refrigerants having different boiling points.
  • R454B refrigerant which is a non-azeotropic refrigerant mixture, is a mixture of R32 refrigerant and R1234yf refrigerant.
  • the boiling point of R32 refrigerant at atmospheric pressure is ⁇ 57.1 [° C.]
  • the boiling point of R1234yf refrigerant at atmospheric pressure is ⁇ 29.4 [° C.].
  • the ratio of the refrigerant that constitutes the non-azeotropic refrigerant mixture that is enclosed in the refrigerant circuit of the air conditioner 100 differs depending on whether there is refrigerant leakage or not.
  • the physical properties of the non-azeotropic refrigerant mixture present in the apparatus 100 will change.
  • the refrigerant leakage detection function utilizes changes in the physical properties of the non-azeotropic mixed refrigerant caused by this refrigerant leakage.
  • the refrigerant in the refrigerant circuit and the outside air at the location where the outdoor unit 1 is installed are in a state of thermal equilibrium.
  • the saturated temperature calculated from the refrigerant pressure in the second stage is equal to the outside air temperature.
  • the principle of the refrigerant leakage detection function is to detect the presence or absence of refrigerant leakage by detecting the pressure difference in the refrigerant circuit when the air conditioner 100 is stopped.
  • the R32 refrigerant and the R1234yf refrigerant are 68.9 [wt%] and 31.1 [wt%] in the refrigerant circuit of the air conditioner 100. %].
  • the refrigerant circuit of the air conditioner 100 contains R32 refrigerant and R1234yf refrigerant (68.9- ⁇ ) [wt %] and (31.1+ ⁇ ) [wt %].
  • the composition of R32 refrigerant with a low boiling point is reduced.
  • the physical property values of the non-azeotropic refrigerant mixture also change. For example, the saturation pressure at a certain temperature also changes.
  • the pressure in the refrigerant circuit is 2.0 [MPaA], which is the saturation pressure of the R454B refrigerant at 35 [°C].
  • the outside air and the outdoor unit 1 at the same temperature are thermally balanced, but the composition of the R454B refrigerant is reduced by the composition change ⁇ .
  • R1234yf refrigerant is increased by the composition change ⁇ , the pressure in the refrigerant circuit is different even if the outside air temperature is the same, 35[°C].
  • the composition of the R32 refrigerant is reduced, so the pressure is lower than 2.0 [MPaA] when no refrigerant leakage occurs.
  • the control device 30 has the relationship between the pressure and the saturation temperature in the filling composition of the non-azeotropic refrigerant in the form of a table or an approximate expression, and from the pressure detected by the discharge pressure detection device 20 or the suction pressure detection device 21, If the calculated saturation temperature does not match the outside air temperature, it can be determined that a refrigerant leak has occurred.
  • steps S1 to S3 shown in FIG. 5 it is determined whether or not the outside air and the outdoor unit 1 are thermally balanced, and in steps S4 to S6, the difference between the saturation temperature caused by the refrigerant leakage and the outside temperature is determined. It is a mechanism to calculate and detect the occurrence of refrigerant leakage.
  • the amount of decrease in saturation pressure when refrigerant leakage occurs depends on the type of non-azeotropic refrigerant used in the air conditioner 100, the size of the refrigerant circuit of the air conditioner 100, and how much refrigerant is outside the system. It is difficult to determine the predetermined value in step S5 shown in FIG.
  • step S5 in FIG. 5 for determining the presence or absence of refrigerant leakage is set to a small value, even a small amount of refrigerant leakage can be detected, but the thermal balance between the outside air and the outdoor unit 1 is insufficient. In some cases, or due to the measurement error of the pressure detection device or the outside air temperature detection device 22, there is a possibility that the refrigerant leak determination may be erroneous.
  • step S5 Conversely, if the predetermined value in step S5 is set to a large value, the risk of erroneous determination of refrigerant leakage is reduced, but there is also a demerit such as the presence of refrigerant leakage cannot be determined unless the amount of refrigerant leakage from the air conditioner 100 increases. . Therefore, it is necessary to change the predetermined value in step S5 depending on the type of refrigerant used, the size of the refrigerant circuit of the air conditioner 100, how much refrigerant has leaked outside the system, and the like. Moreover, since the predetermined value in step S5 is also affected by the installation state of the air conditioner 100, it is preferable to allow adjustment even on site after the installation work is completed.
  • the predetermined value in step S5 will be supplemented by taking the case of R454B refrigerant as an example.
  • R454C refrigerant composed of the same constituent refrigerant as the R454B refrigerant
  • the R454C refrigerant is a refrigerant in which the R32 refrigerant and the R1234yf refrigerant are mixed at a mass ratio of 21.5 [wt%] and 78.5 [wt%]. .
  • the saturated vapor pressure of R454B refrigerant is 0.91 [MPaA]
  • the saturated vapor pressure of R454C refrigerant at the same outside temperature of 7 [°C] is 0.91 [MPaA].
  • 57 [MPaA]. This pressure of 0.57 [MPaA] corresponds to the saturation temperature of -8.1 [°C] for the R454B refrigerant.
  • the detection value of the discharge pressure detection device 20 indicates that the saturation temperature of the refrigerant is 7 [°C].
  • the refrigerant leak if there is a refrigerant leak, the R32 refrigerant is released into the atmosphere before the R1234yf refrigerant, and the refrigerant composition is the same as the R454C refrigerant, the value detected by the discharge pressure detection device 20 indicates that the refrigerant is saturated. The temperature becomes -8.1 [°C]. Therefore, in the case of the present embodiment, even if the predetermined value in step S5 is set to 1[° C.], the refrigerant leakage can be sufficiently detected.
  • the outside air temperature detection device 22 in order to improve the detection accuracy of the refrigerant leakage detection function, it is preferable to use the outside air temperature detection device 22 with higher detection accuracy than other temperature detection devices.
  • the discharge pressure detection device 20 and the suction pressure detection device 21 with high detection accuracy should be used as the pressure detection device, and the detection value thereof should be used to determine refrigerant leakage.
  • the accumulator 13 is an essential component in the air conditioner 100 using the non-azeotropic refrigerant mixture. Refrigerant leakage can be detected by the operation shown in FIG. 5 even if there is no accumulator 13 .
  • the control device 30 also has a daily inspection function that executes a refrigerant leakage detection function every predetermined time (hereinafter also referred to as a preset second time).
  • a daily inspection function executes a refrigerant leakage detection function every predetermined time (hereinafter also referred to as a preset second time).
  • the control device 30 also has a refrigerant leakage notification function that notifies the occurrence of refrigerant leakage when it is determined that there is a refrigerant leakage by executing the refrigerant leakage detection function.
  • Refrigerant leakage is reported by, for example, a buzzer or the like, or if a centralized control device or the like is connected to the air conditioner 100, an alert to the effect that a refrigerant leak has been detected is issued to the centralized control device. For example, the inspection of the air conditioner 100 is prompted. By doing so, it is possible to inform the equipment manager of the occurrence of the refrigerant leakage early, and it is possible to quickly take appropriate measures such as repairing the equipment.
  • the refrigerant to be used must be a non-azeotropic mixed refrigerant, but by using the refrigerant leakage detection function according to the present embodiment, it is possible to detect refrigerant leakage from places where there is no refrigerant leakage detection device. It is possible to improve the safety on the indoor side.
  • the present embodiment can be used. If the above-described safety device is activated when it is determined that there is a refrigerant leakage by the refrigerant leakage detection function, it is possible to further improve the safety of the indoor side.
  • all the indoor units 2a and 2b operate in the same manner, that is, only one of the cooling operation mode and the heating operation mode.
  • different operation may be performed for each of the indoor units 2a and 2b, that is, the cooling operation mode and the heating operation mode may be performed at the same time.
  • the case where the number of outdoor units 1 is one has been described as an example, but the number of outdoor units 1 is not limited to one.
  • the operation of the refrigerant leakage detection function shown in FIG. is not limited, in the case of a large air conditioning system configured with a plurality of outdoor units 1, the refrigerant leakage detection function may be operated for each outdoor unit 1, or one of the plurality of outdoor units 1 may be set as a representative, and the representative outdoor unit 1 may perform the operation of the refrigerant leakage detection function.
  • the outdoor unit 1 is provided with one compressor 10
  • the outdoor unit 1 is provided with a compressor 10.
  • Two or more machines 10 may be provided.
  • the air conditioner 100 includes a refrigerant circuit in which the compressor 10, the heat source side heat exchanger 12, the expansion device 41, and the load side heat exchanger 40 are connected in order by pipes.
  • An air conditioner 100 in which a non-azeotropic mixed refrigerant is sealed as a refrigerant, and detects the pressure of the refrigerant on the discharge side of the compressor 10, or detects the pressure of the refrigerant on the suction side of the compressor 10.
  • refrigerant leakage is detected based on the pressure detected by the first pressure detection device and the outside temperature detected by the outside temperature detection device 22. Presence/absence is determined. Therefore, refrigerant leakage can be detected throughout the year regardless of the season, and the occurrence of refrigerant leakage from the air conditioner can be detected regardless of the operating state of the air conditioner.
  • the air-conditioning apparatus 100 can detect refrigerant leakage wherever the refrigerant leakage occurs.
  • the air conditioner 100 includes an accumulator 13 on the suction side of the compressor 10 .
  • the air conditioner 100 since the accumulator 13 is provided on the suction side of the compressor 10, the refrigerant composition variation (change in physical property value) occurs, and refrigerant leakage is detected even with a small amount of refrigerant leakage. can do.
  • the air conditioner 100 includes a temperature detection device in addition to the outside air temperature detection device 22, and the outside air temperature detection device 22 has higher detection accuracy than the temperature detection device.
  • detection accuracy of the refrigerant leakage detection function can be improved.
  • the air conditioner 100 includes a pressure detection device in addition to the first pressure detection device, and the first pressure detection device has higher detection accuracy than the pressure detection device.
  • detection accuracy of the refrigerant leakage detection function can be improved.
  • control device 30 has a daily inspection function that executes a refrigerant leakage detection function every second preset time.
  • the air conditioner 100 it is possible to determine the refrigerant leakage even in the middle of spring or autumn when the air conditioner 100 is not in operation, or at night, by means of this daily inspection function. Therefore, it is possible to check whether or not refrigerant leakage occurs every day or every few days, so that refrigerant leakage can be detected early. In addition, refrigerant leakage can be detected wherever the refrigerant leakage occurs.
  • control device 30 executes the refrigerant leakage detection function, and notifies the occurrence of refrigerant leakage when it is determined that there is refrigerant leakage.
  • the air conditioner 100 when it is determined that there is a refrigerant leak, the occurrence of the refrigerant leak is reported, so that the equipment manager can be notified early that the refrigerant leak has occurred. Appropriate measures such as repair of equipment can be quickly taken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air-conditioning device comprises a refrigerant circuit in which a compressor, a heat-source-side heat exchanger, a throttling device, and a load-side heat exchanger are connected in the stated order by piping, a non-azeotropic mixed refrigerant being sealed inside the refrigerant circuit as a refrigerant, wherein the air-conditioning device also comprises: a first pressure detection device for detecting the pressure of the refrigerant on the discharge side of the compressor, or detecting the pressure of the refrigerant on the intake side of the compressor; an outside air temperature detection device for detecting the temperature of outside air; and a control device having a refrigerant leak detection function for assessing whether a refrigerant leak has occurred, when the air-conditioning device stops, on the basis of the pressure detected by the first pressure detection device and the outside air temperature detected by the outside air temperature detection device.

Description

空気調和装置air conditioner
 本開示は、ビル用マルチエアコンなどに適用される空気調和装置に関するものである。 The present disclosure relates to air conditioners applied to multi-air conditioners for buildings and the like.
 従来から、ビル用マルチエアコンなどの空気調和装置においては、例えば建物外に配置した熱源機である室外機と建物内に配置した複数台の室内機との間を冷媒配管で接続して冷媒回路を構成し、冷媒を循環させている。そして、室外機と複数台の室内機とを接続する冷媒配管の総延長が数百mになることがあり、それに伴い使用する冷媒量が非常に多くなっている。このため、空気調和装置から冷媒漏れが発生した場合、大量の冷媒が大気中へ放出されてしまうことを防ぐために、空気調和装置の運転状態から冷媒漏れの有無を推定する技術が提案されている(例えば、特許文献1参照)。 Conventionally, in air conditioners such as multi air conditioners for buildings, for example, an outdoor unit, which is a heat source unit arranged outside the building, and a plurality of indoor units arranged inside the building are connected with refrigerant pipes to form a refrigerant circuit. to circulate the refrigerant. In some cases, the total length of the refrigerant pipes connecting the outdoor unit and the plurality of indoor units is several hundred meters, and accordingly the amount of refrigerant used is extremely large. Therefore, in order to prevent a large amount of refrigerant from being released into the atmosphere when a refrigerant leak occurs from an air conditioner, a technique has been proposed for estimating the presence or absence of refrigerant leakage from the operating state of the air conditioner. (See Patent Document 1, for example).
国際公開第2009/157200号WO2009/157200
 しかしながら、特許文献1に開示されている技術では、運転モードを冷房運転モードにする必要があり、空気調和装置を運転しない中間期、あるいは暖房運転を行う冬場に冷媒漏れを判定することができないという課題があった。 However, with the technology disclosed in Patent Document 1, it is necessary to set the operation mode to the cooling operation mode, and refrigerant leakage cannot be determined in the interim period when the air conditioner is not operated or in the winter when the heating operation is performed. I had a problem.
 本開示は、以上のような課題を解決するためになされたもので、空気調和装置の運転状況によらず空気調和装置からの冷媒漏れ発生の検出を行うことができる空気調和装置を提供することを目的としている。 The present disclosure has been made to solve the above problems, and provides an air conditioner that can detect the occurrence of refrigerant leakage from the air conditioner regardless of the operating state of the air conditioner. It is an object.
 本開示に係る空気調和装置は、圧縮機、熱源側熱交換器、絞り装置、および、負荷側熱交換器が順に配管で接続された冷媒回路を備え、前記冷媒回路内に冷媒として非共沸混合冷媒が封入された空気調和装置であって、前記圧縮機の吐出側の冷媒の圧力を検出する、あるいは、前記圧縮機の吸入側の冷媒の圧力を検出する第一圧力検出装置と、外気温度を検出する外気温度検出装置と、前記空気調和装置が停止している時に、前記第一圧力検出装置で検出した圧力と前記外気温度検出装置で検出した外気温度とに基づいて冷媒漏れ有無の判定を行う冷媒漏洩検出機能を有する制御装置と、を備えたものである。 An air conditioner according to the present disclosure includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, a throttle device, and a load side heat exchanger are connected in order by piping, and non-azeotropic refrigerant is used as a refrigerant in the refrigerant circuit. An air conditioner in which mixed refrigerant is sealed, comprising: a first pressure detection device for detecting the pressure of the refrigerant on the discharge side of the compressor or the pressure of the refrigerant on the suction side of the compressor; An outside air temperature detection device for detecting temperature, and when the air conditioner is stopped, the presence or absence of refrigerant leakage is detected based on the pressure detected by the first pressure detection device and the outside air temperature detected by the outside temperature detection device. and a control device having a refrigerant leakage detection function for performing determination.
 本開示に係る空気調和装置によれば、空気調和装置が停止している時に、第一圧力検出装置で検出した圧力と外気温度検出装置で検出した外気温度とに基づいて冷媒漏れ有無の判定を行う。そのため、時期に関わらず年間を通して冷媒漏れを検出することができ、空気調和装置の運転状況によらず空気調和装置からの冷媒漏れ発生の検出を行うことができる。 According to the air conditioner according to the present disclosure, when the air conditioner is stopped, the presence or absence of refrigerant leakage is determined based on the pressure detected by the first pressure detection device and the outside temperature detected by the outside temperature detection device. conduct. Therefore, refrigerant leakage can be detected throughout the year regardless of the season, and the occurrence of refrigerant leakage from the air conditioner can be detected regardless of the operating state of the air conditioner.
実施の形態に係る空気調和装置の構成の一例を示す概略構成図である。1 is a schematic configuration diagram showing an example configuration of an air conditioner according to an embodiment; FIG. 実施の形態に係る空気調和装置の回路構成の一例を示す冷媒回路図である。1 is a refrigerant circuit diagram showing an example of a circuit configuration of an air conditioner according to an embodiment; FIG. 実施の形態に係る空気調和装置の冷房運転時における冷媒の流れを示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant during cooling operation of the air conditioner according to the embodiment. 実施の形態に係る空気調和装置の暖房運転時における冷媒の流れを示す冷媒回路図である。FIG. 4 is a refrigerant circuit diagram showing the flow of refrigerant during heating operation of the air conditioner according to the embodiment. 実施の形態に係る空気調和装置の冷媒漏洩検出機能の動作を示すフローチャートである。4 is a flow chart showing the operation of the refrigerant leakage detection function of the air conditioner according to the embodiment.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. Also, in the following drawings, the size relationship of each component may differ from the actual size.
 実施の形態1.
 図1は、実施の形態に係る空気調和装置100の構成の一例を示す概略構成図である。
 以下、図1に基づいて、実施の形態1に係る空気調和装置100の構成について説明する。
Embodiment 1.
FIG. 1 is a schematic configuration diagram showing an example configuration of an air conditioner 100 according to an embodiment.
The configuration of the air conditioner 100 according to Embodiment 1 will be described below with reference to FIG.
 実施の形態に係る空気調和装置100は、沸点の異なる複数の冷媒で構成される非共沸混合冷媒、例えばR32冷媒とR1234yf冷媒とを、68.9[wt%]と31.1[wt%]との質量割合で混合したR454B冷媒を冷媒回路(後述する図2参照)内に循環させ、冷凍サイクルを利用した空気調和を行うものである。また、空気調和装置100は、例えばビル用マルチエアコンなどのように、運転する全室内機が冷房を行う全冷房運転モード又は全室内機が暖房を行う全暖房運転モードを選択できるものである。図1に示すように、空気調和装置100は、1台の室外機1と2台の室内機2a、2bとを備え、室外機1と室内機2a、2bとが天井裏空間61に配置された冷媒主管3および冷媒枝管4a、4bで接続されている。また、室内機2a、2bは、それぞれ空調空間60a、60bに設置されている。なお、実施の形態では、図1に示すように、室外機1が1台で室内機2a、2bが2台であるが、これに限定されず、室外機1が2台以上であってもよいし、室内機2a、2bが1台または3台以上であってもよい。 The air conditioner 100 according to the embodiment uses 68.9 [wt%] and 31.1 [wt% ] is circulated in the refrigerant circuit (see FIG. 2 to be described later) to perform air conditioning using the refrigeration cycle. Further, the air conditioner 100 can select a cooling only operation mode in which all indoor units are operated for cooling or a heating only operation mode in which all indoor units are operated for heating, such as a multi air conditioner for buildings. As shown in FIG. 1, the air conditioner 100 includes one outdoor unit 1 and two indoor units 2a and 2b. They are connected by a refrigerant main pipe 3 and refrigerant branch pipes 4a and 4b. The indoor units 2a and 2b are installed in air-conditioned spaces 60a and 60b, respectively. In the embodiment, as shown in FIG. 1, the number of outdoor units 1 is one and the number of indoor units 2a and 2b is two. Alternatively, the number of indoor units 2a and 2b may be one or three or more.
 図2は、実施の形態に係る空気調和装置100の一例を示す冷媒回路図である。
 空気調和装置100は、図2に示すように、冷媒が流れる冷媒回路を備えている。冷媒回路は、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、絞り装置41a、41b、負荷側熱交換器40a、40b、および、アキュムレータ13が、順に、冷媒主管3、冷媒枝管4a、4b、および、冷媒配管5を含む配管で接続されて構成されている。
FIG. 2 is a refrigerant circuit diagram showing an example of the air conditioner 100 according to the embodiment.
As shown in FIG. 2, the air conditioner 100 includes a refrigerant circuit through which refrigerant flows. The refrigerant circuit includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, expansion devices 41a and 41b, load side heat exchangers 40a and 40b, and an accumulator 13. It is configured to be connected by pipes including branch pipes 4 a and 4 b and refrigerant pipe 5 .
 [室外機1]
 室外機1は、圧縮機10と、冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ13とを備えている。また、熱源側熱交換器12の付近には、例えばファンなどで構成される熱源側送風機14が設けられ、熱源側送風機14は熱源側熱交換器12に空気を送風する。圧縮機10と、冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ13とは、冷媒配管5で接続されている。
[Outdoor unit 1]
The outdoor unit 1 includes a compressor 10 , a refrigerant flow switching device 11 , a heat source side heat exchanger 12 and an accumulator 13 . In addition, a heat source side blower 14 configured by, for example, a fan is provided near the heat source side heat exchanger 12 , and the heat source side blower 14 blows air to the heat source side heat exchanger 12 . Compressor 10 , refrigerant flow switching device 11 , heat source side heat exchanger 12 , and accumulator 13 are connected by refrigerant pipe 5 .
 圧縮機10は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、例えば容量制御可能なインバータ圧縮機等で構成するとよい。冷媒流路切替装置11は、例えば四方弁であり、冷房運転モード時における冷媒の流れと暖房運転モード時における冷媒の流れとを切り替えるものである。 The compressor 10 draws in a low-temperature, low-pressure refrigerant and compresses the refrigerant to a high-temperature, high-pressure state. The refrigerant flow switching device 11 is, for example, a four-way valve, and switches between refrigerant flow in the cooling operation mode and refrigerant flow in the heating operation mode.
 熱源側熱交換器12は、冷房運転モード時には凝縮器として機能し、暖房運転モード時には蒸発器として機能し、熱源側送風機14から供給される空気と冷媒との間で熱交換を行なうものである。 The heat source side heat exchanger 12 functions as a condenser in the cooling operation mode and as an evaporator in the heating operation mode, and performs heat exchange between the air supplied from the heat source side blower 14 and the refrigerant. .
 アキュムレータ13は、圧縮機10の吸入側に設けられており、冷房運転モードと暖房運転モードとの運転状態の違いによって生じる余剰冷媒、あるいは過渡的な運転の変化に対する余剰冷媒などを貯留するためのものである。 The accumulator 13 is provided on the suction side of the compressor 10, and is used to store surplus refrigerant caused by the difference in operating conditions between the cooling operation mode and the heating operation mode, or surplus refrigerant due to transient changes in operation. It is.
 また、室外機1は、吐出圧力検出装置20と吸入圧力検出装置21とを備えている。吐出圧力検出装置20は、圧縮機10の吐出側と冷媒流路切替装置11とを繋ぐ冷媒配管5に設けられており、圧縮機10の吐出側の高温高圧の冷媒の圧力を検出するものである。また、吸入圧力検出装置21は、冷媒流路切替装置11と圧縮機10の吸入側とを繋ぐ冷媒配管5に設けられており、圧縮機10の吸入側の低温低圧の冷媒の圧力を検出するものである。吐出圧力検出装置20および吸入圧力検出装置21は、例えば圧力センサである。 The outdoor unit 1 also includes a discharge pressure detection device 20 and a suction pressure detection device 21 . The discharge pressure detection device 20 is provided in the refrigerant pipe 5 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and detects the pressure of the high-temperature, high-pressure refrigerant on the discharge side of the compressor 10. be. The suction pressure detection device 21 is provided in the refrigerant pipe 5 that connects the refrigerant flow switching device 11 and the suction side of the compressor 10, and detects the pressure of the low-temperature, low-pressure refrigerant on the suction side of the compressor 10. It is. The discharge pressure detection device 20 and the suction pressure detection device 21 are, for example, pressure sensors.
 また、室外機1は、外気温度検出装置22と第一温度検出装置23とを備えている。外気温度検出装置22は、室外機1の空気吸込み部(図示せず)に設けられており、室外機1が設置されている場所の空気温度(以下、外気温度と称する)を検出するものである。第一温度検出装置23は、圧縮機10の吐出側と冷媒流路切替装置11とを繋ぐ冷媒配管5に設けられており、圧縮機10の吐出側の高温高圧の冷媒の温度(以下、吐出温度と称する)を検出するものである。外気温度検出装置22および第一温度検出装置23は、例えばサーミスタである。 In addition, the outdoor unit 1 includes an outside air temperature detection device 22 and a first temperature detection device 23. The outside air temperature detection device 22 is provided in an air intake portion (not shown) of the outdoor unit 1, and detects the air temperature (hereinafter referred to as the outside air temperature) at the location where the outdoor unit 1 is installed. be. The first temperature detection device 23 is provided in the refrigerant pipe 5 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and detects the temperature of the high-temperature and high-pressure refrigerant on the discharge side of the compressor 10 (hereinafter referred to as the discharge temperature). The outside air temperature detection device 22 and the first temperature detection device 23 are, for example, thermistors.
 [室内機2a、2b]
 室内機2a、2bは、それぞれ、負荷側熱交換器40a、40bと、絞り装置41a、41bとを備えている。また、負荷側熱交換器40a、40bの付近には、例えばファンなどで構成される負荷側送風機42a、42bが設けられ、負荷側送風機42a、42bは負荷側熱交換器40a、40bに空気を送風する。室内機2a、2bは、冷媒主管3を介して室外機1と接続され、冷媒が流入出するようになっている。負荷側熱交換器40a、40bは、負荷側送風機42a、42bから供給される空気と冷媒との間で熱交換を行い、室内空間に供給するための暖房用空気または冷房用空気を生成するものである。また、絞り装置41a、41bは、減圧弁あるいは膨張弁としての機能を有し、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、例えば電子式膨張弁などで構成するとよい。
[ Indoor units 2a, 2b]
The indoor units 2a and 2b respectively include load-side heat exchangers 40a and 40b and expansion devices 41a and 41b. In addition, load-side blowers 42a and 42b composed of, for example, fans are provided near the load-side heat exchangers 40a and 40b. to blow air. The indoor units 2a and 2b are connected to the outdoor unit 1 via a refrigerant main pipe 3, so that refrigerant flows in and out. The load-side heat exchangers 40a, 40b exchange heat between the air supplied from the load-side fans 42a, 42b and the refrigerant, and generate heating air or cooling air to be supplied to the indoor space. is. The expansion devices 41a and 41b function as pressure reducing valves or expansion valves, and reduce the pressure of the refrigerant to expand it. do it.
 室内機2a、2bは、それぞれ、第二温度検出装置50a、50bと、第三温度検出装置51a、51bと、第四温度検出装置52a、52bとを備えている。第二温度検出装置50a、50bは、絞り装置41a、41bと負荷側熱交換器40a、40bとを繋ぐ冷媒枝管4a、4bに設けられており、冷房運転モード時に負荷側熱交換器40a、40bに流入する冷媒の温度を検出するものである。第三温度検出装置51a、51bは、負荷側熱交換器40a、40bに対して絞り装置41a、41bとは反対側の冷媒枝管4a、4bに設けられており、冷房運転モード時に負荷側熱交換器40a、40bから流出する冷媒の温度を検出するものである。第四温度検出装置52a、52bは、負荷側熱交換器40a、40bの空気吸込み部(図示せず)に設けられており、室内の空気温度を検出するものである。第二温度検出装置50a、50b、第三温度検出装置51a、51b、および、第四温度検出装置52a、52bは、例えばサーミスタである。 The indoor units 2a and 2b are provided with second temperature detection devices 50a and 50b, third temperature detection devices 51a and 51b, and fourth temperature detection devices 52a and 52b, respectively. The second temperature detection devices 50a and 50b are provided in the refrigerant branch pipes 4a and 4b that connect the expansion devices 41a and 41b and the load side heat exchangers 40a and 40b, and detect the load side heat exchangers 40a and 40b in the cooling operation mode. It detects the temperature of the coolant flowing into 40b. The third temperature detection devices 51a and 51b are provided in the refrigerant branch pipes 4a and 4b on the opposite side of the expansion devices 41a and 41b with respect to the load side heat exchangers 40a and 40b. It detects the temperature of the refrigerant flowing out of the exchangers 40a and 40b. The fourth temperature detectors 52a, 52b are provided in the air intake portions (not shown) of the load-side heat exchangers 40a, 40b, and detect the indoor air temperature. The second temperature detection devices 50a, 50b, the third temperature detection devices 51a, 51b, and the fourth temperature detection devices 52a, 52b are, for example, thermistors.
 なお、以下において、室内機2a、2b、負荷側熱交換器40a、40b、絞り装置41a、41b、および、負荷側送風機42a、42bの総称を、それぞれ、室内機2、負荷側熱交換器40、絞り装置41、および、負荷側送風機42とする。また、第二温度検出装置50a、50b、第三温度検出装置51a、51b、および、第四温度検出装置52a、52bの総称を、それぞれ、第二温度検出装置50、第三温度検出装置51、および、第四温度検出装置52とする。また、吐出圧力検出装置20および吸入圧力検出装置21のうちいずれか一方を、第一圧力検出装置とも称する。また、吐出圧力検出装置20および吸入圧力検出装置21の総称を、圧力検出装置とする。 In the following, the indoor units 2a and 2b, the load-side heat exchangers 40a and 40b, the expansion devices 41a and 41b, and the load-side fans 42a and 42b are collectively referred to as the indoor unit 2 and the load-side heat exchanger 40, respectively. , an expansion device 41 and a load-side blower 42 . Further, the second temperature detection devices 50a and 50b, the third temperature detection devices 51a and 51b, and the fourth temperature detection devices 52a and 52b are collectively referred to as the second temperature detection device 50, the third temperature detection device 51, and a fourth temperature detection device 52 . Also, one of the discharge pressure detection device 20 and the suction pressure detection device 21 is also called a first pressure detection device. The discharge pressure detection device 20 and the suction pressure detection device 21 are collectively referred to as a pressure detection device.
 また、空気調和装置100は、マイコンなどで構成される制御装置30を備えている。制御装置30は、各種検出装置での検出値およびリモコンからの指示に基づいて、圧縮機10の周波数、熱源側熱交換器12の熱源側送風機14の回転数(熱源側送風機14のON/OFFを含む)、冷媒流路切替装置11の切り替え、絞り装置41の開度などを制御し、後述する各運転モードを実行するようになっている。なお、実施の形態では、図2に示すように、制御装置30が室外機1に設けられている例を示しているが、これに限定されない。制御装置30が室内機2に設けられてもよいし、室外機1および室内機2の両方に設けられてもよい。 The air conditioner 100 also includes a control device 30 configured by a microcomputer or the like. The control device 30 determines the frequency of the compressor 10, the number of rotations of the heat source side blower 14 of the heat source side heat exchanger 12 (the heat source side blower 14 ON/OFF ), the switching of the refrigerant flow switching device 11, the opening degree of the expansion device 41, and the like, and each operation mode, which will be described later, is executed. In addition, in the embodiment, as shown in FIG. 2, an example in which the control device 30 is provided in the outdoor unit 1 is shown, but the present invention is not limited to this. The control device 30 may be provided in the indoor unit 2 or may be provided in both the outdoor unit 1 and the indoor unit 2 .
 [冷房運転モード]
 図3は、実施の形態に係る空気調和装置100の冷房運転モード時における冷媒の流れを示す冷媒回路図である。なお、図3では、冷媒の流れ方向を実線矢印で示している。
 以下、図3に基づいて、負荷側熱交換器40a、40bで冷熱負荷が発生している場合を例に、実施の形態に係る空気調和装置100の冷房運転モードについて説明する。
[Cooling operation mode]
FIG. 3 is a refrigerant circuit diagram showing the flow of refrigerant in the cooling operation mode of the air conditioner 100 according to the embodiment. In addition, in FIG. 3, the flow direction of the refrigerant is indicated by solid arrows.
Hereinafter, the cooling operation mode of the air conditioner 100 according to the embodiment will be described with reference to FIG.
 冷房運転モードの場合、圧縮機10の吐出された冷媒を熱源側熱交換器12へ流入させるように、冷媒流路切替装置11が切り替えられる。そして、低温低圧の冷媒が、圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12へ流入する。熱源側熱交換器12へ流入した高温高圧ガス冷媒は、室外空気に放熱しながら凝縮し、高圧の液冷媒となる。そして、熱源側熱交換器12から流出した高圧の液冷媒は室外機1から流出し、冷媒主管3および冷媒枝管4a、4bを通り、室内機2a、2bへ流入する。 In the cooling operation mode, the refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 . Then, the low-temperature, low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature, high-pressure gas refrigerant. The high-temperature, high-pressure gas refrigerant discharged from the compressor 10 flows through the refrigerant flow switching device 11 into the heat source side heat exchanger 12 . The high-temperature, high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 is condensed while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1, passes through the refrigerant main pipe 3 and the refrigerant branch pipes 4a, 4b, and flows into the indoor units 2a, 2b.
 室内機2a、2bへ流入した高圧の液冷媒は、絞り装置41a、41bによって低温低圧の二相冷媒に減圧された後、蒸発器として作用する負荷側熱交換器40a、40bへ流入し、室内空気から吸熱することで室内空気を冷却し、低温低圧のガス冷媒となる。負荷側熱交換器40a、40bから流出した低温低圧のガス冷媒は、冷媒枝管4a、4bおよび冷媒主管3を通り、室外機1へ流入する。室外機1へ流入した冷媒は、冷媒流路切替装置11とアキュムレータ13とを通り、圧縮機10へ吸入される。 The high-pressure liquid refrigerant that has flowed into the indoor units 2a and 2b is decompressed by the expansion devices 41a and 41b into low-temperature and low-pressure two-phase refrigerant, and then flows into the load-side heat exchangers 40a and 40b that act as evaporators. By absorbing heat from the air, it cools the indoor air and becomes a low-temperature, low-pressure gas refrigerant. The low-temperature, low-pressure gas refrigerant flowing out of the load-side heat exchangers 40 a and 40 b flows into the outdoor unit 1 through the refrigerant branch pipes 4 a and 4 b and the refrigerant main pipe 3 . The refrigerant that has flowed into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 .
 ここで、絞り装置41a、41bの開度は、第二温度検出装置50a、50bで検出された温度と、第三温度検出装置51a、51bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように、制御装置30によって制御される。そうすることで、室内の熱負荷に応じた能力を発揮することができ、効率のよい運転ができる。 Here, the degree of opening of the throttling devices 41a and 41b is superheat ( The degree of superheat) is controlled by the controller 30 so as to be constant. By doing so, the capacity corresponding to the heat load in the room can be exhibited, and efficient operation can be performed.
 [暖房運転モード]
 図4は、空気調和装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図であり、冷媒の流れ方向を実線矢印で示している。なお、図4では、冷媒の流れ方向を実線矢印で示している。
 以下、図4に基づいて、負荷側熱交換器40a、40bで温熱負荷が発生している場合を例に、実施の形態に係る空気調和装置100の暖房運転について説明する。
[Heating operation mode]
FIG. 4 is a refrigerant circuit diagram showing the flow of refrigerant in the heating operation mode of the air conditioner 100, and the direction of refrigerant flow is indicated by solid arrows. In addition, in FIG. 4, the flow direction of the refrigerant is indicated by solid arrows.
The heating operation of the air conditioner 100 according to the embodiment will be described below with reference to FIG. 4, taking as an example a case where a thermal load is generated in the load-side heat exchangers 40a and 40b.
 暖房運転モードの場合、圧縮機10の吐出された冷媒を負荷側熱交換器40a、40bへ流入させるように、冷媒流路切替装置11が切り替えられる。そして、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して冷媒主管3および冷媒枝管4a、4bを通り、室内機2a、2bへ流入する。室内機2a、2bへ流入した高温高圧ガス冷媒は、負荷側熱交換器40a、40bで室内空気に放熱し、高圧の液冷媒となり、絞り装置41a、41bへ流入する。そして、絞り装置41a、41bによって低温低圧の二相冷媒に減圧された後、室内機2a、2bを流出し、冷媒枝管4a、4bおよび冷媒主管3を通り、室外機1へ流入する。 In the heating operation mode, the refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the load side heat exchangers 40a and 40b. Then, the low-temperature, low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature, high-pressure gas refrigerant. The high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant flow switching device 11, the main refrigerant pipe 3 and the refrigerant branch pipes 4a, 4b, and flows into the indoor units 2a, 2b. The high-temperature, high-pressure gas refrigerant that has flowed into the indoor units 2a, 2b radiates heat to the indoor air in the load-side heat exchangers 40a, 40b, becomes high-pressure liquid refrigerant, and flows into the expansion devices 41a, 41b. After being decompressed into a low-temperature, low-pressure two-phase refrigerant by the expansion devices 41a and 41b, the refrigerant flows out of the indoor units 2a and 2b, passes through the refrigerant branch pipes 4a and 4b and the refrigerant main pipe 3, and flows into the outdoor unit 1.
 室外機1へ流入した低温低圧の二相冷媒は、熱源側熱交換器12へ流入し、室外空気から吸熱することで低温低圧のガス冷媒となる。熱源側熱交換器12から流出した低温低圧のガス冷媒は、冷媒流路切替装置11とアキュムレータ13とを通り、圧縮機10へ吸入される。 The low-temperature, low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 and absorbs heat from the outdoor air to become a low-temperature, low-pressure gas refrigerant. The low-temperature, low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 .
 ここで、絞り装置41a、41bの開度は、吐出圧力検出装置20で検出された圧力から算出された冷媒の飽和液温度と、第二温度検出装置50a、50bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように、制御装置30によって制御される。そうすることで、室内の熱負荷に応じた能力を発揮することができ、効率のよい運転ができる。 Here, the degree of opening of the expansion devices 41a and 41b is the difference between the saturated liquid temperature of the refrigerant calculated from the pressure detected by the discharge pressure detection device 20 and the temperature detected by the second temperature detection devices 50a and 50b. It is controlled by the control device 30 so that the subcooling (degree of supercooling) obtained as is constant. By doing so, the capacity corresponding to the heat load in the room can be exhibited, and efficient operation can be performed.
 [冷媒漏洩検出機能]
 次に、冷媒漏洩検出機能について説明する。冷媒漏洩検出機能は、制御装置30の機能の一つであり、空気調和装置100が停止状態のときに、室外機1に搭載された圧力検出装置の検出値と、外気温度検出装置22の検出値とに基づいて、冷媒漏洩の有無を検出する機能である。
[Refrigerant leak detection function]
Next, the refrigerant leakage detection function will be described. The refrigerant leakage detection function is one of the functions of the control device 30, and when the air conditioner 100 is in a stopped state, the detection value of the pressure detection device mounted on the outdoor unit 1 and the detection value of the outside air temperature detection device 22 It is a function to detect the presence or absence of refrigerant leakage based on the value.
 図5は、実施の形態に係る空気調和装置100の冷媒漏洩検出機能の動作を示すフローチャートである。
 以下、図5に基づいて、実施の形態に係る空気調和装置100の冷媒漏洩検出機能の動作について説明する。
FIG. 5 is a flow chart showing the operation of the refrigerant leakage detection function of the air conditioner 100 according to the embodiment.
The operation of the refrigerant leakage detection function of the air conditioner 100 according to the embodiment will be described below with reference to FIG.
(ステップS1)
 制御装置30は、空気調和装置100が停止状態であるかどうかを判定する。ここで、空気調和装置100が停止状態とは、圧縮機10が停止している状態のことである。制御装置30が、空気調和装置100が停止状態であると判定した場合(YES)、処理はステップS2に進む。一方、制御装置30が、空気調和装置100が停止状態ではないと判定した場合(NO)、処理はステップS1を繰り返す。
(Step S1)
Control device 30 determines whether air conditioner 100 is in a stopped state. Here, the state in which the air conditioner 100 is stopped means a state in which the compressor 10 is stopped. When control device 30 determines that air conditioner 100 is in a stopped state (YES), the process proceeds to step S2. On the other hand, when the control device 30 determines that the air conditioner 100 is not in the stopped state (NO), the process repeats step S1.
(ステップS2)
 制御装置30は、空気調和装置100が停止状態になって所定時間(以下、あらかじめ設定された第一時間とも称する)以上が経過したかどうかを判定する。ここで、制御装置30は、時間を計測するタイマー機能を有している。制御装置30が、空気調和装置100が停止状態になって所定時間以上が経過したと判定した場合(YES)、処理はステップS3に進む。一方、制御装置30が、空気調和装置100が停止状態になって所定時間以上が経過していないと判定した場合(NO)、処理はステップS1に戻る。なお、実施の形態では、制御装置30がタイマー機能を有しているものとしたが、それに限定されず、例えば制御装置30の外部にリアルタイムクロックなどが設けられていてもよい。
(Step S2)
The control device 30 determines whether or not a predetermined period of time (hereinafter, also referred to as a preset first period of time) has elapsed since the air conditioner 100 was stopped. Here, the control device 30 has a timer function for measuring time. When the control device 30 determines that the air conditioner 100 has been stopped and the predetermined time or longer has passed (YES), the process proceeds to step S3. On the other hand, when the control device 30 determines that the air conditioner 100 has been stopped and the predetermined time or longer has not elapsed (NO), the process returns to step S1. Although the control device 30 has a timer function in the embodiment, it is not limited to this, and a real-time clock or the like may be provided outside the control device 30, for example.
(ステップS3)
 制御装置30は、外気温度検出装置22で検出した外気温度が安定しているかどうかを判定する。ここで、外気温度検出装置22で検出した外気温度が安定しているかどうかの判定は、例えば、所定時間の間、外気温度検出装置22で検出した外気温度が所定範囲内に収まっているかどうかに基づいて行う。制御装置30が、外気温度検出装置22で検出した外気温度が安定していると判定した場合(YES)、処理はステップS4に進む。一方、制御装置30が、外気温度検出装置22で検出した外気温度が安定していないと判定した場合(NO)、処理はステップS1に戻る。
(Step S3)
The control device 30 determines whether the outside air temperature detected by the outside air temperature detection device 22 is stable. Here, whether or not the outside air temperature detected by the outside temperature detection device 22 is stable is determined, for example, by whether the outside temperature detected by the outside temperature detection device 22 is within a predetermined range for a predetermined period of time. based on When the control device 30 determines that the outside air temperature detected by the outside air temperature detection device 22 is stable (YES), the process proceeds to step S4. On the other hand, when the control device 30 determines that the outside air temperature detected by the outside air temperature detection device 22 is not stable (NO), the process returns to step S1.
(ステップS4)
 制御装置30は、吐出圧力検出装置20の検出値から冷媒の飽和温度を計算する。なお、非共沸混合冷媒では、同一圧力における飽和蒸気温度と飽和液温度とが異なるので、どちらの飽和温度を使用するか、あるいはそれら二つの飽和温度の平均値を使用するのか定義を明確にしておく必要がある。実施の形態に係る停止時冷媒漏洩機能においては、飽和蒸気温度、飽和液温度、および、それら二つの飽和温度の平均値のうち、どれを使用してもよい。また、上記では、吐出圧力検出装置20を使用して冷媒の飽和温度を計算しているが、吐出圧力検出装置20の代わりに吸入圧力検出装置21を使用して冷媒の飽和温度を計算してもよい。
(Step S4)
The control device 30 calculates the saturation temperature of the refrigerant from the detection value of the discharge pressure detection device 20 . In non-azeotropic refrigerant mixtures, the saturated vapor temperature and saturated liquid temperature at the same pressure are different, so the definition of which saturation temperature to use or the average value of those two saturation temperatures should be clarified. need to keep Any of the saturated vapor temperature, the saturated liquid temperature, and the average value of these two saturated temperatures may be used in the stop-time refrigerant leakage function according to the embodiment. In the above description, the discharge pressure detection device 20 is used to calculate the saturation temperature of the refrigerant. good too.
(ステップS5)
 制御装置30は、ステップS4で計算した冷媒の飽和温度と、外気温度検出装置22で検出した外気温度との差が、所定値以上であるかどうかを判定する。制御装置30が、冷媒の飽和温度と外気温度との差が所定値以上であると判定した場合(YES)、処理はステップS6に進む。一方、制御装置30が、冷媒の飽和温度と外気温度との差が所定値以上ではないと判定した場合(NO)、処理はステップS1に戻る。
(Step S5)
The control device 30 determines whether the difference between the refrigerant saturation temperature calculated in step S4 and the outside air temperature detected by the outside air temperature detection device 22 is equal to or greater than a predetermined value. When control device 30 determines that the difference between the refrigerant saturation temperature and the outside air temperature is equal to or greater than the predetermined value (YES), the process proceeds to step S6. On the other hand, when control device 30 determines that the difference between the saturation temperature of the refrigerant and the outside air temperature is not equal to or greater than the predetermined value (NO), the process returns to step S1.
(ステップS6)
 制御装置30は、空気調和装置100から冷媒漏れが発生していると判定し、処理は終了する。その後、制御装置30は、例えば、後述する冷媒漏れ報知機能を実行する。
(Step S6)
The control device 30 determines that refrigerant leakage has occurred from the air conditioner 100, and the process ends. After that, the control device 30 executes, for example, a refrigerant leakage reporting function, which will be described later.
 [冷媒漏洩検出機能の原理]
 次に、冷媒漏洩検出機能の原理を説明する。
 まず、実施の形態に係る空気調和装置100の冷媒回路に封入される冷媒は、非共沸混合冷媒である。非共沸混合冷媒とは、沸点が異なる複数種類の冷媒で構成されるものであり、例えば非共沸混合冷媒であるR454B冷媒は、R32冷媒とR1234yf冷媒との混合物である。なお、R32冷媒の大気圧での沸点は-57.1[℃]であり、R1234yf冷媒の大気圧での沸点は-29.4[℃]である。このように非共沸混合冷媒を構成する冷媒の沸点に差があると、空気調和装置100から冷媒漏れが発生した場合に、沸点が低いR32冷媒がより多く系外へ放出される傾向がある。
[Principle of refrigerant leak detection function]
Next, the principle of the refrigerant leakage detection function will be described.
First, the refrigerant sealed in the refrigerant circuit of the air conditioner 100 according to the embodiment is a non-azeotropic refrigerant mixture. A non-azeotropic refrigerant mixture is composed of a plurality of types of refrigerants having different boiling points. For example, R454B refrigerant, which is a non-azeotropic refrigerant mixture, is a mixture of R32 refrigerant and R1234yf refrigerant. The boiling point of R32 refrigerant at atmospheric pressure is −57.1 [° C.], and the boiling point of R1234yf refrigerant at atmospheric pressure is −29.4 [° C.]. When there is a difference in the boiling points of the refrigerants constituting the non-azeotropic mixed refrigerant in this way, when refrigerant leakage occurs from the air conditioner 100, there is a tendency that a larger amount of R32 refrigerant with a low boiling point is released outside the system. .
 このため、空気調和装置100の冷媒回路に封入される非共沸混合冷媒を構成する冷媒の割合は、冷媒漏れが無い場合と冷媒漏れが有る場合とで異なり、冷媒漏れの有無によって、空気調和装置100の中に存在する非共沸混合冷媒の持つ物性値が変わることになる。冷媒漏洩検出機能は、この冷媒漏れによって生じる非共沸混合冷媒の物性値の変化を利用したものである。 Therefore, the ratio of the refrigerant that constitutes the non-azeotropic refrigerant mixture that is enclosed in the refrigerant circuit of the air conditioner 100 differs depending on whether there is refrigerant leakage or not. The physical properties of the non-azeotropic refrigerant mixture present in the apparatus 100 will change. The refrigerant leakage detection function utilizes changes in the physical properties of the non-azeotropic mixed refrigerant caused by this refrigerant leakage.
 以下、冷媒漏洩検出機能の原理のより詳細な説明を行う。一般的に空気調和装置100が停止している状態では、冷媒回路内の冷媒と室外機1が設置されている場所の外気との間で熱的つり合いが取れた状態となるため、冷媒回路内の冷媒圧力から計算した飽和温度と外気温度とが等しい状態となる。 A more detailed explanation of the principle of the refrigerant leak detection function will be given below. Generally, when the air conditioner 100 is stopped, the refrigerant in the refrigerant circuit and the outside air at the location where the outdoor unit 1 is installed are in a state of thermal equilibrium. The saturated temperature calculated from the refrigerant pressure in the second stage is equal to the outside air temperature.
 しかし、冷媒漏れが発生している場合、前述したように非共沸混合冷媒の物性値が変化するため、ある外気温度で空気調和装置100が停止している時の冷媒回路内の圧力が、冷媒漏れの有無で変化する。そこで、空気調和装置100の停止時の冷媒回路内の圧力の差を検出して冷媒漏れの有無を検出するというのが冷媒漏洩検出機能の原理である。 However, when a refrigerant leak occurs, the physical property values of the non-azeotropic mixed refrigerant change as described above. It changes depending on the presence or absence of refrigerant leakage. Therefore, the principle of the refrigerant leakage detection function is to detect the presence or absence of refrigerant leakage by detecting the pressure difference in the refrigerant circuit when the air conditioner 100 is stopped.
 R454B冷媒の場合を例として説明すると、冷媒漏れが発生していない場合は、空気調和装置100の冷媒回路内にはR32冷媒とR1234yf冷媒とが68.9[wt%]と31.1[wt%]との質量割合で存在している。一方、冷媒漏れが発生した場合は、冷媒漏れによる組成変化をα(>0)とすると、空気調和装置100の冷媒回路内にはR32冷媒とR1234yf冷媒とが(68.9-α)[wt%]と(31.1+α)[wt%]との質量割合で存在している。別の言い方をすると、冷媒漏れが発生した場合は、沸点が低いR32冷媒の組成が少なくなる状態となる。 Taking the case of the R454B refrigerant as an example, when there is no refrigerant leakage, the R32 refrigerant and the R1234yf refrigerant are 68.9 [wt%] and 31.1 [wt%] in the refrigerant circuit of the air conditioner 100. %]. On the other hand, when refrigerant leakage occurs, if the composition change due to refrigerant leakage is α (> 0), the refrigerant circuit of the air conditioner 100 contains R32 refrigerant and R1234yf refrigerant (68.9-α) [wt %] and (31.1+α) [wt %]. In other words, when refrigerant leakage occurs, the composition of R32 refrigerant with a low boiling point is reduced.
 冷媒漏れによる冷媒の組成変化が発生している状態では、非共沸混合冷媒の物性値も変化する。例えば、ある温度における飽和圧力も変化する。 In the state where the refrigerant composition changes due to refrigerant leakage, the physical property values of the non-azeotropic refrigerant mixture also change. For example, the saturation pressure at a certain temperature also changes.
 外気温度が35[℃]の場合を例とすると、冷媒漏れが発生していない場合、空気調和装置100が停止している状態であれば、外気と室外機1とが熱的につり合っている状態となっているので、冷媒回路内の圧力は、R454B冷媒の35[℃]の飽和圧力である2.0[MPaA]となっている。一方、冷媒漏れが発生している場合、同じ温度(35[℃])の外気と室外機1とが熱的につり合っているが、R454B冷媒の組成からR32冷媒が組成変化α分だけ少なく、R1234yf冷媒が組成変化α分だけ多い冷媒となっているので、同じ外気温度35[℃]でも冷媒回路内の圧力が異なる。この例の場合では、R32冷媒の組成が少なくなるため、冷媒漏れが発生していない場合の2.0[MPaA]よりも低い圧力となる。 For example, when the outside air temperature is 35 [° C.], if there is no refrigerant leakage and the air conditioner 100 is stopped, the outside air and the outdoor unit 1 are in thermal equilibrium. Therefore, the pressure in the refrigerant circuit is 2.0 [MPaA], which is the saturation pressure of the R454B refrigerant at 35 [°C]. On the other hand, when a refrigerant leak occurs, the outside air and the outdoor unit 1 at the same temperature (35 [° C.]) are thermally balanced, but the composition of the R454B refrigerant is reduced by the composition change α. , R1234yf refrigerant is increased by the composition change α, the pressure in the refrigerant circuit is different even if the outside air temperature is the same, 35[°C]. In the case of this example, the composition of the R32 refrigerant is reduced, so the pressure is lower than 2.0 [MPaA] when no refrigerant leakage occurs.
 制御装置30は、非共沸冷媒の充填組成における圧力と飽和温度との関係を、表あるいは近似式の形で有しており、吐出圧力検出装置20あるいは吸入圧力検出装置21で検出した圧力から計算した飽和温度が外気温度と一致していない場合に、冷媒漏れが発生していると判定することができる。 The control device 30 has the relationship between the pressure and the saturation temperature in the filling composition of the non-azeotropic refrigerant in the form of a table or an approximate expression, and from the pressure detected by the discharge pressure detection device 20 or the suction pressure detection device 21, If the calculated saturation temperature does not match the outside air temperature, it can be determined that a refrigerant leak has occurred.
 すなわち、図5に示すステップS1~S3で外気と室外機1とが熱的につり合っているかどうかを判定し、ステップS4~S6で前述の冷媒漏れによって生じる飽和温度と外気温度との差を算出して、冷媒漏れの発生を検出する仕組みとなっている。 That is, in steps S1 to S3 shown in FIG. 5, it is determined whether or not the outside air and the outdoor unit 1 are thermally balanced, and in steps S4 to S6, the difference between the saturation temperature caused by the refrigerant leakage and the outside temperature is determined. It is a mechanism to calculate and detect the occurrence of refrigerant leakage.
 また、冷媒漏れが発生した場合の飽和圧力の低下量は、空気調和装置100で使用する非共沸冷媒の種類、空気調和装置100の冷媒回路の大きさ、および、どのくらいの冷媒が系外に漏れたかなどによって変わるため、図5に示すステップS5の所定値はある一定値として決めることは難しい。 In addition, the amount of decrease in saturation pressure when refrigerant leakage occurs depends on the type of non-azeotropic refrigerant used in the air conditioner 100, the size of the refrigerant circuit of the air conditioner 100, and how much refrigerant is outside the system. It is difficult to determine the predetermined value in step S5 shown in FIG.
 冷媒漏れ発生有無を判定する図5中のステップS5の所定値は、小さい値にするとより少しの冷媒漏れでも検出可能となるが、外気と室外機1との熱的なつり合いが不十分だった場合、あるいは圧力検出装置または外気温度検出装置22の測定誤差などによっては冷媒漏れ判定を誤ってしまう可能性がある。反対に、ステップS5の所定値を大きい値に設定すると、冷媒漏れ判定を誤るリスクは減るが、空気調和装置100からの冷媒漏れ量が大きくならないと冷媒漏れ有りを判定できなくなるなどのデメリットもある。このため、ステップS5の所定値は、使用する冷媒の種類、空気調和装置100の冷媒回路の大きさ、および、どのくらいの冷媒が系外に漏れたかなどによって変える必要がある。また、ステップS5の所定値は、空気調和装置100の据付状態にも影響を受けるため、据付工事が終わった段階で現場でも調整できるようにしておくとよい。 If the predetermined value in step S5 in FIG. 5 for determining the presence or absence of refrigerant leakage is set to a small value, even a small amount of refrigerant leakage can be detected, but the thermal balance between the outside air and the outdoor unit 1 is insufficient. In some cases, or due to the measurement error of the pressure detection device or the outside air temperature detection device 22, there is a possibility that the refrigerant leak determination may be erroneous. Conversely, if the predetermined value in step S5 is set to a large value, the risk of erroneous determination of refrigerant leakage is reduced, but there is also a demerit such as the presence of refrigerant leakage cannot be determined unless the amount of refrigerant leakage from the air conditioner 100 increases. . Therefore, it is necessary to change the predetermined value in step S5 depending on the type of refrigerant used, the size of the refrigerant circuit of the air conditioner 100, how much refrigerant has leaked outside the system, and the like. Moreover, since the predetermined value in step S5 is also affected by the installation state of the air conditioner 100, it is preferable to allow adjustment even on site after the installation work is completed.
 ここで、ステップS5の所定値について、R454B冷媒の場合を例に補足する。R454B冷媒と同じ構成冷媒からなるR454C冷媒があり、R454C冷媒は、R32冷媒とR1234yf冷媒とが21.5[wt%]と78.5[wt%]との質量割合で混合された冷媒である。外気温度が7[℃]の場合を例にすると、R454B冷媒の飽和蒸気圧力は、0.91[MPaA]であるが、同じ外気温度7[℃]におけるR454C冷媒の飽和蒸気圧力は、0.57[MPaA]である。この0.57[MPaA]という圧力は、R454B冷媒では-8.1[℃]の飽和温度に相当する。 Here, the predetermined value in step S5 will be supplemented by taking the case of R454B refrigerant as an example. There is an R454C refrigerant composed of the same constituent refrigerant as the R454B refrigerant, and the R454C refrigerant is a refrigerant in which the R32 refrigerant and the R1234yf refrigerant are mixed at a mass ratio of 21.5 [wt%] and 78.5 [wt%]. . Taking the case of an outside air temperature of 7 [°C] as an example, the saturated vapor pressure of R454B refrigerant is 0.91 [MPaA], while the saturated vapor pressure of R454C refrigerant at the same outside temperature of 7 [°C] is 0.91 [MPaA]. 57 [MPaA]. This pressure of 0.57 [MPaA] corresponds to the saturation temperature of -8.1 [°C] for the R454B refrigerant.
 すなわち、R454B冷媒においては、外気温度が7[℃]の条件で空気調和装置100が停止していた場合、冷媒漏れが無い場合は、吐出圧力検出装置20の検出値から冷媒の飽和温度が7[℃]となる。一方、冷媒漏れが発生しており、R32冷媒がR1234yf冷媒より先に大気中に放出され、冷媒組成がR454C冷媒と同等となっていた場合は、吐出圧力検出装置20の検出値から冷媒の飽和温度が-8.1[℃]となる。従って、本実施の形態の場合であれば、ステップS5の所定値を1[℃]としても冷媒漏れを十分に検出できるということになる。 That is, with the R454B refrigerant, when the air conditioner 100 is stopped under the condition that the outside air temperature is 7 [° C.], if there is no refrigerant leakage, the detection value of the discharge pressure detection device 20 indicates that the saturation temperature of the refrigerant is 7 [°C]. On the other hand, if there is a refrigerant leak, the R32 refrigerant is released into the atmosphere before the R1234yf refrigerant, and the refrigerant composition is the same as the R454C refrigerant, the value detected by the discharge pressure detection device 20 indicates that the refrigerant is saturated. The temperature becomes -8.1 [°C]. Therefore, in the case of the present embodiment, even if the predetermined value in step S5 is set to 1[° C.], the refrigerant leakage can be sufficiently detected.
 なお、冷媒漏洩検出機能の検出精度を向上させるために、外気温度検出装置22に他の温度検出装置よりも検出精度が高いものを使用するとよい。圧力検出装置も同様に、吐出圧力検出装置20および吸入圧力検出装置21のうち少なくともどちらか一方により検出精度が高いものを使用し、その検出値を用いて冷媒漏れ判定を行うようにするとよい。 In addition, in order to improve the detection accuracy of the refrigerant leakage detection function, it is preferable to use the outside air temperature detection device 22 with higher detection accuracy than other temperature detection devices. Similarly, at least one of the discharge pressure detection device 20 and the suction pressure detection device 21 with high detection accuracy should be used as the pressure detection device, and the detection value thereof should be used to determine refrigerant leakage.
 冷媒漏洩検出機能の必要条件となっている図5中のステップS2およびステップS3の外気と室外機1とが熱的につり合っているかどうかの判定について、ステップS2の所定時間は、室外機1に搭載している吐出圧力検出装置20の検出値と吸入圧力検出装置21の検出値とが同じになるまでの時間とするとよい。また、ステップS3の外気温度検出装置22の検出値が安定していた方が冷媒漏れ判定の精度が向上するため、外気温度検出装置22で検出した外気温度が安定しているかどうかを判定は、例えば、1時間当たりの外気温度変化が1℃以下の場合などとするとよい。 Regarding the determination of whether or not the outside air and the outdoor unit 1 are in thermal equilibrium in steps S2 and S3 in FIG. It may be the time until the detection value of the discharge pressure detection device 20 and the detection value of the suction pressure detection device 21 mounted in the unit become the same. Further, since the accuracy of refrigerant leakage determination is improved when the detection value of the outside air temperature detection device 22 in step S3 is stable, whether or not the outside air temperature detected by the outside temperature detection device 22 is stable is determined. For example, it is preferable that the outside air temperature change is 1° C. or less per hour.
 空気調和装置100の冷媒回路に単一成分冷媒を封入した場合でも、冷媒漏れが発生すると冷媒回路内の圧力が低下し、圧力検出装置の検出値から冷媒漏れを判定することができる場合もあるが、アキュムレータ13を搭載しているビル用マルチシステムのような大型空調機器では、冷媒回路内に液相の状態で余剰冷媒が存在しており、冷媒漏れによって冷媒回路内の圧力が低下しそうになると、余剰冷媒が蒸発することでガス冷媒となり、冷媒回路内の圧力低下を抑制する。このため、液相の状態で存在する余剰冷媒が全て蒸発するまでは冷媒回路内の圧力が変化しにくい状態となるため、アキュムレータ13を搭載している空気調和装置に単一成分冷媒を使用する場合は、冷媒圧力を使用した冷媒漏れ検出は難しい。 Even when a single-component refrigerant is sealed in the refrigerant circuit of the air conditioner 100, when refrigerant leakage occurs, the pressure in the refrigerant circuit decreases, and it may be possible to determine the refrigerant leakage from the detected value of the pressure detection device. However, in a large-scale air-conditioning equipment such as a building multi-system equipped with an accumulator 13, excess refrigerant exists in the refrigerant circuit in a liquid state, and the pressure in the refrigerant circuit is likely to decrease due to refrigerant leakage. Then, the surplus refrigerant evaporates to become gas refrigerant, thereby suppressing pressure drop in the refrigerant circuit. For this reason, the pressure in the refrigerant circuit does not easily change until all the surplus refrigerant existing in the liquid state evaporates. Detecting refrigerant leaks using refrigerant pressure is difficult.
 これに対して空気調和装置100の冷媒回路に非共沸混合冷媒を封入した場合は、アキュムレータ13を搭載した場合に単一成分冷媒の場合と同様に液相の余剰冷媒の蒸発によって冷媒回路内の圧力が下がりにくいという同様の状態とはなるものの、非共沸混合冷媒の構成冷媒の中で低沸点の冷媒がより多く系外に漏れるという特徴があるため、冷媒の組成変動(物性値の変化)が生じ、少ない冷媒漏れ量でも冷媒漏れを検出することができる。 On the other hand, when a non-azeotropic refrigerant mixture is enclosed in the refrigerant circuit of the air conditioner 100, when the accumulator 13 is mounted, the liquid-phase surplus refrigerant evaporates in the refrigerant circuit as in the case of the single-component refrigerant. Although it is difficult to reduce the pressure of the refrigerant mixture, a large amount of the refrigerant with a low boiling point among the constituent refrigerants of the non-azeotropic refrigerant mixture leaks out of the system. change) occurs, and refrigerant leakage can be detected even with a small amount of refrigerant leakage.
 本実施の形態に係る冷媒漏洩検出機能は、非共沸冷媒の沸点差を利用した原理であるため、非共沸混合冷媒を使用した空気調和装置100であればアキュムレータ13は必須の構成要素では無く、アキュムレータ13が無い場合でも、図5に示す動作によって冷媒漏れを検出することができる。 Since the refrigerant leakage detection function according to the present embodiment is based on the principle of using the boiling point difference of the non-azeotropic refrigerant, the accumulator 13 is an essential component in the air conditioner 100 using the non-azeotropic refrigerant mixture. Refrigerant leakage can be detected by the operation shown in FIG. 5 even if there is no accumulator 13 .
 また、制御装置30は、所定時間(以下、あらかじめ設定された第二時間とも称する)毎に冷媒漏洩検出機能を実行する日常点検機能を有している。この日常点検機能によって、空気調和装置100を運転しない春または秋などの中間期あるいは夜間にも冷媒漏れ判定を行うことができる。このため、毎日あるいは数日おきに冷媒漏れが発生していないかの確認ができ、冷媒漏れを早期に発見することができる。また、冷媒漏れの発生箇所がどこであっても冷媒漏れを検出することができる。 The control device 30 also has a daily inspection function that executes a refrigerant leakage detection function every predetermined time (hereinafter also referred to as a preset second time). With this daily inspection function, it is possible to determine whether the refrigerant leak has occurred during an intermediate period such as spring or autumn when the air conditioner 100 is not in operation, or even at night. Therefore, it is possible to check whether or not refrigerant leakage occurs every day or every few days, so that refrigerant leakage can be detected early. In addition, refrigerant leakage can be detected wherever the refrigerant leakage occurs.
 また、制御装置30は、冷媒漏洩検出機能を実行して冷媒漏れ有りと判定した場合、冷媒漏れの発生を報知する冷媒漏れ報知機能を有している。冷媒漏れの報知手段としては、例えばブザーなどで発報する、あるいは空気調和装置100に集中管理装置などが接続されている場合は、集中管理装置に冷媒漏れの発生を検出した旨のアラートを出すなどして空気調和装置100の点検を促すなどである。こうすることで、設備管理者に冷媒漏れが発生したことを早期に知らせることができ、機器の修繕などの適切な対応を迅速に取ることができるようになる。 The control device 30 also has a refrigerant leakage notification function that notifies the occurrence of refrigerant leakage when it is determined that there is a refrigerant leakage by executing the refrigerant leakage detection function. Refrigerant leakage is reported by, for example, a buzzer or the like, or if a centralized control device or the like is connected to the air conditioner 100, an alert to the effect that a refrigerant leak has been detected is issued to the centralized control device. For example, the inspection of the air conditioner 100 is prompted. By doing so, it is possible to inform the equipment manager of the occurrence of the refrigerant leakage early, and it is possible to quickly take appropriate measures such as repairing the equipment.
 また、可燃性冷媒などを使用した従来の空気調和装置では、室内機内あるいは室内機が設置されている空調空間内に冷媒漏洩検出装置を設置することで、冷媒漏れによる室内の安全性を確保する方式が一般的ではあるが、天井裏あるいは床面積が大きい部屋などの冷媒漏洩検出装置を設置していない空間での冷媒漏れは検出できないという課題があった。 In addition, in conventional air conditioners that use flammable refrigerant, etc., by installing a refrigerant leakage detection device in the indoor unit or in the air-conditioned space where the indoor unit is installed, the safety of the room due to refrigerant leakage is ensured. Although this method is commonly used, it has the problem that refrigerant leaks cannot be detected in spaces where no refrigerant leak detection device is installed, such as rooms with large floor areas or above ceilings.
 この課題に対して、使用する冷媒が非共沸混合冷媒である必要はあるが、本実施の形態に係る冷媒漏洩検出機能を用いると、冷媒漏洩検出装置が無い場所からの冷媒漏れも検出することができ、室内側の安全性を向上させることができる。 In order to solve this problem, the refrigerant to be used must be a non-azeotropic mixed refrigerant, but by using the refrigerant leakage detection function according to the present embodiment, it is possible to detect refrigerant leakage from places where there is no refrigerant leakage detection device. It is possible to improve the safety on the indoor side.
 また、空気調和装置100に、ISO5149あるいはIEC60335-2-40などの国際規格で規定される警報装置、換気装置、および、遮断装置といった安全装置が設置されているような場合、本実施の形態に係る冷媒漏洩検出機能により冷媒漏れ有りと判定された場合に、上記の安全装置を作動させるような仕組みとすると、より室内側の安全性を向上させることができる。 Further, in the case where the air conditioner 100 is equipped with a safety device such as an alarm device, a ventilator, and a shut-off device specified by international standards such as ISO5149 or IEC60335-2-40, the present embodiment can be used. If the above-described safety device is activated when it is determined that there is a refrigerant leakage by the refrigerant leakage detection function, it is possible to further improve the safety of the indoor side.
 本実施の形態に係る空気調和装置100では、全ての室内機2a、2bが同じ運転、つまり冷房運転モードおよび暖房運転モードのうち一方のみを行う場合を例に説明したが、これに限定されず、室内機2a、2b毎に異なる運転を行ってもよい、つまり、冷房運転モードと暖房運転モードとを同時に行ってもよい。 In the air conditioner 100 according to the present embodiment, all the indoor units 2a and 2b operate in the same manner, that is, only one of the cooling operation mode and the heating operation mode. , different operation may be performed for each of the indoor units 2a and 2b, that is, the cooling operation mode and the heating operation mode may be performed at the same time.
 また、本実施の形態に関して、室外機1が1台の場合を例に説明を行ったが、室外機1の台数を1台に限定するものではない。図5に示す冷媒漏洩検出機能の動作は、室外機1の構成要素として圧力検出装置および外気温度検出装置22の二つの検出装置を必要の構成要素としており、その他の空気調和装置100の構成要素は制限していないため、複数の室外機1で構成される大型空調システムの場合は、室外機1毎に冷媒漏洩検出機能の動作を行ってもよいし、複数の室外機1のうち1台を代表に設定し、その代表の室外機1が冷媒漏洩検出機能の動作を行ってもよい。 Also, in the present embodiment, the case where the number of outdoor units 1 is one has been described as an example, but the number of outdoor units 1 is not limited to one. The operation of the refrigerant leakage detection function shown in FIG. is not limited, in the case of a large air conditioning system configured with a plurality of outdoor units 1, the refrigerant leakage detection function may be operated for each outdoor unit 1, or one of the plurality of outdoor units 1 may be set as a representative, and the representative outdoor unit 1 may perform the operation of the refrigerant leakage detection function.
 また、本実施の形態に係る空気調和装置100では、室外機1に1台の圧縮機10が設けられている場合を例に説明を行ったが、これに限定されず、室外機1に圧縮機10が2台以上設けられていてもよい。 In addition, in the air conditioner 100 according to the present embodiment, the case where the outdoor unit 1 is provided with one compressor 10 has been described as an example, but it is not limited to this, and the outdoor unit 1 is provided with a compressor 10. Two or more machines 10 may be provided.
 以上、実施の形態に係る空気調和装置100は、圧縮機10、熱源側熱交換器12、絞り装置41、および、負荷側熱交換器40が順に配管で接続された冷媒回路を備え、冷媒回路内に冷媒として非共沸混合冷媒が封入された空気調和装置100であって、圧縮機10の吐出側の冷媒の圧力を検出する、あるいは、圧縮機10の吸入側の冷媒の圧力を検出する第一圧力検出装置と、外気温度を検出する外気温度検出装置22と、空気調和装置100が停止している時に、第一圧力検出装置で検出した圧力と外気温度検出装置22で検出した外気温度とに基づいて冷媒漏れ有無の判定を行う冷媒漏洩検出機能を有する制御装置30と、を備えたものである。 As described above, the air conditioner 100 according to the embodiment includes a refrigerant circuit in which the compressor 10, the heat source side heat exchanger 12, the expansion device 41, and the load side heat exchanger 40 are connected in order by pipes. An air conditioner 100 in which a non-azeotropic mixed refrigerant is sealed as a refrigerant, and detects the pressure of the refrigerant on the discharge side of the compressor 10, or detects the pressure of the refrigerant on the suction side of the compressor 10. A first pressure detection device, an outside temperature detection device 22 that detects the outside temperature, and the pressure detected by the first pressure detection device and the outside temperature detected by the outside temperature detection device 22 when the air conditioner 100 is stopped. and a control device 30 having a refrigerant leakage detection function for determining presence/absence of refrigerant leakage based on the above.
 実施の形態に係る空気調和装置100によれば、空気調和装置100が停止している時に、第一圧力検出装置で検出した圧力と外気温度検出装置22で検出した外気温度とに基づいて冷媒漏れ有無の判定を行う。そのため、時期に関わらず年間を通して冷媒漏れを検出することができ、空気調和装置の運転状況によらず空気調和装置からの冷媒漏れ発生の検出を行うことができる。 According to the air conditioner 100 according to the embodiment, when the air conditioner 100 is stopped, refrigerant leakage is detected based on the pressure detected by the first pressure detection device and the outside temperature detected by the outside temperature detection device 22. Presence/absence is determined. Therefore, refrigerant leakage can be detected throughout the year regardless of the season, and the occurrence of refrigerant leakage from the air conditioner can be detected regardless of the operating state of the air conditioner.
 また、従来技術では、室内機が設置されている空調空間の安全性を確保する目的とし、大空間など冷媒漏れが発生しても空調空間の冷媒濃度が高くないような場合の冷媒漏れ、あるいは天井裏などの非空調空間に存在する冷媒配管からの冷媒漏れを対象としていないものがある。しかし、実施の形態に係る空気調和装置100は、冷媒漏れの発生箇所がどこであっても冷媒漏れを検出することができる。 In addition, in the conventional technology, for the purpose of ensuring the safety of the air-conditioned space where the indoor unit is installed, even if a refrigerant leak occurs in a large space, the refrigerant leaks when the refrigerant concentration in the air-conditioned space is not high, or There are some that do not target refrigerant leaks from refrigerant pipes that exist in non-air-conditioned spaces such as ceiling spaces. However, the air-conditioning apparatus 100 according to the embodiment can detect refrigerant leakage wherever the refrigerant leakage occurs.
 また、従来技術では、複数の遮断弁を空気調和装置内に有し、遮断弁で閉止した区間の圧力低下を検出することで冷媒漏洩箇所を特定するものがある。しかし、実施の形態に係る空気調和装置100は、複数の遮断弁などが不要であるため、製造コストを抑えることができる。 In addition, in the conventional technology, there is a technique in which a plurality of shutoff valves are provided in an air conditioner, and a refrigerant leak point is identified by detecting a pressure drop in a section closed by the shutoff valves. However, since the air conditioner 100 according to the embodiment does not require a plurality of shutoff valves, the manufacturing cost can be reduced.
 また、実施の形態に係る空気調和装置100は、圧縮機10の吸入側にアキュムレータ13を備えたものである。 Also, the air conditioner 100 according to the embodiment includes an accumulator 13 on the suction side of the compressor 10 .
 実施の形態に係る空気調和装置100によれば、圧縮機10の吸入側にアキュムレータ13を備えているため、冷媒の組成変動(物性値の変化)が生じ、少ない冷媒漏れ量でも冷媒漏れを検出することができる。 According to the air conditioner 100 according to the embodiment, since the accumulator 13 is provided on the suction side of the compressor 10, the refrigerant composition variation (change in physical property value) occurs, and refrigerant leakage is detected even with a small amount of refrigerant leakage. can do.
 また、実施の形態に係る空気調和装置100は、外気温度検出装置22の他に、温度検出装置を備え、外気温度検出装置22は、温度検出装置よりも検出精度が高いものである。 In addition, the air conditioner 100 according to the embodiment includes a temperature detection device in addition to the outside air temperature detection device 22, and the outside air temperature detection device 22 has higher detection accuracy than the temperature detection device.
 実施の形態に係る空気調和装置100によれば、冷媒漏洩検出機能の検出精度を向上させることができる。 According to the air conditioner 100 according to the embodiment, detection accuracy of the refrigerant leakage detection function can be improved.
 また、実施の形態に係る空気調和装置100は、第一圧力検出装置の他に、圧力検出装置を備え、第一圧力検出装置は、圧力検出装置よりも検出精度が高いものである。 In addition, the air conditioner 100 according to the embodiment includes a pressure detection device in addition to the first pressure detection device, and the first pressure detection device has higher detection accuracy than the pressure detection device.
 実施の形態に係る空気調和装置100によれば、冷媒漏洩検出機能の検出精度を向上させることができる。 According to the air conditioner 100 according to the embodiment, detection accuracy of the refrigerant leakage detection function can be improved.
 また、実施の形態に係る空気調和装置100において、制御装置30は、あらかじめ設定された第二時間毎に冷媒漏洩検出機能を実行する日常点検機能を有するものである。 In addition, in the air conditioner 100 according to the embodiment, the control device 30 has a daily inspection function that executes a refrigerant leakage detection function every second preset time.
 実施の形態に係る空気調和装置100によれば、この日常点検機能によって、空気調和装置100を運転しない春または秋などの中間期あるいは夜間にも冷媒漏れ判定を行うことができる。このため、毎日あるいは数日おきに冷媒漏れが発生していないかの確認ができ、冷媒漏れを早期に発見することができる。また、冷媒漏れの発生箇所がどこであっても冷媒漏れを検出することができる。 According to the air conditioner 100 according to the embodiment, it is possible to determine the refrigerant leakage even in the middle of spring or autumn when the air conditioner 100 is not in operation, or at night, by means of this daily inspection function. Therefore, it is possible to check whether or not refrigerant leakage occurs every day or every few days, so that refrigerant leakage can be detected early. In addition, refrigerant leakage can be detected wherever the refrigerant leakage occurs.
 また、実施の形態に係る空気調和装置100において、制御装置30は、冷媒漏洩検出機能を実行し、冷媒漏れ有りと判定した場合に、冷媒漏れの発生を報知する。 In addition, in the air conditioner 100 according to the embodiment, the control device 30 executes the refrigerant leakage detection function, and notifies the occurrence of refrigerant leakage when it is determined that there is refrigerant leakage.
 実施の形態に係る空気調和装置100によれば、冷媒漏れ有りと判定した場合に、冷媒漏れの発生を報知することで、設備管理者に冷媒漏れが発生したことを早期に知らせることができ、機器の修繕などの適切な対応を迅速に取ることができるようになる。 According to the air conditioner 100 according to the embodiment, when it is determined that there is a refrigerant leak, the occurrence of the refrigerant leak is reported, so that the equipment manager can be notified early that the refrigerant leak has occurred. Appropriate measures such as repair of equipment can be quickly taken.
 1 室外機、2、2a、2b 室内機、3 冷媒主管、4a、4b 冷媒枝管、5 冷媒配管、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 アキュムレータ、14 熱源側送風機、20 吐出圧力検出装置、21 吸入圧力検出装置、22 外気温度検出装置、23 第一温度検出装置、30 制御装置、40、40a、40b 負荷側熱交換器、41、41a、41b 絞り装置、42、42a、42b 負荷側送風機、50、50a、50b 第二温度検出装置、51、51a、51b 第三温度検出装置、52、52a、52b 第四温度検出装置、60a、60b 空調空間、61 天井裏空間、100 空気調和装置。 1 outdoor unit, 2, 2a, 2b indoor unit, 3 refrigerant main pipe, 4a, 4b refrigerant branch pipe, 5 refrigerant pipe, 10 compressor, 11 refrigerant flow switching device, 12 heat source side heat exchanger, 13 accumulator, 14 heat source side blower, 20 discharge pressure detection device, 21 suction pressure detection device, 22 outside air temperature detection device, 23 first temperature detection device, 30 control device, 40, 40a, 40b load side heat exchanger, 41, 41a, 41b expansion device , 42, 42a, 42b Load side blower 50, 50a, 50b Second temperature detection device 51, 51a, 51b Third temperature detection device 52, 52a, 52b Fourth temperature detection device 60a, 60b Air-conditioned space 61 Space above the ceiling, 100 air conditioner.

Claims (9)

  1.  圧縮機、熱源側熱交換器、絞り装置、および、負荷側熱交換器が順に配管で接続された冷媒回路を備え、前記冷媒回路内に冷媒として非共沸混合冷媒が封入された空気調和装置であって、
     前記圧縮機の吐出側の冷媒の圧力を検出する、あるいは、前記圧縮機の吸入側の冷媒の圧力を検出する第一圧力検出装置と、
     外気温度を検出する外気温度検出装置と、
     前記空気調和装置が停止している時に、前記第一圧力検出装置で検出した圧力と前記外気温度検出装置で検出した外気温度とに基づいて冷媒漏れ有無の判定を行う冷媒漏洩検出機能を有する制御装置と、を備えた
     空気調和装置。
    An air conditioner comprising a refrigerant circuit in which a compressor, a heat source side heat exchanger, a throttling device, and a load side heat exchanger are sequentially connected by piping, and a non-azeotropic refrigerant mixture is sealed as a refrigerant in the refrigerant circuit. and
    a first pressure detection device that detects the pressure of the refrigerant on the discharge side of the compressor or detects the pressure of the refrigerant on the suction side of the compressor;
    an outside temperature detection device for detecting outside temperature;
    Control having a refrigerant leakage detection function for determining whether or not a refrigerant leak exists based on the pressure detected by the first pressure detection device and the outside air temperature detected by the outside air temperature detection device when the air conditioner is stopped. An air conditioner comprising:
  2.  前記冷媒漏洩検出機能に関して、
     前記制御装置は、
     前記第一圧力検出装置で検出した圧力から求めた冷媒の飽和温度と、前記外気温度検出装置で検出した外気温度とを比較することで冷媒漏れ有無の判定を行うものである
     請求項1に記載の空気調和装置。
    Regarding the refrigerant leakage detection function,
    The control device is
    The presence or absence of refrigerant leakage is determined by comparing the saturation temperature of the refrigerant obtained from the pressure detected by the first pressure detection device and the outside air temperature detected by the outside air temperature detection device. air conditioner.
  3.  前記冷媒漏洩検出機能に関して、
     前記制御装置は、
     前記空気調和装置が停止してからあらかじめ設定された第一時間が経過後、冷媒漏れ有無の判定を行うものである
     請求項1または2に記載の空気調和装置。
    Regarding the refrigerant leakage detection function,
    The control device is
    The air conditioner according to claim 1 or 2, wherein the presence or absence of refrigerant leakage is determined after a first time set in advance has elapsed since the air conditioner was stopped.
  4.  前記冷媒漏洩検出機能に関して、
     前記制御装置は、
     前記空気調和装置が停止してから前記第一時間が経過後、前記外気温度検出装置で検出した外気温度が安定していたら、冷媒漏れ有無の判定を行うものである
     請求項3に記載の空気調和装置。
    Regarding the refrigerant leakage detection function,
    The control device is
    4. The air according to claim 3, wherein the presence or absence of refrigerant leakage is determined when the outside air temperature detected by the outside air temperature detection device is stable after the first time has elapsed since the air conditioner stopped. Harmony device.
  5.  前記圧縮機の吸入側にアキュムレータを備えた
     請求項1~4のいずれか一項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 4, further comprising an accumulator on the suction side of the compressor.
  6.  前記外気温度検出装置の他に、温度検出装置を備え、
     前記外気温度検出装置は、前記温度検出装置よりも検出精度が高いものである
     請求項1~5のいずれか一項に記載の空気調和装置。
    In addition to the outside air temperature detection device, a temperature detection device is provided,
    The air conditioner according to any one of claims 1 to 5, wherein the outside air temperature detection device has higher detection accuracy than the temperature detection device.
  7.  前記第一圧力検出装置の他に、圧力検出装置を備え、
     前記第一圧力検出装置は、前記圧力検出装置よりも検出精度が高いものである
     請求項1~6のいずれか一項に記載の空気調和装置。
    In addition to the first pressure detection device, a pressure detection device is provided,
    The air conditioner according to any one of claims 1 to 6, wherein the first pressure detection device has higher detection accuracy than the pressure detection device.
  8.  前記制御装置は、
     あらかじめ設定された第二時間毎に前記冷媒漏洩検出機能を実行する日常点検機能を有するものである
     請求項1~7のいずれか一項に記載の空気調和装置。
    The control device is
    The air conditioner according to any one of claims 1 to 7, further comprising a daily inspection function that executes the refrigerant leakage detection function every second time set in advance.
  9.  前記制御装置は、
     前記冷媒漏洩検出機能を実行し、冷媒漏れ有りと判定した場合に、冷媒漏れの発生を報知する
     請求項1~8のいずれか一項に記載の空気調和装置。
    The control device is
    The air conditioner according to any one of claims 1 to 8, wherein the refrigerant leakage detection function is executed, and when it is determined that there is refrigerant leakage, occurrence of refrigerant leakage is notified.
PCT/JP2022/000097 2022-01-05 2022-01-05 Air-conditioning device WO2023132010A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023572278A JPWO2023132010A1 (en) 2022-01-05 2022-01-05
PCT/JP2022/000097 WO2023132010A1 (en) 2022-01-05 2022-01-05 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000097 WO2023132010A1 (en) 2022-01-05 2022-01-05 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2023132010A1 true WO2023132010A1 (en) 2023-07-13

Family

ID=87073450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000097 WO2023132010A1 (en) 2022-01-05 2022-01-05 Air-conditioning device

Country Status (2)

Country Link
JP (1) JPWO2023132010A1 (en)
WO (1) WO2023132010A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113079A (en) * 1995-10-18 1997-05-02 Mitsubishi Heavy Ind Ltd Refrigerant sealing quantity detector for air conditioner
WO2008035418A1 (en) * 2006-09-21 2008-03-27 Mitsubishi Electric Corporation Refrigerating/air conditioning system having refrigerant learage detecting function, refrigerator/air conditioner and method for detecting leakage of refrigerant
WO2016071947A1 (en) * 2014-11-04 2016-05-12 三菱電機株式会社 Refrigeration cycle device and abnormality detection system for refrigeration cycle device
WO2016174767A1 (en) * 2015-04-30 2016-11-03 三菱電機株式会社 Refrigeration cycle device and system for detecting annormalities in refrigeration cycle device
JP2016191531A (en) * 2015-03-31 2016-11-10 ダイキン工業株式会社 Indoor unit of air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113079A (en) * 1995-10-18 1997-05-02 Mitsubishi Heavy Ind Ltd Refrigerant sealing quantity detector for air conditioner
WO2008035418A1 (en) * 2006-09-21 2008-03-27 Mitsubishi Electric Corporation Refrigerating/air conditioning system having refrigerant learage detecting function, refrigerator/air conditioner and method for detecting leakage of refrigerant
WO2016071947A1 (en) * 2014-11-04 2016-05-12 三菱電機株式会社 Refrigeration cycle device and abnormality detection system for refrigeration cycle device
JP2016191531A (en) * 2015-03-31 2016-11-10 ダイキン工業株式会社 Indoor unit of air conditioner
WO2016174767A1 (en) * 2015-04-30 2016-11-03 三菱電機株式会社 Refrigeration cycle device and system for detecting annormalities in refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2023132010A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2018012489A1 (en) Refrigeration system
JP6701337B2 (en) Air conditioner
WO2009157191A1 (en) Air conditioner and method for determining the amount of refrigerant therein
US11598560B2 (en) Refrigerant cycle apparatus
US12013139B2 (en) Air conditioning apparatus, management device, and connection pipe
JP4839861B2 (en) Air conditioner
JPWO2019053858A1 (en) Refrigeration cycle device and refrigeration device
JP2017142038A (en) Refrigeration cycle device
WO2019053880A1 (en) Refrigeration air conditioner
WO2018220758A1 (en) Air-conditioning apparatus
US11293647B2 (en) Air conditioner
JP6479181B2 (en) Air conditioner
JP2017075760A (en) Air conditioner
JP5505477B2 (en) AIR CONDITIONER AND REFRIGERANT AMOUNT JUDGING METHOD FOR AIR CONDITIONER
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
WO2019053771A1 (en) Air conditioning device
WO2020105515A1 (en) Refrigerant cycle device, refrigerant amount determination system, and refrigerant amount determination method
JP2018173196A5 (en)
WO2023132010A1 (en) Air-conditioning device
JP6739664B2 (en) Refrigeration air conditioner and control device
JP6111692B2 (en) Refrigeration equipment
JP6257812B2 (en) Air conditioner
JP6519098B2 (en) Air conditioner
US11994326B2 (en) Refrigerant leakage detection system
JP7233568B2 (en) Air conditioning system and its control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023572278

Country of ref document: JP

Kind code of ref document: A