WO2018220758A1 - Air-conditioning apparatus - Google Patents

Air-conditioning apparatus Download PDF

Info

Publication number
WO2018220758A1
WO2018220758A1 PCT/JP2017/020300 JP2017020300W WO2018220758A1 WO 2018220758 A1 WO2018220758 A1 WO 2018220758A1 JP 2017020300 W JP2017020300 W JP 2017020300W WO 2018220758 A1 WO2018220758 A1 WO 2018220758A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
detection
leakage
detection device
Prior art date
Application number
PCT/JP2017/020300
Other languages
French (fr)
Japanese (ja)
Inventor
亮宗 石村
森本 修
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019521610A priority Critical patent/JP6972125B2/en
Priority to PCT/JP2017/020300 priority patent/WO2018220758A1/en
Priority to GB1916115.7A priority patent/GB2575606C/en
Publication of WO2018220758A1 publication Critical patent/WO2018220758A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to refrigerant leakage detection of an air conditioner.
  • the total length of the refrigerant pipe connecting the outdoor unit and the indoor unit may be several hundred meters, and as a result, the amount of refrigerant charged in the refrigerant circuit is very large. It is increasing. In such an air conditioner, a large amount of refrigerant may leak into one room when refrigerant leakage occurs.
  • a refrigerant detection sensor that detects the leaked refrigerant is installed in an indoor unit or air-conditioned space, and a technology for operating the shut-off valve appropriately using the refrigerant detection sensor, a method for reducing the number of refrigerant detection sensors installed, and optimum A technique relating to an appropriate installation position has also been proposed (see, for example, Patent Document 2).
  • JP 2000-97527 A Japanese Patent No. 3744330
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can suppress erroneous detection of refrigerant leakage.
  • one or a plurality of indoor units that air-condition an air-conditioned space, one or a plurality of outdoor units that function as a heat source, and the indoor unit and the outdoor unit are refrigerant pipes.
  • a refrigerant circuit that circulates the refrigerant, a refrigerant detection device that is provided in the indoor unit or in an air-conditioned space in which the indoor unit performs air conditioning, and that detects refrigerant leakage from the refrigerant circuit, and the refrigerant detection When the detected value of the apparatus always exceeds the threshold value C1 during the determination time ⁇ Ta, or when the detected value of the refrigerant detection apparatus exceeds the threshold value C1 during the determination time ⁇ Ta, the refrigerant leakage occurs.
  • the control device is configured such that the detected value of the refrigerant detection device always exceeds the threshold C1 during the determination time ⁇ T, or the detection value of the refrigerant detection device is between the determination time ⁇ T.
  • the threshold value C1 is exceeded for the reference time or more, it is determined that refrigerant leakage has occurred, so that erroneous detection of refrigerant leakage can be avoided.
  • FIG. 1 is a schematic diagram illustrating a first example of the configuration of an air-conditioning apparatus 100 according to an embodiment of the present invention.
  • the air conditioner 100 circulates a refrigerant in a refrigerant circuit 101 to be described later, and performs air conditioning using a refrigeration cycle. Further, the air conditioner 100 can select a cooling only operation in which all indoor units to be operated cool, and a heating only operation in which all indoor units to be operated are heated, such as a building multi-air conditioner. .
  • the air conditioner 100 includes one outdoor unit 1 and two indoor units 2a and 2b (hereinafter collectively referred to as an indoor unit 2), and the outdoor unit 1 and the indoor unit 2a. 2b is connected by the refrigerant
  • the case where two indoor units 2 are connected to the outdoor unit 1 is shown as an example.
  • the present invention is not limited to this, and a plurality of outdoor units 1 may be used. One or three or more may be used.
  • the indoor units 2a and 2b are installed in air-conditioned spaces 4a and 4b (hereinafter collectively referred to as air-conditioned spaces 4), respectively, and perform air conditioning of the air-conditioned spaces 4a and 4b.
  • air-conditioned spaces 4 air-conditioned spaces 4
  • shut-off devices 7a and 7b (hereinafter referred to as “refrigerants”) for blocking the refrigerant flow and suppressing the refrigerant leak when the refrigerant leaks.
  • refrigerants for blocking the refrigerant flow and suppressing the refrigerant leak when the refrigerant leaks.
  • alarm device 6a and 6b for notifying the user of the refrigerant leak when the refrigerant leaks, and the leaked refrigerant are exhausted outside the air-conditioned spaces 4a and 4b.
  • Ventilators 8a and 8b (hereinafter collectively referred to as a ventilator 8) are provided.
  • the indoor unit 2a or the air-conditioned space 4a and the indoor unit 2b or the air-conditioned space 4b are provided with refrigerant detection devices 5a and 5b (hereinafter collectively referred to as the refrigerant detection device 5) for detecting refrigerant leakage.
  • the refrigerant detection device 5a is provided in the indoor unit 2a and the refrigerant detection device 5b is provided in the air-conditioned space 4b.
  • the refrigerant detection device 5a may be installed in at least one of the indoor unit 2a or the air-conditioned space 4a
  • the refrigerant detection device 5b may be installed in at least one of the indoor unit 2b or the air-conditioned space 4b. Good.
  • the refrigerant detection device 5, the alarm device 6, the shut-off device 7, and the ventilation device 8 are provided as a safety measure when the refrigerant leaks from the air conditioner 100.
  • a generic term for the refrigerant detection device 5, the alarm device 6, the shut-off device 7, and the ventilation device 8 is referred to as a safety measure device.
  • a refrigerant leakage output signal is output toward the alarm device 6, the cutoff device 7, and the ventilation device 8. . And all or at least one of them operates based on the outputted refrigerant leakage output signal, so that the safety of the air-conditioned space 4 is ensured.
  • the refrigerant detection device 5, the alarm device 6, the shut-off device 7, and the ventilation device 8 are provided as a safety measure when the refrigerant leaks from the air conditioner 100, a normal cooling operation or heating operation is performed. It does not perform any function when done. Therefore, when the maximum concentration at the time of refrigerant leakage calculated from the amount of refrigerant filled in the air conditioner 100 and the volume of the air-conditioned space 4 does not become a concentration that affects the human body, the refrigerant detector 5, the alarm device 6, The blocking device 7 and the ventilation device 8 may not be installed.
  • FIG. 2 is a schematic diagram showing a second example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention
  • FIG. 3 shows the second configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a third example
  • FIG. 4 is a schematic diagram showing a fourth example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention
  • FIG. 5 is an embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating a sixth example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a seventh example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • any one or more of the alarm device 6, the shut-off device 7, and the ventilation device 8 may be installed. The case where one or two of these are installed is shown in FIGS.
  • FIG. 2 shows the air conditioner 100 when the alarm devices 6a and 6b are provided in the air-conditioned spaces 4a and 4b, respectively, as a safety measure.
  • FIG. 3 shows the air conditioner 100 when the shut-off devices 7a and 7b are provided in the branch portions 3a and 3b of the refrigerant pipe 3 as safety measures.
  • FIG. 4 shows the air conditioner 100 when the ventilators 8a and 8b are provided in the conditioned spaces 4a and 4b, respectively, as a safety measure.
  • the alarm devices 6 a and 6 b are provided in the air-conditioned spaces 4 a and 4 b, respectively, and the shut-off devices 7 a and 7 b are provided in the branch portions 3 a and 3 b of the refrigerant pipe 3, respectively. It is the harmony device 100.
  • FIG. 6 shows the air conditioner 100 when the alarm devices 6a and 6b and the ventilation devices 8a and 8b are provided in the air-conditioned spaces 4a and 4b, respectively, as safety measures.
  • FIG. 7 shows the air conditioner 100 when the shutoff device 7 is provided in the refrigerant pipe 3 inside the outdoor unit 1 as a safety measure.
  • blocking apparatus 7 should just be provided in the exterior of air-conditioning space 4a, 4b, as shown in FIG. 7, you may be provided in the inside of the outdoor unit 1.
  • FIG. 7 shows the interruption
  • FIG. 8 is a schematic diagram showing an eighth example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • a plurality of indoor units 2a and 2b may be installed in the same conditioned space 4.
  • the alarm device 6 is provided in the air-conditioned space 4
  • the shut-off devices 7a and 7b are provided in the branch portions 3a and 3b of the refrigerant pipe 3, respectively.
  • FIG. 9 is a schematic diagram showing an example of the configuration of the refrigerant circuit 101 of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the air conditioner 100 according to the present embodiment includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, expansion devices 41a and 41b, a load side heat exchanger 40a, 40b,
  • the accumulator 13 is connected by the refrigerant
  • the expansion devices 41a and 41b are collectively referred to as the expansion device 41
  • the load side heat exchangers 40a and 40b are collectively referred to as the load side heat exchanger 40.
  • the outdoor unit 1 functions as a heat source, and includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, and an accumulator 13.
  • an outdoor blower 14 that blows air to the heat source side heat exchanger 12 is provided in the vicinity of the heat source side heat exchanger 12.
  • the compressor 10 sucks low-temperature and low-pressure refrigerant and compresses the refrigerant to bring it into a high-temperature and high-pressure state, and is composed of an inverter compressor and the like whose capacity can be controlled.
  • the refrigerant flow switching device 11 switches the refrigerant flow during the cooling operation and the refrigerant flow during the heating operation, and includes a four-way valve or the like.
  • the heat source side heat exchanger 12 functions as a condenser during the cooling operation, functions as an evaporator during the heating operation, and performs heat exchange between the air supplied from the outdoor blower 14 such as a fan and the refrigerant. .
  • the outdoor unit 1 is provided with a first pressure detection device 20 and a second pressure detection device 21 that detect pressure.
  • the first pressure detection device 20 is provided in the refrigerant pipe 3 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and the pressure of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 10 is measured. It is something to detect.
  • the second pressure detection device 21 is provided in the refrigerant pipe 3 that connects the refrigerant flow switching device 11 and the suction side of the compressor 10, and detects the pressure of the low-temperature and low-pressure refrigerant sucked into the compressor 10. To do.
  • the outdoor unit 1 is provided with a first temperature detection device 22 that detects the temperature.
  • the first temperature detection device 22 is provided in the refrigerant pipe 3 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and the temperature of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 10 is measured. It is to be detected and is composed of a thermistor or the like.
  • Indoor unit 2a, 2b air-conditions air-conditioned space 4a, 4b, and is equipped with load side heat exchangers 40a, 40b and expansion devices 41a, 41b, respectively. Further, in the vicinity of the load side heat exchangers 40a and 40b, indoor fans 42a and 42b (hereinafter collectively referred to as the indoor fan 42) for blowing air to the load side heat exchangers 40a and 40b are respectively provided. Moreover, the indoor units 2a and 2b are connected to the outdoor unit 1 via the refrigerant pipe 3, and the refrigerant flows in and out.
  • the load-side heat exchanger 40 functions as an evaporator during the cooling operation, functions as a condenser during the heating operation, and performs heat exchange between the air supplied from the indoor blower 42 such as a fan and the refrigerant, and is thus conditioned space.
  • the air for heating or the air for cooling to supply to 4 is produced
  • the expansion device 41 has a function as a pressure reducing valve and an expansion valve, expands the refrigerant by depressurizing it, and is configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the indoor units 2a and 2b include second temperature detection devices 50a and 50b (hereinafter collectively referred to as the second temperature detection device 50) for detecting temperature, and third temperature detection devices 51a and 51b (hereinafter referred to as generic names).
  • a third temperature detection device 51) and fourth temperature detection devices 52a and 52b (hereinafter collectively referred to as a fourth temperature detection device 52).
  • the second temperature detection device 50 is provided in the refrigerant pipe 3 connecting the expansion device 41 and the load side heat exchanger 40, and detects the temperature of the refrigerant flowing into the load side heat exchanger 40 during the cooling operation. is there. Further, the third temperature detection device 51 is provided in the refrigerant pipe 3 on the opposite side of the expansion device 41 with respect to the load side heat exchanger 40, and the refrigerant that flows out of the load side heat exchanger 40 during the cooling operation. It detects temperature. Furthermore, the fourth temperature detection device 52 is provided in the air suction portion of the load-side heat exchanger 40 and detects the air temperature in the conditioned space 4.
  • the second temperature detection device 50, the third temperature detection device 51, and the fourth temperature detection device 52 are composed of a thermistor or the like.
  • the outdoor unit 1 also includes a control device 30.
  • the control device 30 includes, for example, dedicated hardware or a CPU (also referred to as a central processing unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory. Has been.
  • a CPU also referred to as a central processing unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a processor
  • FIG. 10 is a functional block of the air conditioning apparatus 100 according to the embodiment of the present invention.
  • the control device 30 includes a main control unit 31, a timer unit 32, a storage unit 33, and a drive unit 34.
  • the main control unit 31 turns on / off the alarm device 6, opens / closes the shut-off device 7, and rotates the ventilation device 8 (ON) based on detection values of various detection devices and instructions from a remote controller (not shown).
  • the drive unit 34 is instructed to control the rotational speed (including ON / OFF) of the indoor blower 42 of the side heat exchanger 40.
  • the various detection devices include the refrigerant detection device 5, the first pressure detection device 20, the second pressure detection device 21, the first temperature detection device 22, the second temperature detection device 50, the third temperature detection device 51, and A fourth temperature detection device 52 is included.
  • the timer unit 32 measures time.
  • the storage unit 33 stores various information such as a threshold value C1 described later.
  • the drive unit 34 turns on / off the alarm device 6, opens / closes the shut-off device 7, the rotational speed (including ON / OFF) of the ventilation device 8, the frequency of the compressor 10, and the heat source
  • the rotational speed (including ON / OFF) of the outdoor fan 14 of the side heat exchanger 12, the switching of the refrigerant flow switching device 11, the opening degree of the expansion device 41, and the rotational speed of the indoor fan 42 of the load side heat exchanger 40 (Including ON / OFF).
  • control device 30 is provided in the outdoor unit 1 .
  • the present invention is not limited thereto, and the control device 30 may be provided separately for each unit of the outdoor unit 1 and the indoor units 2a and 2b. Alternatively, it may be provided in either the outdoor unit 1 or the indoor units 2a and 2b.
  • control device 30 includes the timer unit 32 and the storage unit 33, the configuration is not limited thereto, and the timer unit 32 and the storage unit 33 may be provided separately from the control device 30. Good.
  • the shutoff device 7 shuts off the flow of the refrigerant pipe 3 in order to suppress the refrigerant leak from the outdoor unit 1 to the air-conditioned space 4 when the refrigerant leaks from the indoor unit 2 or the vicinity thereof.
  • the blocking device 7 may be any device as long as it can block the refrigerant flow in the refrigerant circuit 101.
  • the blocking device 7 may be controlled only to open or close like an electromagnetic valve, or like an electronic expansion valve.
  • the opening may be variably controllable.
  • FIG. 11 is a refrigerant circuit 101 diagram showing the refrigerant flow during the cooling only operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the flow direction of the refrigerant is indicated by solid line arrows.
  • the refrigerant flow switching device 11 is switched so that the discharge side of the compressor 10 and the heat source side heat exchanger 12 are connected.
  • the cooling only operation of the air conditioner 100 will be described by taking as an example a case where a cooling load is generated in the load side heat exchangers 40a and 40b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 is condensed while dissipating heat to the outdoor air, and becomes high-pressure liquid refrigerant.
  • the blocking devices 7a and 7b are in an open state so as not to hinder the refrigerant flow.
  • the high-pressure liquid refrigerant that has flowed into the indoor units 2a and 2b is decompressed by the expansion devices 41a and 41b into a low-temperature and low-pressure two-phase refrigerant, and then flows into the load-side heat exchangers 40a and 40b that act as evaporators. By absorbing heat from the air, the indoor air is cooled and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the load-side heat exchangers 40 a and 40 b flows into the outdoor unit 1 through the refrigerant pipe 3.
  • the refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10.
  • the control device 30 makes the superheat (superheat degree) obtained as a difference between the temperature detected by the second temperature detection devices 50a and 50b and the temperature detected by the third temperature detection devices 51a and 51b constant.
  • the opening degree of the expansion devices 41a and 41b is controlled. By doing so, the capability according to the thermal load of air-conditioned space 4a, 4b can be exhibited, and efficient driving
  • FIG. 12 is a refrigerant circuit 101 diagram illustrating the refrigerant flow during the heating only operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the flow direction of the refrigerant is indicated by solid line arrows.
  • the refrigerant flow switching device 11 is switched so that the discharge side of the compressor 10 and the shut-off devices 7a and 7b are connected.
  • the heating operation of the air conditioner 100 will be described by taking as an example a case where a thermal load is generated in the load-side heat exchangers 40a and 40b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the indoor units 2a and 2b through the refrigerant pipe 3 via the refrigerant flow switching device 11.
  • the blocking devices 7a and 7b are in an open state so as not to hinder the refrigerant flow.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor units 2a and 2b radiates heat to the indoor air in the load-side heat exchangers 40a and 40b, becomes high-pressure liquid refrigerant, and flows into the expansion devices 41a and 41b. Then, after the pressure is reduced to the low-temperature and low-pressure two-phase refrigerant by the expansion devices 41 a and 41 b, the indoor units 2 a and 2 b flow out, and the refrigerant pipe 3 flows into the outdoor unit 1.
  • the low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 and absorbs heat from the outdoor air to become a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant exiting the heat source side heat exchanger 12 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10.
  • the control device 30 is a subcool (supercooling degree) obtained as a difference between the saturated liquid temperature of the refrigerant calculated from the pressure detected by the first pressure detection device 20 and the temperature detected by the second temperature detection device 50. Is controlled so that the opening degree of the expansion devices 41a and 41b is constant. By doing so, the capability according to the thermal load of air-conditioned space 4a, 4b can be exhibited, and efficient driving
  • FIG. 13 is a diagram for explaining an example of an erroneous detection operation for refrigerant leakage of a conventional air conditioner
  • FIG. 14 illustrates an erroneous detection avoidance operation for refrigerant leakage of the air conditioner 100 according to the embodiment of the present invention. It is a figure explaining. 2. Description of the Related Art Conventionally, a control device for an air conditioner has a refrigerant concentration threshold value, and when a detection value (refrigerant concentration) detected by the refrigerant leakage device exceeds the threshold value, a method of determining that refrigerant leakage has been common. there were.
  • control device 30 of the air conditioning apparatus 100 is characterized by having a refrigerant leakage determination function for avoiding the erroneous detection of the refrigerant leakage as described above.
  • refrigerant leakage determination function will be described in detail.
  • the refrigerant leakage determination function of the control device 30 of the air conditioner 100 is a function of determining whether refrigerant leakage has occurred using two of the refrigerant leakage determination time and the refrigerant concentration threshold.
  • Equation 1 A is the floor area (m 2 ) of the conditioned space 4, H is the ceiling height (m) of the conditioned space 4, and G is the refrigerant leakage rate (kg / s).
  • the time ⁇ T1 (s) from the occurrence of refrigerant leakage until the threshold C1 is reached is expressed by the following equation.
  • the time ⁇ T2 (s) from when the refrigerant leakage occurs until the refrigerant concentration in the air-conditioned space 4 becomes LFL / 2 is expressed by the following equation.
  • the control device 30 detects the refrigerant concentration at the threshold C1 after ⁇ T1 seconds by the refrigerant detection device 5 with reference to the time when the refrigerant leakage occurs, and the conditioned space 4 If it is determined that the refrigerant leakage has occurred before ⁇ T2 seconds after the refrigerant concentration becomes LFL / 2, the safety is ensured.
  • the determination time ⁇ Ta (s), which is the maximum time allowed until the control device 30 determines that the refrigerant leaks after the refrigerant leakage occurs, is expressed by the following equation.
  • the refrigerant leakage occurs due to cracks in the refrigerant pipe 3 and corrosion of the heat exchanger in the indoor unit 2. That is, once the refrigerant leakage occurs, the hole through which the refrigerant leaks is not blocked, and thus the refrigerant leakage continues until the refrigerant in the air conditioner 100 decreases. On the other hand, sterilization spray or the like that causes erroneous detection of refrigerant leakage is sprayed in a short time.
  • the refrigerant is detected when the refrigerant concentration exceeding the threshold C1 is detected for a certain period of time after the refrigerant detection device 5 detects the refrigerant concentration exceeding the threshold C1.
  • a method of determining a leak is conceivable. However, although there is a possibility that a transmission error of the detection signal from the refrigerant detection device 5 may occur, even if a transmission error of the signal occurs, it is a small percentage, so the time exceeding the threshold C1 is a predetermined percentage or more. If there is a criterion, signal transmission errors can be suppressed.
  • the refrigerant concentration detected by the refrigerant detection device 5 always exceeds the threshold C1 or exceeds the threshold C1 until the determination time ⁇ Ta (s) elapses after the refrigerant leakage occurs.
  • the refrigerant leakage determination does not necessarily have to wait until the determination time ⁇ Ta (s) elapses after the refrigerant detection device 5 detects the refrigerant concentration exceeding the threshold C1, and if the refrigerant detection device 5 has high reliability, The refrigerant leakage determination may be performed before the determination time ⁇ Ta (s) elapses.
  • the control interval of the control device 30 of the air conditioner 100 is 10 seconds or more even if it is short, and it is necessary to detect refrigerant leakage a plurality of times at this control interval in order to suppress erroneous detection of refrigerant leakage.
  • the spraying time of the disinfecting spray or the like seems to be about several seconds at most. Therefore, detecting the refrigerant concentration exceeding the threshold C1 continuously for 20 seconds or more by the refrigerant detection device 5 is the shortest refrigerant leakage determination time, and the determination time ⁇ Ta needs to be a value of 20 (s) or more. There is.
  • the refrigerant amount M (kg) filled in the refrigerant circuit 101 satisfies the following equation: There is a need.
  • the refrigerant filled in the refrigerant circuit 101 is R32 refrigerant
  • the floor area A of the air-conditioned space 4 is 9 (m 2 )
  • the threshold C1 of the refrigerant detector 5 is 0.0307 (kg / m 3 ).
  • ⁇ T1 is about 219 seconds ( ⁇ 3.7 minutes)
  • ⁇ T2 is about 1094 seconds ( ⁇ 18.2 minutes)
  • ⁇ Ta is about 875.
  • Second ( ⁇ 14.5 minutes) M is about 3.0 (kg).
  • the determination time ⁇ Ta (s) which is the maximum time allowed from the detection of the refrigerant concentration exceeding the threshold C1 to the determination of refrigerant leakage, is set to about 875 seconds.
  • the determination time ⁇ Ta (s) is the maximum allowable time, and may be set to a smaller value in actual operation.
  • Equation (9) Since the amount of refrigerant charged in the refrigerant circuit 101 is determined in advance, the LFL of the refrigerant that leaks is known in advance. Further, the threshold C1 is also determined in advance by the refrigerant detection device 5 used. Therefore, LFL and C1 in equation (9) can be set as constants, and when R32 refrigerant is used and threshold C1 is 0.0307 (kg / m 3 ), equation (9) is expressed by the following equation: Therefore, ⁇ Ta can be calculated using only the floor area A.
  • the air conditioning load L of the general air conditioned space 4 takes a value such as 0.1 (kW / m 2 ). Since the air conditioning capability Q (kW) of the indoor unit 2 is stored in the storage unit 33 of the control device 30, the floor area A can be obtained by using the air conditioning capability Q and the air conditioning load L of the indoor unit 2, ⁇ Ta can also be calculated by the following equation. That is, ⁇ Ta can be calculated using only the value of the air conditioning capability Q of the indoor unit 2. When a plurality of indoor units 2 are installed in one air-conditioned space 4, the total air conditioning capacity of the plurality of indoor units 2 may be Q.
  • Equation (9) when equation (9) is rewritten, the following equation is obtained, and ⁇ Ta may be defined by the value calculated by equation (13).
  • the control device 30 may detect the refrigerant concentration exceeding the threshold value C1 by the refrigerant detection device 5 using electrical noise and other gases including organic compound system in the air. It is not immediately determined that the refrigerant has leaked. Then, the control device 30 can determine whether or not refrigerant leakage has actually occurred from the detection value Cd of the refrigerant detection device 5 during the determination time ⁇ Ta (s), and suppress erroneous detection of refrigerant leakage. It becomes possible to do.
  • the following measures can be taken as a method for suppressing erroneous detection of refrigerant leakage using the determination time ⁇ Ta (s).
  • the condition for determining that the refrigerant leakage has occurred is always the threshold value until the determination time ⁇ Ta (s) elapses after the detection value Cd by the refrigerant detection device 5 exceeds the threshold value C1 (kg / m 3 ). Under the condition that it exceeds C1, erroneous detection of refrigerant leakage due to miscellaneous gas in the air can be suppressed.
  • the condition for determining that a refrigerant leak has occurred is that the detection value Cd by the refrigerant detection device 5 exceeds the threshold value C1 (kg / m 3 ) until the determination time ⁇ Ta (s) elapses.
  • the ratio that the threshold value C1 is exceeded is a predetermined ratio or more, erroneous detection of refrigerant leakage due to miscellaneous gas in the air can be suppressed.
  • the detection value Cd by the refrigerant detection device 5 is sampled at regular intervals, and the detection value Cd by the refrigerant detection device 5 continues for the reference number of times until the determination time ⁇ Ta (s) elapses. If the threshold value C1 is exceeded, it may be determined that refrigerant leakage has occurred.
  • the refrigerant filled in the refrigerant circuit 101 is R32 refrigerant, which is a flammable refrigerant, and the refrigerant lower combustion limit LFL is used.
  • the refrigerant filled in the refrigerant circuit 101 is not limited to the flammable refrigerant, but may be a nonflammable refrigerant or a toxic refrigerant, and the refrigerant concentration limit RCL (Refrigerant Concentration Limit) of the nonflammable refrigerant and the toxic refrigerant may be used. The same effect can be obtained.
  • FIG. 15 is a diagram illustrating a first example of a control flow of the refrigerant leakage detection operation of the air-conditioning apparatus 100 according to the embodiment of the present invention. Next, a first example of the control flow of the refrigerant leak detection operation of the air-conditioning apparatus 100 according to the present embodiment will be described with reference to FIG.
  • the main control unit 31 determines whether or not the detection value Cd detected by the refrigerant detection device 5 exceeds the threshold value C1 stored in the storage unit 33 (step S1A).
  • step S2A When the main control unit 31 determines that the detected value Cd exceeds the threshold C1 (YES in step S1A), the main control unit 31 starts measuring the time t by the timer unit 32 (step S2A).
  • step S2A the main control unit 31 determines whether the time t exceeds the determination time ⁇ Ta stored in the storage unit 33 (step S3A).
  • step S4A determines whether the detection value Cd exceeds the threshold C1 (step S4A).
  • step S4A when the main control unit 31 determines that the detection value Cd does not exceed the threshold value C1 (NO in step S4A), the process ends.
  • step S4A determines that the detection value Cd exceeds the threshold value C1 (YES in step S4A).
  • step S3A when the main control unit 31 determines that the time t exceeds the determination time ⁇ Ta (YES in step S3A), the drive unit 34 operates the safety measure device. That is, the main control unit 31 turns on the alarm device 6, opens the shut-off device 7, and turns on the ventilation device 8 (step S ⁇ b> 5 ⁇ / b> A).
  • the main control unit 31 repeats the processes of steps S3A and S4A while the detection value Cd exceeds the threshold value C1, and if the detection value Cd always exceeds the threshold value C1 during the determination time ⁇ Ta, The countermeasure device is operating.
  • FIG. 16 is a diagram illustrating a second example of a control flow of the refrigerant leakage detection operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • a second example of the control flow of the refrigerant leak detection operation of the air-conditioning apparatus 100 according to the present embodiment will be described with reference to FIG.
  • the main control unit 31 starts measuring the time t by the timer unit 32, and resets the on time ⁇ ton and the off time ⁇ toff to 0 (step S1B).
  • the on-time ⁇ ton is the total time that the detected value Cd exceeds the threshold value C1
  • the off-time ⁇ toff is the total time that the detected value Cd does not exceed the threshold value C1.
  • the main control unit 31 determines whether or not the detection value Cd by the refrigerant detection device 5 exceeds the threshold value C1 stored in the storage unit 33 (step S2B).
  • step S2B When the main control unit 31 determines that the detection value Cd exceeds the threshold C1 (YES in step S2B), the main control unit 31 adds time to the on-time ⁇ ton (step S3B), and proceeds to step S5B.
  • step S4B the main control unit 31 adds time to the off time ⁇ toff (step S4B), and proceeds to step S5B. Note that the process of step S4B can be omitted.
  • the time to be added to the on time ⁇ ton or the off time ⁇ toff is the time from the determination process in the previous step S2B to the current step S2B.
  • the time to add is 1 second.
  • step S5B the main control unit 31 determines whether or not the time t exceeds the determination time ⁇ Ta stored in the storage unit 33.
  • step S5B When the main control unit 31 determines that the time t exceeds the determination time ⁇ Ta (YES in step S5B), the process proceeds to step S6B.
  • step S5B when the main control unit 31 determines that the time t does not exceed the determination time ⁇ Ta (NO in step S5B), the main control unit 31 returns to step S2B. That is, the main control unit 31 repeats the processes of steps S2B to S5B until the time t exceeds the determination time ⁇ Ta. Then, during the determination time ⁇ Ta, the detection value Cd does not exceed the threshold value C1 during the ⁇ on time ton, which is the sum of the times when the detection value Cd exceeds the threshold value C1, and the determination time ⁇ Ta. The off time ⁇ toff, which is the total time, is obtained.
  • step S6B the main control unit 31 determines whether or not the on-time ⁇ ton exceeds the reference time x ⁇ Ta stored in the storage unit 33.
  • the main control unit 31 determines that the on-time ⁇ ton exceeds the reference time x ⁇ Ta (YES in step S6B)
  • the main control unit 31 causes the drive unit 34 to operate the safety measure device. That is, the main control unit 31 turns on the alarm device 6, turns it off on the shut-off device 7, and turns it on on the ventilation device 8 (step S 7 B).
  • step S6B when the main control unit 31 determines that the on-time ⁇ ton does not exceed the reference time x ⁇ Ta (NO in step S6B), the process is terminated.
  • the main control unit 31 measures the total time when the detected value Cd exceeds the threshold value C1 during the determination time ⁇ Ta, and when the total measured time is equal to or greater than the reference time x ⁇ Ta, the safety measure device Is operating.
  • FIG. 17 is a diagram illustrating a third example of the control flow of the refrigerant leak detection operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • a third example of the control flow of the refrigerant leak detection operation of the air-conditioning apparatus 100 according to the present embodiment will be described with reference to FIG.
  • the main control unit 31 starts measuring the time t by the timer unit 32, and resets the counter K to 0 (step S1C).
  • the main control unit 31 determines whether or not the detection value Cd detected by the refrigerant detection device 5 exceeds the threshold value C1 stored in the storage unit 33 (step S2C).
  • step S2C When the main control unit 31 determines that the detected value Cd exceeds the threshold value C1 (YES in step S2C), the main control unit 31 adds 1 to the counter K (step S3C), and proceeds to step S5C.
  • step S4C the main control unit 31 determines that the detected value Cd does not exceed the threshold C1 (NO in step S2C)
  • the main control unit 31 resets the counter K (step S4C), and proceeds to step S5C.
  • step S5C the main control unit 31 determines whether the value of the counter K has reached the reference number Ka stored in the storage unit 33.
  • the main control unit 31 determines that the value of the counter K has reached the reference number Ka (YES in step S5C)
  • the main control unit 31 causes the drive unit 34 to operate the safety measure device. That is, the main control unit 31 turns on the alarm device 6, opens the shut-off device 7, and turns on the ventilation device 8 (step S ⁇ b> 7 ⁇ / b> C).
  • step S6C determines that the value of the counter K has not reached the reference number Ka (NO in step S5C).
  • step S6C the main control unit 31 determines whether the time t exceeds the determination time ⁇ Ta stored in the storage unit 33.
  • the main control part 31 complete
  • step S6C when determining that the time t does not exceed the determination time ⁇ Ta (NO in step S6C), the main control unit 31 returns to step S2C. That is, the main control unit 31 repeats the processes of steps S2C to S5C until the time t exceeds the determination time ⁇ Ta, and the detection value Cd exceeds the threshold C1 continuously for the reference number Ka during the determination time ⁇ Ta. It is determined whether or not.
  • the main control unit 31 measures the number of times that the detected value Cd continuously exceeds the threshold value C1 during the determination time ⁇ Ta, and when the measured number is equal to or greater than the reference number Ka, the main control unit 31 It is operating.
  • the refrigerant detection device 5 that detects refrigerant leakage from the refrigerant circuit 101, and the detection value Cd of the refrigerant detection device 5 always exceeds the threshold C1 during the determination time ⁇ T.
  • a control device 30 that determines that refrigerant leakage has occurred when the detection value Cd of the refrigerant detection device 5 exceeds the threshold C1 for a reference time x ⁇ Ta or more during the determination time ⁇ T. .
  • the control device 30 detects that the detection value Cd of the refrigerant detection device 5 always exceeds the threshold C1 during the determination time ⁇ T, or the detection of the refrigerant detection device 5.
  • the value Cd exceeds the threshold value C1 for the determination time ⁇ T or more than the reference time x ⁇ Ta, it is determined that the refrigerant leakage has occurred, so that erroneous detection of the refrigerant leakage can be suppressed.
  • the air conditioner 100 includes at least one of the alarm device 6, the ventilation device 8, and the shut-off device 7, and when the control device 30 determines that refrigerant leakage has occurred, the alarm device 6 At least one of the ventilation device 8 and the shut-off device 7 is operated.
  • the safety countermeasure device when it is determined that refrigerant leakage has occurred, the safety countermeasure device is operated, so that ignition in the air-conditioned space 4 can be suppressed, and the safety of the air-conditioned space 4 Can be secured.
  • control device 30 samples the detection value of the refrigerant detection device 5 at regular intervals, and the detection value of the refrigerant detection device 5 is the reference number of times during the determination time ⁇ Ta.
  • Ka exceeds the threshold value C1 continuously, it is determined that refrigerant leakage has occurred.
  • the control device 30 samples the detection value of the refrigerant detection device 5 at regular intervals, and the detection value of the refrigerant detection device 5 is the reference number of times during the determination time ⁇ Ta.
  • the threshold value C1 is continuously exceeded for Ka, it is determined that refrigerant leakage has occurred, so that erroneous detection of refrigerant leakage can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air-conditioning apparatus is provided with: at least one indoor unit which air-conditions a space to be air-conditioned; at least one outdoor unit which functions as a heat source; a refrigerant circuit in which the indoor unit and the outdoor unit are connected via refrigerant piping and through which a refrigerant is circulated; a refrigerant detection device which is disposed within the indoor unit or in the space to be air-conditioned by the indoor unit and which detects leakage of refrigerant from the refrigerant circuit; and a control device which determines that refrigerant leakage has occurred in the case when a detection value of the refrigerant detection device exceeds a threshold value C1 all the time during a determination period ΔTa, or in the case when the detection value of the refrigerant detection device exceeds the threshold value C1 for a period equal to or longer than a standard time during the determination period ΔTa.

Description

空気調和装置Air conditioner
 本発明は、空気調和装置の冷媒漏洩検知に関するものである。 The present invention relates to refrigerant leakage detection of an air conditioner.
 現在のビル用マルチエアコン等の空気調和装置では、室外機と室内機とを接続する冷媒配管の総延長が数百mになることがあり、それに伴い冷媒回路に充填される冷媒量が非常に多くなっている。このような空気調和装置では、冷媒漏れが発生した場合に一つの部屋に大量の冷媒が漏れてしまう可能性がある。 In current air conditioners such as multi air conditioners for buildings, the total length of the refrigerant pipe connecting the outdoor unit and the indoor unit may be several hundred meters, and as a result, the amount of refrigerant charged in the refrigerant circuit is very large. It is increasing. In such an air conditioner, a large amount of refrigerant may leak into one room when refrigerant leakage occurs.
 また、近年では、地球温暖化の観点から地球温暖化係数が低い冷媒への転換が求められているが、地球温暖化係数が低い冷媒は可燃性を有しているものが多い。今後、地球温暖化係数が低い冷媒に転換が進んだ場合、安全性への配慮がさらに必要になる。 Also, in recent years, conversion to a refrigerant having a low global warming potential is required from the viewpoint of global warming, but many refrigerants having a low global warming potential are flammable. In the future, when the transition to refrigerants with a low global warming potential progresses, further consideration for safety will be required.
 そのような問題を解決するために、冷媒回路中に冷媒の流れを遮断するための遮断弁を設け、冷媒が漏れた際の冷媒漏洩量を少なくする技術が提案されている(例えば、特許文献1参照)。 In order to solve such a problem, a technology has been proposed in which a shutoff valve for shutting off the flow of the refrigerant is provided in the refrigerant circuit to reduce the amount of refrigerant leakage when the refrigerant leaks (for example, Patent Documents). 1).
 また、漏洩した冷媒を検知する冷媒検知センサを室内機または空調空間に設置し、その冷媒検知センサを用いて遮断弁を適切に動作させる技術、および、冷媒検知センサの設置個数の削減方法ならびに最適な設置位置に関する技術も提案されている(例えば、特許文献2参照)。 In addition, a refrigerant detection sensor that detects the leaked refrigerant is installed in an indoor unit or air-conditioned space, and a technology for operating the shut-off valve appropriately using the refrigerant detection sensor, a method for reducing the number of refrigerant detection sensors installed, and optimum A technique relating to an appropriate installation position has also been proposed (see, for example, Patent Document 2).
特開2000-97527号公報JP 2000-97527 A 特許第3744330号公報Japanese Patent No. 3744330
 しかしながら、冷媒検知センサを備えた空気調和装置の市場実績はまだ少なく、電気的なノイズだけではなく除菌剤および清掃剤等を起因とする空気中の有機化合物系を初めとする雑ガスによって冷媒漏洩の誤検知をしてしまう可能性があった。また、冷媒検知センサによる冷媒漏洩の誤検知を抑制するために、雑ガスを化学的に吸着させることができるフィルターでセンサ部を保護する等の対策が取られているものがあるが、十分に冷媒漏洩の誤検知を抑制できていないという課題があった。 However, the market for air conditioners equipped with refrigerant detection sensors is still limited, and refrigerants are generated not only by electrical noise but also by miscellaneous gases such as organic compound systems in the air caused by disinfectants and cleaning agents. There was a possibility of false detection of leakage. In addition, in order to suppress misdetection of refrigerant leakage by the refrigerant detection sensor, some measures such as protecting the sensor part with a filter capable of chemically adsorbing miscellaneous gas are taken, but enough There was a problem that false detection of refrigerant leakage could not be suppressed.
 本発明は、以上のような課題を解決するためになされたもので、冷媒漏洩の誤検知を抑制することができる空気調和装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can suppress erroneous detection of refrigerant leakage.
 本発明に係る空気調和装置は、空調空間を空気調和する1台または複数台の室内機と、熱源として機能する1台または複数台の室外機と、前記室内機と前記室外機とが冷媒配管で接続され、冷媒が循環する冷媒回路と、前記室内機の内部または前記室内機が空気調和を行う空調空間に設けられ、前記冷媒回路からの冷媒漏洩を検知する冷媒検知装置と、前記冷媒検知装置の検知値が判定時間ΔTaの間、閾値C1を常時超えた場合、または、前記冷媒検知装置の検知値が判定時間ΔTaの間、閾値C1を基準時間以上超えた場合、冷媒漏洩が発生したと判定する制御装置と、を備えたものである。 In the air conditioner according to the present invention, one or a plurality of indoor units that air-condition an air-conditioned space, one or a plurality of outdoor units that function as a heat source, and the indoor unit and the outdoor unit are refrigerant pipes. A refrigerant circuit that circulates the refrigerant, a refrigerant detection device that is provided in the indoor unit or in an air-conditioned space in which the indoor unit performs air conditioning, and that detects refrigerant leakage from the refrigerant circuit, and the refrigerant detection When the detected value of the apparatus always exceeds the threshold value C1 during the determination time ΔTa, or when the detected value of the refrigerant detection apparatus exceeds the threshold value C1 during the determination time ΔTa, the refrigerant leakage occurs. And a control device for determining that.
 本発明に係る空気調和装置によれば、制御装置は、冷媒検知装置の検知値が判定時間ΔTの間、閾値C1を常時超えた場合、または、冷媒検知装置の検知値が判定時間ΔTの間、閾値C1を基準時間以上超えた場合、冷媒漏洩が発生したと判定するため、冷媒漏洩の誤検知を回避することができる。 According to the air conditioner of the present invention, the control device is configured such that the detected value of the refrigerant detection device always exceeds the threshold C1 during the determination time ΔT, or the detection value of the refrigerant detection device is between the determination time ΔT. When the threshold value C1 is exceeded for the reference time or more, it is determined that refrigerant leakage has occurred, so that erroneous detection of refrigerant leakage can be avoided.
本発明の実施の形態に係る空気調和装置の構成の第一の例を示す概略図である。It is the schematic which shows the 1st example of a structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の構成の第二の例を示す概略図である。It is the schematic which shows the 2nd example of a structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の構成の第三の例を示す概略図である。It is the schematic which shows the 3rd example of a structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の構成の第四の例を示す概略図である。It is the schematic which shows the 4th example of a structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の構成の第五の例を示す概略図である。It is the schematic which shows the 5th example of a structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の構成の第六の例を示す概略図である。It is the schematic which shows the 6th example of a structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の構成の第七の例を示す概略図である。It is the schematic which shows the 7th example of a structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の構成の第八の例を示す概略図である。It is the schematic which shows the 8th example of a structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の冷媒回路構成の一例を示す概略図である。It is the schematic which shows an example of the refrigerant circuit structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の機能ブロックである。It is a functional block of the air harmony device concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和装置の全冷房運転時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the cooling only operation of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置100の全暖房運転時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the all heating operation of the air conditioning apparatus 100 which concerns on embodiment of this invention. 従来の空気調和装置の冷媒漏洩の誤検知動作の一例を説明する図である。It is a figure explaining an example of the false detection operation of the refrigerant leak of the conventional air harmony device. 本発明の実施の形態に係る空気調和装置の冷媒漏洩の誤検知回避動作を説明する図である。It is a figure explaining the false detection avoidance operation | movement of the refrigerant | coolant leakage of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の冷媒漏洩の検知動作の制御フローの第一の例を示す図である。It is a figure which shows the 1st example of the control flow of the detection operation | movement of the refrigerant | coolant leakage of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の冷媒漏洩の検知動作の制御フローの第二の例を示す図である。It is a figure which shows the 2nd example of the control flow of the detection operation | movement of the refrigerant | coolant leakage of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の冷媒漏洩の検知動作の制御フローの第三の例を示す図である。It is a figure which shows the 3rd example of the control flow of the detection operation of the refrigerant | coolant leakage of the air conditioning apparatus which concerns on embodiment of this invention.
 以下、本発明の空気調和装置100の実施の形態について、図面を参照して説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the air conditioning apparatus 100 of the present invention will be described with reference to the drawings. In addition, the form of drawing is an example and does not limit this invention. Moreover, what attached | subjected the same code | symbol in each figure is the same, or is equivalent to this, and this is common in the whole text of a specification. Furthermore, in the following drawings, the relationship between the sizes of the constituent members may be different from the actual one.
 実施の形態.
 図1は、本発明の実施の形態に係る空気調和装置100の構成の第一の例を示す概略図である。
 以下、本実施の形態に係る空気調和装置100の構成について説明する。
 空気調和装置100は、後述する冷媒回路101内に冷媒を循環させ、冷凍サイクルを利用した空気調和を行うものである。また、空気調和装置100は、ビル用マルチエアコン等のように、運転する全室内機が冷房を行う全冷房運転、および、運転する全室内機が暖房を行う全暖房運転を選択できるものである。
Embodiment.
FIG. 1 is a schematic diagram illustrating a first example of the configuration of an air-conditioning apparatus 100 according to an embodiment of the present invention.
Hereinafter, the structure of the air conditioning apparatus 100 which concerns on this Embodiment is demonstrated.
The air conditioner 100 circulates a refrigerant in a refrigerant circuit 101 to be described later, and performs air conditioning using a refrigeration cycle. Further, the air conditioner 100 can select a cooling only operation in which all indoor units to be operated cool, and a heating only operation in which all indoor units to be operated are heated, such as a building multi-air conditioner. .
 図1に示すように、空気調和装置100は、1台の室外機1と2台の室内機2a、2b(以下、総称を室内機2とする)とを備え、室外機1と室内機2a、2bとは冷媒配管3でそれぞれ接続されている。なお、本実施の形態では、室外機1に室内機2が2台接続されている場合を例に示しているが、それに限定されず、室外機1は複数台でもよいし、室内機2は1台または3台以上でもよい。 As shown in FIG. 1, the air conditioner 100 includes one outdoor unit 1 and two indoor units 2a and 2b (hereinafter collectively referred to as an indoor unit 2), and the outdoor unit 1 and the indoor unit 2a. 2b is connected by the refrigerant | coolant piping 3, respectively. In this embodiment, the case where two indoor units 2 are connected to the outdoor unit 1 is shown as an example. However, the present invention is not limited to this, and a plurality of outdoor units 1 may be used. One or three or more may be used.
 室内機2a、2bはそれぞれ空調空間4a、4b(以下、総称を空調空間4とする)に設置され、各空調空間4a、4bの空気調和を行う。室外機1と室内機2a、2bとを接続する冷媒配管3の分岐部3a、3bには、冷媒漏洩発生時に冷媒の流れを遮断して冷媒漏洩を抑制するための遮断装置7a、7b(以下、総称を遮断装置7とする)がそれぞれ設けられている。さらに空調空間4a、4bには、冷媒漏洩発生時に利用者に冷媒漏洩を知らせる警報装置6a、6b(以下、総称を警報装置6とする)と、漏洩した冷媒を空調空間4a、4b外へ排気するための換気装置8a、8b(以下、総称を換気装置8とする)とが、それぞれ設けられている。 The indoor units 2a and 2b are installed in air-conditioned spaces 4a and 4b (hereinafter collectively referred to as air-conditioned spaces 4), respectively, and perform air conditioning of the air-conditioned spaces 4a and 4b. In the branch portions 3a and 3b of the refrigerant pipe 3 connecting the outdoor unit 1 and the indoor units 2a and 2b, shut-off devices 7a and 7b (hereinafter referred to as “refrigerants”) for blocking the refrigerant flow and suppressing the refrigerant leak when the refrigerant leaks. Are collectively referred to as a shut-off device 7). Further, in the air-conditioned spaces 4a and 4b, alarm devices 6a and 6b (hereinafter collectively referred to as alarm device 6) for notifying the user of the refrigerant leak when the refrigerant leaks, and the leaked refrigerant are exhausted outside the air-conditioned spaces 4a and 4b. Ventilators 8a and 8b (hereinafter collectively referred to as a ventilator 8) are provided.
 室内機2aまたは空調空間4a、および、室内機2bまたは空調空間4bには、冷媒漏洩を検知するための冷媒検知装置5a、5b(以下、総称を冷媒検知装置5とする)がそれぞれ設けられている。なお、本実施の形態では、室内機2aに冷媒検知装置5aが設けられており、空調空間4bに冷媒検知装置5bが設けられている例を示しているが、それに限定されない。冷媒検知装置5aは、室内機2aまたは空調空間4aの少なくともどちらか一方に設置されていればよく、冷媒検知装置5bは、室内機2bまたは空調空間4bの少なくともどちらか一方に設置されていればよい。 The indoor unit 2a or the air-conditioned space 4a and the indoor unit 2b or the air-conditioned space 4b are provided with refrigerant detection devices 5a and 5b (hereinafter collectively referred to as the refrigerant detection device 5) for detecting refrigerant leakage. Yes. In the present embodiment, the refrigerant detection device 5a is provided in the indoor unit 2a and the refrigerant detection device 5b is provided in the air-conditioned space 4b. However, the present invention is not limited to this. The refrigerant detection device 5a may be installed in at least one of the indoor unit 2a or the air-conditioned space 4a, and the refrigerant detection device 5b may be installed in at least one of the indoor unit 2b or the air-conditioned space 4b. Good.
 冷媒検知装置5、警報装置6、遮断装置7、および、換気装置8は、空気調和装置100から冷媒が漏洩した際の安全対策として設けられている。以下、冷媒検知装置5、警報装置6、遮断装置7、および、換気装置8の総称を、安全対策装置とする。 The refrigerant detection device 5, the alarm device 6, the shut-off device 7, and the ventilation device 8 are provided as a safety measure when the refrigerant leaks from the air conditioner 100. Hereinafter, a generic term for the refrigerant detection device 5, the alarm device 6, the shut-off device 7, and the ventilation device 8 is referred to as a safety measure device.
 本実施の形態に係る空気調和装置100では、冷媒検知装置5により冷媒漏洩が検知された場合、冷媒漏洩出力信号が、警報装置6、遮断装置7、および、換気装置8へ向けて出力される。そして、その出力された冷媒漏洩出力信号に基づいて、それらの全てもしくは少なくとも1つが動作することで、空調空間4の安全が担保されるようになっている。 In the air conditioning apparatus 100 according to the present embodiment, when refrigerant leakage is detected by the refrigerant detection device 5, a refrigerant leakage output signal is output toward the alarm device 6, the cutoff device 7, and the ventilation device 8. . And all or at least one of them operates based on the outputted refrigerant leakage output signal, so that the safety of the air-conditioned space 4 is ensured.
 したがって、冷媒検知装置5、警報装置6、遮断装置7、および、換気装置8は、空気調和装置100から冷媒が漏洩した際の安全対策として設けられているため、通常の冷房運転または暖房運転が行われている際に、何らかの機能を果たすということはない。そのため、空気調和装置100に充填されている冷媒量と空調空間4の容積とから計算した冷媒漏洩時の最大濃度が人体に影響を及ぼす濃度にならない場合は、冷媒検知装置5、警報装置6、遮断装置7、および、換気装置8は、設置されていなくてもよい。 Therefore, since the refrigerant detection device 5, the alarm device 6, the shut-off device 7, and the ventilation device 8 are provided as a safety measure when the refrigerant leaks from the air conditioner 100, a normal cooling operation or heating operation is performed. It does not perform any function when done. Therefore, when the maximum concentration at the time of refrigerant leakage calculated from the amount of refrigerant filled in the air conditioner 100 and the volume of the air-conditioned space 4 does not become a concentration that affects the human body, the refrigerant detector 5, the alarm device 6, The blocking device 7 and the ventilation device 8 may not be installed.
 図2は、本発明の実施の形態に係る空気調和装置100の構成の第二の例を示す概略図であり、図3は、本発明の実施の形態に係る空気調和装置100の構成の第三の例を示す概略図であり、図4は、本発明の実施の形態に係る空気調和装置100の構成の第四の例を示す概略図であり、図5は、本発明の実施の形態に係る空気調和装置100の構成の第五の例を示す概略図であり、図6は、本発明の実施の形態に係る空気調和装置100の構成の第六の例を示す概略図であり、図7は、本発明の実施の形態に係る空気調和装置100の構成の第七の例を示す概略図である。 FIG. 2 is a schematic diagram showing a second example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention, and FIG. 3 shows the second configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention. FIG. 4 is a schematic diagram showing a third example, FIG. 4 is a schematic diagram showing a fourth example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention, and FIG. 5 is an embodiment of the present invention. FIG. 6 is a schematic diagram illustrating a sixth example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention. FIG. 7 is a schematic diagram showing a seventh example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention.
 なお、警報装置6、遮断装置7、および、換気装置8は、これらのうち、いずれか1種類以上が設置されていればよい。これらのうち、1種類または2種類が設置されている場合を図2~図8に示す。 In addition, any one or more of the alarm device 6, the shut-off device 7, and the ventilation device 8 may be installed. The case where one or two of these are installed is shown in FIGS.
 図2は、安全対策として、警報装置6a、6bが空調空間4a、4bにそれぞれ設けられている場合の空気調和装置100である。図3は、安全対策として、遮断装置7a、7bが冷媒配管3の分岐部3a、3bにそれぞれ設けられている場合の空気調和装置100である。図4は、安全対策として、換気装置8a、8bが空調空間4a、4bにそれぞれ設けられている場合の空気調和装置100である。図5は、安全対策として、警報装置6a、6bが空調空間4a、4bにそれぞれ設けられており、遮断装置7a、7bが冷媒配管3の分岐部3a、3bにそれぞれ設けられている場合の空気調和装置100である。 FIG. 2 shows the air conditioner 100 when the alarm devices 6a and 6b are provided in the air-conditioned spaces 4a and 4b, respectively, as a safety measure. FIG. 3 shows the air conditioner 100 when the shut-off devices 7a and 7b are provided in the branch portions 3a and 3b of the refrigerant pipe 3 as safety measures. FIG. 4 shows the air conditioner 100 when the ventilators 8a and 8b are provided in the conditioned spaces 4a and 4b, respectively, as a safety measure. In FIG. 5, as safety measures, the alarm devices 6 a and 6 b are provided in the air-conditioned spaces 4 a and 4 b, respectively, and the shut-off devices 7 a and 7 b are provided in the branch portions 3 a and 3 b of the refrigerant pipe 3, respectively. It is the harmony device 100.
 図6は、安全対策として、警報装置6a、6bおよび換気装置8a、8bが空調空間4a、4bにそれぞれ設けられている場合の空気調和装置100である。図7は、安全対策として、遮断装置7が室外機1の内部の冷媒配管3に設けられている場合の空気調和装置100である。なお、遮断装置7は、空調空間4a、4bの外部に設けられていればよいため、図7に示すように、室外機1の内部に設けられていてもよい。 FIG. 6 shows the air conditioner 100 when the alarm devices 6a and 6b and the ventilation devices 8a and 8b are provided in the air-conditioned spaces 4a and 4b, respectively, as safety measures. FIG. 7 shows the air conditioner 100 when the shutoff device 7 is provided in the refrigerant pipe 3 inside the outdoor unit 1 as a safety measure. In addition, since the interruption | blocking apparatus 7 should just be provided in the exterior of air- conditioning space 4a, 4b, as shown in FIG. 7, you may be provided in the inside of the outdoor unit 1. FIG.
 図8は、本発明の実施の形態に係る空気調和装置100の構成の第八の例を示す概略図である。
 図8に示すように、本実施の形態に係る空気調和装置100では、複数の室内機2a、2bが、同一の空調空間4に設置されていてもよい。この場合、安全対策として、例えば、警報装置6が空調空間4に設けられており、遮断装置7a、7bが冷媒配管3の分岐部3a、3bにそれぞれ設けられている。
FIG. 8 is a schematic diagram showing an eighth example of the configuration of the air-conditioning apparatus 100 according to the embodiment of the present invention.
As shown in FIG. 8, in the air conditioning apparatus 100 according to the present embodiment, a plurality of indoor units 2a and 2b may be installed in the same conditioned space 4. In this case, as a safety measure, for example, the alarm device 6 is provided in the air-conditioned space 4, and the shut-off devices 7a and 7b are provided in the branch portions 3a and 3b of the refrigerant pipe 3, respectively.
 次に、本実施の形態に係る空気調和装置100の冷媒回路101構成について説明する。
 図9は、本発明の実施の形態に係る空気調和装置100の冷媒回路101構成の一例を示す概略図である。
 本実施の形態に係る空気調和装置100は、図9に示すように、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、絞り装置41a、41b、負荷側熱交換器40a、40b、アキュムレータ13が冷媒配管3で順次接続され、冷媒が循環する冷媒回路101を備えている。以下、絞り装置41a、41bの総称を絞り装置41とし、負荷側熱交換器40a、40bの総称を負荷側熱交換器40とする。
Next, the configuration of the refrigerant circuit 101 of the air-conditioning apparatus 100 according to the present embodiment will be described.
FIG. 9 is a schematic diagram showing an example of the configuration of the refrigerant circuit 101 of the air-conditioning apparatus 100 according to the embodiment of the present invention.
As shown in FIG. 9, the air conditioner 100 according to the present embodiment includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, expansion devices 41a and 41b, a load side heat exchanger 40a, 40b, The accumulator 13 is connected by the refrigerant | coolant piping 3 sequentially, and the refrigerant circuit 101 through which a refrigerant | coolant circulates is provided. Hereinafter, the expansion devices 41a and 41b are collectively referred to as the expansion device 41, and the load side heat exchangers 40a and 40b are collectively referred to as the load side heat exchanger 40.
 [室外機1]
 室外機1は、熱源として機能するものであり、圧縮機10と、冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ13と、を備えている。また、熱源側熱交換器12の付近には、熱源側熱交換器12に空気を送風する室外送風機14が設けられている。
[Outdoor unit 1]
The outdoor unit 1 functions as a heat source, and includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, and an accumulator 13. In addition, an outdoor blower 14 that blows air to the heat source side heat exchanger 12 is provided in the vicinity of the heat source side heat exchanger 12.
 圧縮機10は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、容量制御可能なインバータ圧縮機等で構成されている。冷媒流路切替装置11は、冷房運転時における冷媒の流れと暖房運転時における冷媒の流れとを切り替えるものであり、四方弁等で構成されている。 The compressor 10 sucks low-temperature and low-pressure refrigerant and compresses the refrigerant to bring it into a high-temperature and high-pressure state, and is composed of an inverter compressor and the like whose capacity can be controlled. The refrigerant flow switching device 11 switches the refrigerant flow during the cooling operation and the refrigerant flow during the heating operation, and includes a four-way valve or the like.
 熱源側熱交換器12は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能し、ファン等の室外送風機14から供給される空気と冷媒との間で熱交換を行うものである。 The heat source side heat exchanger 12 functions as a condenser during the cooling operation, functions as an evaporator during the heating operation, and performs heat exchange between the air supplied from the outdoor blower 14 such as a fan and the refrigerant. .
 また、室外機1には、圧力を検知する第一圧力検知装置20および第二圧力検知装置21が設けられている。第一圧力検知装置20は、圧縮機10の吐出側と冷媒流路切替装置11とを繋ぐ冷媒配管3に設けられており、圧縮機10により圧縮され、吐出された高温高圧の冷媒の圧力を検知するものである。また、第二圧力検知装置21は、冷媒流路切替装置11と圧縮機10の吸入側とを繋ぐ冷媒配管3に設けられており、圧縮機10に吸入される低温低圧の冷媒の圧力を検知するものである。 Further, the outdoor unit 1 is provided with a first pressure detection device 20 and a second pressure detection device 21 that detect pressure. The first pressure detection device 20 is provided in the refrigerant pipe 3 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and the pressure of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 10 is measured. It is something to detect. The second pressure detection device 21 is provided in the refrigerant pipe 3 that connects the refrigerant flow switching device 11 and the suction side of the compressor 10, and detects the pressure of the low-temperature and low-pressure refrigerant sucked into the compressor 10. To do.
 また、室外機1には、温度を検知する第一温度検知装置22が設けられている。第一温度検知装置22は、圧縮機10の吐出側と冷媒流路切替装置11とを繋ぐ冷媒配管3に設けられており、圧縮機10により圧縮され、吐出された高温高圧の冷媒の温度を検知するものであり、サーミスタ等で構成されている。 In addition, the outdoor unit 1 is provided with a first temperature detection device 22 that detects the temperature. The first temperature detection device 22 is provided in the refrigerant pipe 3 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and the temperature of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 10 is measured. It is to be detected and is composed of a thermistor or the like.
 [室内機2a、2b]
 室内機2a、2bは、空調空間4a、4bを空気調和するものであり、それぞれ負荷側熱交換器40a、40bと、絞り装置41a、41bと、を備えている。また、負荷側熱交換器40a、40bの付近には、負荷側熱交換器40a、40bに空気を送風する室内送風機42a、42b(以下、総称を室内送風機42とする)がそれぞれ設けられている。また、室内機2a、2bは、冷媒配管3を介して室外機1と接続され、冷媒が流入出するようになっている。
[ Indoor units 2a, 2b]
Indoor unit 2a, 2b air-conditions air-conditioned space 4a, 4b, and is equipped with load side heat exchangers 40a, 40b and expansion devices 41a, 41b, respectively. Further, in the vicinity of the load side heat exchangers 40a and 40b, indoor fans 42a and 42b (hereinafter collectively referred to as the indoor fan 42) for blowing air to the load side heat exchangers 40a and 40b are respectively provided. . Moreover, the indoor units 2a and 2b are connected to the outdoor unit 1 via the refrigerant pipe 3, and the refrigerant flows in and out.
 負荷側熱交換器40は、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能し、ファン等の室内送風機42から供給される空気と冷媒との間で熱交換を行い、空調空間4に供給するための暖房用空気または冷房用空気を生成するものである。絞り装置41は、減圧弁および膨張弁としての機能を有し、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成されている。 The load-side heat exchanger 40 functions as an evaporator during the cooling operation, functions as a condenser during the heating operation, and performs heat exchange between the air supplied from the indoor blower 42 such as a fan and the refrigerant, and is thus conditioned space. The air for heating or the air for cooling to supply to 4 is produced | generated. The expansion device 41 has a function as a pressure reducing valve and an expansion valve, expands the refrigerant by depressurizing it, and is configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
 また、室内機2a、2bには、温度を検知する第二温度検知装置50a、50b(以下、総称を第二温度検知装置50とする)、第三温度検知装置51a、51b(以下、総称を第三温度検知装置51とする)、および、第四温度検知装置52a、52b(以下、総称を第四温度検知装置52とする)がそれぞれ設けられている。 The indoor units 2a and 2b include second temperature detection devices 50a and 50b (hereinafter collectively referred to as the second temperature detection device 50) for detecting temperature, and third temperature detection devices 51a and 51b (hereinafter referred to as generic names). A third temperature detection device 51) and fourth temperature detection devices 52a and 52b (hereinafter collectively referred to as a fourth temperature detection device 52).
 第二温度検知装置50は、絞り装置41と負荷側熱交換器40とを繋ぐ冷媒配管3に設けられており、冷房運転時に負荷側熱交換器40に流入する冷媒の温度を検知するものである。また、第三温度検知装置51は、負荷側熱交換器40に対して絞り装置41とは反対側の冷媒配管3に設けられており、冷房運転時に負荷側熱交換器40から流出する冷媒の温度を検知するものである。さらに、第四温度検知装置52は、負荷側熱交換器40の空気吸込み部に設けられており、空調空間4の空気温度を検知するものである。 The second temperature detection device 50 is provided in the refrigerant pipe 3 connecting the expansion device 41 and the load side heat exchanger 40, and detects the temperature of the refrigerant flowing into the load side heat exchanger 40 during the cooling operation. is there. Further, the third temperature detection device 51 is provided in the refrigerant pipe 3 on the opposite side of the expansion device 41 with respect to the load side heat exchanger 40, and the refrigerant that flows out of the load side heat exchanger 40 during the cooling operation. It detects temperature. Furthermore, the fourth temperature detection device 52 is provided in the air suction portion of the load-side heat exchanger 40 and detects the air temperature in the conditioned space 4.
 第二温度検知装置50、第三温度検知装置51、および、第四温度検知装置52は、サーミスタ等で構成されている。 The second temperature detection device 50, the third temperature detection device 51, and the fourth temperature detection device 52 are composed of a thermistor or the like.
 [制御装置30]
 また、室外機1は、制御装置30を備えている。制御装置30は、例えば、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成されている。
[Control device 30]
The outdoor unit 1 also includes a control device 30. The control device 30 includes, for example, dedicated hardware or a CPU (also referred to as a central processing unit, a central processing device, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a processor) that executes a program stored in a memory. Has been.
 図10は、本発明の実施の形態に係る空気調和装置100の機能ブロックである。
 制御装置30は、図10に示すように、メイン制御部31と、タイマ部32と、記憶部33と、駆動部34と、を備えている。
 メイン制御部31は、各種検知装置の検知値、および、リモコン(図示せず)からの指示に基づいて、警報装置6のON/OFF、遮断装置7の開閉、換気装置8の回転数(ON/OFF含む)、圧縮機10の周波数、熱源側熱交換器12の室外送風機14の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え、絞り装置41の開度、および、負荷側熱交換器40の室内送風機42の回転数(ON/OFF含む)の制御を駆動部34に指示するものである。
FIG. 10 is a functional block of the air conditioning apparatus 100 according to the embodiment of the present invention.
As shown in FIG. 10, the control device 30 includes a main control unit 31, a timer unit 32, a storage unit 33, and a drive unit 34.
The main control unit 31 turns on / off the alarm device 6, opens / closes the shut-off device 7, and rotates the ventilation device 8 (ON) based on detection values of various detection devices and instructions from a remote controller (not shown). / Off), the frequency of the compressor 10, the rotational speed of the outdoor fan 14 of the heat source side heat exchanger 12 (including ON / OFF), switching of the refrigerant flow switching device 11, opening of the expansion device 41, and load The drive unit 34 is instructed to control the rotational speed (including ON / OFF) of the indoor blower 42 of the side heat exchanger 40.
 なお、各種検知装置には、冷媒検知装置5、第一圧力検知装置20、第二圧力検知装置21、第一温度検知装置22、第二温度検知装置50、第三温度検知装置51、および、第四温度検知装置52が含まれている。 The various detection devices include the refrigerant detection device 5, the first pressure detection device 20, the second pressure detection device 21, the first temperature detection device 22, the second temperature detection device 50, the third temperature detection device 51, and A fourth temperature detection device 52 is included.
 タイマ部32は、時間を計測するものである。記憶部33は、後述する閾値C1等の各種情報を記憶するものである。
 駆動部34は、メイン制御部31からの指示に基づいて、警報装置6のON/OFF、遮断装置7の開閉、換気装置8の回転数(ON/OFF含む)、圧縮機10の周波数、熱源側熱交換器12の室外送風機14の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え、絞り装置41の開度、および、負荷側熱交換器40の室内送風機42の回転数(ON/OFF含む)を制御するものである。
The timer unit 32 measures time. The storage unit 33 stores various information such as a threshold value C1 described later.
Based on instructions from the main control unit 31, the drive unit 34 turns on / off the alarm device 6, opens / closes the shut-off device 7, the rotational speed (including ON / OFF) of the ventilation device 8, the frequency of the compressor 10, and the heat source The rotational speed (including ON / OFF) of the outdoor fan 14 of the side heat exchanger 12, the switching of the refrigerant flow switching device 11, the opening degree of the expansion device 41, and the rotational speed of the indoor fan 42 of the load side heat exchanger 40 (Including ON / OFF).
 なお、本実施の形態では、制御装置30が室外機1に設けられている例を示しているが、それに限定されず、室外機1および室内機2a、2bのユニット毎に別々に設けてもよいし、室外機1または室内機2a、2bのどちらかに設けてもよい。また、制御装置30がタイマ部32および記憶部33を備えている構成としたが、それに限定されず、タイマ部32および記憶部33を制御装置30とは別体として設けられている構成としてもよい。 In the present embodiment, an example in which the control device 30 is provided in the outdoor unit 1 is shown. However, the present invention is not limited thereto, and the control device 30 may be provided separately for each unit of the outdoor unit 1 and the indoor units 2a and 2b. Alternatively, it may be provided in either the outdoor unit 1 or the indoor units 2a and 2b. Further, although the control device 30 includes the timer unit 32 and the storage unit 33, the configuration is not limited thereto, and the timer unit 32 and the storage unit 33 may be provided separately from the control device 30. Good.
 なお、遮断装置7は、室内機2もしくはその近傍から冷媒漏洩が発生した場合に、室外機1から空調空間4への冷媒漏洩を抑制するために、冷媒配管3の流れを遮断するものである。したがって、遮断装置7は、冷媒回路101内の冷媒流れを遮断できればどのようなものでもよく、例えば電磁弁のように開閉のどちらかのみに制御可能なものでもよいし、電子膨張弁のように開度が可変に制御可能なものでもよい。 The shutoff device 7 shuts off the flow of the refrigerant pipe 3 in order to suppress the refrigerant leak from the outdoor unit 1 to the air-conditioned space 4 when the refrigerant leaks from the indoor unit 2 or the vicinity thereof. . Accordingly, the blocking device 7 may be any device as long as it can block the refrigerant flow in the refrigerant circuit 101. For example, the blocking device 7 may be controlled only to open or close like an electromagnetic valve, or like an electronic expansion valve. The opening may be variably controllable.
 [全冷房運転]
 図11は、本発明の実施の形態に係る空気調和装置100の全冷房運転時における冷媒の流れを示す冷媒回路101図である。なお、図11中において、冷媒の流れ方向は、実線矢印で示されている。また、冷媒流路切替装置11は、圧縮機10の吐出側と熱源側熱交換器12とが接続されるように、切り替えられている。この図11では、負荷側熱交換器40a、40bで冷熱負荷が発生している場合を例に、空気調和装置100の全冷房運転について説明する。
[Cooling only]
FIG. 11 is a refrigerant circuit 101 diagram showing the refrigerant flow during the cooling only operation of the air-conditioning apparatus 100 according to the embodiment of the present invention. In FIG. 11, the flow direction of the refrigerant is indicated by solid line arrows. The refrigerant flow switching device 11 is switched so that the discharge side of the compressor 10 and the heat source side heat exchanger 12 are connected. In this FIG. 11, the cooling only operation of the air conditioner 100 will be described by taking as an example a case where a cooling load is generated in the load side heat exchangers 40a and 40b.
 全冷房運転の場合、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。熱源側熱交換器12に流入した高温高圧ガス冷媒は、室外空気に放熱しながら凝縮し高圧の液冷媒となる。そして、熱源側熱交換器12から流出した高圧の液冷媒は室外機1から流出し、冷媒配管3を通り、室内機2a、2bに流入する。このとき、遮断装置7a、7bは、冷媒流れの妨げとならないように開状態となっている。 In the case of the cooling only operation, the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11. The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 is condensed while dissipating heat to the outdoor air, and becomes high-pressure liquid refrigerant. Then, the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1, passes through the refrigerant pipe 3, and flows into the indoor units 2a and 2b. At this time, the blocking devices 7a and 7b are in an open state so as not to hinder the refrigerant flow.
 室内機2a、2bに流入した高圧の液冷媒は、絞り装置41a、41bによって低温低圧の二相冷媒に減圧された後、蒸発器として作用する負荷側熱交換器40a、40bに流入し、室内空気から吸熱することで室内空気を冷却し、低温低圧のガス冷媒となる。負荷側熱交換器40a、40bから流出した低温低圧のガス冷媒は、冷媒配管3を通り室外機1へ流入する。室外機1に流入した冷媒は、冷媒流路切替装置11およびアキュムレータ13を通り、圧縮機10へ吸入される。 The high-pressure liquid refrigerant that has flowed into the indoor units 2a and 2b is decompressed by the expansion devices 41a and 41b into a low-temperature and low-pressure two-phase refrigerant, and then flows into the load- side heat exchangers 40a and 40b that act as evaporators. By absorbing heat from the air, the indoor air is cooled and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the load- side heat exchangers 40 a and 40 b flows into the outdoor unit 1 through the refrigerant pipe 3. The refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10.
 制御装置30は、第二温度検知装置50a、50bで検知された温度と、第三温度検知装置51a、51bで検知された温度との差として得られるスーパーヒート(過熱度)が一定となるように、絞り装置41a、41bの開度を制御する。そうすることで、空調空間4a、4bの熱負荷に応じた能力を発揮することができ、効率のよい運転が可能となる。 The control device 30 makes the superheat (superheat degree) obtained as a difference between the temperature detected by the second temperature detection devices 50a and 50b and the temperature detected by the third temperature detection devices 51a and 51b constant. In addition, the opening degree of the expansion devices 41a and 41b is controlled. By doing so, the capability according to the thermal load of air-conditioned space 4a, 4b can be exhibited, and efficient driving | operation becomes possible.
 [全暖房運転]
 図12は、本発明の実施の形態に係る空気調和装置100の全暖房運転時における冷媒の流れを示す冷媒回路101図である。なお、図12中において、冷媒の流れ方向は、実線矢印で示されている。また、冷媒流路切替装置11は、圧縮機10の吐出側と遮断装置7a、7bとが接続されるように、切り替えられている。この図12では、負荷側熱交換器40a、40bで温熱負荷が発生している場合を例に、空気調和装置100の全暖房運転について説明する。
[All heating operation]
FIG. 12 is a refrigerant circuit 101 diagram illustrating the refrigerant flow during the heating only operation of the air-conditioning apparatus 100 according to the embodiment of the present invention. In FIG. 12, the flow direction of the refrigerant is indicated by solid line arrows. The refrigerant flow switching device 11 is switched so that the discharge side of the compressor 10 and the shut-off devices 7a and 7b are connected. In FIG. 12, the heating operation of the air conditioner 100 will be described by taking as an example a case where a thermal load is generated in the load- side heat exchangers 40a and 40b.
 全暖房運転の場合、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して冷媒配管3を通り室内機2a、2bに流入する。このとき、遮断装置7a、7bは、冷媒流れの妨げとならないように開状態となっている。 In the case of the all-heating operation, the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the indoor units 2a and 2b through the refrigerant pipe 3 via the refrigerant flow switching device 11. At this time, the blocking devices 7a and 7b are in an open state so as not to hinder the refrigerant flow.
 室内機2a、2bに流入した高温高圧ガス冷媒は、負荷側熱交換器40a、40bで室内空気に放熱し、高圧の液冷媒となり、絞り装置41a、41bへ流入する。そして、絞り装置41a、41bによって低温低圧の二相冷媒に減圧された後、室内機2a、2bを流出し、冷媒配管3を通り、室外機1へ流入する。 The high-temperature and high-pressure gas refrigerant that has flowed into the indoor units 2a and 2b radiates heat to the indoor air in the load- side heat exchangers 40a and 40b, becomes high-pressure liquid refrigerant, and flows into the expansion devices 41a and 41b. Then, after the pressure is reduced to the low-temperature and low-pressure two-phase refrigerant by the expansion devices 41 a and 41 b, the indoor units 2 a and 2 b flow out, and the refrigerant pipe 3 flows into the outdoor unit 1.
 室外機1へ流入した低温低圧の二相冷媒は、熱源側熱交換器12に流入し、室外空気から吸熱することで低温低圧のガス冷媒となる。熱源側熱交換器12を出た低温低圧のガス冷媒は、冷媒流路切替装置11およびアキュムレータ13を通り、圧縮機10へ吸入される。 The low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 and absorbs heat from the outdoor air to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant exiting the heat source side heat exchanger 12 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10.
 制御装置30は、第一圧力検知装置20で検知された圧力から算出された冷媒の飽和液温度と、第二温度検知装置50で検知された温度との差として得られるサブクール(過冷却度)が一定となるように、絞り装置41a、41bの開度を制御する。そうすることで、空調空間4a、4bの熱負荷に応じた能力を発揮することができ、効率のよい運転が可能となる。 The control device 30 is a subcool (supercooling degree) obtained as a difference between the saturated liquid temperature of the refrigerant calculated from the pressure detected by the first pressure detection device 20 and the temperature detected by the second temperature detection device 50. Is controlled so that the opening degree of the expansion devices 41a and 41b is constant. By doing so, the capability according to the thermal load of air-conditioned space 4a, 4b can be exhibited, and efficient driving | operation becomes possible.
 次に、本実施の形態に係る空気調和装置100の冷媒漏洩の誤検知回避動作について説明する。
 図13は、従来の空気調和装置の冷媒漏洩の誤検知動作の一例を説明する図であり、図14は、本発明の実施の形態に係る空気調和装置100の冷媒漏洩の誤検知回避動作を説明する図である。
 従来、空気調和装置の制御装置は冷媒濃度の閾値を有し、冷媒漏洩装置により検知した検知値(冷媒濃度)が閾値を超えた場合に、冷媒漏洩が発生したと判定する方法が一般的であった。しかしながら、この手法では、図13に示すように雑ガス、ノイズ等によって一次的に冷媒濃度が閾値を超えてしまった場合でも冷媒漏洩と判定してしまい、冷媒漏洩の誤検知が発生してしまっていた。
Next, the misdetection avoidance operation of the refrigerant leakage of the air conditioning apparatus 100 according to the present embodiment will be described.
FIG. 13 is a diagram for explaining an example of an erroneous detection operation for refrigerant leakage of a conventional air conditioner, and FIG. 14 illustrates an erroneous detection avoidance operation for refrigerant leakage of the air conditioner 100 according to the embodiment of the present invention. It is a figure explaining.
2. Description of the Related Art Conventionally, a control device for an air conditioner has a refrigerant concentration threshold value, and when a detection value (refrigerant concentration) detected by the refrigerant leakage device exceeds the threshold value, a method of determining that refrigerant leakage has been common. there were. However, with this method, as shown in FIG. 13, even if the refrigerant concentration temporarily exceeds the threshold value due to miscellaneous gas, noise, etc., it is determined that the refrigerant is leaking, and erroneous detection of refrigerant leakage has occurred. It was.
 そこで、本実施の形態に係る空気調和装置100の制御装置30は、前述のような冷媒漏洩の誤検知を回避するための冷媒漏洩判定機能を備えたことを特徴としている。
 以下、冷媒漏洩判定機能についての詳しい説明を行う。
Therefore, the control device 30 of the air conditioning apparatus 100 according to the present embodiment is characterized by having a refrigerant leakage determination function for avoiding the erroneous detection of the refrigerant leakage as described above.
Hereinafter, the refrigerant leakage determination function will be described in detail.
 [冷媒漏洩判定機能]
 空気調和装置100の制御装置30の冷媒漏洩判定機能とは、冷媒漏洩判定時間および冷媒濃度の閾値の二つを用いて冷媒漏洩が発生しているかどうかを判定する機能である。
[Refrigerant leak judgment function]
The refrigerant leakage determination function of the control device 30 of the air conditioner 100 is a function of determining whether refrigerant leakage has occurred using two of the refrigerant leakage determination time and the refrigerant concentration threshold.
 以下に、冷媒漏洩判定機能に関するより具体的な説明を行う。冷媒漏洩が発生した場合、冷媒漏洩が発生してから空調空間4の冷媒濃度がC(kg/m)となるまでの時間ΔT(s)は次式で表される。 Hereinafter, a more specific description regarding the refrigerant leakage determination function will be given. When refrigerant leakage occurs, the time ΔT (s) from when the refrigerant leakage occurs until the refrigerant concentration in the conditioned space 4 reaches C (kg / m 3 ) is expressed by the following equation.
[数1]
ΔT=C×A×H/G                     (1)
[Equation 1]
ΔT = C × A × H / G (1)
 式1中のAは空調空間4の床面積(m)、Hは空調空間4の天井高さ(m)、Gは冷媒の漏洩速度(kg/s)である。 In Equation 1, A is the floor area (m 2 ) of the conditioned space 4, H is the ceiling height (m) of the conditioned space 4, and G is the refrigerant leakage rate (kg / s).
 また、冷媒濃度の閾値をC1(kg/m)とすると、冷媒漏洩が発生してから閾値C1に到達するまでの時間ΔT1(s)は次式で表される。 If the refrigerant concentration threshold is C1 (kg / m 3 ), the time ΔT1 (s) from the occurrence of refrigerant leakage until the threshold C1 is reached is expressed by the following equation.
[数2]
ΔT1=C1×A×H/G                   (2)
[Equation 2]
ΔT1 = C1 × A × H / G (2)
 また、燃焼下限界LFL(kg/m)を用いて、空調空間4の冷媒濃度がLFL/2(kg/m)になる前に冷媒漏洩を検知すれば、空調空間4には問題となるような可燃域ができないことが、冷凍空調学会発行のRisk Assessment of Mildly Flammable Refrigerants Final Report 2016(2017年3月)の221ページ(http://www.jsrae.or.jp/committee/binensei/final_report_2016r1_en.pdf)で報告されている。 Further, if the refrigerant leakage is detected before the refrigerant concentration in the conditioned space 4 becomes LFL / 2 (kg / m 3 ) using the lower combustion limit LFL (kg / m 3 ), there is a problem in the conditioned space 4. The flammable area that cannot be obtained is described by Risk Association of Mildly Refrigerators Final Report 2016 (March 2017) published by the Japan Society of Refrigeration and Air Conditioning, page 221 (http://www.jsrae.orte.jp/bite final_report_2016r1_en.pdf).
 したがって、空調空間4の冷媒濃度がLFL/2(kg/m)になる前に冷媒漏洩を検知して、安全対策装置を動作させれば、空調空間4内での着火を抑制することができる。ここで、冷媒漏洩が発生してから空調空間4の冷媒濃度がLFL/2になるまでの時間ΔT2(s)は次式で表される。 Therefore, if the refrigerant leakage is detected before the refrigerant concentration in the air-conditioned space 4 reaches LFL / 2 (kg / m 3 ) and the safety countermeasure device is operated, ignition in the air-conditioned space 4 can be suppressed. it can. Here, the time ΔT2 (s) from when the refrigerant leakage occurs until the refrigerant concentration in the air-conditioned space 4 becomes LFL / 2 is expressed by the following equation.
[数3]
ΔT2=(LFL/2)×A×H/G              (3)
[Equation 3]
ΔT2 = (LFL / 2) × A × H / G (3)
 以上より、安全対策装置がすぐに動作する場合、制御装置30は、冷媒漏洩が発生した時の時間を基準として、冷媒検知装置5によりΔT1秒後に閾値C1の冷媒濃度を検知し、空調空間4の冷媒濃度がLFL/2になるΔT2秒後よりも前に冷媒漏洩が発生したと判定すれば、安全性は確保されていることになる。 As described above, when the safety countermeasure device operates immediately, the control device 30 detects the refrigerant concentration at the threshold C1 after ΔT1 seconds by the refrigerant detection device 5 with reference to the time when the refrigerant leakage occurs, and the conditioned space 4 If it is determined that the refrigerant leakage has occurred before ΔT2 seconds after the refrigerant concentration becomes LFL / 2, the safety is ensured.
 冷媒漏洩が発生してから制御装置30が冷媒漏洩と判定するまでに許容される最大時間である判定時間ΔTa(s)は次式で表される。 The determination time ΔTa (s), which is the maximum time allowed until the control device 30 determines that the refrigerant leaks after the refrigerant leakage occurs, is expressed by the following equation.
[数4]
ΔTa=ΔT2-ΔT1=((LFL/2)-C1)×A×H/G (4)
[Equation 4]
ΔTa = ΔT2−ΔT1 = ((LFL / 2) −C1) × A × H / G (4)
 冷媒漏洩は、冷媒配管3の亀裂および室内機2内の熱交換器の腐食等によって発生する。すなわち、一旦冷媒漏洩が発生すると、冷媒が漏れている穴が塞がることはないため、空気調和装置100内の冷媒が少なくなるまで、冷媒漏洩が継続する。一方、冷媒漏洩の誤検知の要因となる除菌用のスプレー等は、短い時間に散布される。 The refrigerant leakage occurs due to cracks in the refrigerant pipe 3 and corrosion of the heat exchanger in the indoor unit 2. That is, once the refrigerant leakage occurs, the hole through which the refrigerant leaks is not blocked, and thus the refrigerant leakage continues until the refrigerant in the air conditioner 100 decreases. On the other hand, sterilization spray or the like that causes erroneous detection of refrigerant leakage is sprayed in a short time.
 したがって、冷媒漏洩の誤検知を抑制するためには、冷媒検知装置5により閾値C1を超えた冷媒濃度を検知してから、一定時間連続して閾値C1を超えた冷媒濃度を検知した場合に冷媒漏洩と判定する、という方法が考えられる。ただし、冷媒検知装置5からの検知信号の伝送エラーが発生する可能性はあるが、信号の伝送エラーは発生したとしても小さな割合であるため、閾値C1を超えている時間が所定の割合以上であることを判定基準とすると、信号の伝送エラーを抑制できる。 Therefore, in order to suppress erroneous detection of refrigerant leakage, the refrigerant is detected when the refrigerant concentration exceeding the threshold C1 is detected for a certain period of time after the refrigerant detection device 5 detects the refrigerant concentration exceeding the threshold C1. A method of determining a leak is conceivable. However, although there is a possibility that a transmission error of the detection signal from the refrigerant detection device 5 may occur, even if a transmission error of the signal occurs, it is a small percentage, so the time exceeding the threshold C1 is a predetermined percentage or more. If there is a criterion, signal transmission errors can be suppressed.
 すなわち、制御装置30が、冷媒漏洩が発生してから判定時間ΔTa(s)が経過するまでに、冷媒検知装置5により検知した冷媒濃度が、閾値C1を常時超えている、または、閾値C1を超えている時間が所定の割合以上である、という判定基準に基づいて、冷媒の漏洩判定を行うことで、冷媒漏洩の誤検知を抑制することができる。 In other words, the refrigerant concentration detected by the refrigerant detection device 5 always exceeds the threshold C1 or exceeds the threshold C1 until the determination time ΔTa (s) elapses after the refrigerant leakage occurs. By performing the refrigerant leakage determination based on the determination criterion that the exceeding time is equal to or greater than a predetermined ratio, it is possible to suppress erroneous detection of refrigerant leakage.
 冷媒の漏洩判定は、冷媒検知装置5により閾値C1を超えた冷媒濃度を検知してから判定時間ΔTa(s)が経過するまで必ずしも待つ必要はなく、冷媒検知装置5の信頼性が高ければ、判定時間ΔTa(s)が経過する前に冷媒の漏洩判定をしてもよい。 The refrigerant leakage determination does not necessarily have to wait until the determination time ΔTa (s) elapses after the refrigerant detection device 5 detects the refrigerant concentration exceeding the threshold C1, and if the refrigerant detection device 5 has high reliability, The refrigerant leakage determination may be performed before the determination time ΔTa (s) elapses.
 空気調和装置100の制御装置30の制御間隔は、短い場合でも10秒以上であり、冷媒漏洩の誤検知を抑制するためには、この制御間隔で複数回冷媒漏洩を検知する必要がある。また、除菌スプレー等を散布する時間は、高々数秒程度と思われる。よって、冷媒検知装置5により20秒以上連続して閾値C1を超えた冷媒濃度を検知することが、最短の冷媒漏洩の判定時間であり、判定時間ΔTaは20(s)以上の値とする必要がある。 The control interval of the control device 30 of the air conditioner 100 is 10 seconds or more even if it is short, and it is necessary to detect refrigerant leakage a plurality of times at this control interval in order to suppress erroneous detection of refrigerant leakage. In addition, the spraying time of the disinfecting spray or the like seems to be about several seconds at most. Therefore, detecting the refrigerant concentration exceeding the threshold C1 continuously for 20 seconds or more by the refrigerant detection device 5 is the shortest refrigerant leakage determination time, and the determination time ΔTa needs to be a value of 20 (s) or more. There is.
 また、冷媒回路101に充填されている冷媒が全部漏洩してしまう前に、冷媒の漏洩判定を行う必要があるため、冷媒回路101に充填されている冷媒量M(kg)は次式を満たす必要がある。 In addition, since it is necessary to determine the leakage of the refrigerant before all the refrigerant filled in the refrigerant circuit 101 leaks, the refrigerant amount M (kg) filled in the refrigerant circuit 101 satisfies the following equation: There is a need.
[数5]
M≧ΔT2×G                        (5)
[Equation 5]
M ≧ ΔT2 × G (5)
 また、冷凍空調学会発行のRisk Assessment of Mildly Flammable Refrigerants Final Report 2016(2017年3月)の221ページ(http://www.jsrae.or.jp/committee/binensei/final_report_2016r1_en.pdf)の198ページによると、空調調和装置の室内機での冷媒の漏洩速度は10(kg/h)=10/3600(kg/s)となっている。また、標準的な室内の天井高さは2.2(m)であることも考慮すると式(1)から式(5)は、それぞれ次のように表される。 In addition, 221 pages (http: // www. Then, the leakage rate of the refrigerant in the indoor unit of the air conditioner is 10 (kg / h) = 10/3600 (kg / s). Further, considering that the standard indoor ceiling height is 2.2 (m), Expressions (1) to (5) are respectively expressed as follows.
[数1A]
ΔT=C×A×H/G
  =C×A×2.2/(10/3600)
  =792×C×A                     (6)
[Formula 1A]
ΔT = C × A × H / G
= C x A x 2.2 / (10/3600)
= 792 × C × A (6)
[数2A]
ΔT1=C1×A×H/G
   =C1×A×2.2/(10/3600)
   =792×C1×A                   (7)
[Formula 2A]
ΔT1 = C1 × A × H / G
= C1 * A * 2.2 / (10/3600)
= 792 × C1 × A (7)
[数3A]
ΔT2=(LFL/2)×A×H/G
   =(LFL/2)×A×2.2/(10/3600)
   =396×LFL×A                  (8)
[Formula 3A]
ΔT2 = (LFL / 2) × A × H / G
= (LFL / 2) x A x 2.2 / (10/3600)
= 396 x LFL x A (8)
[数4A]
ΔTa=((LFL/2)-C1)×A×H/G
   =((LFL/2)-C1)×A×2.2/(10/3600)
   =792×(LFL/2-C1)×A           (9)
[数5A]
 M≧ΔT2×G
  =(LFL/2)×A×(H/G)×G
  =396×LFL×A×G
  =(LFL/2)×A×H
  =(LFL/2)×A×2.2
  =1.1×LFL×A                  (10)
[Formula 4A]
ΔTa = ((LFL / 2) −C1) × A × H / G
= ((LFL / 2) -C1) × A × 2.2 / (10/3600)
= 792 x (LFL / 2-C1) x A (9)
[Formula 5A]
M ≧ ΔT2 × G
= (LFL / 2) x A x (H / G) x G
= 396 x LFL x A x G
= (LFL / 2) x A x H
= (LFL / 2) x A x 2.2
= 1.1 x LFL x A (10)
 例として、冷媒回路101に充填されている冷媒をR32冷媒とし、空調空間4の床面積Aを9(m)とし、冷媒検知装置5の閾値C1を0.0307(kg/m)とすると、R32冷媒のLFLは0.307(kg/m)であるため、ΔT1は約219秒(≒3.7分)、ΔT2は約1094秒(≒18.2分)、ΔTaは約875秒(≒14.5分)、Mは約3.0(kg)となる。 As an example, the refrigerant filled in the refrigerant circuit 101 is R32 refrigerant, the floor area A of the air-conditioned space 4 is 9 (m 2 ), and the threshold C1 of the refrigerant detector 5 is 0.0307 (kg / m 3 ). Then, since the LFL of the R32 refrigerant is 0.307 (kg / m 3 ), ΔT1 is about 219 seconds (≈3.7 minutes), ΔT2 is about 1094 seconds (≈18.2 minutes), and ΔTa is about 875. Second (≈14.5 minutes), M is about 3.0 (kg).
 前述のR32冷媒の例においては、閾値C1を超えた冷媒濃度を検知してから冷媒漏洩と判定するまでに許容される最大時間である、判定時間ΔTa(s)を約875秒に設定しても空調空間4の安全性は担保できる。当然であるが、判定時間ΔTa(s)は許容される最大時間であるため、実際の運用の際には、より小さい値に設定してもよい。 In the example of the R32 refrigerant described above, the determination time ΔTa (s), which is the maximum time allowed from the detection of the refrigerant concentration exceeding the threshold C1 to the determination of refrigerant leakage, is set to about 875 seconds. However, the safety of the air-conditioned space 4 can be secured. Naturally, the determination time ΔTa (s) is the maximum allowable time, and may be set to a smaller value in actual operation.
 なお、冷媒回路101に充填される冷媒量はあらかじめ決まっているため、漏洩する冷媒のLFLはあらかじめ分かっている。また、使用される冷媒検知装置5によって、閾値C1もあらかじめ決まっている。そこで、式(9)のLFLおよびC1は定数として設定することが可能であり、R32冷媒を使用し、閾値C1を0.0307(kg/m)とすると、式(9)は次式になり、ΔTaは床面積Aのみの値で算出できる。 Since the amount of refrigerant charged in the refrigerant circuit 101 is determined in advance, the LFL of the refrigerant that leaks is known in advance. Further, the threshold C1 is also determined in advance by the refrigerant detection device 5 used. Therefore, LFL and C1 in equation (9) can be set as constants, and when R32 refrigerant is used and threshold C1 is 0.0307 (kg / m 3 ), equation (9) is expressed by the following equation: Therefore, ΔTa can be calculated using only the floor area A.
[数4B]
 ΔTa=((LFL/2)-C1)×A×H/G
    =792×(0.307/2-0.037)×A
    =92.268×A                 (11)
[Formula 4B]
ΔTa = ((LFL / 2) −C1) × A × H / G
= 792 x (0.307 / 2-0.037) x A
= 92.268 × A (11)
 また、一般的な空調空間4の空調負荷Lは0.1(kW/m)等の値を取る。室内機2の空調能力Q(kW)は制御装置30の記憶部33に記憶されているため、この室内機2の空調能力Qおよび空調負荷Lを用いれば、床面積Aを求めることができ、次式でもΔTaが計算できる。すなわち、ΔTaは室内機2の空調能力Qのみの値で算出できる。なお、1つの空調空間4に複数の室内機2が設置されている場合は、その複数の室内機2の合計の空調能力をQとすればよい。 The air conditioning load L of the general air conditioned space 4 takes a value such as 0.1 (kW / m 2 ). Since the air conditioning capability Q (kW) of the indoor unit 2 is stored in the storage unit 33 of the control device 30, the floor area A can be obtained by using the air conditioning capability Q and the air conditioning load L of the indoor unit 2, ΔTa can also be calculated by the following equation. That is, ΔTa can be calculated using only the value of the air conditioning capability Q of the indoor unit 2. When a plurality of indoor units 2 are installed in one air-conditioned space 4, the total air conditioning capacity of the plurality of indoor units 2 may be Q.
[数4C]
 ΔTa=((LFL/2)-C1)×(Q/L)×H/G
    =792×(0.307/2-0.037)×(Q/0.1)
    =922.68×Q                 (12)
[Formula 4C]
ΔTa = ((LFL / 2) −C1) × (Q / L) × H / G
= 792 x (0.307 / 2-0.037) x (Q / 0.1)
= 922.68 × Q (12)
 また、式(9)を書き換えると次式になり、式(13)で計算される値でΔTaを規定してよい。 Further, when equation (9) is rewritten, the following equation is obtained, and ΔTa may be defined by the value calculated by equation (13).
[数4D]
 ΔTa=((LFL/2)-C1)×(Q/L)×H/G
    =792×((LFL/2)-C1)×(Q/0.1)
    =7920×((LFL/2)-C1)×Q      (13)
[Formula 4D]
ΔTa = ((LFL / 2) −C1) × (Q / L) × H / G
= 792 × ((LFL / 2) −C1) × (Q / 0.1)
= 7920 × ((LFL / 2) −C1) × Q (13)
 同様に、式(10)を書き換えると次式になり、式(14)で計算される値でMを規定してよい。 Similarly, when equation (10) is rewritten, the following equation is obtained, and M may be defined by the value calculated by equation (14).
[数5B]
 M≧ΔT2×G
  =(LFL/2)×(Q/L)×(H/G)×G
  =(LFL/2)×(Q/L)×H
  =(LFL/2)×(Q/0.1)×2.2
  =11×LFL×Q                   (14)
[Formula 5B]
M ≧ ΔT2 × G
= (LFL / 2) x (Q / L) x (H / G) x G
= (LFL / 2) x (Q / L) x H
= (LFL / 2) x (Q / 0.1) x 2.2
= 11 x LFL x Q (14)
 したがって、制御装置30は、図14に示すように、電気的なノイズおよび空気中の有機化合物系を初めとする雑ガスによって、冷媒検知装置5により閾値C1を超えた冷媒濃度を検知してもすぐには冷媒漏洩と判定しない。そして、制御装置30は、判定時間ΔTa(s)の間における冷媒検知装置5の検知値Cdから、本当に冷媒漏洩が発生しているかどうかを判定することが可能となり、冷媒漏洩の誤検知を抑制することが可能となる。 Therefore, as shown in FIG. 14, the control device 30 may detect the refrigerant concentration exceeding the threshold value C1 by the refrigerant detection device 5 using electrical noise and other gases including organic compound system in the air. It is not immediately determined that the refrigerant has leaked. Then, the control device 30 can determine whether or not refrigerant leakage has actually occurred from the detection value Cd of the refrigerant detection device 5 during the determination time ΔTa (s), and suppress erroneous detection of refrigerant leakage. It becomes possible to do.
 次に、冷媒漏洩の誤検知抑制方法に関する具体的例を説明する。判定時間ΔTa(s)を用いた冷媒漏洩の誤検知抑制方法として、以下のような対応が可能である。
 冷媒漏洩が発生していると判定する条件を、冷媒検知装置5による検知値Cdが、閾値C1(kg/m)を超えてから判定時間ΔTa(s)が経過するまでの間、常時閾値C1を超えているという条件にすると、空気中の雑ガスによる冷媒漏洩の誤検知を抑制することができる。
Next, a specific example regarding a method for suppressing erroneous detection of refrigerant leakage will be described. The following measures can be taken as a method for suppressing erroneous detection of refrigerant leakage using the determination time ΔTa (s).
The condition for determining that the refrigerant leakage has occurred is always the threshold value until the determination time ΔTa (s) elapses after the detection value Cd by the refrigerant detection device 5 exceeds the threshold value C1 (kg / m 3 ). Under the condition that it exceeds C1, erroneous detection of refrigerant leakage due to miscellaneous gas in the air can be suppressed.
 その他にも、冷媒漏洩が発生していると判定する条件を、冷媒検知装置5による検知値Cdが、閾値C1(kg/m)を超えてから判定時間ΔTa(s)が経過するまでの間、閾値C1を超えている割合が所定割合以上であるという条件にしても、空気中の雑ガスによる冷媒漏洩の誤検知を抑制することができる。 In addition, the condition for determining that a refrigerant leak has occurred is that the detection value Cd by the refrigerant detection device 5 exceeds the threshold value C1 (kg / m 3 ) until the determination time ΔTa (s) elapses. In the meantime, even if the ratio that the threshold value C1 is exceeded is a predetermined ratio or more, erroneous detection of refrigerant leakage due to miscellaneous gas in the air can be suppressed.
 さらに別の判定条件として、冷媒検知装置5による検知値Cdを一定間隔毎にサンプリングし、冷媒検知装置5による検知値Cdが、判定時間ΔTa(s)が経過するまでの間、基準回数連続して閾値C1を超えている場合に冷媒漏洩が発生していると判定してもよい。 As another determination condition, the detection value Cd by the refrigerant detection device 5 is sampled at regular intervals, and the detection value Cd by the refrigerant detection device 5 continues for the reference number of times until the determination time ΔTa (s) elapses. If the threshold value C1 is exceeded, it may be determined that refrigerant leakage has occurred.
 なお、本実施の形態では、前述の冷媒漏洩判定機能の説明に際して、冷媒回路101に充填されている冷媒を可燃性冷媒であるR32冷媒とし、冷媒の燃焼下限界LFLを用いた説明を行った。しかしながら、冷媒回路101に充填されている冷媒を可燃性冷媒に限定するものではなく、不燃性冷媒または毒性冷媒とし、不燃性冷媒および毒性冷媒の冷媒濃度限界RCL(Refrigerant Concentration Limit)を用いても、同様の効果を得ることができる。 In the present embodiment, in the description of the above-described refrigerant leakage determination function, the refrigerant filled in the refrigerant circuit 101 is R32 refrigerant, which is a flammable refrigerant, and the refrigerant lower combustion limit LFL is used. . However, the refrigerant filled in the refrigerant circuit 101 is not limited to the flammable refrigerant, but may be a nonflammable refrigerant or a toxic refrigerant, and the refrigerant concentration limit RCL (Refrigerant Concentration Limit) of the nonflammable refrigerant and the toxic refrigerant may be used. The same effect can be obtained.
 図15は、本発明の実施の形態に係る空気調和装置100の冷媒漏洩の検知動作の制御フローの第一の例を示す図である。
 次に、本実施の形態に係る空気調和装置100の冷媒漏洩の検知動作の制御フローの第一の例について、図15を用いて説明する。
FIG. 15 is a diagram illustrating a first example of a control flow of the refrigerant leakage detection operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
Next, a first example of the control flow of the refrigerant leak detection operation of the air-conditioning apparatus 100 according to the present embodiment will be described with reference to FIG.
 まず、メイン制御部31は、冷媒検知装置5による検知値Cdが、記憶部33に記憶されている閾値C1を超えているかどうかを判定する(ステップS1A)。 First, the main control unit 31 determines whether or not the detection value Cd detected by the refrigerant detection device 5 exceeds the threshold value C1 stored in the storage unit 33 (step S1A).
 メイン制御部31は、検知値Cdが、閾値C1を超えていると判定した場合(ステップS1AのYES)、タイマ部32により時間tの計測を開始する(ステップS2A)。 When the main control unit 31 determines that the detected value Cd exceeds the threshold C1 (YES in step S1A), the main control unit 31 starts measuring the time t by the timer unit 32 (step S2A).
 ステップS2Aの後、メイン制御部31は、時間tが、記憶部33に記憶されている判定時間ΔTaを超えているかどうかを判定する(ステップS3A)。 After step S2A, the main control unit 31 determines whether the time t exceeds the determination time ΔTa stored in the storage unit 33 (step S3A).
 メイン制御部31は、時間tが、判定時間ΔTaを超えていないと判定した場合(ステップS3AのNO)、検知値Cdが、閾値C1を超えているかどうかを判定する(ステップS4A)。 When the main control unit 31 determines that the time t does not exceed the determination time ΔTa (NO in step S3A), the main control unit 31 determines whether the detection value Cd exceeds the threshold C1 (step S4A).
 ステップS4Aにおいて、メイン制御部31は、検知値Cdが、閾値C1を超えていないと判定した場合(ステップS4AのNO)、処理を終了する。 In step S4A, when the main control unit 31 determines that the detection value Cd does not exceed the threshold value C1 (NO in step S4A), the process ends.
 一方、メイン制御部31は、検知値Cdが、閾値C1を超えていると判定した場合(ステップS4AのYES)、ステップS3Aに戻る。 On the other hand, when the main control unit 31 determines that the detection value Cd exceeds the threshold value C1 (YES in step S4A), the process returns to step S3A.
 ステップS3Aにおいて、メイン制御部31は、時間tが、判定時間ΔTaを超えていると判定した場合(ステップS3AのYES)、駆動部34により安全対策装置を動作させる。つまり、メイン制御部31は、警報装置6ならONにし、遮断装置7なら開にし、換気装置8ならONにする(ステップS5A)。 In step S3A, when the main control unit 31 determines that the time t exceeds the determination time ΔTa (YES in step S3A), the drive unit 34 operates the safety measure device. That is, the main control unit 31 turns on the alarm device 6, opens the shut-off device 7, and turns on the ventilation device 8 (step S <b> 5 </ b> A).
 以上より、メイン制御部31は、検知値Cdが、閾値C1を超えている間、ステップS3AおよびS4Aの処理を繰り返し、判定時間ΔTaの間、検知値Cdが閾値C1を常時超えた場合、安全対策装置を動作させている。 As described above, the main control unit 31 repeats the processes of steps S3A and S4A while the detection value Cd exceeds the threshold value C1, and if the detection value Cd always exceeds the threshold value C1 during the determination time ΔTa, The countermeasure device is operating.
 図16は、本発明の実施の形態に係る空気調和装置100の冷媒漏洩の検知動作の制御フローの第二の例を示す図である。
 次に、本実施の形態に係る空気調和装置100の冷媒漏洩の検知動作の制御フローの第二の例について、図16を用いて説明する。
FIG. 16 is a diagram illustrating a second example of a control flow of the refrigerant leakage detection operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
Next, a second example of the control flow of the refrigerant leak detection operation of the air-conditioning apparatus 100 according to the present embodiment will be described with reference to FIG.
 まず、メイン制御部31は、タイマ部32により時間tの計測を開始し、オン時間Δtonおよびオフ時間Δtoffをリセットして0にする(ステップS1B)。ここで、オン時間Δtonとは、検知値Cdが、閾値C1を超えた時間の合計であり、オフ時間Δtoffとは、検知値Cdが、閾値C1を超えていない時間の合計である。次に、メイン制御部31は、冷媒検知装置5による検知値Cdが、記憶部33に記憶されている閾値C1を超えているかどうかを判定する(ステップS2B)。 First, the main control unit 31 starts measuring the time t by the timer unit 32, and resets the on time Δton and the off time Δtoff to 0 (step S1B). Here, the on-time Δton is the total time that the detected value Cd exceeds the threshold value C1, and the off-time Δtoff is the total time that the detected value Cd does not exceed the threshold value C1. Next, the main control unit 31 determines whether or not the detection value Cd by the refrigerant detection device 5 exceeds the threshold value C1 stored in the storage unit 33 (step S2B).
 メイン制御部31は、検知値Cdが、閾値C1を超えていると判定した場合(ステップS2BのYES)、オン時間Δtonに時間を加算し(ステップS3B)、ステップS5Bに進む。 When the main control unit 31 determines that the detection value Cd exceeds the threshold C1 (YES in step S2B), the main control unit 31 adds time to the on-time Δton (step S3B), and proceeds to step S5B.
 一方、メイン制御部31は、検知値Cdが、閾値C1を超えていないと判定した場合(ステップS2BのNO)、オフ時間Δtoffに時間を加算し(ステップS4B)、ステップS5Bに進む。なお、ステップS4Bの処理は、省略可能である。 On the other hand, when the main control unit 31 determines that the detection value Cd does not exceed the threshold C1 (NO in step S2B), the main control unit 31 adds time to the off time Δtoff (step S4B), and proceeds to step S5B. Note that the process of step S4B can be omitted.
 ここで、ステップS3BおよびS4Bにおいて、オン時間Δtonまたはオフ時間Δtoffに加算する時間とは、前回のステップS2Bでの判定処理を行ってから今回のステップS2Bを行うまでの時間である。例えば、メイン制御部31が、1秒毎にステップS2Bでの判定処理行っている場合は、上記の加算する時間は1秒となる。 Here, in steps S3B and S4B, the time to be added to the on time Δton or the off time Δtoff is the time from the determination process in the previous step S2B to the current step S2B. For example, when the main control unit 31 performs the determination process in step S2B every second, the time to add is 1 second.
 ステップS5Bにおいて、メイン制御部31は、時間tが、記憶部33に記憶されている判定時間ΔTaを超えているかどうかを判定する。 In step S5B, the main control unit 31 determines whether or not the time t exceeds the determination time ΔTa stored in the storage unit 33.
 メイン制御部31は、時間tが、判定時間ΔTaを超えていると判定した場合(ステップS5BのYES)、ステップS6Bに進む。 When the main control unit 31 determines that the time t exceeds the determination time ΔTa (YES in step S5B), the process proceeds to step S6B.
 一方、メイン制御部31は、時間tが、判定時間ΔTaを超えていないと判定した場合(ステップS5BのNO)、ステップS2Bに戻る。つまり、メイン制御部31は、時間tが、判定時間ΔTaを超えるまで、ステップS2B~S5Bの処理を繰り返す。そして、判定時間ΔTaの間に、検知値Cdが、閾値C1を超えている時間の合計であるΔオン時間ton、および、判定時間ΔTaの間に、検知値Cdが、閾値C1を超えていない時間の合計であるオフ時間Δtoffを求める。 On the other hand, when the main control unit 31 determines that the time t does not exceed the determination time ΔTa (NO in step S5B), the main control unit 31 returns to step S2B. That is, the main control unit 31 repeats the processes of steps S2B to S5B until the time t exceeds the determination time ΔTa. Then, during the determination time ΔTa, the detection value Cd does not exceed the threshold value C1 during the Δon time ton, which is the sum of the times when the detection value Cd exceeds the threshold value C1, and the determination time ΔTa. The off time Δtoff, which is the total time, is obtained.
 ステップS6Bにおいて、メイン制御部31は、オン時間Δtonが、記憶部33に記憶されている基準時間xΔTaを超えているかどうかを判定する。ここで、基準時間xΔTaについて、例えば、判定時間ΔTaが30秒で、あらかじめ設定された割合xを8割とした場合、基準時間xΔTaは、30×(8/10)=24秒となる。 In step S6B, the main control unit 31 determines whether or not the on-time Δton exceeds the reference time xΔTa stored in the storage unit 33. Here, for the reference time xΔTa, for example, when the determination time ΔTa is 30 seconds and the preset ratio x is 80%, the reference time xΔTa is 30 × (8/10) = 24 seconds.
 メイン制御部31は、オン時間Δtonが、基準時間xΔTaを超えていると判定した場合(ステップS6BのYES)、駆動部34により安全対策装置を動作させる。つまり、メイン制御部31は、警報装置6ならONにし、遮断装置7なら開にし、換気装置8ならONにする(ステップS7B)。 When the main control unit 31 determines that the on-time Δton exceeds the reference time xΔTa (YES in step S6B), the main control unit 31 causes the drive unit 34 to operate the safety measure device. That is, the main control unit 31 turns on the alarm device 6, turns it off on the shut-off device 7, and turns it on on the ventilation device 8 (step S 7 B).
 一方、メイン制御部31は、オン時間Δtonが、基準時間xΔTaを超えていないと判定した場合(ステップS6BのNO)、処理を終了する。 On the other hand, when the main control unit 31 determines that the on-time Δton does not exceed the reference time xΔTa (NO in step S6B), the process is terminated.
 以上より、メイン制御部31は、判定時間ΔTaの間に、検知値Cdが、閾値C1を超えた時間の合計を計測し、計測した時間の合計が基準時間xΔTa以上である場合、安全対策装置を動作させている。 From the above, the main control unit 31 measures the total time when the detected value Cd exceeds the threshold value C1 during the determination time ΔTa, and when the total measured time is equal to or greater than the reference time xΔTa, the safety measure device Is operating.
 図17は、本発明の実施の形態に係る空気調和装置100の冷媒漏洩の検知動作の制御フローの第三の例を示す図である。
 次に、本実施の形態に係る空気調和装置100の冷媒漏洩の検知動作の制御フローの第三の例について、図17を用いて説明する。
FIG. 17 is a diagram illustrating a third example of the control flow of the refrigerant leak detection operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
Next, a third example of the control flow of the refrigerant leak detection operation of the air-conditioning apparatus 100 according to the present embodiment will be described with reference to FIG.
 まず、メイン制御部31は、タイマ部32により時間tの計測を開始し、カウンタKをリセットして0にする(ステップS1C)。次に、メイン制御部31は、冷媒検知装置5による検知値Cdが、記憶部33に記憶されている閾値C1を超えているかどうかを判定する(ステップS2C)。 First, the main control unit 31 starts measuring the time t by the timer unit 32, and resets the counter K to 0 (step S1C). Next, the main control unit 31 determines whether or not the detection value Cd detected by the refrigerant detection device 5 exceeds the threshold value C1 stored in the storage unit 33 (step S2C).
 メイン制御部31は、検知値Cdが、閾値C1を超えていると判定した場合(ステップS2CのYES)、カウンタKに1を加算し(ステップS3C)、ステップS5Cに進む。 When the main control unit 31 determines that the detected value Cd exceeds the threshold value C1 (YES in step S2C), the main control unit 31 adds 1 to the counter K (step S3C), and proceeds to step S5C.
 一方、メイン制御部31は、検知値Cdが、閾値C1を超えていないと判定した場合(ステップS2CのNO)、カウンタKをリセットし(ステップS4C)、ステップS5Cに進む。 On the other hand, if the main control unit 31 determines that the detected value Cd does not exceed the threshold C1 (NO in step S2C), the main control unit 31 resets the counter K (step S4C), and proceeds to step S5C.
 ステップS5Cにおいて、メイン制御部31は、カウンタKの値が、記憶部33に記憶されている基準回数Kaに達しているかどうかを判定する。 In step S5C, the main control unit 31 determines whether the value of the counter K has reached the reference number Ka stored in the storage unit 33.
 メイン制御部31は、カウンタKの値が、基準回数Kaに達していると判定した場合(ステップS5CのYES)、駆動部34により安全対策装置を動作させる。つまり、メイン制御部31は、警報装置6ならONにし、遮断装置7なら開にし、換気装置8ならONにする(ステップS7C)。 When the main control unit 31 determines that the value of the counter K has reached the reference number Ka (YES in step S5C), the main control unit 31 causes the drive unit 34 to operate the safety measure device. That is, the main control unit 31 turns on the alarm device 6, opens the shut-off device 7, and turns on the ventilation device 8 (step S <b> 7 </ b> C).
 一方、メイン制御部31は、カウンタKの値が、基準回数Kaに達していないと判定した場合(ステップS5CのNO)、ステップS6Cに進む。 On the other hand, if the main control unit 31 determines that the value of the counter K has not reached the reference number Ka (NO in step S5C), the process proceeds to step S6C.
 ステップS6Cにおいて、メイン制御部31は、時間tが、記憶部33に記憶されている判定時間ΔTaを超えているかどうかを判定する。 In step S6C, the main control unit 31 determines whether the time t exceeds the determination time ΔTa stored in the storage unit 33.
 メイン制御部31は、時間tが、判定時間ΔTaを超えていると判定した場合(ステップS6CのYES)、処理を終了する。 The main control part 31 complete | finishes a process, when it determines with the time t exceeding the determination time (DELTA) Ta (YES of step S6C).
 一方、メイン制御部31は、時間tが、判定時間ΔTaを超えていないと判定した場合(ステップS6CのNO)、ステップS2Cに戻る。つまり、メイン制御部31は、時間tが、判定時間ΔTaを超えるまで、ステップS2C~S5Cの処理を繰り返し、判定時間ΔTaの間に、検知値Cdが、基準回数Ka連続して閾値C1を超えたかどうかを判定している。 On the other hand, when determining that the time t does not exceed the determination time ΔTa (NO in step S6C), the main control unit 31 returns to step S2C. That is, the main control unit 31 repeats the processes of steps S2C to S5C until the time t exceeds the determination time ΔTa, and the detection value Cd exceeds the threshold C1 continuously for the reference number Ka during the determination time ΔTa. It is determined whether or not.
 以上より、メイン制御部31は、判定時間ΔTaの間に、検知値Cdが、連続して閾値C1を超えた回数を計測し、計測した回数が基準回数Ka以上である場合、安全対策装置を動作させている。 As described above, the main control unit 31 measures the number of times that the detected value Cd continuously exceeds the threshold value C1 during the determination time ΔTa, and when the measured number is equal to or greater than the reference number Ka, the main control unit 31 It is operating.
 以上、本実施の形態に係る空気調和装置100は、冷媒回路101からの冷媒漏洩を検知する冷媒検知装置5と、冷媒検知装置5の検知値Cdが判定時間ΔTの間、閾値C1を常時超えた場合、または、冷媒検知装置5の検知値Cdが判定時間ΔTの間、閾値C1を基準時間xΔTa以上超えた場合、冷媒漏洩が発生したと判定する制御装置30と、を備えたものである。 As described above, in the air conditioning apparatus 100 according to the present embodiment, the refrigerant detection device 5 that detects refrigerant leakage from the refrigerant circuit 101, and the detection value Cd of the refrigerant detection device 5 always exceeds the threshold C1 during the determination time ΔT. Or a control device 30 that determines that refrigerant leakage has occurred when the detection value Cd of the refrigerant detection device 5 exceeds the threshold C1 for a reference time xΔTa or more during the determination time ΔT. .
 本実施の形態に係る空気調和装置100によれば、制御装置30は、冷媒検知装置5の検知値Cdが判定時間ΔTの間、閾値C1を常時超えた場合、または、冷媒検知装置5の検知値Cdが判定時間ΔTの間、閾値C1を基準時間xΔTa以上超えた場合、冷媒漏洩が発生したと判定するため、冷媒漏洩の誤検知を抑制することができる。 According to the air conditioner 100 according to the present embodiment, the control device 30 detects that the detection value Cd of the refrigerant detection device 5 always exceeds the threshold C1 during the determination time ΔT, or the detection of the refrigerant detection device 5. When the value Cd exceeds the threshold value C1 for the determination time ΔT or more than the reference time xΔTa, it is determined that the refrigerant leakage has occurred, so that erroneous detection of the refrigerant leakage can be suppressed.
 また、本実施の形態に係る空気調和装置100は、警報装置6、換気装置8、遮断装置7のうち少なくとも一つを備え、制御装置30は、冷媒漏洩が発生したと判定したら、警報装置6、換気装置8、遮断装置7のうち少なくとも一つを動作させるものである。 In addition, the air conditioner 100 according to the present embodiment includes at least one of the alarm device 6, the ventilation device 8, and the shut-off device 7, and when the control device 30 determines that refrigerant leakage has occurred, the alarm device 6 At least one of the ventilation device 8 and the shut-off device 7 is operated.
 本実施の形態に係る空気調和装置100によれば、冷媒漏洩が発生したと判定したら安全対策装置を動作させることで、空調空間4内での着火を抑制することができ、空調空間4の安全を担保することができる。 According to the air conditioner 100 according to the present embodiment, when it is determined that refrigerant leakage has occurred, the safety countermeasure device is operated, so that ignition in the air-conditioned space 4 can be suppressed, and the safety of the air-conditioned space 4 Can be secured.
 また、本実施の形態に係る空気調和装置100は、制御装置30は、冷媒検知装置5の検知値を一定間隔毎にサンプリングし、冷媒検知装置5の検知値が判定時間ΔTaの間、基準回数Ka連続して閾値C1を超えた場合、冷媒漏洩が発生したと判定するものである。 Moreover, in the air conditioning apparatus 100 according to the present embodiment, the control device 30 samples the detection value of the refrigerant detection device 5 at regular intervals, and the detection value of the refrigerant detection device 5 is the reference number of times during the determination time ΔTa. When Ka exceeds the threshold value C1 continuously, it is determined that refrigerant leakage has occurred.
 本実施の形態に係る空気調和装置100によれば、制御装置30は、冷媒検知装置5の検知値を一定間隔毎にサンプリングし、冷媒検知装置5の検知値が判定時間ΔTaの間、基準回数Ka連続して閾値C1を超えた場合、冷媒漏洩が発生したと判定するため、冷媒漏洩の誤検知を抑制することができる。 According to the air conditioner 100 according to the present embodiment, the control device 30 samples the detection value of the refrigerant detection device 5 at regular intervals, and the detection value of the refrigerant detection device 5 is the reference number of times during the determination time ΔTa. When the threshold value C1 is continuously exceeded for Ka, it is determined that refrigerant leakage has occurred, so that erroneous detection of refrigerant leakage can be suppressed.
 1 室外機、2 室内機、2a 室内機、2b 室内機、3 冷媒配管、3a 分岐部、3b 分岐部、4 空調空間、4a 空調空間、4b 空調空間、5 冷媒検知装置、5a 冷媒検知装置、5b 冷媒検知装置、6 警報装置、6a 警報装置、6b 警報装置、7 遮断装置、7a 遮断装置、7b 遮断装置、8 換気装置、8a 換気装置、8b 換気装置、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 アキュムレータ、14 室外送風機、20 第一圧力検知装置、21 第二圧力検知装置、22 第一温度検知装置、30 制御装置、31 メイン制御部、32 タイマ部、33 記憶部、34 駆動部、40 負荷側熱交換器、40a 負荷側熱交換器、40b 負荷側熱交換器、41 絞り装置、41a 絞り装置、41b 絞り装置、42 室内送風機、42a 室内送風機、42b 室内送風機、50 第二温度検知装置、50a 第二温度検知装置、50b 第二温度検知装置、51 第三温度検知装置、51a 第三温度検知装置、51b 第三温度検知装置、52 第四温度検知装置、52a 第四温度検知装置、52b 第四温度検知装置、100 空気調和装置、101 冷媒回路。 1 outdoor unit, 2 indoor unit, 2a indoor unit, 2b indoor unit, 3 refrigerant pipe, 3a branching unit, 3b branching unit, 4 air conditioning space, 4a air conditioning space, 4b air conditioning space, 5 refrigerant detection device, 5a refrigerant detection device, 5b refrigerant detection device, 6 alarm device, 6a alarm device, 6b alarm device, 7 block device, 7a block device, 7b block device, 8 ventilator, 8a ventilator, 8b ventilator, 10 compressor, 11 refrigerant flow switching Device, 12 heat source side heat exchanger, 13 accumulator, 14 outdoor fan, 20 first pressure detection device, 21 second pressure detection device, 22 first temperature detection device, 30 control device, 31 main control unit, 32 timer unit, 33 storage unit, 34 drive unit, 40 load side heat exchanger, 40a load side heat exchanger, 40b load side heat exchanger, 41 , 41a throttle device, 41b throttle device, 42 indoor blower, 42a indoor blower, 42b indoor blower, 50 second temperature detection device, 50a second temperature detection device, 50b second temperature detection device, 51 third temperature detection device , 51a third temperature detection device, 51b third temperature detection device, 52 fourth temperature detection device, 52a fourth temperature detection device, 52b fourth temperature detection device, 100 air conditioner, 101 refrigerant circuit.

Claims (9)

  1.  空調空間を空気調和する1台または複数台の室内機と、
     熱源として機能する1台または複数台の室外機と、
     前記室内機と前記室外機とが冷媒配管で接続され、冷媒が循環する冷媒回路と、
     前記室内機の内部または前記室内機が空気調和を行う空調空間に設けられ、前記冷媒回路からの冷媒漏洩を検知する冷媒検知装置と、
     前記冷媒検知装置の検知値が判定時間ΔTaの間、閾値C1を常時超えた場合、または、前記冷媒検知装置の検知値が判定時間ΔTaの間、閾値C1を基準時間以上超えた場合、冷媒漏洩が発生したと判定する制御装置と、を備えた
     空気調和装置。
    One or more indoor units that air-condition the air-conditioned space;
    One or more outdoor units that function as heat sources;
    A refrigerant circuit in which the indoor unit and the outdoor unit are connected by a refrigerant pipe and the refrigerant circulates;
    A refrigerant detector provided in the indoor unit or in an air-conditioned space in which the indoor unit performs air conditioning, and detects refrigerant leakage from the refrigerant circuit;
    When the detection value of the refrigerant detection device always exceeds the threshold value C1 during the determination time ΔTa, or when the detection value of the refrigerant detection device exceeds the threshold value C1 during the determination time ΔTa, the refrigerant leakage And an air conditioner comprising:
  2.  利用者に冷媒漏洩を知らせる警報装置、漏洩した冷媒を排気する換気装置、冷媒の流れを遮断する遮断装置のうち少なくとも一つを備え、
     前記制御装置は、冷媒漏洩が発生したと判定したら、前記警報装置、前記換気装置、前記遮断装置のうち少なくとも一つを動作させる
     請求項1に記載の空気調和装置。
    It includes at least one of an alarm device that informs the user of refrigerant leakage, a ventilation device that exhausts the leaked refrigerant, and a blocking device that blocks the flow of the refrigerant,
    The air conditioning apparatus according to claim 1, wherein the control device operates at least one of the alarm device, the ventilation device, and the shut-off device when it is determined that refrigerant leakage has occurred.
  3.  前記判定時間ΔTaは、前記冷媒回路に充填されている冷媒が可燃性冷媒である場合、燃焼下限界LFL(kg/m)を用いて求められる値である
     請求項1または2に記載の空気調和装置。
    3. The air according to claim 1, wherein the determination time ΔTa is a value obtained using a lower combustion limit LFL (kg / m 3 ) when the refrigerant charged in the refrigerant circuit is a combustible refrigerant. Harmony device.
  4.  前記室内機が設置されている空調空間の床面積をA(m)、
     前記室内機が設置されている空調空間の天井高さをH(m)、
     前記冷媒回路に充填されている冷媒の漏洩速度をG(kg/s)、
     前記室内機の空調能力の合計をQ(kW)、
     前記室内機が設置されている空調空間の空調負荷をL(kW/m)、としたとき、
     前記判定時間ΔTaは、((LFL/2)-C1)×A×H/G、または((LFL/2)-C1)×(Q/L)×H/Gで計算される値未満である
     請求項3に記載の空気調和装置。
    The floor area of the air-conditioned space in which the indoor unit is installed is A (m 2 ),
    The ceiling height of the air-conditioned space where the indoor unit is installed is H (m),
    G (kg / s) is a leakage rate of the refrigerant filled in the refrigerant circuit,
    The total air conditioning capacity of the indoor unit is Q (kW),
    When the air conditioning load of the air conditioned space where the indoor unit is installed is L (kW / m 2 ),
    The determination time ΔTa is less than a value calculated by ((LFL / 2) −C1) × A × H / G or ((LFL / 2) −C1) × (Q / L) × H / G. The air conditioning apparatus according to claim 3.
  5.  前記冷媒回路に充填されている冷媒量は、(LFL/2)×A×H、または、(LFL/2)×(Q/L)×Hで計算される値以上である
     請求項4に記載の空気調和装置。
    The amount of refrigerant charged in the refrigerant circuit is equal to or greater than a value calculated by (LFL / 2) × A × H or (LFL / 2) × (Q / L) × H. Air conditioner.
  6.  前記漏洩速度をG=10/3600(kg/s)とし、前記天井高さをH=2.2(m)とし、前記空調負荷をL=0.1(kW/m)とする
     請求項4または5に記載の空気調和装置。
    The leakage rate is G = 10/3600 (kg / s), the ceiling height is H = 2.2 (m), and the air conditioning load is L = 0.1 (kW / m 2 ). The air conditioning apparatus according to 4 or 5.
  7.  前記判定時間ΔTaは、前記冷媒回路に充填されている冷媒が不燃性冷媒または毒性冷媒である場合、冷媒濃度限界RCL(kg/m)を用いて求められる値である
     請求項1または2に記載の空気調和装置。
    The determination time ΔTa is a value obtained by using a refrigerant concentration limit RCL (kg / m 3 ) when the refrigerant filled in the refrigerant circuit is an incombustible refrigerant or a toxic refrigerant. The air conditioning apparatus described.
  8.  前記判定時間ΔTaは、20秒以上である
     請求項1~7のいずれか一項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 7, wherein the determination time ΔTa is 20 seconds or more.
  9.  前記制御装置は、前記冷媒検知装置の検知値を一定間隔毎にサンプリングし、前記冷媒検知装置の検知値が前記判定時間ΔTaの間、基準回数連続して閾値C1を超えた場合、冷媒漏洩が発生したと判定する
     請求項1~8のいずれか一項に記載の空気調和装置。
    The control device samples the detection value of the refrigerant detection device at regular intervals, and if the detection value of the refrigerant detection device exceeds the threshold value C1 for the reference number of times during the determination time ΔTa, refrigerant leakage occurs. The air conditioner according to any one of claims 1 to 8, wherein it is determined that the air has occurred.
PCT/JP2017/020300 2017-05-31 2017-05-31 Air-conditioning apparatus WO2018220758A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019521610A JP6972125B2 (en) 2017-05-31 2017-05-31 Air conditioner
PCT/JP2017/020300 WO2018220758A1 (en) 2017-05-31 2017-05-31 Air-conditioning apparatus
GB1916115.7A GB2575606C (en) 2017-05-31 2017-05-31 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020300 WO2018220758A1 (en) 2017-05-31 2017-05-31 Air-conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2018220758A1 true WO2018220758A1 (en) 2018-12-06

Family

ID=64454679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020300 WO2018220758A1 (en) 2017-05-31 2017-05-31 Air-conditioning apparatus

Country Status (3)

Country Link
JP (1) JP6972125B2 (en)
GB (1) GB2575606C (en)
WO (1) WO2018220758A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152765A1 (en) * 2019-01-22 2020-07-30 三菱電機株式会社 Air conditioning device
WO2021251301A1 (en) * 2020-06-11 2021-12-16 パナソニックIpマネジメント株式会社 Air conditioning device
CN113944983A (en) * 2021-11-26 2022-01-18 宁波奥克斯电气股份有限公司 Control method of air conditioner and air conditioner
WO2022064784A1 (en) * 2020-09-24 2022-03-31 ダイキン工業株式会社 Air conditioning system, and indoor unit of same
JPWO2022269761A1 (en) * 2021-06-22 2022-12-29
CN115978710A (en) * 2023-01-03 2023-04-18 珠海格力电器股份有限公司 Plate heat exchanger leakage-proof control method and device, air conditioner and storage medium
WO2023219062A1 (en) * 2022-05-10 2023-11-16 三菱重工サーマルシステムズ株式会社 Refrigerant detection device and air conditioning system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207261A (en) * 2002-01-17 2003-07-25 Toshiba Corp Refrigerator
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit
WO2012144524A1 (en) * 2011-04-21 2012-10-26 ホシザキ電機株式会社 Method for operating ice-making machine
WO2012160598A1 (en) * 2011-05-23 2012-11-29 三菱電機株式会社 Air conditioner
US20140123685A1 (en) * 2012-11-02 2014-05-08 Jeonghun Kim Air conditioner and a method of controlling an air conditioner
JP2014126253A (en) * 2012-12-26 2014-07-07 Noritz Corp Heat pump device
JP2015166644A (en) * 2014-03-03 2015-09-24 三菱電機株式会社 Air conditioner
WO2015151238A1 (en) * 2014-04-02 2015-10-08 三菱電機株式会社 Air-conditioning device and installation method thereof
JP2016070568A (en) * 2014-09-29 2016-05-09 日立アプライアンス株式会社 Indoor unit of air conditioner
WO2016079801A1 (en) * 2014-11-18 2016-05-26 三菱電機株式会社 Air conditioning device
JP2016211793A (en) * 2015-05-11 2016-12-15 ダイキン工業株式会社 Air conditioning ventilation system
JP2016223640A (en) * 2015-05-27 2016-12-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigerating air conditioner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207261A (en) * 2002-01-17 2003-07-25 Toshiba Corp Refrigerator
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit
WO2012144524A1 (en) * 2011-04-21 2012-10-26 ホシザキ電機株式会社 Method for operating ice-making machine
WO2012160598A1 (en) * 2011-05-23 2012-11-29 三菱電機株式会社 Air conditioner
US20140123685A1 (en) * 2012-11-02 2014-05-08 Jeonghun Kim Air conditioner and a method of controlling an air conditioner
JP2014126253A (en) * 2012-12-26 2014-07-07 Noritz Corp Heat pump device
JP2015166644A (en) * 2014-03-03 2015-09-24 三菱電機株式会社 Air conditioner
WO2015151238A1 (en) * 2014-04-02 2015-10-08 三菱電機株式会社 Air-conditioning device and installation method thereof
JP2016070568A (en) * 2014-09-29 2016-05-09 日立アプライアンス株式会社 Indoor unit of air conditioner
WO2016079801A1 (en) * 2014-11-18 2016-05-26 三菱電機株式会社 Air conditioning device
JP2016211793A (en) * 2015-05-11 2016-12-15 ダイキン工業株式会社 Air conditioning ventilation system
JP2016223640A (en) * 2015-05-27 2016-12-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigerating air conditioner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7062095B2 (en) 2019-01-22 2022-05-02 三菱電機株式会社 Air conditioner
CN113272594A (en) * 2019-01-22 2021-08-17 三菱电机株式会社 Air conditioner
JPWO2020152765A1 (en) * 2019-01-22 2021-10-07 三菱電機株式会社 Air conditioner
US20210396412A1 (en) * 2019-01-22 2021-12-23 Mitsubishi Electric Corporation Air-conditioning apparatus
US11976830B2 (en) 2019-01-22 2024-05-07 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2020152765A1 (en) * 2019-01-22 2020-07-30 三菱電機株式会社 Air conditioning device
WO2021251301A1 (en) * 2020-06-11 2021-12-16 パナソニックIpマネジメント株式会社 Air conditioning device
JP2021196093A (en) * 2020-06-11 2021-12-27 パナソニックIpマネジメント株式会社 Air conditioner
JP7457969B2 (en) 2020-06-11 2024-03-29 パナソニックIpマネジメント株式会社 air conditioner
JP2022053183A (en) * 2020-09-24 2022-04-05 ダイキン工業株式会社 Air conditioning system, and indoor unit of the same
US11835245B2 (en) 2020-09-24 2023-12-05 Daikin Industries, Ltd. Air conditioning system, and indoor unit of same
WO2022064784A1 (en) * 2020-09-24 2022-03-31 ダイキン工業株式会社 Air conditioning system, and indoor unit of same
AU2021346997B2 (en) * 2020-09-24 2023-06-08 Daikin Industries, Ltd. Air conditioning system, and indoor unit of same
JPWO2022269761A1 (en) * 2021-06-22 2022-12-29
WO2022269761A1 (en) * 2021-06-22 2022-12-29 東芝キヤリア株式会社 Refrigeration cycle device, refrigerant leak detection system, and information processing device
JP7501828B2 (en) 2021-06-22 2024-06-18 日本キヤリア株式会社 Refrigeration cycle device, refrigerant leak detection system, and information processing device
CN113944983B (en) * 2021-11-26 2022-11-25 宁波奥克斯电气股份有限公司 Control method of air conditioner and air conditioner
CN113944983A (en) * 2021-11-26 2022-01-18 宁波奥克斯电气股份有限公司 Control method of air conditioner and air conditioner
WO2023219062A1 (en) * 2022-05-10 2023-11-16 三菱重工サーマルシステムズ株式会社 Refrigerant detection device and air conditioning system
CN115978710A (en) * 2023-01-03 2023-04-18 珠海格力电器股份有限公司 Plate heat exchanger leakage-proof control method and device, air conditioner and storage medium

Also Published As

Publication number Publication date
GB2575606A (en) 2020-01-15
JP6972125B2 (en) 2021-11-24
JPWO2018220758A1 (en) 2019-12-19
GB201916115D0 (en) 2019-12-18
GB2575606B (en) 2021-02-24
GB2575606C (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2018220758A1 (en) Air-conditioning apparatus
US11774126B2 (en) Systems and methods for refrigerant leak management
US11686491B2 (en) Systems for refrigerant leak detection and management
CN108474604B (en) Air conditioner
US11378316B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
JP6899896B2 (en) Air conditioning system
US11867415B2 (en) Systems and methods for detecting and responding to refrigerant leaks in heating, ventilating, and air conditioning systems
JP6636173B2 (en) Air conditioner and air conditioning system
US9494363B2 (en) Air-conditioning apparatus
US11906192B2 (en) Heating, ventilation, and air conditioning control system
JP2002228281A (en) Air conditioner
WO2018220810A1 (en) Air conditioning device
US20190170600A1 (en) Systems and methods for detecting refrigerant leaks in heating, ventilating, and air conditioning (hvac) systems
CN113994151A (en) Refrigerant cycle device
US20230358426A1 (en) Systems and methods for leak detection and management in heating, ventilating, and air conditioning (hvac) systems
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
US9279607B2 (en) Method of part replacement for refrigeration cycle apparatus
US11733723B2 (en) Economizer temperature extrapolation systems and methods
US20220325929A1 (en) Initial power up or power outage refrigerant purge
US11333380B2 (en) Heating, ventilation, and air conditioning combustion suppression system
WO2023132010A1 (en) Air-conditioning device
JP2023037822A (en) air conditioner
KR20060025626A (en) Method and apparatus for controlling (a) pipe air leakage of (a) multi type air conditioner
KR20020056231A (en) Method for checking state of service valve in heat pump air-conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521610

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201916115

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170531

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912276

Country of ref document: EP

Kind code of ref document: A1