WO2023131289A1 - 混动车的目标储备功率确定方法、装置及车辆 - Google Patents

混动车的目标储备功率确定方法、装置及车辆 Download PDF

Info

Publication number
WO2023131289A1
WO2023131289A1 PCT/CN2023/070976 CN2023070976W WO2023131289A1 WO 2023131289 A1 WO2023131289 A1 WO 2023131289A1 CN 2023070976 W CN2023070976 W CN 2023070976W WO 2023131289 A1 WO2023131289 A1 WO 2023131289A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
power
reserve power
target
water temperature
Prior art date
Application number
PCT/CN2023/070976
Other languages
English (en)
French (fr)
Inventor
杨志伟
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2023131289A1 publication Critical patent/WO2023131289A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery

Definitions

  • the present application relates to the technical field of hybrid vehicles, in particular to a method, device and vehicle for determining a target reserve power of a hybrid vehicle.
  • Hybrid vehicles that is, hybrid vehicles, refer to hybrid vehicles (Hybrid Vehicle).
  • the drive system of a hybrid vehicle consists of two or more power units that can operate independently.
  • Hybrid Electric Vehicle (Hybrid Electric Vehicle) is a typical hybrid vehicle.
  • the target reserve power of a hybrid vehicle is the power reserved for the engine to start successfully.
  • the target reserve power is retained in the power battery until the engine completes the start-up process. After successful startup, the power battery no longer retains the target reserve power. When the engine is stopped, the power battery will retain the target reserve power for the next start.
  • the power battery usually reserves a fixed target reserve power; however, the fixed target reserve power cannot accurately meet the use requirements under different working conditions.
  • the present application provides a method, device and vehicle for determining a target reserve power of a hybrid vehicle to solve the problem that a fixed target reserve power cannot accurately meet the use requirements under different working conditions.
  • the present application provides a method for determining a target reserve power of a hybrid vehicle.
  • the target reserve power is the power reserved for starting the engine of the hybrid vehicle.
  • the method for determining the target reserve power of the hybrid vehicle includes:
  • the target reserve power is determined.
  • the target reserve power is determined based on the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery, including:
  • the reserve power matching the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery is determined through the preset corresponding relationship as the target reserve power.
  • determining the reserve power matching the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery through the preset corresponding relationship, as the target reserve power includes:
  • the reserve power matching the current water temperature of the engine and the current SOC of the power battery is determined as the target reserve power.
  • the number of reserve power mapping tables in the set of target mapping tables is one or more than one.
  • the target mapping table set determines the reserve power that matches the current water temperature of the engine and the current SOC of the power battery.
  • Power as a target reserve power, consists of:
  • the target reserve power mapping table determine the reserve power that matches the current water temperature of the engine and the current SOC of the power battery as the target reserve power.
  • the water temperature state includes an extremely low state and a non-extremely low state; wherein, when the current engine water temperature is lower than a preset water temperature threshold, the water temperature state is the extremely low state; When the current water temperature of the engine is greater than or equal to the preset water temperature threshold, the water temperature state is the non-extremely low state.
  • the water temperature threshold is -30°C.
  • the power battery working mode includes a power consumption mode and a power maintenance mode; wherein, when the current SOC of the power battery is greater than a preset SOC threshold, the power battery working mode is the Power consumption mode: when the SOC of the current power battery is less than or equal to the preset SOC threshold, the working mode of the power battery is the power maintenance mode.
  • the preset SOC threshold is 28%.
  • the number of reserve power mapping tables in the target mapping table set is at least two;
  • the number of reserve power mapping tables in the target mapping table set is one.
  • the method for determining the target reserve power of the hybrid vehicle further includes:
  • the current reserve power enable flag is used to indicate whether the current power battery reserves the target reserve power
  • the actual available power of the current power battery is determined.
  • obtaining the current reserve power enable flag includes:
  • the hybrid vehicle is in the power-on state, and the current engine is in the shutdown state, then determine that the current reserve power enabling flag is the first preset flag; wherein, the first preset flag is used to represent the current power battery reserved target reserve power;
  • the current reserve power enabling flag is the second preset flag; wherein, the second preset flag is used to indicate that the current power battery does not reserve the target reserve power.
  • the actual available power of the current power battery is determined according to the target reserve power and the current reserve power enabling flag, including:
  • the theoretical available power of the current power battery is subtracted from the target reserve power to obtain the actual available power of the current power battery;
  • the theoretical available power of the current power battery is taken as the actual available power of the current power battery.
  • the present application provides a device for determining a target reserve power of a hybrid vehicle.
  • the target reserve power is the power reserved for starting the engine of the hybrid vehicle.
  • the device for determining the target reserve power of the hybrid vehicle includes:
  • the first acquisition module is used to acquire the state of the current clutch and the current driving mode of the hybrid vehicle
  • the second acquisition module is used to acquire the water temperature of the current engine of the hybrid vehicle and the SOC of the current power battery;
  • the reserve power determination module is used to determine the target reserve power based on the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery.
  • the reserve power determining module is specifically used for:
  • the reserve power matching the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery is determined through the preset corresponding relationship as the target reserve power.
  • the reserve power determining module is specifically used for:
  • the reserve power matching the current water temperature of the engine and the current SOC of the power battery is determined as the target reserve power.
  • the reserve power determining module is specifically used for:
  • the number of reserve power mapping tables in the target mapping table set is at least two, determine the water temperature state corresponding to the water temperature of the current engine and the power battery working mode corresponding to the SOC of the current power battery;
  • the target reserve power mapping table determine the reserve power that matches the current water temperature of the engine and the current SOC of the power battery as the target reserve power.
  • the number of reserve power mapping tables in the target mapping table set is at least two;
  • the number of reserve power mapping tables in the target mapping table set is one.
  • the device for determining the target reserve power of the hybrid vehicle further includes:
  • the available power determination module is used to obtain the current reserve power enable flag; wherein, the current reserve power enable flag is used to indicate whether the current power battery reserves the target reserve power;
  • the actual available power of the current power battery is determined.
  • the available power determining module is specifically used for:
  • the hybrid vehicle is in the power-on state, and the current engine is in the shutdown state, then determine that the current reserve power enabling flag is the first preset flag; wherein, the first preset flag is used to represent the current power battery reserved target reserve power;
  • the current reserve power enabling flag is the second preset flag; wherein, the second preset flag is used to indicate that the current power battery does not reserve the target reserve power.
  • the available power determining module is specifically used for:
  • the theoretical available power of the current power battery is subtracted from the target reserve power to obtain the actual available power of the current power battery;
  • the theoretical available power of the current power battery is taken as the actual available power of the current power battery.
  • the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the above The steps of the method for determining the target reserve power of the hybrid vehicle described in the first aspect or any possible implementation of the first aspect.
  • the present application provides a vehicle, including the electronic device as described in the third aspect.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of the above first aspect or the first aspect is implemented. Possible implementations The steps in the method for determining the target reserve power of a hybrid vehicle.
  • the method, device, and vehicle for determining the target reserve power of a hybrid vehicle provided by the present application can acquire the operating condition parameters (including the current state of the clutch of the hybrid vehicle, the current driving mode, the current engine water temperature and the current The SOC of the power battery), and based on the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery, determine the target reserve power; thus, the target reserve power required under the current working conditions can be accurately obtained to ensure that the The target reserve power can accurately meet the usage requirements under different working conditions.
  • the operating condition parameters including the current state of the clutch of the hybrid vehicle, the current driving mode, the current engine water temperature and the current The SOC of the power battery
  • Fig. 1 is the implementation flowchart of the method for determining the target reserve power of a hybrid vehicle provided in the embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of a device for determining a target reserve power of a hybrid vehicle provided in an embodiment of the present application;
  • Fig. 3 is a schematic diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 1 it shows the implementation flow of a method for determining a target reserve power of a hybrid vehicle provided by an embodiment of the present application.
  • the execution body of the method may be an electronic device, and the electronic device may be a vehicle controller of a hybrid vehicle.
  • the target reserve power is the power reserved for starting the engine of the hybrid vehicle.
  • the method may include three steps from S101 to S103, which are described in detail as follows.
  • the state of the current clutch of the hybrid vehicle can be detected by corresponding sensors.
  • the current state of the clutch may be an open state or a closed state.
  • the clutch can be integrated in the gearbox, or can be independent from the gearbox and installed outside the gearbox.
  • the gearbox may be a front axle gearbox.
  • the driving mode of a hybrid vehicle can include any one or more of the following modes: sport (sport) mode, pure electric (EV) mode, four-wheel drive (AWD) mode, battery reserve (SAVE) mode, mud mode, Sand mode and snow mode.
  • sport (sport) mode sport (sport) mode
  • pure electric (EV) mode pure electric (EV) mode
  • AWD four-wheel drive
  • SAVE battery reserve
  • mud mode Sand mode
  • snow mode snow mode.
  • the current driving mode can be any one of the above modes.
  • the target reserve power of the power battery supplies energy to the motor, and the motor drives the engine to start.
  • the motor only needs to drive the engine to start; when the state of the clutch is closed, the motor not only drives the engine to start, but also needs to drive the wheels to rotate and the vehicle to run, and the resistance to the motor is relatively large. That is to say, when the state of the clutch is in the closed state, the resistance received by the motor is greater than that in the open state, requiring more target reserve power; The reserve power should be greater than the corresponding reserve power when the clutch is in an open state.
  • the torque required to drive the vehicle is different, and the corresponding target reserve power is also different.
  • the current water temperature of the engine can be obtained through the corresponding water temperature sensor.
  • the SOC of the current power battery can be obtained through the battery management system (Battery Management System, BMS).
  • BMS Battery Management System
  • the power battery is a battery that can provide power for the hybrid vehicle, which can output high voltage, and can also be called a high-voltage battery.
  • the target reserve power corresponding to the water temperature of different engines may be different. Under other conditions being the same, the corresponding target reserve power when the water temperature of the engine is low is generally greater than the corresponding target reserve power when the engine water temperature is high.
  • the SOC of the power battery When the SOC of the power battery is extremely low, for example, when it is less than or equal to 20%, its discharge power is generally limited, and the power it can provide is relatively small. Therefore, when the SOC of the power battery is extremely low, more target reserve power will be reserved to ensure that the engine can be started successfully.
  • the SOC of the power battery When the SOC of the power battery is not extremely low, for example, when it is greater than 20%, its discharge power is generally not limited and can provide greater power. At this time, the reserved target reserve power may be less than the target reserve power under extremely low conditions.
  • the discharge power of the power battery corresponding to different SOCs is basically the same; therefore, the target reserve power corresponding to different SOCs may be the same.
  • the target reserve power is determined based on the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery.
  • the current clutch state, current driving mode, current engine water temperature and current power battery SOC are comprehensively considered to determine the final target reserve power and ensure that the target reserve power can meet the current working conditions.
  • this step by obtaining the working condition parameters under the current working condition of the hybrid vehicle, including the current clutch state of the hybrid vehicle, the current driving mode, the current engine water temperature and the current SOC of the power battery, and based on the above working condition parameters, determine the target Reserve power; so that the target reserve power required under the current working condition can be accurately obtained, ensuring that the target reserve power can accurately meet the use requirements under different working conditions.
  • the above S103 may include the following steps:
  • the preset correspondence can be the correspondence between the state of the clutch, the driving mode, the water temperature of the engine, the SOC of the power battery, and the reserve power; the correspondence can be stored in a multi-dimensional mapping table, or can be stored in In multiple two-dimensional mapping tables.
  • a variety of table look-up methods can be used to determine the reserve power matching the current clutch state, current driving mode, current engine water temperature and current power battery SOC, that is, the target reserve power.
  • a multi-dimensional mapping table stores the mapping relationship between clutch state, driving mode, engine water temperature, power battery SOC and reserve power, and the multi-dimensional mapping table can be calibrated in advance.
  • the reserve power matching the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery can be obtained by querying, that is, the target reserve power.
  • the above is determined through a preset corresponding relationship with the state of the current clutch, the current driving mode, and the current water temperature of the engine.
  • the reserve power matching the SOC of the current power battery, as the target reserve power may include the following steps:
  • the reserve power matching the current water temperature of the engine and the current SOC of the power battery is determined as the target reserve power.
  • multiple reserve power mapping tables are pre-stored in the hybrid vehicle. All reserve power mapping tables stored in the hybrid vehicle form a total set of reserve power mapping tables. Each reserve power mapping table in the total set of reserve power mapping tables can match a clutch state and a driving mode. Each reserve power mapping table in the total set of reserve power mapping tables stores the matching relationship of engine water temperature, power battery SOC and reserve power, but the specific matching relationship stored in different reserve power mapping tables may be different. For example, the water temperature of the same engine and the SOC of the power battery may have different reserve powers matched in different reserve power mapping tables.
  • a state of a clutch and a driving mode may match at least one power reserve map in the total set of power reserve maps.
  • the set of all reserve power mapping tables in the total set of reserve power mapping tables that match the state of the current clutch and the current driving mode is called a set of target mapping tables; and from the set of target mapping tables, The queried reserve power that matches the current water temperature of the engine and the current SOC of the power battery is called the target reserve power.
  • each reserve power mapping table may be calibrated in advance according to actual needs.
  • the number of reserve power mapping tables in the target mapping table set is greater than one, one of them can be selected from at least two reserve power mapping tables in the target mapping table set as the target reserve power mapping table; then from the target reserve power mapping table In the table, query the reserve power that matches the current engine water temperature and the current SOC of the power battery, which is the target reserve power.
  • the value range of the engine water temperature in the target reserve power mapping table includes the current engine water temperature
  • the value range of the battery SOC in the target reserve power mapping table includes the current SOC of the power battery.
  • the purpose of fine calibration can be achieved by finely dividing the state of the clutch and the driving mode, so that the determined target reserve power is more accurate.
  • the above-mentioned target mapping table set determines the reserve power that matches the current water temperature of the engine and the current SOC of the power battery.
  • Power as the target reserve power, may include the following steps:
  • the target reserve power mapping table determine the reserve power that matches the current water temperature of the engine and the current SOC of the power battery as the target reserve power.
  • the corresponding water temperature state may be determined according to the current engine water temperature value. For example, if the current engine water temperature is less than the preset water temperature threshold (for example, -30°C), then determine that the corresponding water temperature state is an extremely low state; if the current engine water temperature is not less than the preset water temperature threshold, then determine that the corresponding water temperature state is Not a very low state.
  • the preset water temperature threshold for example, -30°C
  • the corresponding power battery working mode can be determined. For example, if the SOC value of the current power battery is greater than the preset SOC threshold (for example, 28%), then determine that the corresponding power battery working mode is the power consumption mode; if the current SOC value of the power battery is not greater than the preset SOC threshold, then determine The corresponding working mode of the power battery is the power retention mode.
  • the preset SOC threshold for example, 28%)
  • the preset water temperature threshold and the preset SOC threshold can be calibrated according to actual needs, and no specific limitation is set here.
  • a water temperature state and a power battery working mode can be matched to obtain a reserve power mapping table from at least two reserve power mapping tables in the target mapping table set, and the reserve power mapping table can be called a target reserve power mapping table.
  • the number of reserve power mapping tables in the set of target mapping tables is two; when the working mode of the power battery is the power consumption mode, or when the water temperature state is extremely low, one reserve power mapping table can be matched; when When the working mode of the power battery is the power retention mode and the water temperature is not extremely low, it can be matched to another reserve power mapping table.
  • the number of target reserve power mapping tables is one; at this time, from the only target reserve power mapping table, the reserve power matching the current engine water temperature and the current SOC of the power battery can be obtained, that is, the target reserve power .
  • value ranges of the water temperature of the engine and the SOC of the power battery in each reserve power mapping table in this embodiment can be determined according to actual requirements.
  • the value ranges of the water temperature of the engine and the SOC of the power battery in different reserve power mapping tables may be different or the same, and no specific limitation is made here.
  • the above-mentioned target mapping table set is used to determine the reserve power that matches the current water temperature of the engine and the current SOC of the power battery, As the target reserve power, the following steps may be included:
  • the number of reserve power mapping tables in the target mapping table set is at least two;
  • the number of reserve power mapping tables in the target mapping table set is one.
  • the driving mode is mud mode, sand mode or snow mode
  • the road conditions are relatively bad; therefore, the water temperature state and power battery working mode need to be considered separately to make the determined target reserve power more accurate and sufficient to cope with bad road conditions.
  • X in each table indicates the water temperature of the engine in °C
  • Y indicates the SOC of the power battery in %
  • Z indicates the reserve power in KW .
  • Table 1 is the reserve power mapping table MAP1 when the clutch is in the open state and the driving mode is the sport mode (ie, the sports mode).
  • Table 2 shows the reserve power mapping table MAP2 when the clutch is in the open state and the driving mode is EV mode (that is, pure electric mode).
  • Table 3 shows the reserve power mapping table MAP3 when the clutch is in the open state and the driving mode is the AWD mode (that is, the four-wheel drive mode).
  • Table 4 shows the reserve power mapping table MAP4 when the clutch is in the open state and the driving mode is SAVE mode (that is, power reserve mode).
  • Table 5 shows the reserve power mapping table MAP5 when the clutch is in the closed state and the driving mode is the sport mode (that is, the sports mode).
  • Table 6 shows the reserve power mapping table MAP6 when the clutch is in the closed state and the driving mode is EV mode (that is, pure electric mode).
  • Table 7 shows the reserve power mapping table MAP7 when the state of the clutch is closed and the driving mode is AWD mode (ie four-wheel drive mode).
  • Table 8 shows the reserve power mapping table MAP8 when the state of the clutch is closed and the driving mode is SAVE mode (that is, power reserve mode).
  • the method for determining the target reserve power of the hybrid vehicle further includes the following steps:
  • the current reserve power enable flag is used to represent whether the current power battery reserves the target reserve power
  • the actual available power of the current power battery is determined.
  • the actual available power of the current power battery can be determined through the aforementioned determined target reserve power and the enabling flag of the current reserve power.
  • the above current reserve power enabling flag bit can indicate whether the target reserve power needs to be reserved currently.
  • the actual available power of the current power battery indicates that the actual output power of the current power battery is considered in consideration of whether to reserve the target reserve power.
  • the acquisition of the current reserve power enabling flag includes the following steps:
  • the hybrid vehicle is in the power-on state, and the current engine is in the shutdown state, then determine that the current reserve power enabling flag is the first preset flag; wherein, the first preset flag is used to represent the current power battery reserved target reserve power;
  • the current reserve power enabling flag is the second preset flag; wherein, the second preset flag is used to indicate that the current power battery does not reserve the target reserve power.
  • the current hybrid vehicle is in the power-on state, and the current state of the engine is in the process of starting, then determine that the current reserve power enabling flag is the first preset flag; if the current state of the engine If it is in the shutdown process, then determine that the current reserve power enabling flag is the second preset flag.
  • An engine off state means that the engine is not started and no engine start request has been received.
  • the engine needs to go through multiple stages from the stop state to the start state, and it cannot be started instantly.
  • the state of the engine is in the process of starting means that the engine has received the engine start request and is starting, but the start has not yet been completed. That is to say, the engine needs to go through this state during the starting process from the stop state to the start state.
  • the engine is in the starting state means that the engine has completed the starting process and has been started.
  • the engine also needs to go through multiple stages from the start state to the stop state.
  • the state of the engine being in the process of shutting down means that the engine has received a request to shut down the engine and is shutting down, but has not stopped successfully, that is, has not yet reached the shutting down state. That is to say, the engine needs to go through this state during the shutdown process from the start state to the stop state.
  • the current reserve power enabling flag is the first preset flag.
  • the current reserve power enabling flag is still the first preset flag;
  • the enabling flag is the second preset flag; if there is no engine shutdown request after the engine is started, that is, the engine remains in the starting state, the current reserve power enabling flag remains as the second preset flag.
  • the current reserve power enabling flag remains at the second preset flag.
  • the current reserve power enable flag is the first preset flag; if the engine shutdown is completed, there is no engine start request, that is, the engine remains shut down state, the current reserve power enable flag remains as the first preset flag.
  • the current reserve power enable flag is the first preset flag, indicating that the power battery needs to reserve the target reserve power; the current reserve power enable flag is the second preset flag, indicating that the power battery does not need to reserve the target reserve power .
  • the first preset flag and the second preset flag are different flags and can be set according to actual needs.
  • the first preset flag bit is 1, and the second preset flag bit is 0.
  • determining the actual available power of the current power battery according to the target reserve power and the current reserve power enabling flag includes the following steps:
  • the theoretical available power of the current power battery is subtracted from the target reserve power to obtain the actual available power of the current power battery;
  • the theoretical available power of the current power battery is taken as the actual available power of the current power battery.
  • the theoretical available power of the current power battery can be the first available output power of the current power battery calculated based on information such as the actual power of the current power battery, or the first available output power obtained after subtracting various restrictions from the first available output power. Two available output powers; for example, the second available output power can be obtained by subtracting the power consumed by the high-voltage accessories from the first available output power.
  • the theoretical available power of the current power battery is, regardless of whether the target reserve power is reserved, the actual output power of the current power battery.
  • the method for determining the target reserve power of a hybrid vehicle can determine the current reserve power enabling flag bit through the engine state, and determine the actual available current power battery through the accurately determined target reserve power and the current reserve power enabling flag bit.
  • Power The method provided by this application can improve the calculation accuracy of the actual available power of the current power battery, and then charge the power battery according to actual needs, prevent overcharging and save resources.
  • Fig. 2 is a schematic structural diagram of a device for determining a target reserve power of a hybrid vehicle provided by an embodiment of the present application. For ease of description, only parts relevant to the present application are shown in the figure, and the details are as follows.
  • the target reserve power is the power reserved for starting the engine of the hybrid vehicle.
  • the device 30 for determining a target reserve power of a hybrid vehicle includes a first acquisition module 31 , a second acquisition module 32 and a reserve power determination module 33 .
  • the first acquisition module 31 is used to acquire the state of the current clutch and the current driving mode of the hybrid vehicle;
  • the second acquiring module 32 is used to acquire the water temperature of the current engine of the hybrid vehicle and the SOC of the current power battery;
  • the reserve power determining module 33 is configured to determine the target reserve power based on the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery.
  • the device provided in this embodiment can acquire the working condition parameters (including the current clutch state, current driving mode, current engine water temperature and current power of the hybrid vehicle) under the current working condition of the hybrid vehicle through the first acquisition module and the second acquisition module. SOC of the battery), and through the reserve power determination module, based on the current clutch state, current driving mode, current engine water temperature and current SOC of the power battery, the target reserve power is determined; thus the required target under the current working condition can be accurately obtained Reserve power, to ensure that the target reserve power can accurately meet the use requirements under different working conditions.
  • the working condition parameters including the current clutch state, current driving mode, current engine water temperature and current power of the hybrid vehicle
  • SOC of the battery SOC of the battery
  • the reserve power determining module 33 is specifically configured to:
  • the reserve power matching the current state of the clutch, the current driving mode, the current water temperature of the engine and the current SOC of the power battery is determined through the preset corresponding relationship as the target reserve power.
  • the reserve power determining module 33 is specifically configured to:
  • the reserve power matching the current water temperature of the engine and the current SOC of the power battery is determined as the target reserve power.
  • the reserve power determining module 33 is specifically configured to:
  • the number of reserve power mapping tables in the target mapping table set is at least two, determine the water temperature state corresponding to the water temperature of the current engine and the power battery working mode corresponding to the SOC of the current power battery;
  • the target reserve power mapping table determine the reserve power that matches the current water temperature of the engine and the current SOC of the power battery as the target reserve power.
  • the number of reserve power mapping tables in the target mapping table set is at least two;
  • the number of reserve power mapping tables in the target mapping table set is one.
  • the device for determining the target reserve power of the hybrid vehicle further includes: an available power determination module.
  • the available power determination module is used to obtain the current reserve power enable flag; wherein, the current reserve power enable flag is used to indicate whether the current power battery reserves the target reserve power;
  • the actual available power of the current power battery is determined.
  • the available power determining module is specifically used for:
  • the hybrid vehicle is in the power-on state, and the current engine is in the shutdown state, then determine that the current reserve power enabling flag is the first preset flag; wherein, the first preset flag is used to represent the current power battery reserved target reserve power;
  • the current reserve power enabling flag is the second preset flag; wherein, the second preset flag is used to indicate that the current power battery does not reserve the target reserve power.
  • the available power determining module is specifically used for:
  • the theoretical available power of the current power battery is subtracted from the target reserve power to obtain the actual available power of the current power battery;
  • the theoretical available power of the current power battery is taken as the actual available power of the current power battery.
  • the present application also provides a computer program product, which has a program code, and when the program code runs in a corresponding processor, controller, computing device or electronic device, it executes the implementation of any method for determining the target reserve power of a hybrid vehicle described above. Steps in the manner, such as S101 to S103 shown in FIG. 1 .
  • Special purpose processors may include Application Specific Integrated Circuits (ASICs), Reduced Instruction Set Computers (RISCs), and/or Field Programmable Gate Arrays (FPGAs).
  • the methods and devices proposed in the various embodiments of the present application are preferably implemented as a combination of hardware and software.
  • the software is preferably installed as an application program on the program storage device. It is typically a computer platform based machine having hardware, such as one or more central processing units (CPUs), random access memory (RAM), and one or more input/output (I/O) interfaces.
  • An operating system is also typically installed on the computer platform. Various procedures and functions described herein may be part of the application program, or a part thereof may be executed by the operating system.
  • Fig. 3 is a schematic diagram of an electronic device provided in an embodiment of the present application.
  • the electronic device 4 includes: a processor 40 , a memory 41 , and a computer program 42 stored in the memory 41 and operable on the processor 40 .
  • the processor 40 executes the computer program 42
  • the steps in the embodiments of the method for determining the target reserve power of the hybrid vehicle mentioned above are implemented, such as S101 to S103 shown in FIG. 1 .
  • the processor 40 executes the computer program 42
  • the functions of the modules/units in the above-mentioned device implementations are implemented, for example, the functions of the modules 31 to 33 shown in FIG. 2 .
  • the computer program 42 can be divided into one or more modules/units; for example, the computer program 42 can be divided into the modules/units 31 to 33 shown in FIG. 2 .
  • These modules/units may be stored in the memory 41 and executed by the processor 40 to complete/implement the solutions provided in this application.
  • These modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and these instruction segments can describe the execution process of the computer program 42 in the electronic device 4 .
  • the electronic device 4 may be a device such as a vehicle controller.
  • the electronic device 4 may include, but is not limited to, a processor 40 and a memory 41 .
  • FIG. 3 is only an example of the electronic device 4 and does not constitute a limitation to the electronic device 4 .
  • Electronic device 4 may include more or fewer components than in FIG. 3 , or combine certain components, or different components.
  • the electronic device 4 may also include an input and output device, a network access device, a bus, and the like.
  • the processor 40 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or any other conventional processor or the like.
  • the storage 41 may be an internal storage unit of the electronic device 4 , such as a hard disk or memory of the electronic device 4 .
  • the memory 41 can also be an external storage device of the electronic device 4, such as a plug-in hard disk equipped on the electronic device 4, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) and so on. Further, the memory 41 may also include both an internal storage unit of the electronic device 4 and an external storage device.
  • the memory 41 is capable of storing a computer program 42 and other programs and data required by the electronic device 4 .
  • the memory 41 is also capable of temporarily storing data that has been output or will be output.
  • the present application also provides a vehicle, the vehicle includes the above-mentioned electronic equipment, and the beneficial effect produced by it is the same as that of the above-mentioned electronic equipment.
  • the disclosed device/electronic equipment and method may be implemented in other ways.
  • the apparatus/electronic device embodiments described above are illustrative only.
  • the division of modules or units is only a logical function division, and there may be other division methods in actual implementation.
  • several units or components may be combined or integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components shown as units may or may not be physical units. That is, the above components and units may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present application implements all or part of the processes in the above-mentioned method implementation manners, which may be completed by controlling related hardware through computer programs.
  • the computer program can be stored in a computer-readable storage medium, and when the computer program is executed by the processor, it can realize the steps in the above embodiments of the method for determining the target reserve power of the hybrid vehicle.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (Read-Only Memory, ROM) , random access memory (Random Access Memory, RAM), electric carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electric carrier signal telecommunication signal and software distribution medium, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混动车的目标储备功率确定方法、装置及车辆。目标储备功率是为混动车的发动机启动预留的功率,该方法包括:获取混动车的当前离合器的状态和当前驾驶模式;获取混动车的当前发动机的水温和当前动力电池的SOC;基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率。可以准确得到当前工况下所需的目标储备功率,能够满足不同工况下的确切的使用需求。

Description

混动车的目标储备功率确定方法、装置及车辆
本专利申请要求于2022年1月7日提交的中国专利申请No.CN202210017702.5的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及混动车辆技术领域,尤其涉及一种混动车的目标储备功率确定方法、装置及车辆。
背景技术
混动车,即混动车辆,是指混合动力车辆(Hybrid Vehicle)。混动车辆的驱动系统由两个或多个能独立运行的动力单元组成。油电混合动力车辆(Hybrid Electric Vehicle)是一种典型的混动车辆。
混动车的目标储备功率是为了发动机能够成功启动预留的功率。当混动车辆处于纯电模式时,动力电池中保留目标储备功率,直至发动机完成启动流程。启动成功后,动力电池不再保留目标储备功率。当发动机停机后,动力电池将为下次启动再次保留目标储备功率。
目前,动力电池通常预留固定大小的目标储备功率;然而,固定的目标储备功率不能准确满足不同工况下的使用需求。
技术问题
本申请提供了一种混动车的目标储备功率确定方法、装置及车辆,以解决固定的目标储备功率不能准确满足不同工况下的使用需求的问题。
技术解决方案
第一方面,本申请提供了一种混动车的目标储备功率确定方法,目标储备功率是为混动车的发动机启动预留的功率,上述混动车的目标储备功率确定方法包括:
获取混动车的当前离合器的状态和当前驾驶模式;
获取混动车的当前发动机的水温和当前动力电池的SOC(State of Charge,荷电状态);
基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率。
在一种可能的实现方式中,基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率,包括:
通过预设的对应关系确定与当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,所述通过预设对应关系确定与当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率,包括:
获取与当前离合器的状态和当前驾驶模式相匹配的所有储备功率映射表,组成目标映射表集合;
根据目标映射表集合,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,所述目标映射表集合中的储备功率映射表数量为一个或一个以上。
在一种可能的实现方式中,当目标映射表集合中的储备功率映射表的数量为至少两个时,根据目标映射表集合,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率,包括:
确定当前发动机的水温对应的水温状态和当前动力电池的SOC对应的动力电池工作模式;
从目标映射表集合中,选取与当前发动机的水温对应的水温状态和当前动力电池的SOC对应的动力电池工作模式相匹配的目标储备功率映射表;
从目标储备功率映射表中,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,所述水温状态包括极低状态和非极低状态;其中,当所述当前发动机的水温小于预设水温阈值时,所述水温状态为所述极低状态;当所述当前发动机的水温大于等于所述预设水温阈值时,所述水温状态为所述非极低状态。
在一种可能的实现方式中,所述水温阈值为-30℃。
在一种可能的实现方式中,所述动力电池工作模式包括电量消耗模式和电量保持模式;其中,当所述当前动力电池的SOC大于预设SOC阈值时,所述动力电池工作模式为所述电量消耗模式;当所述当前动力电池的SOC小于等于所述预设SOC阈值时,所述动力电池工作模式为电量保持模式。
在一种可能的实现方式中,所述预设SOC阈值为28%。
在一种可能的实现方式中,若当前驾驶模式为泥地模式、沙地模式或雪地模式,则目标映射表集合中的储备功率映射表的数量为至少两个;
若当前驾驶模式为运动模式、纯电模式、四驱模式或电量预留模式,则目标映射表集合中的储备功率映射表的数量为一个。
在一种可能的实现方式中,在基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率之后,混动车的目标储备功率确定方法还包括:
获取当前储备功率使能标志位;其中,当前储备功率使能标志位用于表征当前动力电池是否预留目标储备功率;
根据目标储备功率和当前储备功率使能标志位,确定当前动力电池的实际可用功率。
在一种可能的实现方式中,获取当前储备功率使能标志位,包括:
若混动车处于上电状态,且,当前发动机处于停机状态,则确定当前储备功率使能标志位为第一预设标志位;其中,第一预设标志位用于表征当前动力电池预留目标储备功率;
若当前发动机处于启动状态,则确定当前储备功率使能标志位为第二预设标志位;其中,第二预设标志位用于表征当前动力电池不预留目标储备功率。
在一种可能的实现方式中,根据目标储备功率和当前储备功率使能标志位,确定当前动力电池的实际可用功率,包括:
获取当前动力电池的理论可用功率;
若当前储备功率使能标志位为第一预设标志位,则将当前动力电池的理论可用功率减去目标储备功率,得到当前动力电池的实际可用功率;
若当前储备功率使能标志位为第二预设标志位,则将当前动力电池的理论可用功率作为当前动力电池的实际可用功率。
第二方面,本申请提供了一种混动车的目标储备功率确定装置,目标储备功率是为混动车的发动机启动预留的功率,上述混动车的目标储备功率确定装置包括:
第一获取模块,用于获取混动车的当前离合器的状态和当前驾驶模式;
第二获取模块,用于获取混动车的当前发动机的水温和当前动力电池的SOC;
储备功率确定模块,用于基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率。
在一种可能的实现方式中,储备功率确定模块具体用于:
通过预设的对应关系确定与当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,储备功率确定模块具体用于:
获取与当前离合器的状态和当前驾驶模式相匹配的所有储备功率映射表,组成目标映射表集合;
根据目标映射表集合,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,储备功率确定模块具体用于:
当目标映射表集合中的储备功率映射表的数量为至少两个时,确定当前发动机的水温对应的水温状态和当前动力电池的SOC对应的动力电池工作模式;
从目标映射表集合中,选取与当前发动机的水温对应的水温状态和当前动力电池的SOC对应的动力电池工作模式相匹配的目标储备功率映射表;
从目标储备功率映射表中,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,若当前驾驶模式为泥地模式、沙地模式或雪地模式,则目标映射表集合中的储备功率映射表的数量为至少两个;
若当前驾驶模式为运动模式、纯电模式、四驱模式或电量预留模式,则目标映射表集合中的储备功率映射表的数量为一个。
在一种可能的实现方式中,混动车的目标储备功率确定装置还包括:
可用功率确定模块,用于获取当前储备功率使能标志位;其中,当前储备功率使能标志位用于表征当前动力电池是否预留目标储备功率;
根据目标储备功率和当前储备功率使能标志位,确定当前动力电池的实际可用功率。
在一种可能的实现方式中,可用功率确定模块具体用于:
若混动车处于上电状态,且,当前发动机处于停机状态,则确定当前储备功率使能标志位为第一预设标志位;其中,第一预设标志位用于表征当前动力电池预留目标储备功率;
若当前发动机处于启动状态,则确定当前储备功率使能标志位为第二预设标志位;其中,第二预设标志位用于表征当前动力电池不预留目标储备功率。
在一种可能的实现方式中,可用功率确定模块具体用于:
获取当前动力电池的理论可用功率;
若当前储备功率使能标志位为第一预设标志位,则将当前动力电池的理论可用功率减去目标储备功率,得到当前动力电池的实际可用功率;
若当前储备功率使能标志位为第二预设标志位,则将当前动力电池的理论可用功率作为当前动力电池的实际可用功率。
第三方面,本申请提供了一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面或第一方面的任一种可能的实现方式所述混动车的目标储备功率确定方法的步骤。
第四方面,本申请提供了一种车辆,包括如第三方面所述的电子设备。
第五方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上第一方面或第一方面的任一种可能的实现方式所述混动车的目标储备功率确定方法的步骤。
有益效果
本申请提供的混动车的目标储备功率确定方法、装置及车辆,能够通过获取混动车当前工况下的工况参数(包括混动车的当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC),并基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率;从而可以准确得到当前工况下所需的目标储备功率,确保该目标储备功率能够准确满足不同工况下的使用需求。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施方式提供的混动车的目标储备功率确定方法的实现流程图;
图2是本申请实施方式提供的混动车的目标储备功率确定装置的结构示意图;
图3是本申请实施方式提供的电子设备的示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施方式。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施方式中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图并通过具体实施方式进行说明。
参见图1,其示出了本申请的一个实施方式提供的混动车的目标储备功率确定方法的实现流程。该方法的执行主体可以是电子设备,该电子设备可以为混动车的整车控制器。其中,目标储备功率是为混动车的发动机启动预留的功率。如图1所示,所述方法可以包括S101至S103共三个步骤,分别详述如下。
在S101中,获取混动车的当前离合器的状态和当前驾驶模式。
混动车的当前离合器的状态可以通过对应的传感器检测得到。离合器的当前状态可以是打开状态或闭合状态。所述离合器可以集成在变速箱内,也可以独立于变速箱,安装于变速箱的外部。所述变速箱可以为前桥变速箱。
混动车的驾驶模式可以包括以下模式中的任意一种或多种:运动(sport)模式、纯电(EV)模式、四驱(AWD)模式、电量预留(SAVE)模式、泥地模式、沙地模式和雪地模式。当前驾驶模式可以是上述模式中的任意一种。
当发动机启动时,动力电池的目标储备功率为电机供能,电机带动发动机启动。当离合器的状态为打开状态时,电机只需带动发动机启动即可;当离合器的状态为闭合状态时,电机除了带动发动机启动,还需驱动车轮转动、车辆行驶,电机受到的阻力较大。也就是说,在离合器的状态为闭合状态时,电机受到的阻力大于打开状态时受到的阻力,需要更多的目标储备功率;在其它条件相同的情况下,离合器的状态为闭合状态时对应的储备功率应当大于离合器的状态为打开状态时对应的储备功率。
不同驾驶模式下,驱动车辆所需的扭矩是不同的,相应的目标储备功率也是不同的。
在S102中,获取混动车的当前发动机的水温和当前动力电池的SOC(State of Charge,荷电状态)。
在本步骤中,可以通过对应的水温传感器,得到当前发动机的水温。可以通过电池管理系统(Battery Management System,BMS)获取当前动力电池的SOC。其中,动力电池是可以为混动车提供动力的电池,其可以输出高压,也可以称其为高压电池。
当发动机的水温较低时,需要更多的目标储备功率,才能保证发动机能够成功启动。因此,不同的发动机的水温对应的目标储备功率可能是不同的。在其它条件相同的情况下,发动机的水温较低时对应的目标储备功率,通常大于发动机的水温较高时对应的目标储备功率。
动力电池的SOC在极低的情况下,比如,小于或等于20%时,其放电功率一般是受限的,其能够提供的功率较小。因此,在动力电池的SOC极低时,会预留较多的目标储备功率,以保证发动机能够成功启动。动力电池的SOC在非极低的情况下,比如,大于20%时,其放电功率一般不受限,能够提供较大的功率。此时,预留的目标储备功率可以少于极低情况下的目标储备功率。动力电池的SOC在非极低的情况下,不同的SOC对应的动力电池的放电功率基本是相同的;因此,不同的SOC对应的目标储备功率可以是相同的。
在S103中,基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率。
本步骤中,综合考虑当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,以确定最终的目标储备功率,并确保该目标储备功率可以满足当前工况所需。
本步骤中,通过获取混动车当前工况下的工况参数,包括混动车的当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,并基于上述工况参数,确定目标储备功率;从而可以准确得到当前工况下所需的目标储备功率,确保该目标储备功率能够准确满足不同工况下的使用需求。
在一个可能的实施方式中,上述S103可以包括以下步骤:
基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,通过预设的对应关系确定与当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
示例性地,所述预设对应关系可以为离合器的状态、驾驶模式、发动机的水温、动力电池的SOC以及储备功率的对应关系;该对应关系可以存储在一个多维映射表中,也可以存储在多个二维映射表中。
本实施方式中,可以采用多种查表方式,确定与当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC相匹配的储备功率,即目标储备功率。
示例性地,在一个多维映射表中存储有离合器的状态、驾驶模式、发动机的水温、动力电池的SOC与储备功率的映射关系,该多维映射表可以提前标定得到。根据该多维映射表,可以查询得到与当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC相匹配的储备功率,即目标储备功率。
在一个可能的实施方式中,上述基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,通过预设对应关系确定与当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率,可以包括以下步骤:
获取与当前离合器的状态和当前驾驶模式相匹配的所有储备功率映射表,组成目标映射表集合;
根据目标映射表集合,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在本实施方式中,混动车中预存有多个储备功率映射表。混动车中存储的所有储备功率映射表组成储备功率映射表总集合。储备功率映射表总集合中的每个储备功率映射表均可以匹配一个离合器的状态和一个驾驶模式。储备功率映射表总集合中的每个储备功率映射表中均存储有发动机的水温、动力电池的SOC以及储备功率的匹配关系,只是不同的储备功率映射表中存储的具体的匹配关系可能是不同的;比如,相同的发动机的水温和动力电池的SOC在不同的储备功率映射表中匹配的储备功率可能是不同的。
一个离合器的状态和一个驾驶模式可以匹配储备功率映射表总集合中的至少一个储备功率映射表。本实施方式中,将储备功率映射表总集合中的所有与当前离合器的状态和当前驾驶模式相匹配的储备功率映射表的集合,称为目标映射表集合;并将从目标映射表集合中,查询到的与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,称为目标储备功率。
其中,各个储备功率映射表可以根据实际需求提前标定得到。
目标映射表集合中的与当前离合器的状态和当前驾驶模式相匹配的储备功率映射表的数量可能是一个或一个以上。根据目标映射表集合中的储备功率映射表的数量,可以采用不同的方法得到与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,即目标储备功率。
当目标映射表集合中的储备功率映射表的数量为一个时,直接从目标映射表集合中的唯一的一个储备功率映射表中,查询与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,即为目标储备功率。
当目标映射表集合中的储备功率映射表的数量大于一个时,可以从目标映射表集合中的至少两个储备功率映射表中选取其中一个,作为目标储备功率映射表;然后从目标储备功率映射表中,查询与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,即为目标储备功率。其中,目标储备功率映射表中的发动机的水温的取值范围包含当前发动机的水温,目标储备功率映射表中的电池的SOC的取值范围包含当前动力电池的SOC。
本实施方式中,通过离合器的状态和驾驶模式进行精细划分,可以达到精细标定的目的,从而使确定的目标储备功率更加准确。
在一个可能的实施方式中,当目标映射表集合中的储备功率映射表的数量为至少两个时,上述根据目标映射表集合,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率,可以包括以下步骤:
确定当前发动机的水温对应的水温状态和当前动力电池的SOC对应的动力电池工作模式;
从目标映射表集合中,选取与当前发动机的水温对应的水温状态和当前动力电池的SOC对应的动力电池工作模式相匹配的目标储备功率映射表;
从目标储备功率映射表中,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在本实施方式中,可以根据当前发动机的水温值确定对应的水温状态。例如,若当前发动机的水温小于预设水温阈值(例如,-30℃),则确定对应的水温状态为极低状态;若当前发动机的水温不小于预设水温阈值,则确定对应的水温状态为非极低状态。
根据当前动力电池的SOC值,可以确定对应的动力电池工作模式。例如,若当前动力电池的SOC值大于预设SOC阈值(例如,28%),则确定对应的动力电池工作模式为电量消耗模式;若当前动力电池的SOC值不大于预设SOC阈值,则确定对应的动力电池工作模式为电量保持模式。
其中,预设水温阈值和预设SOC阈值可以根据实际需求进行标定,在此不做具体限制。
一个水温状态和一个动力电池工作模式可以从目标映射表集合中的至少两个储备功率映射表中,匹配得到一个储备功率映射表,该储备功率映射表可以称为目标储备功率映射表。
示例性地,目标映射表集合中的储备功率映射表的数量为两个;当动力电池工作模式为电量消耗模式,或,水温状态为极低状态时,可以匹配到一个储备功率映射表;当动力电池工作模式为电量保持模式且水温状态为非极低状态时,可以匹配到另一个储备功率映射表。
示例性地,目标储备功率映射表的数量是一个;此时可以从唯一一个目标储备功率映射表中,查询得到与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,即目标储备功率。
需要说明的是,本实施方式中的各个储备功率映射表中的发动机的水温的取值范围和动力电池的SOC的取值范围均可以根据实际需求确定。不同储备功率映射表中的发动机的水温的取值范围和动力电池的SOC的取值范围可能是不同的,也可能是相同的,在此不做具体限制。
本实施方式中,通过水温状态和动力电池工作模式进一步精细划分,可以适应恶劣路况,比如,雪地、泥地、沙地等,从而提高恶劣路况下的目标储备功率的精度。
在一个可能的实施方式中,当目标映射表集合中的储备功率映射表的数量为一个时,上述根据目标映射表集合,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率,可以包括以下步骤:
从目标映射表集合中的唯一一个储备功率映射表中,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一个可能的实施方式中,若当前驾驶模式为泥地模式、沙地模式或雪地模式,则目标映射表集合中的储备功率映射表的数量为至少两个;
若当前驾驶模式为运动模式、纯电模式、四驱模式或电量预留模式,则目标映射表集合中的储备功率映射表的数量为一个。
当驾驶模式为泥地模式、沙地模式或雪地模式时,路况比较恶劣;因此,需要单独考虑水温状态和动力电池工作模式,以使确定的目标储备功率更加精确并且足以应对恶劣路况。
示例性地,以下为一些储备功率映射表的示例;各个表中的X均表示发动机的水温,单位为℃;Y均表示动力电池的SOC,单位为%;Z均表示储备功率,单位为KW。
其中,表1为离合器的状态为打开状态,且驾驶模式为sport模式(即运动模式)时的储备功率映射表MAP1。表2为离合器的状态为打开状态,且驾驶模式为EV模式(即纯电模式)时的储备功率映射表MAP2。表3为离合器的状态为打开状态,且驾驶模式为AWD模式(即四驱模式)时的储备功率映射表MAP3。表4为离合器的状态为打开状态,且驾驶模式为SAVE模式(即电量预留模式)时的储备功率映射表MAP4。
表1 MAP1
Figure dest_path_image001
表2 MAP2
Figure dest_path_image002
表3 MAP3
Figure dest_path_image003
表4 MAP4
Figure dest_path_image004
表5为离合器的状态为闭合状态,且驾驶模式为sport模式(即运动模式)时的储备功率映射表MAP5。表6为离合器的状态为闭合状态,且驾驶模式为EV模式(即纯电模式)时的储备功率映射表MAP6。表7为离合器的状态为闭合状态,且驾驶模式为AWD模式(即四驱模式)时的储备功率映射表MAP7。表8为离合器的状态为闭合状态,且驾驶模式为SAVE模式(即电量预留模式)时的储备功率映射表MAP8。
表5 MAP5
Figure dest_path_image005
表6 MAP6
Figure dest_path_image006
表7 MAP7
Figure dest_path_image007
表8 MAP8
Figure dest_path_image008
在一个可能的实施方式中,在上述S103之后,上述混动车的目标储备功率确定方法还包括以下步骤:
获取当前储备功率使能标志位;其中,所述当前储备功率使能标志位用于表征当前动力电池是否预留目标储备功率;
根据目标储备功率和当前储备功率使能标志位,确定当前动力电池的实际可用功率。
在本实施方式中,可以通过前述确定的目标储备功率和当前储备功率使能标志位,确定当前动力电池的实际可用功率。
上述当前储备功率使能标志位能够表示当前是否需要预留目标储备功率。当前动力电池的实际可用功率表示,在考虑是否预留目标储备功率的情况下,当前动力电池实际可输出功率。
在一个可能的实施方式中,上述获取当前储备功率使能标志位,包括以下步骤:
若混动车处于上电状态,且,当前发动机处于停机状态,则确定当前储备功率使能标志位为第一预设标志位;其中,第一预设标志位用于表征当前动力电池预留目标储备功率;
若当前发动机处于启动状态,则确定当前储备功率使能标志位为第二预设标志位;其中,第二预设标志位用于表征当前动力电池不预留目标储备功率。
作为本实施方式的一个实施例,若当前混动车处于上电状态,且当前发动机的状态为启动过程中,则确定当前储备功率使能标志位为第一预设标志位;若当前发动机的状态为停机过程中,则确定当前储备功率使能标志位为第二预设标志位。
发动机处于停机状态是指发动机未启动,且未接收到发动机启动请求。
发动机从停机状态到启动状态,中间需要经历多个阶段,并不是瞬间就能启动完成。发动机的状态为启动过程中是指发动机接收到发动机启动请求,正在启动中,但还未启动完成。也就是说,发动机从停机状态到启动状态,需要经历启动过程中这一状态。
发动机处于启动状态是指发动机已经完成启动流程,已启动完成。
发动机从启动状态到停机状态,中间也需要经历多个阶段。发动机的状态为停机过程中是指发动机接收到发动机停机请求,正在停机中,但还未成功停机,即还未达到停机状态。也就是说,发动机从启动状态到停机状态,需要经历停机过程中这一状态。
当混动车处于上电状态,且当前无发动机启动请求时,当前储备功率使能标志位为第一预设标志位。当接收到发动机启动请求,且处于启动过程中时,当前储备功率使能标志位仍为第一预设标志位;当检测到发动机启动完成后,即在发动机处于启动状态时,当前储备功率使能标志位为第二预设标志位;若发动机启动完成后,无发动机停机请求,即发动机维持启动状态,则当前储备功率使能标志位保持为第二预设标志位。当接收到停机请求,且处于停机过程中时,当前储备功率使能标志位保持为第二预设标志位。当接收到停机请求,且停机已经完成时,即在发动机处于停机状态时,当前储备功率使能标志位为第一预设标志位;若发动机停机完成后,无发动机启动请求,即发动机维持停机状态,则当前储备功率使能标志位保持为第一预设标志位。
当前储备功率使能标志位为第一预设标志位,表示动力电池需要预留目标储备功率;当前储备功率使能标志位为第二预设标志位,表示动力电池不需要预留目标储备功率。
第一预设标志位和第二预设标志位为不同的标志位,可以根据实际需求设置。示例性地,第一预设标志位为1,第二预设标志位为0。
在一个可能的实施方式中,上述根据目标储备功率和当前储备功率使能标志位,确定当前动力电池的实际可用功率,包括以下步骤:
获取当前动力电池的理论可用功率;
若当前储备功率使能标志位为第一预设标志位,则将当前动力电池的理论可用功率减去目标储备功率,得到当前动力电池的实际可用功率;
若当前储备功率使能标志位为第二预设标志位,则将当前动力电池的理论可用功率作为当前动力电池的实际可用功率。
当前动力电池的理论可用功率,可以是根据当前动力电池的实际电量等信息计算得到的当前动力电池的第一可用输出功率,也可以是该第一可用输出功率减去各种限制后得到的第二可用输出功率;比如,第二可用输出功率可以由第一可用输出功率减去高压附件所消耗的功率得到。当前动力电池的理论可用功率为,不考虑是否预留目标储备功率的情况下,当前动力电池实际可输出功率。
若当前储备功率使能标志位为第一预设标志位,说明需要预留目标储备功率;此时,当前动力电池的实际可用功率=当前动力电池的理论可用功率-目标储备功率。若当前储备功率使能标志位为第二预设标志位,说明不需要预留目标储备功率;此时,当前动力电池的实际可用功率=当前动力电池的理论可用功率。
本申请提供的混动车的目标储备功率确定方法,能够通过发动机状态确定当前储备功率使能标志位,并通过精确确定的目标储备功率以及当前储备功率使能标志位,确定当前动力电池的实际可用功率;本申请提供的方法能够提高当前动力电池的实际可用功率的计算精度,进而能够根据实际需求对动力电池进行充电,防止过度充电,节约资源。
应理解,上述实施方式中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施方式的实施过程构成任何限定。
以下为本申请的装置实施方式,对于其中未详尽描述的细节,可以参考上述对应的方法实施方式。
图2是本申请的一个实施方式提供的混动车的目标储备功率确定装置的结构示意图。为了便于说明,图中仅示出了与本申请相关的部分,详述如下。
目标储备功率是为混动车的发动机启动预留的功率。
如图2所示,混动车的目标储备功率确定装置30包括第一获取模块31、第二获取模块32和储备功率确定模块33。
第一获取模块31,用于获取混动车的当前离合器的状态和当前驾驶模式;
第二获取模块32,用于获取混动车的当前发动机的水温和当前动力电池的SOC;
储备功率确定模块33,用于基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率。
本实施方式提供的装置能够通过第一获取模块和第二获取模块,获取混动车当前工况下的工况参数(包括混动车的当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC),并通过储备功率确定模块,基于当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC,确定目标储备功率;从而可以准确得到当前工况下所需的目标储备功率,确保该目标储备功率能够准确满足不同工况下的使用需求。
在一种可能的实现方式中,储备功率确定模块33具体用于:
通过预设的对应关系确定与当前离合器的状态、当前驾驶模式、当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,储备功率确定模块33具体用于:
获取与当前离合器的状态和当前驾驶模式相匹配的所有储备功率映射表,组成目标映射表集合;
根据目标映射表集合,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,储备功率确定模块33具体用于:
当目标映射表集合中的储备功率映射表的数量为至少两个时,确定当前发动机的水温对应的水温状态和当前动力电池的SOC对应的动力电池工作模式;
从目标映射表集合中,选取与当前发动机的水温对应的水温状态和当前动力电池的SOC对应的动力电池工作模式相匹配的目标储备功率映射表;
从目标储备功率映射表中,确定与当前发动机的水温和当前动力电池的SOC相匹配的储备功率,作为目标储备功率。
在一种可能的实现方式中,若当前驾驶模式为泥地模式、沙地模式或雪地模式,则目标映射表集合中的储备功率映射表的数量为至少两个;
若当前驾驶模式为运动模式、纯电模式、四驱模式或电量预留模式,则目标映射表集合中的储备功率映射表的数量为一个。
在一种可能的实现方式中,混动车的目标储备功率确定装置还包括:可用功率确定模块。
可用功率确定模块,用于获取当前储备功率使能标志位;其中,当前储备功率使能标志位用于表征当前动力电池是否预留目标储备功率;
根据目标储备功率和当前储备功率使能标志位,确定当前动力电池的实际可用功率。
在一种可能的实现方式中,可用功率确定模块具体用于:
若混动车处于上电状态,且,当前发动机处于停机状态,则确定当前储备功率使能标志位为第一预设标志位;其中,第一预设标志位用于表征当前动力电池预留目标储备功率;
若当前发动机处于启动状态,则确定当前储备功率使能标志位为第二预设标志位;其中,第二预设标志位用于表征当前动力电池不预留目标储备功率。
在一种可能的实现方式中,可用功率确定模块具体用于:
获取当前动力电池的理论可用功率;
若当前储备功率使能标志位为第一预设标志位,则将当前动力电池的理论可用功率减去目标储备功率,得到当前动力电池的实际可用功率;
若当前储备功率使能标志位为第二预设标志位,则将当前动力电池的理论可用功率作为当前动力电池的实际可用功率。
本申请还提供了一种计算机程序产品,其具有程序代码,该程序代码在相应的处理器、控制器、计算装置或电子设备中运行时执行上述任一个混动车的目标储备功率确定方法的实施方式中的步骤,例如图1所示的S101至S103。本领域技术人员应当理解,可以以硬件、软件、固件、专用处理器或其组合的各种形式来实现本申请的实施方式所提出的方法和对应的设备。专用处理器可以包括专用集成电路(ASIC)、精简指令集计算机(RISC)和/或现场可编程门阵列(FPGA)。本申请各个实施方式所提出的方法和设备优选地被实现为硬件和软件的组合。该软件优选地作为应用程序安装在程序存储设备上。其典型地是基于具有硬件的计算机平台的机器,例如一个或多个中央处理器(CPU)、随机存取存储器(RAM)和一个或多个输入/输出(I/O)接口。操作系统典型地也安装在所述计算机平台上。这里描述的各种过程和功能可以是应用程序的一部分,或者其一部分可以通过操作系统执行。
图3是本申请实施方式提供的电子设备的示意图。如图3所示,电子设备4包括:处理器40、存储器41以及存储在存储器41中并可在处理器40上运行的计算机程序42。处理器40执行计算机程序42时实现上述各个混动车的目标储备功率确定方法实施方式中的步骤,例如图1所示的S101至S103。或者,处理器40执行计算机程序42时实现上述各装置实施方式中各模块/单元的功能,例如图2所示模块31至33的功能。
示例性的,计算机程序42可以被分割成一个或多个模块/单元;例如,所述计算机程序42可以被分割成图2所示的模块/单元31至33。这些模块/单元可以被存储在存储器41中,并由处理器40执行,以完成/实施本申请所提供的方案。这些模块/单元可以是能够完成特定功能的一系列计算机程序指令段,这些指令段能够描述计算机程序42在电子设备4中的执行过程。
电子设备4可以是整车控制器等设备。电子设备4可包括,但不仅限于,处理器40和存储器41。本领域技术人员可以理解,图3仅仅是电子设备4的示例,并不构成对电子设备4的限定。电子设备4可以包括比图3更多或更少的部件,或者组合某些部件,或者不同的部件。例如电子设备4还可以包括输入输出设备、网络接入设备、总线等。
处理器40可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现场可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者其它任何常规的处理器等。
存储器41可以是电子设备4的内部存储单元,例如电子设备4的硬盘或内存。存储器41也可以是电子设备4的外部存储设备,例如电子设备4上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器41还可以既包括电子设备4的内部存储单元也包括外部存储设备。存储器41能够存储计算机程序42以及电子设备4所需的其他程序和数据。存储器41还能够暂时地存储已经输出或者将要输出的数据。
对应于上述电子设备,本申请还提供了一种车辆,该车辆包括上述电子设备,其产生的有益效果与上述电子设备相同。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明。实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施方式中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述装置中单元、模块的具体工作过程,可以参考前述方法实施方式中的对应过程,在此不再赘述。
在上述实施方式中,对各个实施方式的描述都各有侧重,某个实施方式中没有详述或记载的部分,可以参见其它实施方式的相关描述。
本领域普通技术人员可以意识到,本申请所公开的各个实施方式所描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以针对每个特定的应用,使用不同方法来实现所描述的功能,但是这些实现方法不应认为超出本申请的范围。
在本申请所提供的实施方式中,应该理解,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施方式仅仅是示意性的。例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元。即,上述部件和单元可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述各个方法实施方式中的全部或部分流程,可以通过计算机程序来控制相关的硬件来完成。所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个混动车的目标储备功率确定方法实施方式的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
此外,本申请附图中示出的实施方式或本说明书中提到的各种实施方式的特征不应理解为彼此独立的特征。而是,可以将一个实施方式的其中一个示例中描述的每个特征与来自其他实施方式的一个或多个期望的特征组合,从而产生未用文字或参考附图描述的其他实施方式。
以上所述实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种混动车的目标储备功率确定方法,其特征在于,所述目标储备功率是为所述混动车的发动机启动预留的功率,所述混动车的目标储备功率确定方法包括:
    获取所述混动车的当前离合器的状态和当前驾驶模式;
    获取所述混动车的当前发动机的水温和当前动力电池的SOC(State of Charge,荷电状态);
    基于所述当前离合器的状态、所述当前驾驶模式、所述当前发动机的水温和所述当前动力电池的SOC,确定所述目标储备功率。
  2. 根据权利要求1所述的混动车的目标储备功率确定方法,其特征在于,所述基于所述当前离合器的状态、所述当前驾驶模式、所述当前发动机的水温和所述当前动力电池的SOC,确定所述目标储备功率,包括:
    通过预设的对应关系确定与所述当前离合器的状态、所述当前驾驶模式、所述当前发动机的水温和所述当前动力电池的SOC相匹配的储备功率,作为所述目标储备功率。
  3. 根据权利要求2所述的混动车的目标储备功率确定方法,其特征在于,所述通过预设对应关系确定与所述当前离合器的状态、所述当前驾驶模式、所述当前发动机的水温和所述当前动力电池的SOC相匹配的储备功率,作为所述目标储备功率,包括:
    获取与所述当前离合器的状态和所述当前驾驶模式相匹配的所有储备功率映射表,组成目标映射表集合;
    根据所述目标映射表集合,确定与所述当前发动机的水温和所述当前动力电池的SOC相匹配的储备功率,作为所述目标储备功率。
  4. 根据权利要求3所述的混动车的目标储备功率确定方法,其特征在于,所述目标映射表集合中的储备功率映射表数量为一个或一个以上。
  5. 根据权利要求3所述的混动车的目标储备功率确定方法,其特征在于,当所述目标映射表集合中的所述储备功率映射表的数量为至少两个时,所述根据所述目标映射表集合,确定与所述当前发动机的水温和所述当前动力电池的SOC相匹配的储备功率,作为所述目标储备功率,包括:
    确定所述当前发动机的水温对应的水温状态和所述当前动力电池的SOC对应的动力电池工作模式;
    从所述目标映射表集合中,选取与所述当前发动机的水温对应的水温状态和所述当前动力电池的SOC对应的动力电池工作模式相匹配的目标储备功率映射表;
    从所述目标储备功率映射表中,确定与所述当前发动机的水温和所述当前动力电池的SOC相匹配的储备功率,作为所述目标储备功率。
  6. 根据权利要求5所述的混动车的目标储备功率确定方法,其特征在于,所述水温状态包括极低状态和非极低状态;其中,当所述当前发动机的水温小于预设水温阈值时,所述水温状态为所述极低状态;当所述当前发动机的水温大于等于所述预设水温阈值时,所述水温状态为所述非极低状态。
  7. 根据权利要求6所述的混动车的目标储备功率确定方法,其特征在于,所述水温阈值为-30℃。
  8. 根据权利要求5所述的混动车的目标储备功率确定方法,其特征在于,所述动力电池工作模式包括电量消耗模式和电量保持模式;其中,当所述当前动力电池的SOC大于预设SOC阈值时,所述动力电池工作模式为所述电量消耗模式;当所述当前动力电池的SOC小于等于所述预设SOC阈值时,所述动力电池工作模式为电量保持模式。
  9. 根据权利要求8所述的混动车的目标储备功率确定方法,其特征在于,所述预设SOC阈值为28%。
  10. 根据权利要求3所述的混动车的目标储备功率确定方法,其特征在于,当所述当前驾驶模式为泥地模式、沙地模式或雪地模式时,所述目标映射表集合中的所述储备功率映射表的数量为至少两个;
    当所述当前驾驶模式为运动模式、纯电模式、四驱模式或电量预留模式时,所述目标映射表集合中的所述储备功率映射表的数量为一个。
  11. 根据权利要求1至10任一项所述的混动车的目标储备功率确定方法,其特征在于,在所述基于所述当前离合器的状态、所述当前驾驶模式、所述当前发动机的水温和所述当前动力电池的SOC,确定所述目标储备功率之后,所述混动车的目标储备功率确定方法还包括:
    获取当前储备功率使能标志位;其中,所述当前储备功率使能标志位用于表征当前动力电池是否预留所述目标储备功率;
    根据所述目标储备功率和所述当前储备功率使能标志位,确定所述当前动力电池的实际可用功率。
  12. 根据权利要求11所述的混动车的目标储备功率确定方法,其特征在于,所述获取当前储备功率使能标志位,包括:
    当所述混动车处于上电状态,且,当前发动机处于停机状态时,确定所述当前储备功率使能标志位为第一预设标志位;其中,所述第一预设标志位用于表征所述当前动力电池预留所述目标储备功率;
    当所述当前发动机处于启动状态时,确定所述当前储备功率使能标志位为第二预设标志位;其中,所述第二预设标志位用于表征所述当前动力电池不预留所述目标储备功率。
  13. 根据权利要求11所述的混动车的目标储备功率确定方法,其特征在于,所述根据所述目标储备功率和所述当前储备功率使能标志位,确定所述当前动力电池的实际可用功率,包括:
    获取所述当前动力电池的理论可用功率;
    当所述当前储备功率使能标志位为第一预设标志位时,将所述当前动力电池的理论可用功率减去所述目标储备功率,得到所述当前动力电池的实际可用功率;
    当所述当前储备功率使能标志位为第二预设标志位时,将所述当前动力电池的理论可用功率作为所述当前动力电池的实际可用功率。
  14. 一种混动车的目标储备功率确定装置,其特征在于,所述目标储备功率是为所述混动车的发动机启动预留的功率,所述混动车的目标储备功率确定装置包括:
    第一获取模块,用于获取所述混动车的当前离合器的状态和当前驾驶模式;
    第二获取模块,用于获取所述混动车的当前发动机的水温和当前动力电池的SOC;
    储备功率确定模块,用于基于所述当前离合器的状态、所述当前驾驶模式、所述当前发动机的水温和所述当前动力电池的SOC,确定所述目标储备功率。
  15. 一种车辆,包括电子设备,所述电子设备包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上的权利要求1至13中任一项所述混动车的目标储备功率确定方法的步骤。
PCT/CN2023/070976 2022-01-07 2023-01-06 混动车的目标储备功率确定方法、装置及车辆 WO2023131289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210017702.5 2022-01-07
CN202210017702.5A CN115123181A (zh) 2022-01-07 2022-01-07 混动车的目标储备功率确定方法、装置及车辆

Publications (1)

Publication Number Publication Date
WO2023131289A1 true WO2023131289A1 (zh) 2023-07-13

Family

ID=83375311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070976 WO2023131289A1 (zh) 2022-01-07 2023-01-06 混动车的目标储备功率确定方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN115123181A (zh)
WO (1) WO2023131289A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115123181A (zh) * 2022-01-07 2022-09-30 长城汽车股份有限公司 混动车的目标储备功率确定方法、装置及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070112484A1 (en) * 2005-11-15 2007-05-17 Se-Yong Lee Method of determination of driving mode of hybrid vehicle
CN106965794A (zh) * 2016-01-07 2017-07-21 现代自动车株式会社 用于防止电池的过度放电的方法和控制器及混合动力车辆
CN112550264A (zh) * 2019-09-25 2021-03-26 福特全球技术公司 混合动力车辆和用于混合动力车辆的电池消耗控制系统
WO2021218816A1 (zh) * 2020-04-30 2021-11-04 长城汽车股份有限公司 一种电池启动方法、装置及车辆
CN115123181A (zh) * 2022-01-07 2022-09-30 长城汽车股份有限公司 混动车的目标储备功率确定方法、装置及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070112484A1 (en) * 2005-11-15 2007-05-17 Se-Yong Lee Method of determination of driving mode of hybrid vehicle
CN106965794A (zh) * 2016-01-07 2017-07-21 现代自动车株式会社 用于防止电池的过度放电的方法和控制器及混合动力车辆
CN112550264A (zh) * 2019-09-25 2021-03-26 福特全球技术公司 混合动力车辆和用于混合动力车辆的电池消耗控制系统
WO2021218816A1 (zh) * 2020-04-30 2021-11-04 长城汽车股份有限公司 一种电池启动方法、装置及车辆
CN115123181A (zh) * 2022-01-07 2022-09-30 长城汽车股份有限公司 混动车的目标储备功率确定方法、装置及车辆

Also Published As

Publication number Publication date
CN115123181A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2023131289A1 (zh) 混动车的目标储备功率确定方法、装置及车辆
CN111216596A (zh) 一种燃料电池整车能量管理方法、装置、车辆及存储介质
WO2023125129A1 (zh) 电池soc的估算方法及相关装置
US20210170909A1 (en) Apparatus for controlling fuel cell of environment-friendly vehicle, system including the same, and method thereof
WO2023116519A1 (zh) 电池soc的估算方法及相关装置
EP4183621A1 (en) Electric vehicle energy management method, and terminal device and storage medium
WO2023125133A1 (zh) 车辆加速控制方法、装置、车辆及存储介质
CN116278813B (zh) 基于附着系数的请求扭矩控制方法、装置及新能源汽车
CN113954639B (zh) 电机轮端扭矩能力确定方法、装置、电子设备及存储介质
WO2023116518A1 (zh) 电池显示soc值的跟随方法及相关装置
CN113484763A (zh) 一种电池剩余电量的确定方法、装置、设备及存储介质
WO2023125130A1 (zh) 驾驶模式切换方法、装置和车辆
CN115123231A (zh) 混动车扭矩梯度确定方法及相关装置
WO2023143279A1 (zh) 电池soc可用窗口值的确定方法及相关装置
WO2023071619A1 (zh) 混合轮端扭矩能力确定方法、装置、电子设备及存储介质
CN116331065A (zh) 动力电池功率修正方法、车辆及存储介质
CN115113059A (zh) 串联发电工况下的目标soc确定方法、装置及车辆
WO2023116533A1 (zh) 修正电池soc的方法及相关装置
WO2023125128A1 (zh) 用于混动车的换挡控制方法、装置、车辆及存储介质
WO2022133975A1 (zh) 充电方法、电子装置以及存储介质
WO2022134052A1 (zh) 充电方法、电子装置以及存储介质
CN112213652B (zh) 用于估算剩余电量的方法及系统
CN117227695A (zh) 车辆的混动控制方法、装置、计算机可读存储介质和车辆
CN117301954A (zh) 电池荷电状态的调整方法、装置、电子设备及存储介质
WO2022133974A1 (zh) 充电方法、电子装置以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737151

Country of ref document: EP

Kind code of ref document: A1