WO2023130806A1 - 一种衍射光波导显示装置 - Google Patents

一种衍射光波导显示装置 Download PDF

Info

Publication number
WO2023130806A1
WO2023130806A1 PCT/CN2022/126856 CN2022126856W WO2023130806A1 WO 2023130806 A1 WO2023130806 A1 WO 2023130806A1 CN 2022126856 W CN2022126856 W CN 2022126856W WO 2023130806 A1 WO2023130806 A1 WO 2023130806A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
image source
display device
crystal microcapsules
optical waveguide
Prior art date
Application number
PCT/CN2022/126856
Other languages
English (en)
French (fr)
Inventor
倪名立
谭志先
李建军
Original Assignee
南昌虚拟现实研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌虚拟现实研究院股份有限公司 filed Critical 南昌虚拟现实研究院股份有限公司
Publication of WO2023130806A1 publication Critical patent/WO2023130806A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules

Definitions

  • the invention belongs to the field of AR optical waveguide display, and in particular relates to a diffractive optical waveguide display device.
  • Optical waveguide display technology is an important development direction in the field of AR.
  • Holographic volume gratings are usually prepared by holographic exposure of photosensitive materials with coherent lasers. Due to their advantages of high diffraction efficiency, low cost, and easy large-scale production, they are expected to be applied to optical waveguide AR displays based on holographic volume gratings.
  • Polymer-dispersed liquid crystal holographic volume grating is a holographic volume grating based on polymer/liquid crystal composite materials. It not only has excellent optical properties, but also has electro-optic responsiveness. It has attracted extensive attention in the industry and is very commercially applied in optical waveguide AR displays. potential.
  • Micro-LED Compared with Liquid Crystal Display (LCD) and Organic Light-Emitting Diode (OLED), Micro-LED has higher brightness, resolution, ambient light contrast, It has advantages in energy consumption, service life, response speed and thermal stability, and has become the mainstream image source for AR display.
  • the combination of polymer-dispersed liquid crystal holographic volume grating, that is, PDLC-VHG, and micron light-emitting diodes is expected to become the mainstream technical solution for AR optical waveguide display.
  • the ambient light contrast ratio (Ambient Light Contrast, ACR) of the diffractive optical waveguide display device is a key performance parameter related to the display effect.
  • ACR Ambient Light Contrast
  • L in and L AM represent the in-coupled light intensity and the ambient light intensity, respectively
  • ⁇ in and ⁇ out are the diffraction efficiencies of the in-coupled grating and the out-coupled grating
  • T is the light transmittance of the waveguide lens.
  • the current existing PDLC-VHG usually only has a high diffraction efficiency for p-polarized light, but the diffraction efficiency for s-polarized light is low, because the liquid crystal molecules are usually arranged parallel to the grating vector direction (refer to Mater. Chem. Front. 2017, 1, 294; Composites Part B 2020, 199, 108290.)
  • This will cause that when PDLC-VHG is matched with an image source emitting unpolarized light such as a micron LED, only p-polarized light is coupled into the light
  • the waveguide plate is then coupled out to enter the human eye, and most of the s-polarized light is directly transmitted and wasted (as shown in Figure 3), resulting in a low ACR. Therefore, it is necessary to develop an optical waveguide display device that is insensitive to the polarization direction of s-light.
  • the purpose of the present invention is to provide a diffractive optical waveguide that can have higher diffraction efficiency for both s-polarized light and p-polarized light emitted by the image source, so it has a higher ambient light contrast, thereby improving the definition of the output end of the waveguide plate Display device, in order to realize above-mentioned object of the invention, the technical solution that the present invention adopts is:
  • a diffractive optical waveguide display device comprising a diffraction grating, a waveguide plate is arranged on one side of the diffraction grating, an image source is arranged on the other side of the diffraction grating, and the light beam emitted by the image source passes through the diffraction grating and enters the
  • the diffraction grating includes periodically distributed liquid crystal microcapsules, the liquid crystal microcapsules are hollow spherical, the inner diameter is 10-60nm, and the surface thickness is 5-30nm, and the liquid crystal microcapsules are used to improve the s
  • the diffraction rate of the polarized light and the p-polarized light enables total reflection of both the s-polarized light and the p-polarized light in the waveguide plate, so as to improve the clarity of the output image of the waveguide plate.
  • liquid crystal molecules in the liquid crystal microcapsules are all perpendicular to the surface of the liquid crystal microcapsules and distributed around the circumference of the liquid crystal microcapsules.
  • orientations of several liquid crystal microcapsules are randomly distributed, and the orientations of liquid crystal molecules in a single liquid crystal microcapsule are distributed parallel to each other.
  • liquid crystal microcapsule groups are arranged in the diffraction grating, and several liquid crystal microcapsules arranged side by side are arranged in the liquid crystal microcapsule group, and several liquid crystal microcapsule groups are arranged along the diffraction grating.
  • the length direction is arranged side by side.
  • the arrangement direction of the several liquid crystal microcapsules in the liquid crystal microcapsule group is relatively obliquely arranged to the emission direction of the image source.
  • the diffraction grating also includes a transparent substrate, the liquid crystal microcapsules are arranged between two transparent substrates, a polymer is arranged between the two transparent substrates, and the image source is obtained from a It enters into the transparent substrate on one side, emits from the transparent substrate on the other side, and enters into the waveguide plate.
  • diffraction gratings which are respectively arranged at the incident end and the outgoing end of the waveguide plate, and the direction of the light beam emitted by the image source is directly opposite to the incident end of the waveguide plate.
  • the image source is a micron light-emitting diode.
  • the improved clarity of the liquid crystal microcapsules is the ambient light contrast value.
  • the liquid crystal microcapsules include a shell material, the liquid crystal molecules are arranged in the shell material, and the shell material is formed by polymerization of acrylate monomers.
  • PDLC-VHG Compared with the conventional holographic photopolymerization-induced phase separation method used in the prior art, when PDLC-VHG is used as a diffraction grating, because its optical waveguide AR display device only has a higher diffraction efficiency for p-polarized light, ambient light The contrast is low, resulting in low definition.
  • the diffraction grating used in the present invention has high diffraction efficiency for the s-polarized light and p-polarized light emitted by the image source, so it has a high ambient light contrast and improves the waveguide plate. Clarity at the exit end.
  • the liquid crystal molecules are arranged to be perpendicular to the surface of the liquid crystal microcapsule and distributed in the circumferential direction, or the directions of several liquid crystal microcapsules are distributed randomly, and the liquid crystal in a single liquid crystal microcapsule
  • the diffraction grating in the present invention that is, PDLCC- VHG is insensitive to the polarization direction of light.
  • the present invention has advantages in terms of maximum brightness, resolution, ambient light contrast, energy consumption, service life, response speed and thermal stability by using Micro-LED as the image source.
  • the present invention improves the definition of the image source by increasing the value of the ambient light contrast, which can intuitively, concretely, and numerically improve the definition of the image source.
  • the value of the ambient light contrast can be specifically calculated, so that Estimate the clarity of display products in advance, and then classify display products and production layout in advance according to the ambient light contrast value.
  • Fig. 1 is the overall structure schematic diagram of the present invention
  • Fig. 2 is a schematic diagram of a diffraction grating of the present invention.
  • FIG. 3 is a schematic diagram of an optical waveguide display device in the prior art
  • Fig. 4 is a schematic diagram of a diffraction grating in the prior art.
  • a diffractive optical waveguide display device includes a diffraction grating, a waveguide plate is arranged on one side of the diffraction grating, and an image source is arranged on the other side of the diffraction grating, and the light beam emitted by the image source passes through the diffraction grating and enters the
  • the diffraction grating in the waveguide includes periodically distributed liquid crystal microcapsules, which are used to increase the diffraction rate of s-polarized light and p-polarized light, so that both s-polarized light and p-polarized light can be totally reflected in the waveguide , so as to improve the clarity of the output image of the waveguide plate.
  • the waveguide plate is the prior art, used to guide the image source, the light beam emitted by the image source first enters the waveguide plate through the diffraction grating, the diffraction grating is PDLCC-VHG, and the PDLCC-VHG is the specific improvement of the diffraction grating in the present invention.
  • Naming after the light beam is injected, it will diffract between the adjacent periodic distribution of liquid crystal microcapsules, which will effectively diffract the s-polarized light and p-polarized light in the image source beam, and then make the image source beam at an oblique angle Injected into the incident end of the waveguide plate, the image source beam is totally reflected in the waveguide plate and emitted from the exit end of the waveguide plate.
  • the diffraction grating effectively diffracts both the s-polarized light and the p-polarized light in the image source. It avoids the loss of the image source light beam caused by the direct transmission of s-polarized light and direct impact on the waveguide plate, thereby exiting the waveguide plate.
  • the diffraction grating used in the present invention has higher diffraction efficiency for s-polarized light and p-polarized light emitted by the image source, so it has a higher ambient light contrast and improves the output of the waveguide plate. end clarity.
  • the liquid crystal molecules are usually oriented along the vector direction of the grating, that is, along the direction parallel to the length of the grating,
  • the reasons for the alignment of liquid crystal molecules along the direction of the grating vector are more complicated (refer to Annu. Rev. Mater. Sci. 2000, 30, 83), and the specific reasons are as follows:
  • Liquid crystal molecules are squeezed by anisotropic liquid crystal droplets
  • liquid crystal molecules are vertically anchored at the interface between the polymer and the liquid crystal;
  • the PDLCC-VHG used in the present invention is to avoid the above-mentioned factors causing the liquid crystal sub-orientation to be the same as that in the PDLC-VHG.
  • the present invention first coats the liquid crystal molecules with a shell material, and the coated liquid crystal molecules The orientation is not affected by external factors, thus avoiding orientation along the grating vector after holographic exposure.
  • liquid crystal molecule orientation methods include but are not limited to the following methods:
  • the liquid crystal molecules in the liquid crystal microcapsules are all perpendicular to the surface of the liquid crystal microcapsules, and are distributed around the circumferential direction of the liquid crystal microcapsules, that is, the liquid crystal molecules are arranged in the radial direction of the liquid crystal microcapsules, and the liquid crystal molecules Oriented perpendicular to the capsule wall, the defect is located in the center of the liquid crystal microcapsule, which has the same refractive index for light incident from all directions, and has higher diffraction efficiency for s-polarized light and p-polarized light.
  • the second orientation method is that the orientations of several liquid crystal microcapsules are disorderly and randomly distributed among each other, and the directions of liquid crystal molecules in a single liquid crystal microcapsule are distributed parallel to each other.
  • the liquid crystal molecules are completely Parallel to a certain direction, but because the orientation of each liquid crystal microcapsule is disordered and random, all liquid crystal microcapsules are still isotropic macroscopically, and still have s-polarized and p-polarized light Higher diffraction efficiency.
  • liquid crystal microcapsules and the liquid crystal molecules in them are completely disorderly distributed, that is, the liquid crystal molecules in a single liquid crystal microcapsule are distributed randomly and disorderly, and the directions of all liquid crystal microcapsules are also indistinguishable from each other. It is distributed randomly and randomly.
  • This method is macroscopically the same as the second method above. It still has isotropy and still has high diffraction efficiency for s-polarized light and p-polarized light.
  • the diffraction grating in the present invention that is, PDLCC-VHG It is insensitive to the polarization direction of light, and compared with the PDLC-VHG adopted in the prior art, the invention greatly improves the diffraction efficiency of p-polarized light and s-polarized light.
  • the method of holographic exposure can be used to prepare polymer dispersed liquid crystal microcapsule holographic gratings, namely PDLCC -VHG.
  • the liquid crystal microcapsules include a shell material in which the liquid crystal molecules are arranged, and the shell material is formed by polymerizing acrylate monomers.
  • the liquid crystal microcapsules can be prepared by emulsion polymerization, specifically with a thermal initiator, a monofunctional The high-density acrylate monomer and the multi-functionality acrylate monomer composition are the precursors of the shell material.
  • the block copolymer is used as the surfactant, and the phase change temperature emulsification method is used to form the oil-in-water Micro-emulsion, then heated to polymerize acrylate monomers to form a shell layer, then nano-sized liquid crystal microcapsules can be prepared.
  • the arrangement of the liquid crystal molecules in the liquid crystal microcapsules can be regulated by changing the concentration of the surfactant.
  • the principle is that the surfactant is mainly distributed in the polymer shell, which can promote the anchoring of the liquid crystal molecules perpendicular to the surface of the shell.
  • the surfactant concentration is lower than 2wt%, the liquid crystal molecules are distributed parallel to each other, and when the surfactant concentration is not lower than 2wt%, the liquid crystal molecules are distributed circumferentially, which forms the present invention. distribution of liquid crystal molecules.
  • the liquid crystal microcapsule adopts a hollow spherical structure, which can effectively diffract the p-polarized light and s-polarized light in the image source in all directions, which facilitates the arrangement of the waveguide plate and the image source during specific implementation, and reduces the output beam of the image source.
  • the inner diameter is 10-60nm
  • the surface thickness is 5-30nm
  • the shell material is cross-linked polymer material or inorganic material.
  • liquid crystals in the liquid crystal microcapsules are nematic liquid crystals
  • the commercial grades are E7, THT-2, HH-02-1, HH-03-1, XEP-02-2, HH-04-4, HH- One of 05-02, P36-9, P38-8, P36-204, P80-01, P42-1, P92-1.
  • liquid crystal microcapsules are arranged in the diffraction grating, and several groups of liquid crystal microcapsules arranged side by side are arranged in the group of liquid crystal microcapsules, and several groups of liquid crystal microcapsules are arranged side by side along the length direction of the diffraction grating.
  • each liquid crystal microcapsule group includes several liquid crystal microcapsules arranged side by side and periodically in the vertical direction in the figure.
  • the arrangement direction of several liquid crystal microcapsules in the liquid crystal microcapsule group is relatively obliquely arranged with respect to the image source emission direction.
  • the image source light beam enters the diffraction grating obliquely, and the arrangement direction of the liquid crystal microcapsules in a single liquid crystal microcapsule group can be set to be relatively inclined to the direction of the image source light beam.
  • the diffraction grating also includes a transparent substrate, the liquid crystal microcapsules are arranged between two transparent substrates, a polymer is arranged between the two transparent substrates, the image source is incident from one side of the transparent substrate, and the It emits from the transparent substrate on the other side and enters into the waveguide.
  • both the transparent substrate and the polymer are existing technologies.
  • the light beam emitted by the image source can pass through the transparent substrate and the polymer.
  • the thickness of the entire diffraction grating is 2-50 ⁇ m, and the grating period is 500 nm-10 ⁇ m.
  • the refractive index is 1.40 ⁇ 1.60, and the ratio of the diffraction efficiency of the diffraction grating to p-polarized light and s-polarized light is 1.1:1.0 ⁇ 1.0:1.1.
  • diffraction gratings which are respectively arranged at the incident end and the outgoing end of the waveguide plate, and the direction of the light beam emitted by the image source is directly opposite to the incident end of the waveguide plate.
  • the end where the beam emitted by the image source enters the waveguide is the incident end of the waveguide, and the end of the waveguide away from the incident end is the exit end.
  • Two diffraction gratings namely PDLCC-VHG, are arranged at the incident end and the output end of the waveguide plate respectively.
  • the waveguide plate and the diffraction grating are arranged in parallel.
  • the microcapsule groups are distributed along a direction parallel to the waveguide plate, and the liquid crystal microcapsules in a single liquid crystal microcapsule group are arranged obliquely to the beam direction of the image source, and the beam emission direction of the image source is perpendicular to the waveguide plate.
  • liquid crystal microcapsules in the two diffraction gratings are arranged symmetrically, which can effectively output the light beam of the image source at the output end of the waveguide plate.
  • the image source is Micro-LED.
  • Micro-LED display has advantages in maximum brightness, resolution, ambient light contrast, energy consumption, service life, response speed and thermal stability.
  • the present invention can improve the clarity of the final output image regardless of the above-mentioned image source or an unmentioned image source.
  • the clarity improved by the liquid crystal microcapsules is the ambient light contrast value.
  • the ambient light contrast value that is, the ACR value
  • the ACR value is closely related to the image display effect
  • the ACR value has a direct relationship with the diffraction efficiency of the coupled-in grating and the coupled-out grating
  • the ACR value can be calculated specifically, so as to estimate the clarity of the display product in advance, and then the display product can be classified and produced in advance according to the ACR value.
  • This experimental example adopts the diffraction grating in the present invention, that is, PDLCC-VHG.
  • a diffractive optical waveguide device including a Micro-LED image source, a PDLCC-VHG coupling grating, a PDLCC-VHG coupling grating, and a waveguide plate.
  • the image displayed by the Micro-LED image source is coupled into the waveguide plate through the PDLCC-VHG at the incident end, and the coupled light brightness is 1200nit.
  • the VHG is coupled out of the waveguide.
  • the thickness of the PDLCC-VHG used is 10 ⁇ m, the grating period is 800nm, the refractive index of the polymer matrix is 1.50, the inner diameter of the liquid crystal microcapsule is 30nm, the shell thickness is 10nm, and the shell material is cross-linked polyacrylic acid Esters and liquid crystals are THT-2.
  • a diffraction grating in the prior art that is, PDLC-VHG, is used.
  • a diffractive optical waveguide device includes a Micro-LED image source, a PDLC-VHG coupling grating, a PDLC-VHG coupling grating and a waveguide plate.
  • the image displayed by the Micro-LED image source is coupled into the waveguide plate through the PDLC-VHG at the incident end, and the coupled light brightness is 1200nit. After total reflection in the waveguide plate, it is coupled out of the waveguide plate through the PDLC-VHG at the exit end.
  • the thickness of the PDLC-VHG used is 10 ⁇ m, the grating period is 800nm, the refractive index of the polymer matrix is 1.50, and the liquid crystal is E7.
  • the present invention has the same image source, grating thickness, grating period, polymer matrix refractive index, liquid crystal type, ambient light brightness, and light transmission of the optical waveguide plate. rate and other environmental factors, the ACR value of the image source finally output by the present invention is much larger than the ACR value in the prior art, and is far clearer than the image output by the prior art. It can be seen that the diffraction grating in the present invention significantly improves the The clarity of the output from the image source.
  • the Micro-LED image source emits a beam of light, which first enters the diffraction grating, that is, PDLCC-VHG.
  • the s-polarized light and p-polarized light in the beam pass through the diffraction grating, two adjacent liquid crystal micro
  • the light beams between the capsule groups diffract, so that the s-polarized light and p-polarized light enter the incident end of the waveguide plate at an oblique angle, and are totally reflected in the waveguide plate, and finally pass through the diffraction grating at the exit end of the waveguide plate
  • the s-polarized light and p-polarized light are effectively diffracted during the whole process, which avoids the loss of s-polarized light and improves the output image clarity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明属于AR光波导显示领域,具体涉及一种衍射光波导显示装置,包括衍射光栅,所述衍射光栅的一侧设置有波导片,所述衍射光栅的另一侧设置有像源,像源射出的光束穿过所述衍射光栅且进入到波导片内,所述衍射光栅包括周期性分布的液晶微胶囊,所述液晶微胶囊为空心球形,内径为10~60nm,表面厚度为5~30nm,所述液晶微胶囊用于提高对s偏振光和p偏振光的衍射率,使s偏振光和p偏振光均能在波导片内发生全反射,以起到提高波导片输出图像的清晰度的作用。本发明提供的技术可以直观地、具体化地、数值化地提高像源清晰度,在最大亮度、分辨率、环境光对比度、能耗、使用寿命、响应速度和热稳定性等方面也具有优势。

Description

一种衍射光波导显示装置
本申请要求于2022年01月04日提交中国专利局、申请号为202210000607.4,发明名称为“一种衍射光波导显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于AR光波导显示领域,具体涉及一种衍射光波导显示装置。
背景技术
光波导显示技术是AR领域的重要发展方向。全息体光栅常通过相干激光对光敏材料全息曝光而制备,因具备衍射效率高、成本低、易规模化生产等优点,有望应用于基于全息体光栅的光波导AR显示中。聚合物分散液晶全息体光栅是一种基于聚合物/液晶复合材料的全息体光栅,不仅光学性能优良,还具备电光响应性,受到业内的广泛关注,在光波导AR显示中极具商业化应用的潜力。另一方面,微米发光二极管(Micro-LED)与液晶显示器(Liquid Crystal Display,LCD)、有机电激光显示(Organic Light-Emitting Diode,OLED)相比,在最大亮度、分辨率、环境光对比度、能耗、使用寿命、响应速度和热稳定性等方面具有优势,已成为AR显示的主流像源。未来,聚合物分散液晶全息体光栅,即PDLC-VHG,与微米发光二极管的组合有望成为AR光波导显示的主流技术方案。
衍射光波导显示装置的环境光对比度(Ambient Light Contrast,ACR)是涉及显示效果的关键性能参数。现有研究表明,ACR>3时,显示的图像较为清晰,ACR>5时,图像显示效果令人满意,ACR>10则可以获得较为突出的显示效果(具体可参考Light-Sci。Appl。2021,10,216)ACR的计算方式如下:
Figure PCTCN2022126856-appb-000001
其中,L in和L AM分别代表耦入光强度和环境光强度,η in和η out分别为耦入光栅和耦出光栅的衍射效率,T为波导镜片的透光率。由式(1)可知,耦入光栅和耦出光栅的衍射效率越高,ACR越高,显示效果越好。
如图4,目前现有的PDLC-VHG通常只对p偏振光具有较高的衍射效率,而对s偏振光衍射效率较低,这是由于液晶分子通常平行于光栅矢量方向排列(参考Mater。Chem。Front。2017,1,294;Composites Part B 2020,199,108290。)这将导致PDLC-VHG与微米发光二极管这类发射非偏振光的像源搭配时,只有p偏振光被耦合进入光波导片后再耦合出射进入人眼,而大部分s偏振光直接透射被浪费(如图3),导致ACR较低。因此,有必要开发对s光偏振方向不敏感的光波导显示装置。
发明内容
本发明的目的是提供一种可以对像源发出的s偏振光和p偏振光均具有较高的衍射效率,因此具有较高的环境光对比度,从而提高波导片出射端的清晰度的衍射光波导显示装置,为实现上述发明目的,本发明所采用的技术方案是:
一种衍射光波导显示装置,包括衍射光栅,所述衍射光栅的一侧设置有波导片,所述衍射光栅的另一侧设置有像源,像源射出的光束穿过所述衍射光栅且进入到波导片内,所述衍射光栅包括周期性分布的液晶微胶囊,所述液晶微胶囊为空心球形,内径为10~60nm,表面厚度为5~30nm,所述液晶微胶囊用于提高对s偏振光和p偏振光的衍射率,使s偏振光和p偏振光均能在波导片内发生全反射,以起到提高波导片输出图像的清晰度的作用。
进一步地,所述液晶微胶囊内的液晶分子均垂直于所述液晶微胶囊 的表面,且围绕所述液晶微胶囊的周向分布。
进一步地,若干所述液晶微胶囊的方向呈无序分布,单个所述液晶微胶囊内的液晶分子方向呈互相平行地分布。
进一步地,所述衍射光栅内设置有若干个液晶微胶囊组,所述液晶微胶囊组内设置有若干个并排设置的所述液晶微胶囊,若干个所述液晶微胶囊组沿所述衍射光栅长度方向并排设置。
进一步地,所述液晶微胶囊组内的若干个所述液晶微胶囊的排列方向与所述像源射出方向之间相对倾斜地设置。
进一步地,所述衍射光栅还包括透明基材,所述液晶微胶囊设置在两个所述透明基材之间,两个所述透明基材之间设置有聚合物,所述像源从一侧的所述透明基材上射入,从另一侧的所述透明基材上射出,且进入到所述波导片内。
进一步地,所述衍射光栅设置有两个,分别设置在所述波导片的入射端与出射端,所述像源射出光束的方向正对所述波导片的入射端。
进一步地,所述像源为微米发光二极管。
进一步地,所述液晶微胶囊提高的清晰度为环境光对比度数值。
进一步地,所述液晶微胶囊包括壳层材料,所述液晶分子设置在所述壳层材料内,所述壳层材料由丙烯酸酯类单体聚合形成。
本发明具有以下有益效果:
1、相比现有技术中所采用的常规全息光聚合诱导相分离方法制备的PDLC-VHG作为衍射光栅时,由于其光波导AR显示装置仅对p偏振光具有较高的衍射效率,环境光对比度较低,导致其清晰度低,本发明采用的衍射光栅,对像源发出的s偏振光和p偏振光均具有较高的衍射效率,因此具有较高的环境光对比度,提高了波导片出射端的清晰度。
2、通过本发明的衍射光栅采用将液晶分子设置成垂直于液晶微胶囊的表面,且周向分布的形式,又或者是若干个液晶微胶囊的方向无序分布,单个液晶微胶囊内的液晶分子方向互相平行的形式,不管采用哪 一种方式多个液晶分子与像源的射入方向之间总会呈不确定、无序、随机的角度,因此本发明中的衍射光栅,即PDLCC-VHG对光的偏振方向不敏感。
3、本发明通过采用Micro-LED为像源,与LCD、OLED相比,在最大亮度、分辨率、环境光对比度、能耗、使用寿命、响应速度和热稳定性等方面具有优势。
4、本发明通过提高环境光对比度数值来提高像源清晰度,可以直观地、具体化地、数值化地提高像源清晰度,在实际生产实施时,可以具体计算出环境光对比度数值,从而预先估算显示产品的清晰程度,进而可以根据环境光对比度数值提前对显示产品进行分类以及生产布局。
附图说明
图1为本发明的整体结构示意图;
图2为本发明衍射光栅示意图;
图3为现有技术中的光波导显示装置示意图;
图4为现有技术中的衍射光栅示意图。
具体实施方式
下面将结合本发明实施例中的附图1-4,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1,一种衍射光波导显示装置,包括衍射光栅,衍射光栅的一 侧设置有波导片,所述衍射光栅的另一侧设置有像源,像源射出的光束穿过衍射光栅且进入到波导片内衍射光栅包括周期性分布的液晶微胶囊,液晶微胶囊用于提高对s偏振光和p偏振光的衍射率,使s偏振光和p偏振光均能在波导片内发生全反射,以起到提高波导片输出图像的清晰度的作用。
其中波导片为现有技术,用于传导像源,像源射出的光束首先通过衍射光栅进入到波导片内,衍射光栅即PDLCC-VHG,PDLCC-VHG为本发明中对衍射光栅改进之后的具体命名,起到光束射入后,从相邻周期分布的液晶微胶囊之间衍射,对像源光束中的s偏振光和p偏振光产生有效衍射的作用,进而使像源光束呈倾斜的角度射入波导片入射端,于是像源光束在波导片内发生全反射,并从波导片出射端射出,由于整个过程中,衍射光栅将像源中s偏振光和p偏振光均产生有效衍射,避免了s偏振光直接透射、直射波导片,从而射出波导片所产生的像源光束损失。
相比现有技术中所采用的常规全息光聚合诱导相分离方法制备的PDLC-VHG作为衍射光栅时,由于其光波导AR显示装置仅对p偏振光具有较高的衍射效率,环境光对比度较低,导致最终成像清晰度低,本发明采用的衍射光栅,对像源发出的s偏振光和p偏振光均具有较高的衍射效率,因此具有较高的环境光对比度,提高了波导片出射端的清晰度。
如图4所示,由于现有技术中的PDLC-VHG常通过全息光聚合诱导相分离制备,相分离完成后,液晶分子通常沿光栅矢量方向取向,即沿着平行于光栅长度的方向取向,导致液晶分子延光栅矢量方向取向的原因较为复杂(参考Annu。Rev。Mater。Sci。2000,30,83),其具体的产生原因为如下:
1、是液晶分子受到各向异性的液晶微滴的挤压;
2、液晶分子垂直锚定于聚合物与液晶之间的界面;
3、光聚合体积收缩挤压液晶微滴。
本发明采用的PDLCC-VHG为了避免上述因素导致液晶分取向与PDLC-VHG中的取向相同,本发明在制备PDLCC-VHG时,先用壳层材料将液晶分子包覆,包覆后的液晶分子取向不受外界因素的影响,从而避免在全息曝光后沿光栅矢量方向取向。
本发明所采用的液晶微胶囊,液晶分子取向方式包括但不限于以下方式:
一种为如图2中所示,液晶微胶囊内的液晶分子均垂直于液晶微胶囊的表面,且围绕液晶微胶囊的周向分布,即液晶分子设置在液晶微胶囊的径向,液晶分子垂直于胶囊壁的取向,其缺陷位于液晶微胶囊中心,这种液晶微胶囊对从各个方向入射的光折射率相同,对s偏振光和p偏振光具有较高的衍射效率。
第二种取向方式为,若干个液晶微胶囊的方向相互之间呈无序、随机地分布,单个液晶微胶囊内的液晶分子方向呈互相平行地分布,在单个液晶微胶囊中,液晶分子完全平行于某一方向取向,但由于每个液晶微胶囊的取向又是无序、随机的,因此在宏观上所有的液晶微胶囊仍然是各项同性的,仍然对s偏振光和p偏振光具有较高的衍射效率。
此外,还可以采用若干液晶微胶囊与其内部的液晶分子均为完全无序分布的方式,即单个液晶微胶囊内的液晶分子无序、随机地分布,所有的液晶微胶囊的方向相互之间也呈无序、随机地分布,此方式在宏观上与上述第二种方式的原理相同,仍具有各项同性,对s偏振光和p偏振光仍然具有较高的衍射效率
本发明不管采用上述方式中的哪一种,多个液晶分子与像源的射入方向之间总会呈不确定、无序、随机的角度,因此本发明中的衍射光栅,即PDLCC-VHG对光的偏振方向不敏感,相比现有技术所采用的PDLC-VHG,本发明极大地提高了对p偏振光和s偏振光的衍射效率。
本发明中的PDLCC-VHG在具体制备时,可以采用将液晶微胶囊与光聚合单体、光引发剂混合后,通过全息曝光的方法,可以制备聚合物分 散液晶微胶囊全息体光栅,即PDLCC-VHG。
具体地,液晶微胶囊包括壳层材料,液晶分子设置在壳层材料内,壳层材料由丙烯酸酯类单体聚合形成,液晶微胶囊可以通过乳液聚合法制备,具体以热引发剂、单官能度的丙烯酸酯类单体和多官能度的丙烯酸酯类单体组合物为壳层材料前驱体,加入液晶后,以嵌段共聚物为表面活性剂,利用相变温度乳化法形成水包油细乳液,再加热使丙烯酸酯类单体聚合形成壳层,即可制得纳米尺寸的液晶微胶囊。
液晶微胶囊内的液晶分子的排布可以通过改变表面活性剂浓度来调控,其原理是表面活性剂主要分布于聚合物壳层中,能够促使液晶分子呈垂直壳层表面锚定。针对本发明的液晶微胶囊,当表面活性剂浓度低于2wt%时,液晶分子呈互相平行地分布,当表面活性剂浓度不低于2wt%时,液晶分子呈周向分布,即形成本发明中的液晶分子分布。
具体地,液晶微胶囊采用空心球形结构,可以在各个方向上,对像源中的p偏振光和s偏振光均产生有效衍射,便于具体实施时布置波导片以及像源,降低像源射出光束的角度精度需求,其内径为10~60nm,表面厚度为5~30nm,壳层材质为交联聚合物材料或无机材料。
此外,液晶微胶囊中的液晶为向列相液晶,商品化牌号为E7、THT-2、HH-02-1、HH-03-1、XEP-02-2、HH-04-4、HH-05-02、P36-9、P38-8、P36-204、P80-01、P42-1、P92-1中的一种。
进一步地,衍射光栅内设置有若干个液晶微胶囊组,液晶微胶囊组内设置有若干个并排设置的液晶微胶囊,若干个液晶微胶囊组沿衍射光栅长度方向并排设置。
如图2所示,在图中水平方向上,即衍射光栅的长度方向上,并排地、周期性地设置若干液晶微胶囊组,相邻两个液晶微胶囊组之间具有空隙,每一个单独的液晶微胶囊组内均包括在图中上下方向上并排地、周期性地设置的若干个液晶微胶囊。
进一步地,液晶微胶囊组内的若干个液晶微胶囊的排列方向与像源 射出方向之间相对倾斜地设置。
具体地,像源光束呈倾斜地射入衍射光栅,可以将单个液晶微胶囊组内的液晶微胶囊排列方向设置成与像源光束方向之间相对倾斜的结构。
进一步地,衍射光栅还包括透明基材,液晶微胶囊设置在两个透明基材之间,两个透明基材之间设置有聚合物,像源从一侧的透明基材上射入,从另一侧的透明基材上射出,且进入到波导片内。
具体地,透明基材与聚合物均为现有技术,像源射出的光束可以穿过透明基材与聚合物,整个衍射光栅的厚度为2~50μm,光栅周期为500nm~10μm,聚合物基体的折射率为1。40~1。60,衍射光栅对p偏振光和s偏振光的衍射效率之比为1。1:1。0~1。0:1。1。
进一步地,衍射光栅设置有两个,分别设置在波导片的入射端与出射端,像源射出光束的方向正对波导片的入射端。
具体地,像源射出光束进入到波导片内的一端即为波导片的入射端,波导片上远离入射端的一端即为出射端。
如图1,本发明在整体结构上的具体布置如下:
波导片的入射端与出射端分别布置两个衍射光栅,即PDLCC-VHG,波导片与衍射光栅平行设置,两个衍射光栅并排设置,且设置在波导片的同一侧,衍射光栅内的若干液晶微胶囊组沿平行于波导片的方向分布,单个液晶微胶囊组内的液晶微胶囊呈与像源光束方向相对倾斜的排列,像源的光束射出方向与波导片垂直。
此外,两个衍射光栅内的液晶微胶囊呈对称设置,可以在波导片出射端有效的将像源的光束输出。
进一步地,像源为Micro-LED,Micro-LED显示与LCD、OLED相比,在最大亮度、分辨率、环境光对比度、能耗、使用寿命、响应速度和热稳定性等方面具有优势,已成为AR显示的主流像源,本发明无论是采用上述何种像源,或者是未提及的像源,均能够提高其最终输出的图像 清晰度。
进一步地,液晶微胶囊提高的清晰度为环境光对比度数值。
由于环境光对比度数值,即ACR数值,其与图像显示效果息息相关,并且ACR数值又与耦入光栅和耦出光栅的衍射效率具有直接关系,所以通过ACR数值来判断像源成像清晰度可以直观地、具体化地、数据化地来判断成像效果,在实际生产实施时,可以具体计算出ACR数值,从而预先估算显示产品的清晰程度,进而可以根据ACR数值提前对显示产品进行分类以及生产布局。
下面通过两个实验数据的具体对比过程来具体说明本发明中的衍射光栅,即PDLCC-VHG,相对于现有技术中的PDLC-VHG所取得的具体的显著的进步:
实验例:
本实验例采用本发明中的衍射光栅,即PDLCC-VHG。
一种衍射光波导装置,包括Micro-LED像源、PDLCC-VHG耦入光栅、PDLCC-VHG耦出光栅和波导片。
如图1所示,在入射端通过PDLCC-VHG将Micro-LED像源显示的图像耦合进入波导片,耦入光亮度为1200nit,在波导片内进行全反射后,在出射端再通过PDLCC-VHG耦合出波导片。
所采用的PDLCC-VHG的厚度为10μm、光栅周期为800nm,聚合物基体的折射率为1。50,液晶微胶囊的内径为30nm、壳层厚度为10nm,壳层材料为交联的聚丙烯酸酯、液晶为THT-2。
PDLCC-VHG对s偏振和p偏振光衍射效率为分别为88%和89%。
由于光栅对不同偏振光具有不同的衍射效率,因此在计算ACR时,需要将式(1)改写为:
Figure PCTCN2022126856-appb-000002
其中:L ins和L inp分别为s和p偏振光的亮度,对于Micro-LED像 源,L ins=L inp;η ins和η outs分别为耦入、耦出光栅对s偏振光的衍射效率,η inp和η outp为耦入、耦出光栅对p偏振光的衍射效率。
根据式(2),当环境光亮度为300nit、光波导片的透光率为90%时,本实施例的ACR为4。5,显示效果较为清晰。
对比例:
本对比例采用现有技术中的衍射光栅,即PDLC-VHG。
一种衍射光波导装置,包括Micro-LED像源、PDLC-VHG耦入光栅、PDLC-VHG耦出光栅和波导片。
在入射端通过PDLC-VHG将Micro-LED像源显示的图像耦合进入波导片,耦入光亮度为1200nit,在波导片内进行全反射后,在出射端再通过PDLC-VHG耦合出波导片。
所采用的PDLC-VHG的厚度为10μm、光栅周期为800nm,聚合物基体的折射率为1。50,液晶为E7。
PDLC-VHG对s偏振和p偏振光衍射效率为分别为25%和89%。根据式(2)计算,在环境光亮度为300nit、光波导片的透光率为90%时,ACR为2。9,显示效果未达到清晰标准。
由上述实验例和对比例的对比可知,本发明相比现有技术,在相同的像源、光栅厚度、光栅周期、聚合物基体折射率、液晶品类、环境光亮度、光波导片的透光率以及其他环境因素下,本发明最终输出的像源ACR数值远大于现有技术中的ACR数值,远比现有技术输出的图像清晰,由此可见,本发明中的衍射光栅显著地提高了像源所输出的清晰程度。
本发明具体地完整工作流程如下:
如图1、2,Micro-LED像源射出光束,光束首先进入到衍射光栅,即PDLCC-VHG内,光束中的s偏振光和p偏振光在穿过衍射光栅时,相邻两个液晶微胶囊组之间的光束发生衍射作用,进而使s偏振光和p偏振光呈倾斜的角度射入到波导片入射端内,并且在波导片内发生全反射, 最终从波导片出射端的衍射光栅上输出,整个过程中对s偏振光和p偏振光同时产生有效衍射,避免了s偏振光的损失,提高了输出的图像清晰度。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形、变型、修改、替换,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

  1. 一种衍射光波导显示装置,包括衍射光栅,所述衍射光栅的一侧设置有波导片,所述衍射光栅的另一侧设置有像源,像源射出的光束穿过所述衍射光栅且进入到波导片内,其特征在于:所述衍射光栅包括周期性分布的液晶微胶囊,所述液晶微胶囊为空心球形,内径为10~60nm,表面厚度为5~30nm,所述液晶微胶囊用于提高对s偏振光和p偏振光的衍射率,使s偏振光和p偏振光均能在波导片内发生全反射,以起到提高波导片输出图像的清晰度的作用。
  2. 根据权利要求1所述的一种衍射光波导显示装置,其特征在于:所述液晶微胶囊内的液晶分子均垂直于所述液晶微胶囊的表面,且围绕所述液晶微胶囊的周向分布。
  3. 根据权利要求1所述的一种衍射光波导显示装置,其特征在于:若干所述液晶微胶囊的方向呈无序分布,单个所述液晶微胶囊内的液晶分子方向呈互相平行地分布。
  4. 根据权利要求1所述的一种衍射光波导显示装置,其特征在于:所述衍射光栅内设置有若干个液晶微胶囊组,若干个所述液晶微胶囊组沿所述衍射光栅长度方向并排设置,单个所述液晶微胶囊组内包括若干个并排设置的所述液晶微胶囊。
  5. 根据权利要求4所述的一种衍射光波导显示装置,其特征在于:所述液晶微胶囊组内的若干个所述液晶微胶囊的排列方向与所述像源射出方向之间相对倾斜地设置。
  6. 根据权利要求4所述的一种衍射光波导显示装置,其特征在于:所述衍射光栅还包括透明基材,所述液晶微胶囊设置在两个所述透明基材之间,两个所述透明基材之间设置有聚合物,所述像源从一侧的所述透明基材上射入,从另一侧的所述透明基材上射出,且进入到所述波导片内。
  7. 根据权利要求1所述的一种衍射光波导显示装置,其特征在于:所述衍射光栅设置有两个,分别设置在所述波导片的入射端与出射端, 所述像源射出光束的方向正对所述波导片的入射端。
  8. 根据权利要求1所述的一种衍射光波导显示装置,其特征在于:所述像源为微米发光二极管。
  9. 根据权利要求1所述的一种衍射光波导显示装置,其特征在于:所述液晶微胶囊提高的清晰度为环境光对比度数值。
  10. 根据权利要求2或3所述的一种衍射光波导显示装置,其特征在于:所述液晶微胶囊包括壳层材料,所述液晶分子设置在所述壳层材料内,所述壳层材料由丙烯酸酯类单体聚合形成。
PCT/CN2022/126856 2022-01-04 2022-10-22 一种衍射光波导显示装置 WO2023130806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210000607.4A CN114002849B (zh) 2022-01-04 2022-01-04 一种衍射光波导显示装置
CN202210000607.4 2022-01-04

Publications (1)

Publication Number Publication Date
WO2023130806A1 true WO2023130806A1 (zh) 2023-07-13

Family

ID=79932548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126856 WO2023130806A1 (zh) 2022-01-04 2022-10-22 一种衍射光波导显示装置

Country Status (2)

Country Link
CN (1) CN114002849B (zh)
WO (1) WO2023130806A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002849B (zh) * 2022-01-04 2022-04-08 南昌虚拟现实研究院股份有限公司 一种衍射光波导显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020097355A1 (en) * 2000-11-17 2002-07-25 Kralik John C. High contrast PDLC transmission gratings and method of manufacture
CN104460079A (zh) * 2014-11-12 2015-03-25 深圳市华星光电技术有限公司 柔性液晶面板制作方法及柔性液晶面板
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN110515209A (zh) * 2019-08-28 2019-11-29 瑞声通讯科技(常州)有限公司 基于波导的增强现实显示装置
CN111158153A (zh) * 2020-02-25 2020-05-15 京东方科技集团股份有限公司 近眼显示装置和增强现实设备
CN212111991U (zh) * 2020-05-29 2020-12-08 深圳惠牛科技有限公司 一种具有大视场角的波导ar显示器件
CN112444970A (zh) * 2019-08-30 2021-03-05 成都理想境界科技有限公司 一种大视场ar波导
CN114002849A (zh) * 2022-01-04 2022-02-01 南昌虚拟现实研究院股份有限公司 一种衍射光波导显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127120A (ja) * 1991-11-05 1993-05-25 Sharp Corp 立体表示システム
JP4122747B2 (ja) * 2001-10-11 2008-07-23 ソニー株式会社 ホログラム回折格子素子およびその製造方法
JP2019056825A (ja) * 2017-09-21 2019-04-11 シャープ株式会社 液晶回折格子、液晶組成物、液晶回折格子の製造方法、及び、ワイヤグリッド偏光子
CN110553730B (zh) * 2019-09-09 2021-10-19 京东方科技集团股份有限公司 光谱仪
CN111610635B (zh) * 2020-06-24 2022-05-27 京东方科技集团股份有限公司 一种ar光学系统及ar显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020097355A1 (en) * 2000-11-17 2002-07-25 Kralik John C. High contrast PDLC transmission gratings and method of manufacture
CN104460079A (zh) * 2014-11-12 2015-03-25 深圳市华星光电技术有限公司 柔性液晶面板制作方法及柔性液晶面板
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN110515209A (zh) * 2019-08-28 2019-11-29 瑞声通讯科技(常州)有限公司 基于波导的增强现实显示装置
CN112444970A (zh) * 2019-08-30 2021-03-05 成都理想境界科技有限公司 一种大视场ar波导
CN111158153A (zh) * 2020-02-25 2020-05-15 京东方科技集团股份有限公司 近眼显示装置和增强现实设备
CN212111991U (zh) * 2020-05-29 2020-12-08 深圳惠牛科技有限公司 一种具有大视场角的波导ar显示器件
CN114002849A (zh) * 2022-01-04 2022-02-01 南昌虚拟现实研究院股份有限公司 一种衍射光波导显示装置

Also Published As

Publication number Publication date
CN114002849A (zh) 2022-02-01
CN114002849B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
Lee et al. Prospects and challenges in augmented reality displays.
US20220128754A1 (en) Waveguide Device Incorporating a Light Pipe
JP5055398B2 (ja) 照明装置および液晶表示装置
WO2023130806A1 (zh) 一种衍射光波导显示装置
CN102282482A (zh) 光学元件、显示装置、抗反射光学部件和母片
JP2002529790A (ja) 映像を見るための頭部搭載型ディスプレイ装置
EP0777866A1 (en) Improved polarizer
CN106133591A (zh) 偏振光源器件
TWI291582B (en) Light pipe unit, plane light source unit and liquid-crystal display device
CN102464983A (zh) 显示器、聚合物分散液晶膜及其制造方法和驱动方法
JP6185446B2 (ja) バックライトユニットおよび液晶表示装置
CN109116623A (zh) 偏光结构、显示面板及显示装置
WO2020078325A1 (en) Polarizing backlight unit, method of manufacturing the same and liquid crystal display device using the same
TWI417581B (zh) 具有勻光特性之偏光回收膜
JP4249394B2 (ja) 直線偏光を出射する液晶表示素子、光源装置、および、偏光散乱フィルム
CN101424825A (zh) 光学片及其制造方法以及显示设备
CN109143675A (zh) 偏光结构及显示装置
Liu et al. Transparent colored display enabled by flat glass waveguide and nanoimprinted multilayer gratings
CN206096710U (zh) 一种显示装置
CN103235446B (zh) 一种用于液晶显示器的背光模组
JP4602604B2 (ja) 散乱異方性を有する高分子フィルムおよびそれを用いた面光源装置
JP2009231018A (ja) 導光板、面光源装置、および液晶表示装置
JPH10339867A (ja) 液晶ポリマー層、円偏光分離層、光学素子、光源装置及び液晶表示装置
CN109143447A (zh) 偏光结构及显示装置
CN101236270A (zh) 基于定向纤维的散射型偏振片及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918258

Country of ref document: EP

Kind code of ref document: A1