WO2023130619A1 - 节能控制装置、节能控制方法和存储介质 - Google Patents

节能控制装置、节能控制方法和存储介质 Download PDF

Info

Publication number
WO2023130619A1
WO2023130619A1 PCT/CN2022/088362 CN2022088362W WO2023130619A1 WO 2023130619 A1 WO2023130619 A1 WO 2023130619A1 CN 2022088362 W CN2022088362 W CN 2022088362W WO 2023130619 A1 WO2023130619 A1 WO 2023130619A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
refrigeration system
ambient temperature
expansion valve
return air
Prior art date
Application number
PCT/CN2022/088362
Other languages
English (en)
French (fr)
Inventor
曾祥明
夏可瑜
Original Assignee
东莞市升微机电设备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市升微机电设备科技有限公司 filed Critical 东莞市升微机电设备科技有限公司
Publication of WO2023130619A1 publication Critical patent/WO2023130619A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention relates to the technical field of refrigeration, in particular to an energy-saving control device, an energy-saving control method and a storage medium.
  • the existing refrigeration system adopts the control mode of electromagnetic valve and thermal expansion valve to adjust the cooling capacity.
  • the electromagnetic valve and thermal expansion valve cannot be adjusted in real time, resulting in the inability to adjust the cooling capacity in real time.
  • a heating method of a heater is mainly used to balance the cooling capacity, so as to achieve temperature balance.
  • the operation of the heater requires a large amount of power consumption, the use cost increases, and the purpose of energy saving of the refrigeration system cannot be achieved.
  • the purpose of the present invention is to provide an energy-saving control device, an energy-saving control method and a storage medium, which can adjust the temperature of the electronic expansion valve in real time according to the return air pressure information of the compressor, the high-pressure outlet pressure information of the condenser and the ambient temperature information in the refrigeration system. opening, so that the cooling capacity of the refrigeration system and the load heat can be balanced, effectively reducing the flow rate and energy consumption of the compressor, and there is no need to use a heater for temperature intervention in the process of balancing the cooling capacity and load heat, which can effectively reduce the cooling capacity of the refrigeration system. Energy consumption, so as to achieve the purpose of energy saving.
  • the present invention discloses an energy-saving control device, which is suitable for a refrigeration system, and the refrigeration system includes a compressor, a condenser, an electronic expansion valve and an evaporator connected in sequence, and the energy-saving control device includes a control module and an acquisition component, the control module is respectively connected to the acquisition component and the electronic expansion valve by communication, the acquisition component is used to collect the monitoring data of the refrigeration system and send it to the control module, the monitoring data includes the compression The return air pressure information of the machine, the outlet high pressure information of the condenser, and the ambient temperature information in the refrigeration system, the control module adjusts the opening of the electronic expansion valve in real time according to the monitoring data, so that all The refrigeration capacity of the refrigeration system is balanced with the load heat.
  • the energy-saving control device of the present invention includes a control module and a collection component.
  • the control module is respectively connected to the collection component and the electronic expansion valve through communication.
  • the collection component is used to collect the monitoring data of the refrigeration system and send it to the control module.
  • the monitoring data Including the return air pressure information of the compressor, the high-pressure outlet pressure information of the condenser and the ambient temperature information in the refrigeration system
  • the control module adjusts the opening of the electronic expansion valve in real time according to the monitoring data, so that the cooling capacity of the refrigeration system and the load heat can reach Balance
  • the present invention can adjust the opening of the electronic expansion valve in real time to balance the cooling capacity of the refrigeration system with the load heat, thereby effectively reducing the flow rate and energy consumption of the compressor, and its cooling capacity In the process of balancing heat with the load, there is no need to use the heater for temperature intervention, which effectively reduces the energy consumption of the refrigeration system, thereby achieving the purpose of energy saving.
  • control module converts the received return air pressure information, outlet high pressure information, and ambient temperature information into return air pressure values, outlet high pressure pressure values, and ambient temperature values.
  • a logical operation program is provided in the control module, and the control module comprehensively calculates the return air pressure value, the outlet high pressure value and the ambient temperature value through the logical operation program to obtain the current electronic expansion valve
  • the preferred opening parameter the control module adjusts the opening of the electronic expansion valve in real time according to the current preferred opening parameter of the electronic expansion valve.
  • the energy-saving control device includes a collection component including a first collection unit, a second collection unit and a third collection unit, the first collection unit is used to collect the return air pressure information of the compressor, and the The return gas pressure information is sent to the control module in real time; the second acquisition unit is used to collect the outlet high pressure information of the condenser, and send the outlet high pressure information to the control module in real time; The third collection unit is used to collect ambient temperature information in the refrigeration system, and send the ambient temperature information to the control module in real time.
  • both the first collection unit and the second collection unit are gas pressure sensors, and the third collection unit is a temperature sensor.
  • the present invention also discloses an energy-saving control method, which is applied to the above-mentioned energy-saving control device, and the energy-saving control method includes the following steps:
  • the types of working modes of the refrigeration system include cooling mode and constant temperature mode
  • the step S3 specifically includes:
  • the working mode of the refrigeration system is the cooling mode, compare the evaporation temperature value, the ambient temperature value and the preset target temperature value, and judge whether the outlet high pressure value exceeds the preset high pressure value , adjust the opening of the electronic expansion valve in real time according to the comparison results and judgment results, so that the cooling capacity of the refrigeration system and the load heat can be balanced;
  • the working mode of the refrigeration system is the constant temperature mode, compare the evaporation temperature value, the ambient temperature value and the preset target temperature value, and adjust the opening of the electronic expansion valve in real time according to the comparison result, so that the cooling The cooling capacity of the system is balanced with the load heat.
  • the real-time adjustment of the opening degree of the electronic expansion valve according to the return air pressure value, the outlet high pressure value and the ambient temperature value, so as to balance the cooling capacity of the refrigeration system with the load heat specifically includes:
  • the opening degree of the electronic expansion valve is adjusted in real time according to the current preferred opening degree parameter of the electronic expansion valve.
  • an energy-saving control device which includes:
  • the collection module is configured to separately collect the return air pressure information of the compressor, the high-pressure outlet pressure information of the condenser, and the ambient temperature information in the refrigeration system;
  • a conversion module configured to convert the return air pressure information, outlet high pressure information and ambient temperature information into return air pressure values, outlet high pressure pressure values, and ambient temperature values, respectively;
  • the adjustment module is configured to adjust the opening of the electronic expansion valve in real time according to the return air pressure value, the outlet high pressure value and the ambient temperature value, so that the cooling capacity of the refrigeration system and the load heat balance.
  • the present invention also discloses a storage medium for storing a computer program, and when the program is executed by a processor, the energy-saving control method as described above is realized.
  • Fig. 1 is a structural schematic diagram of the combination of the energy-saving control device of the present invention and the refrigeration system;
  • Fig. 2 is a block flow diagram of the energy-saving control method of the present invention
  • Fig. 3 is a structural schematic diagram of the energy-saving control device of the present invention.
  • the energy-saving control device 1000 of this embodiment is suitable for energy-saving control of the refrigeration system
  • the refrigeration system includes a compressor 1, a condenser 2, an electronic expansion valve 3 and an evaporator 4, the compressor 1, the condenser
  • the device 2, the electronic expansion valve 3 and the evaporator 4 are sequentially connected to form a refrigerant circuit.
  • the electronic expansion valve 3 is an expansion valve whose opening can be precisely adjusted by an electric signal. By precisely adjusting the opening of the electronic expansion valve 3, the flow from the condenser 2 into the evaporator 4 can be adjusted, thereby controlling the refrigeration. quantity.
  • the energy-saving control device 1000 includes a control module 10 and a collection component 20.
  • the control module 10 is respectively connected to the collection component 20 and the electronic expansion valve 3 through communication.
  • the collection component 20 is used to collect monitoring data of the refrigeration system and send it to the control module 10.
  • the monitoring data includes The return air pressure information of the compressor 1, the outlet high-pressure pressure information of the condenser 2, and the ambient temperature information in the refrigeration system, the control module 10 adjusts the opening of the electronic expansion valve 3 in real time according to the monitoring data, so that the cooling capacity of the refrigeration system and Load heat balance.
  • the control device here is a programmable logic controller (PLC). By writing a preset program into the control device, the control device can be equipped with PID calculation capability.
  • PLC programmable logic controller
  • control module 10 here is a control chip independent of the general control of the refrigeration system.
  • the control module 10 can interact with the general control of the refrigeration system to read the relevant information of each component of the general control of the refrigeration system and provide The general controller of the refrigeration system obtains the monitoring data collected by the collection component 20 to adjust the working parameters of each component.
  • the control module 10 can directly be the general control of the refrigeration system, and realize the energy-saving effect shown in this embodiment through the general control of the refrigeration system, which is not limited here.
  • the control module 10 converts the received return air pressure information, outlet high pressure information and ambient temperature information into return air pressure value, outlet high pressure value and ambient temperature value, where the return air pressure value, outlet high pressure Both the pressure value and the ambient temperature value are digital signals. Since the acquisition component 20 directly collects the obtained analog signal, in order to facilitate the subsequent calculation and processing of the control device, the analog signal needs to be converted into a digital signal.
  • a logic operation program is provided in the control module 10, and the control module 10 performs comprehensive calculations on the return air pressure value, the outlet high pressure value and the ambient temperature value through the logic operation program to obtain the current preferred opening degree of the electronic expansion valve 3 parameter, the control module 10 adjusts the opening degree of the electronic expansion valve 3 in real time according to the current preferred opening degree parameter of the electronic expansion valve 3 .
  • the control module 10 can be based on dynamic changes.
  • the return air pressure value, the outlet high pressure value and the ambient temperature value are used to calculate the dynamically changing optimal opening parameter in real time, and the control module 10 dynamically adjusts the opening of the electronic expansion valve 3 according to the dynamically changing optimal opening parameter so that the electronic The opening of the expansion valve 3 becomes a positive feedback adjustment.
  • the energy-saving control device 1000 includes a collection component 20 including a first collection unit 21, a second collection unit 22, and a third collection unit 23.
  • both the first collection unit 21 and the second collection unit 22 are gas pressure sensors
  • the third acquisition unit 23 is a temperature sensor.
  • the first acquisition unit 21 is used to collect the return air pressure information of the compressor 1, and sends the return air pressure information to the control module 10 in real time
  • the second acquisition unit 22 is used to collect the outlet high pressure information of the condenser 2, and sends the outlet pressure information
  • the high pressure information is sent to the control module 10 in real time
  • the third collection unit 23 is used to collect the ambient temperature information in the refrigeration system, and send the ambient temperature information to the control module 10 in real time.
  • the electronic expansion valve 3 is adjusted with the return air pressure value, the outlet high pressure value and the ambient temperature value as control parameters.
  • more sensors can be set to collect More parameter variables and environmental variables, combined with return air pressure value, outlet high pressure value and ambient temperature value as control parameters to make more complex and precise adjustments to the electronic expansion valve 3, will not be repeated here.
  • the present invention also discloses an energy-saving control method, which is applied to the above-mentioned energy-saving control device 1000.
  • the energy-saving control method includes the following steps:
  • the working mode types of the refrigeration system include cooling mode and constant temperature mode
  • step S3 specifically includes:
  • the working mode type of the refrigeration system is the cooling mode
  • the opening of the electronic expansion valve 3 was adjusted in real time to balance the cooling capacity of the refrigeration system with the load heat
  • the working mode type of the refrigeration system is the constant temperature mode, compare the evaporation temperature value, the ambient temperature value and the preset target temperature value, and adjust the opening of the electronic expansion valve 3 in real time according to the comparison result, so that the cooling of the refrigeration system balance with load heat.
  • the opening of the electronic expansion valve 3 is adjusted in real time according to the return air pressure value, the outlet high pressure value and the ambient temperature value, so that the cooling capacity of the refrigeration system is balanced with the load heat, specifically including:
  • the opening of the electronic expansion valve 3 is adjusted in real time according to the current preferred opening parameter of the electronic expansion valve 3 .
  • an energy-saving control device 1000 which includes:
  • the collection module 100 is configured to separately collect the return air pressure information of the compressor 1, the high-pressure outlet pressure information of the condenser 2, and the ambient temperature information in the refrigeration system;
  • the conversion module 200 is configured to convert the return air pressure information, the outlet high pressure information and the ambient temperature information into the return air pressure value, the outlet high pressure pressure value and the ambient temperature value respectively;
  • the adjustment module 300 is configured to adjust the opening of the electronic expansion valve 3 in real time according to the return air pressure value, the outlet high pressure value and the ambient temperature value, so as to balance the cooling capacity of the refrigeration system with the load heat.
  • the present invention also discloses a storage medium for storing a computer program, and when the program is executed by a processor, the above energy-saving control method is realized.
  • the present invention adjusts the opening of the electronic expansion valve 3 in real time to balance the cooling capacity and load heat of the refrigeration system, thereby effectively reducing the flow rate and energy consumption of the compressor 1, and its refrigeration There is no need to use the heater for temperature intervention in the process of heat balance between volume and load, which can effectively reduce the energy consumption of the refrigeration system, thereby achieving the purpose of energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种节能控制装置、节能控制方法和存储介质,该包括控制模块和采集组件,控制模块分别通讯连接采集组件和电子膨胀阀,采集组件用于采集制冷系统的监测数据,监测数据包括压缩机的回气压力信息、冷凝器的出口高压压力信息及制冷系统内的环境温度信息,控制模块依据监测数据调节电子膨胀阀的开度,以使制冷系统的制冷量与负载热量达到平衡;本发明能够依据压缩机的回气压力信息、冷凝器的出口高压压力信息及制冷系统内的环境温度信息实时调节电子膨胀阀的开度,以使制冷系统的制冷量与负载热量达到平衡,有效降低压缩机的流量及能耗,其制冷量与负载热量平衡过程中无需使用加热器进行温度干预,有效降低制冷系统的能耗,从而实现节能目的。

Description

节能控制装置、节能控制方法和存储介质
本申请要求于2022年1月10日提交中国专利局、申请号为202210022410.0、发明名称为“节能控制装置、节能控制方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及制冷技术领域,尤其涉及节能控制装置、节能控制方法和存储介质。
背景技术
现有的制冷系统采用电磁阀与热力膨胀阀配合的控制模式调整制冷量,但是,制冷过程中,电磁阀与热力膨胀阀无法进行实时调节,导致制冷量无法进行实时调节。现有技术为了平衡制冷量,主要采用加热器发热的方式来平衡制冷量,以达到温度平衡。然而,由于加热器的运行需要大量消耗电力,导致使用成本上升,无法达到制冷系统节能目的。
发明内容
本发明的目的是提供节能控制装置、节能控制方法和存储介质,能够依据压缩机的回气压力信息、冷凝器的出口高压压力信息及制冷系统内的环境温度信息实时调节所述电子膨胀阀的开度,以使所述制冷系统的制冷量与负载热量达到平衡,有效降低压缩机的流量及能耗,其制冷量与负载热量平衡过程中无需使用加热器进行温度干预,有效降低制冷系统的能耗,从而实现节能目的。
为了实现上有目的,本发明公开了一种节能控制装置,适用于制冷系统,所述制冷系统包括依次连接的压缩机、冷凝器、电子膨胀阀和蒸发器,所述节能控制装置包括控制模块和采集组件,所述控制模块分别通讯连接所述采集组件和电子膨胀阀,所述采集组件用于采集所述制冷系统的监测数据并发送至所述控制模块,所述监测数据包括所述压缩机的回气压力信 息、所述冷凝器的出口高压压力信息及所述制冷系统内的环境温度信息,所述控制模块依据所述监测数据实时调节所述电子膨胀阀的开度,以使所述制冷系统的制冷量与负载热量达到平衡。
与现有技术相比,本发明的节能控制装置包括控制模块和采集组件,控制模块分别通讯连接采集组件和电子膨胀阀,采集组件用于采集制冷系统的监测数据并发送至控制模块,监测数据包括压缩机的回气压力信息、冷凝器的出口高压压力信息及制冷系统内的环境温度信息,控制模块依据监测数据实时调节电子膨胀阀的开度,以使制冷系统的制冷量与负载热量达到平衡,通过上述设置,使得本发明能够通过实时调节所述电子膨胀阀的开度以使所述制冷系统的制冷量与负载热量达到平衡,从而有效降低压缩机的流量及能耗,其制冷量与负载热量平衡过程中无需使用加热器进行温度干预,有效降低制冷系统的能耗,从而实现节能目的。
较佳地,所述控制模块分别将接收到的所述回气压力信息、出口高压压力信息及环境温度信息转化为回气压力值、出口高压压力值及环境温度值。
较佳地,所述控制模块内设有逻辑运算程式,所述控制模块通过逻辑运算程式对所述回气压力值、出口高压压力值及环境温度值进行综合计算,以获得当前电子膨胀阀的优选开度参数,所述控制模块依据当前电子膨胀阀的优选开度参数实时调整所述电子膨胀阀的开度。
较佳地,所述节能控制装置包括采集组件包括第一采集单元、第二采集单元和第三采集单元,所述第一采集单元用于采集所述压缩机的回气压力信息,并将所述回气压力信息实时发送至所述控制模块;所述第二采集单元用于采集所述冷凝器的出口高压压力信息,并将所述出口高压压力信息实时发送至所述控制模块;所述第三采集单元用于采集所述制冷系统内的环境温度信息,并将所述环境温度信息实时发送至所述控制模块。
具体地,所述第一采集单元和第二采集单元均为气体压力传感器,所述第三采集单元为温度传感器。
相应地,本发明还公开了一种节能控制方法,应用于如上所述的节能控制装置,所述节能控制方法包括如下步骤:
S1、分别采集压缩机的回气压力信息、冷凝器的出口高压压力信息及制冷系统内的环境温度信息;
S2、将所述回气压力信息、出口高压压力信息和环境温度信息分别转换为回气压力值、出口高压压力值和环境温度值;
S3、依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀的开度,以使制冷系统的制冷量与负载热量达到平衡。
较佳地,所述制冷系统的工作模式类型包括降温模式和恒温模式,所述步骤S3具体包括:
S31、获取所述制冷系统的工作模式类型,并将所述回气压力值转化为对应的蒸发温度值;
S32、若所述制冷系统的工作模式类型为降温模式,则将所述蒸发温度值、环境温度值和预设目标温度值进行比较,并判断所述出口高压压力值是否超过预设高压压力值,依据比较结果和判断结果实时调节电子膨胀阀的开度,以使制冷系统的制冷量与负载热量达到平衡;
S33、若所述制冷系统的工作模式类型为恒温模式,则将所述蒸发温度值、环境温度值和预设目标温度值进行比较,依据比较结果实时调节电子膨胀阀的开度,以使制冷系统的制冷量与负载热量达到平衡。
较佳地,所述依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀的开度,以使制冷系统的制冷量与负载热量达到平衡,具体包括:
通过逻辑运算程式对所述回气压力值、出口高压压力值及环境温度值进行综合计算,以获得当前电子膨胀阀的优选开度参数;
依据当前电子膨胀阀的优选开度参数实时调整所述电子膨胀阀的开度。
相应地,本发明还公开了一种节能控制装置,其包括:
采集模块,被配置为分别采集压缩机的回气压力信息、冷凝器的出口高压压力信息及制冷系统内的环境温度信息;
转换模块,被配置为将所述回气压力信息、出口高压压力信息和环境温度信息分别转换为回气压力值、出口高压压力值和环境温度值;
调整模块,被配置为依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀的开度,以使制冷系统的制冷量与负载热量达到平衡。
相应地,本发明还公开了一种存储介质,用于存储计算机程序,所述程序被处理器执行时实现如上所述的节能控制方法。
附图说明
图1是本发明的节能控制装置与制冷系统结合的结构示意图;
图2是本发明的节能控制方法的流程框图;
图3是本发明的节能控制装置的结构示意图。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
请参阅图1所示,本实施例的节能控制装置1000适于对制冷系统进行节能控制,该制冷系统包括压缩机1、冷凝器2、电子膨胀阀3和蒸发器4,压缩机1、冷凝器2、电子膨胀阀3和蒸发器4依次连接构成冷媒回路。可以理解的是,电子膨胀阀3为可通过电信号进行精准开度调节的膨胀阀,通过精准调节电子膨胀阀3的开度,能够调整从冷凝器2流入蒸发器4的流量,从而控制制冷量。
该节能控制装置1000包括控制模块10和采集组件20,控制模块10分别通讯连接采集组件20和电子膨胀阀3,采集组件20用于采集制冷系统的监测数据并发送至控制模块10,监测数据包括压缩机1的回气压力信息、冷凝器2的出口高压压力信息及制冷系统内的环境温度信息,控制模块10依据监测数据实时调节电子膨胀阀3的开度,以使制冷系统的制冷量与负载热量达到平衡。较佳者,这里的控制装置为一可编程控制器(PLC),通过对控制装置写入预设程式,能够使控制装置具备PID计算能力。
可以理解的是,这里的控制模块10为独立于制冷系统总控的控制芯片,该控制模块10能够与制冷系统总控进行交互,以读取制冷系统总控的各个部件的相关信息,及供制冷系统总控获取采集组件20采集得到的监测数据,以调整各个部件的工作参数。当然,控制模块10可以直接为制冷系 统总控,通过制冷系统总控实现本实施例示出的节能效果,在此不做限定。
较佳地,控制模块10分别将接收到的回气压力信息、出口高压压力信息及环境温度信息转化为回气压力值、出口高压压力值及环境温度值,这里的回气压力值、出口高压压力值及环境温度值均为数字信号。由于采集组件20直接采集得到的模拟信号,为了便于控制装置的后续计算处理,需要将模拟信号转化为数字信号。
较佳地,控制模块10内设有逻辑运算程式,控制模块10通过逻辑运算程式对回气压力值、出口高压压力值及环境温度值进行综合计算,以获得当前电子膨胀阀3的优选开度参数,控制模块10依据当前电子膨胀阀3的优选开度参数实时调整电子膨胀阀3的开度。可以理解的是,由于制冷系统在降温和恒温过程中需要持续或间隔地工作,其回气压力值、出口高压压力值及环境温度值可以理解为动态变化,因此,控制模块10能够根据动态变化的回气压力值、出口高压压力值及环境温度值,实时计算出动态变化的优选开度参数,控制模块10根据动态变化的优选开度参数动态调整电子膨胀阀3的开度,以使电子膨胀阀3的开度成为正反馈调整,当本节能控制装置1000运行一定时间后,在其他影响因素不变的情况下,制冷系统的制冷量与负载热量必定能够达到平衡,从而最大限度地降低能耗,其过程无需使用加热器进行温度干预,有效达到节能目的。
较佳地,节能控制装置1000包括采集组件20包括第一采集单元21、第二采集单元22和第三采集单元23,优选地,第一采集单元21和第二采集单元22均为气体压力传感器,第三采集单元23为温度传感器。第一采集单元21用于采集压缩机1的回气压力信息,并将回气压力信息实时发送至控制模块10;第二采集单元22用于采集冷凝器2的出口高压压力信息,并将出口高压压力信息实时发送至控制模块10;第三采集单元23用于采集制冷系统内的环境温度信息,并将环境温度信息实时发送至控制模块10。
需要说明的是,本实施例以回气压力值、出口高压压力值及环境温度值作为控制参量对电子膨胀阀3进行调节,在其他优选方式中,可以通过设置更多的传感器以采集制冷系统的更多参数变量和环境变量,以结合回 气压力值、出口高压压力值及环境温度值作为控制参量,以对电子膨胀阀3进行更加复杂、精准的调节,在此不做赘述。
请参阅图2所示,相应地,本发明还公开了一种节能控制方法,应用于如上的节能控制装置1000,节能控制方法包括如下步骤:
S1、分别采集压缩机1的回气压力信息、冷凝器2的出口高压压力信息及制冷系统内的环境温度信息;
S2、将回气压力信息、出口高压压力信息和环境温度信息分别转换为回气压力值、出口高压压力值和环境温度值;
S3、依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀3的开度,以使制冷系统的制冷量与负载热量达到平衡。
较佳地,制冷系统的工作模式类型包括降温模式和恒温模式,步骤S3具体包括:
S31、获取制冷系统的工作模式类型,并将回气压力值转化为对应的蒸发温度值。
S32、若制冷系统的工作模式类型为降温模式,则将蒸发温度值、环境温度值和预设目标温度值进行比较,并判断出口高压压力值是否超过预设高压压力值,依据比较结果和判断结果实时调节电子膨胀阀3的开度,以使制冷系统的制冷量与负载热量达到平衡;
S33、若制冷系统的工作模式类型为恒温模式,则将蒸发温度值、环境温度值和预设目标温度值进行比较,依据比较结果实时调节电子膨胀阀3的开度,以使制冷系统的制冷量与负载热量达到平衡。
较佳地,依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀3的开度,以使制冷系统的制冷量与负载热量达到平衡,具体包括:
通过逻辑运算程式对回气压力值、出口高压压力值及环境温度值进行综合计算,以获得当前电子膨胀阀3的优选开度参数;
依据当前电子膨胀阀3的优选开度参数实时调整电子膨胀阀3的开度。
请参阅图3所示,相应地,本发明还公开了一种节能控制装置1000,其包括:
采集模块100,被配置为分别采集压缩机1的回气压力信息、冷凝器2的出口高压压力信息及制冷系统内的环境温度信息;
转换模块200,被配置为将回气压力信息、出口高压压力信息和环境温度信息分别转换为回气压力值、出口高压压力值和环境温度值;
调整模块300,被配置为依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀3的开度,以使制冷系统的制冷量与负载热量达到平衡。
相应地,本发明还公开了一种存储介质,用于存储计算机程序,程序被处理器执行时实现如上的节能控制方法。
结合图1-图3,本发明通过实时调节所述电子膨胀阀3的开度以使所述制冷系统的制冷量与负载热量达到平衡,从而有效降低压缩机1的流量及能耗,其制冷量与负载热量平衡过程中无需使用加热器进行温度干预,有效降低制冷系统的能耗,从而实现节能目的。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种节能控制装置,适用于制冷系统,所述制冷系统包括依次连接的压缩机(1)、冷凝器(2)、电子膨胀阀(3)和蒸发器(4),其特征在于:所述节能控制装置(1000)包括控制模块(10)和采集组件(20),所述控制模块(10)分别通讯连接所述采集组件(20)和电子膨胀阀(3),所述采集组件(20)用于采集所述制冷系统的监测数据并发送至所述控制模块(10),所述监测数据包括所述压缩机(1)的回气压力信息、所述冷凝器(2)的出口高压压力信息及所述制冷系统内的环境温度信息,所述控制模块(10)依据所述监测数据实时调节所述电子膨胀阀(3)的开度,以使所述制冷系统的制冷量与负载热量达到平衡。
  2. 如权利要求1所述的节能控制装置,其特征在于:所述控制模块(10)分别将接收到的所述回气压力信息、出口高压压力信息及环境温度信息转化为回气压力值、出口高压压力值及环境温度值。
  3. 如权利要求2所述的节能控制装置,其特征在于:所述控制模块(10)内设有逻辑运算程式,所述控制模块(10)通过逻辑运算程式对所述回气压力值、出口高压压力值及环境温度值进行综合计算,以获得当前电子膨胀阀(3)的优选开度参数,所述控制模块(10)依据当前电子膨胀阀(3)的优选开度参数实时调整所述电子膨胀阀(3)的开度。
  4. 如权利要求1所述的节能控制装置,其特征在于:所述节能控制装置(1000)包括采集组件(20)包括第一采集单元(21)、第二采集单元(22)和第三采集单元(23),所述第一采集单元(21)用于采集所述压缩机(1)的回气压力信息,并将所述回气压力信息实时发送至所述控制模块(10);所述第二采集单元(22)用于采集所述冷凝器(2)的出口高压压力信息,并将所述出口高压压力信息实时发送至所述控制模块(10);所述第三采集单元(23)用于采集所述制冷系统内的环境温度信息,并将所述环境温度信息实时发送至所述控制模块(10)。
  5. 如权利要求4所述的节能控制装置,其特征在于:所述第一采集单元(21)和第二采集单元(22)均为气体压力传感器,所述第三采集单元(23)为温度传感器。
  6. 一种节能控制方法,应用于如权利要求1-5中任一项所述的节能控制装置(1000),其特征在于,所述节能控制方法包括如下步骤:
    分别采集压缩机(1)的回气压力信息、冷凝器(2)的出口高压压力信息及制冷系统内的环境温度信息;
    将所述回气压力信息、出口高压压力信息和环境温度信息分别转换为回气压力值、出口高压压力值和环境温度值;
    依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀(3)的开度,以使制冷系统的制冷量与负载热量达到平衡。
  7. 如权利要求6所述的节能控制方法,其特征在于,所述制冷系统的工作模式类型包括降温模式和恒温模式,所述依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀(3)的开度,以使制冷系统的制冷量与负载热量达到平衡,具体包括:
    获取所述制冷系统的工作模式类型,并将所述回气压力值转化为对应的蒸发温度值;
    若所述制冷系统的工作模式类型为降温模式,则将所述蒸发温度值、环境温度值和预设目标温度值进行比较,并判断所述出口高压压力值是否超过预设高压压力值,依据比较结果和判断结果实时调节电子膨胀阀(3)的开度,以使制冷系统的制冷量与负载热量达到平衡;
    若所述制冷系统的工作模式类型为恒温模式,则将所述蒸发温度值、环境温度值和预设目标温度值进行比较,依据比较结果实时调节电子膨胀阀(3)的开度,以使制冷系统的制冷量与负载热量达到平衡。
  8. 如权利要求6所述的节能控制方法,其特征在于,所述依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀(3)的开度,以使制冷系统的制冷量与负载热量达到平衡,具体包括:
    通过逻辑运算程式对所述回气压力值、出口高压压力值及环境温度值进行综合计算,以获得当前电子膨胀阀(3)的优选开度参数;
    依据当前电子膨胀阀(3)的优选开度参数实时调整所述电子膨胀阀(3)的开度。
  9. 一种节能控制装置,其特征在于,包括:
    采集模块,被配置为分别采集压缩机(1)的回气压力信息、冷凝器(2)的出口高压压力信息及制冷系统内的环境温度信息;
    转换模块,被配置为将所述回气压力信息、出口高压压力信息和环境温度信息分别转换为回气压力值、出口高压压力值和环境温度值;
    调整模块,被配置为依据回气压力值、出口高压压力值和环境温度值实时调节电子膨胀阀(3)的开度,以使制冷系统的制冷量与负载热量达到平衡。
  10. 一种存储介质,用于存储计算机程序,其特征在于:所述程序被处理器执行时实现权利要求6~8中任一项所述的节能控制方法。
PCT/CN2022/088362 2022-01-10 2022-04-22 节能控制装置、节能控制方法和存储介质 WO2023130619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210022410.0A CN114294849A (zh) 2022-01-10 2022-01-10 节能控制装置、节能控制方法和存储介质
CN202210022410.0 2022-01-10

Publications (1)

Publication Number Publication Date
WO2023130619A1 true WO2023130619A1 (zh) 2023-07-13

Family

ID=80975395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088362 WO2023130619A1 (zh) 2022-01-10 2022-04-22 节能控制装置、节能控制方法和存储介质

Country Status (2)

Country Link
CN (1) CN114294849A (zh)
WO (1) WO2023130619A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294849A (zh) * 2022-01-10 2022-04-08 东莞市升微机电设备科技有限公司 节能控制装置、节能控制方法和存储介质
CN114857812A (zh) * 2022-05-26 2022-08-05 深圳市英维克信息技术有限公司 节能控制方法、节能控制装置、电子设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603751A (zh) * 2009-07-15 2009-12-16 北京科技大学 一种制冷系统的变频节能控制方法
CN107388490A (zh) * 2017-07-12 2017-11-24 青岛海尔空调器有限总公司 空调运行控制方法
CN110160294A (zh) * 2019-05-17 2019-08-23 中车大连机车研究所有限公司 一种用于co2冷媒空调的电子膨胀阀控制方法
CN110173854A (zh) * 2019-05-29 2019-08-27 青岛海尔空调电子有限公司 一种空调器低温制热启动控制方法和空调器
CN113776230A (zh) * 2021-09-25 2021-12-10 益鹏智能系统科技(上海)有限公司 一种天然气制热电子膨胀阀的控制方法及其系统
CN215337164U (zh) * 2021-04-22 2021-12-28 东莞市升微机电设备科技有限公司 一种制冷设备的温湿度调节装置
CN114294849A (zh) * 2022-01-10 2022-04-08 东莞市升微机电设备科技有限公司 节能控制装置、节能控制方法和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990294B (zh) * 2015-05-29 2017-10-31 重庆美的通用制冷设备有限公司 空调器及其控制方法、控制装置
CN105423498B (zh) * 2015-12-21 2018-01-23 珠海格力电器股份有限公司 空调系统的控制方法及空调系统
CN106123410A (zh) * 2016-06-21 2016-11-16 佛山市顺德区资乐电器有限公司 一种新型电子膨胀阀开度控制方法
CN109855281B (zh) * 2018-12-12 2021-05-28 青岛海信日立空调系统有限公司 空调换热装置及空调器
CN111854200B (zh) * 2019-04-28 2021-09-24 青岛海尔智能技术研发有限公司 一种冷柜设备、制冷系统及其控制方法
CN110285618B (zh) * 2019-06-27 2020-03-27 山东建筑大学 一种热泵的变频控制装置与控制方法
CN112178871A (zh) * 2020-09-21 2021-01-05 广东Tcl智能暖通设备有限公司 一种空调控制方法、空调及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603751A (zh) * 2009-07-15 2009-12-16 北京科技大学 一种制冷系统的变频节能控制方法
CN107388490A (zh) * 2017-07-12 2017-11-24 青岛海尔空调器有限总公司 空调运行控制方法
CN110160294A (zh) * 2019-05-17 2019-08-23 中车大连机车研究所有限公司 一种用于co2冷媒空调的电子膨胀阀控制方法
CN110173854A (zh) * 2019-05-29 2019-08-27 青岛海尔空调电子有限公司 一种空调器低温制热启动控制方法和空调器
CN215337164U (zh) * 2021-04-22 2021-12-28 东莞市升微机电设备科技有限公司 一种制冷设备的温湿度调节装置
CN113776230A (zh) * 2021-09-25 2021-12-10 益鹏智能系统科技(上海)有限公司 一种天然气制热电子膨胀阀的控制方法及其系统
CN114294849A (zh) * 2022-01-10 2022-04-08 东莞市升微机电设备科技有限公司 节能控制装置、节能控制方法和存储介质

Also Published As

Publication number Publication date
CN114294849A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2023130619A1 (zh) 节能控制装置、节能控制方法和存储介质
CN105674610B (zh) 一种制冷剂流量控制方法系统及冰箱
CN106288197B (zh) 一种基于pid算法的空调控制方法及其系统
CN108375175B (zh) 空调系统控制方法及装置
CN105509411A (zh) 一种冰箱控制方法系统及冰箱
CN110579010B (zh) 一种多联机内机电子膨胀阀控制方法、控制装置及空调器
CN107062720B (zh) 一种空调机组控制方法及空调机组
CN104566769B (zh) 空调节能控制方法和系统
CN208365626U (zh) 一种热泵采暖变频系统
CN107101347A (zh) 空调压缩机频率的控制方法及空调
CN108731324B (zh) 一种过热度控制电子膨胀阀系统
CN107894045B (zh) 空调系统的节流控制方法、装置与空调器
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN215337164U (zh) 一种制冷设备的温湿度调节装置
CN105698451A (zh) 一种防止电子膨胀阀脏堵损坏的控制方法系统及冰箱
CN108731195A (zh) 一种水温控制方法及装置
CN111649459A (zh) 基于专家pid的纺织空调节能自控方法
CN105042799A (zh) 空调器控制方法、控制装置及空调器
CN110966714B (zh) 一种空调智能控制方法、计算机可读存储介质及空调
JP3086813B2 (ja) 空気調和装置における電子膨脹弁の制御方法
CN211928447U (zh) 一种气体压力调节装置
CN201885351U (zh) 空调节能控制器
CN204574599U (zh) 混合动力制冷系统
CN112413937B (zh) 冷水机组及其电子膨胀阀控制方法、装置、系统
CN110567102A (zh) 一种基于定温差调节的风机盘管控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918083

Country of ref document: EP

Kind code of ref document: A1