WO2023130563A1 - 一种危险废物配伍系统及方法 - Google Patents

一种危险废物配伍系统及方法 Download PDF

Info

Publication number
WO2023130563A1
WO2023130563A1 PCT/CN2022/079696 CN2022079696W WO2023130563A1 WO 2023130563 A1 WO2023130563 A1 WO 2023130563A1 CN 2022079696 W CN2022079696 W CN 2022079696W WO 2023130563 A1 WO2023130563 A1 WO 2023130563A1
Authority
WO
WIPO (PCT)
Prior art keywords
compatibility
hazardous waste
unit
calorific value
waste
Prior art date
Application number
PCT/CN2022/079696
Other languages
English (en)
French (fr)
Inventor
叶恒棣
廖婷婷
李宗平
朱佼佼
曾小信
Original Assignee
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司 filed Critical 中冶长天国际工程有限责任公司
Publication of WO2023130563A1 publication Critical patent/WO2023130563A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • This application relates to the technical field of hazardous waste disposal, in particular to a hazardous waste compatibility system and method.
  • Hazardous waste refers to waste with hazardous characteristics that is listed in the national hazardous waste list or identified according to the national hazardous waste identification standards and identification methods.
  • the commonly used methods for disposing of hazardous waste include incineration and landfill.
  • incineration is to place hazardous waste in an incineration kiln, and use the high temperature and sufficient oxygen environment in the kiln to oxidize and decompose the organic substances in the hazardous waste, effectively reducing The volume of hazardous waste and the realization of harmless hazardous waste.
  • the compatibility of hazardous waste means that in order to achieve the purpose of stable, controllable, uniform and balanced combustion of hazardous waste disposed of in the kiln, the collection of complex components and different forms.
  • the compatibility of hazardous waste first needs to ensure the compatibility between compatible materials and ensure the safety of the incineration process to prevent the following situations: heat generation, fire, explosion, generation of flammable and toxic gases, violent polymerization reactions and dissolution of toxic substances, for example, Mixing of oxidizing and reducing substances may cause a strong explosive reaction.
  • target materials for kiln disposal such as volatile and ash indicators, as well as the calorific value, moisture and harmful element components of target materials for kiln disposal, so as to ensure stable incineration, save auxiliary fuel and Smoke emission up to standard.
  • the compatibility process of the hazardous waste incineration disposal plant basically depends on the process engineer.
  • the process engineer determines the plan through a large number of manual calculations. Due to the many influencing factors in the compatibility process, the requirements for the staff are relatively high, the workload is heavy, and it is not scientific enough. . Even though some compatibility processes are automatically completed by computer, due to the imperfection of the database and compatibility process, the final compatibility solution is not a non-inferior solution, and chemical reaction incineration accidents may even occur.
  • the present application provides a hazardous waste compatibility system and method to solve the problems of heavy manual workload and poor compatibility scheme in the existing hazardous waste compatibility method.
  • the first aspect of the present application provides a hazardous waste compatibility system, which includes a hazardous waste information unit, a storage management unit, a compatibility rule unit, and an intelligent compatibility model unit;
  • the hazardous waste information unit is used to obtain the attributes of each hazardous waste Information, sending attribute information to the storage management unit, the attribute information includes unit calorific value, inventory and component content;
  • the storage management unit is used to import the received attribute information into the hazardous waste information database;
  • the The compatibility rule unit is used to construct the compatibility rule, and store the compatibility rule into the hazardous waste information database, the compatibility rule includes the element limit value rule of the target material;
  • the intelligent compatibility model unit is configured as:
  • the attribute information also includes at least one of hazardous waste category and pH value
  • the hazardous waste category includes halogenated hydrocarbon waste, sulfur-containing waste, cyanide-containing waste, nitrite waste liquid, ammonia water, Iodine-bromine-containing waste and chlorine-containing waste liquid
  • the compatibility rules also include hazardous waste compatibility rules
  • the intelligent compatibility model unit is further configured as:
  • the incompatible hazardous waste is determined, and at least one compatibility matrix is generated, and the compatibility matrix is used to judge whether each hazardous waste is selected to participate in this compatibility.
  • At least one compatibility matrix is generated according to the hazardous waste compatibility rules and the attribute information of each hazardous waste, including:
  • the intelligent compatibility model unit is further configured to:
  • f(x) is the total calorific value of the target material
  • Q is the unit calorific value of hazardous waste
  • q i represents the unit calorific value of the i-th hazardous waste
  • X is the compatible amount of hazardous waste
  • x i represents the i-th hazardous waste Compatibility of each hazardous waste
  • B is the compatibility matrix, where the value of the diagonal element b i of the compatibility matrix represents whether the i-th hazardous waste is selected to participate in this compatibility.
  • the intelligent compatibility model unit executes the combination of the objective function and the constraint conditions, constructs a compatibility model, calculates the compatibility amount of each hazardous waste in the target material, obtains the current compatibility scheme, and is further configured as :
  • the compatibility scheme includes the weight of the current compatibility, the calorific value after compatibility and the content of each element, and the adjustment compatibility scheme includes Increase fuel to meet calorific value and replace compatibility matrix.
  • it also includes a compatibility report unit and a delivery management unit;
  • the intelligent compatibility model unit sends the compatibility plan to the compatibility report unit, and the compatibility report unit is used to form a compatibility report according to the compatibility plan, and provide the compatibility report to the compatibility personnel;
  • the outbound management unit is used to modify the hazardous waste information database according to the hazardous waste entering the kiln this time after the current compatibility is completed.
  • the warehousing management unit includes a characteristic parameter alarm module, and the characteristic parameter alarm module is used to, when the attribute information of a certain hazardous waste exceeds a preset condition, Carry out alarm marking; said intelligent compatibility model unit is further configured to:
  • compatibility constraints include:
  • the compatibility amount of each hazardous waste is greater than or equal to zero;
  • the compatibility amount of each hazardous waste is less than or equal to the inventory amount of the hazardous waste
  • the sum of the compatible amounts of all hazardous wastes is less than or equal to the allowable incineration weight of the incineration kiln.
  • the element limit constraint condition includes potassium content rate constraint condition, sodium content rate constraint condition, sulfur content rate constraint condition, phosphorus content rate constraint condition, chlorine content rate constraint condition, fluorine content rate constraint condition, bromine Rate constraints, iodine content rate constraints, zinc content rate constraints, lead content rate constraints, chromium content rate constraints, mercury content rate constraints, cadmium content rate constraints, arsenic content rate constraints, copper content rate constraints At least one of conditions, moisture constraints and ash constraints.
  • the second aspect of the present application provides a hazardous waste compatibility method, which is executed by the above-mentioned hazardous waste compatibility system, including the following steps:
  • the hazardous waste compatibility system and method provided by the present application include a hazardous waste information unit, a storage management unit, a compatibility rule unit and an intelligent compatibility model unit.
  • the hazardous waste information unit is used to obtain each hazardous waste attribute information of waste, and send the attribute information to the storage management unit, the attribute information includes unit calorific value, inventory and component content, and the storage management unit is used to import the received attribute information into the hazardous waste information database, the
  • the compatibility rule unit is used to build a compatibility rule and store the compatibility rule in the hazardous waste information database.
  • the compatibility rule includes the element limit rules of the target material.
  • the intelligent compatibility model unit is used to build a compatibility model to calculate the Obtain the current compatibility scheme based on the waste compatibility amount.
  • the compatibility process of the hazardous waste compatibility system is complete, taking into account the constraints of elements and compatibility issues, establishing an objective function with the goal of maximizing the calorific value of the target material, and ensuring that the compatibility scheme is a non-inferior solution.
  • Fig. 1 is a schematic structural diagram of a hazardous waste compatibility system provided in an embodiment of the present application.
  • the hazardous waste compatibility system includes a hazardous waste information unit 100 , a storage management unit 200 , a compatibility rule unit 300 and an intelligent compatibility model unit 400 .
  • the hazardous waste information unit 100 is used to obtain the attribute information of each hazardous waste.
  • Hazardous waste can be detected and analyzed at the hazardous waste generation end, a third-party testing company or an incineration treatment plant to determine the attribute information of hazardous waste, and then the hazardous waste information unit 100 performs post-acquisition normalization processing, wherein the attribute information includes unit calorific value, stock quantity and component content.
  • hazardous waste has been detected and analyzed when it enters the hazardous waste incineration treatment plant.
  • the hazardous waste information unit 100 provides the user with a hazardous waste report related to hazardous waste attribute information to fill in. In the form field, complete the filling of the attribute information of the incoming hazardous waste, and then the hazardous waste information unit 100 will import the attribute information of the hazardous waste into the hazardous waste information database, so as to obtain and call the compatibility.
  • the hazardous waste report includes hazardous waste attribute information and corresponding filling prompts and requirements.
  • the hazardous waste attribute information can also include source, phase, Packaging, pH value, flash point, hazardous waste characteristics, hazardous waste category and storage date, the composition content of hazardous waste can include moisture (M), ash melting point, chlorine (Cl), sulfur (S), arsenic (As), Copper (Cu), Potassium (K), Sodium (Na), Zinc (Zn), Lead (Pb), Chromium (Cr), Bromine (Br), Phosphorus (P), Iodine (I), Fluorine (F), Mercury (Hg) and Cadmium (Cd).
  • the hazardous waste category includes halogenated hydrocarbon waste, sulfur-containing waste, cyanide-containing waste, nitrite waste liquid, ammonia water, iodine-bromine-containing waste, and chlorine-containing waste liquid.
  • Hazardous waste can be one of the above categories or not. into any of the above categories.
  • the fields in the hazardous waste report can be added, deleted and modified according to the actual situation.
  • Each hazardous waste in the examples of this application refers to the same batch of hazardous waste from the same source at the same time.
  • Table 2 the storage time is October 23, the source is Company A, and the hazardous waste category is halogenated hydrocarbons.
  • a Hazardous waste storage the storage time is November 3rd, the same source is Company A, and the hazardous waste category is halogenated hydrocarbon b
  • Hazardous waste storage although the two sources are the same and the hazardous waste category is the same, but will not be carried out
  • a is one hazardous waste
  • b is another hazardous waste.
  • the warehousing management unit 200 is used to import the received attribute information into the hazardous waste information database.
  • the hazardous waste data can be directly imported in the form of a report, and each attribute information is filled into the hazardous waste information database according to the hazardous waste data in the report.
  • the storage management unit 200 also includes a feature parameter alarm module, which is used to mark the hazardous waste in the hazardous waste information database as an alarm when certain attribute information of the hazardous waste exceeds a preset condition; For example, when a certain element, flash point or moisture of hazardous waste does not meet the conditions, an alarm flag will be placed in the hazardous waste information database to remind that the hazardous waste is hazardous waste exceeding the limit and needs to be treated before it can participate in compatibility. Therefore, the warehousing management unit 200 can complete preliminary compatibility data screening, and mark and alarm hazardous waste that does not meet the conditions.
  • the compatibility rule unit 300 is used to construct the compatibility rules, store the compatibility rules into the hazardous waste information database, and support adding, modifying and deleting the compatibility rules.
  • the compatibility rules include the element limit rules of the target materials.
  • the element limit is based on the compatibility requirements to ensure that the element content in the incineration flue gas does not exceed the emission index. Therefore, the content of elements in the target material entering the kiln is required to be less than the specified value during compatibility. See Table 3, which is a table of element limit rules.
  • the names and values in Table 3 are schematic values of the embodiments of the present application. The names and value ranges that need to be restricted can be modified according to actual conditions. Moisture requirements are based on the premise of ensuring the stable combustion of target materials and saving fuel. Constraints on the range of values can be put into Table 3 for management, and can be invoked during compatibility.
  • the compatibility rules can also include compatibility rules, which are used to determine the composition of incompatible components.
  • Hazardous waste cannot enter the compatibility scheme at the same time; for example, oxidizing substances and reducing substances cannot exist at the same time, acidic substances and alkaline substances cannot exist at the same time, halogenated hydrocarbon wastes and mercury-containing wastes cannot exist at the same time.
  • Table 4 it is a compatibility rule table provided for the embodiment of the present application, wherein 0 indicates that burning together is not allowed, 1 indicates that burning together is possible, and 2 indicates that burning together is better.
  • the intelligent compatibility model unit 400 is a unit for establishing a compatibility model and optimizing the calculation of the compatibility amount of each hazardous waste.
  • the intelligent compatibility model unit 400 is configured to perform the following steps:
  • the target material refers to the hazardous waste that is mixed according to the amount of compatibility after the hazardous waste is finally put into the kiln for incineration.
  • hazardous waste incineration it is necessary to obtain the allowable incineration weight and temperature in the incineration kiln.
  • the allowable incineration weight refers to the upper limit of the sum of the hazardous waste that can be disposed of by each incineration kiln to ensure the goal of each compatibility plan
  • the material weight is within the allowable incineration weight range.
  • the calorific value of the target material is another primary satisfying condition.
  • the calorific value of the target material is related to the temperature in the kiln.
  • the temperature in the kiln When the temperature is too high, the calorific value of its compatibility should be reduced.
  • the compatible calorific value should be increased; for example, the normal temperature range of kiln incineration is 800-850°C, and the recommended calorific value is 3500Kcal/kg. As shown in Table 5, the embodiment provides a method for adjusting the recommended calorific value.
  • the calorific value of the compatible target material is recommended to select the recommended calorific value of Q. If the temperature T is high At 850°C, on the basis of the recommended calorific value of Q, reduce it appropriately, and the higher the temperature, the more the reduction will be. Similarly, if the temperature T is lower than 800°C, it should be increased appropriately on the basis of the recommended calorific value of Q, and the higher the temperature, the greater the increase.
  • the recommended calorific value Q of the compatible target material is 3500Kcal/kg; when T is between 865-880°C, the recommended calorific value is adjusted down based on 3500Kcal/kg 10%, that is 3150Kcal/kg.
  • other non-linear adjustment methods may also be selected, which are not specifically limited in this embodiment of the present application.
  • the calorific value range of the target material to be controlled After determining the recommended calorific value, determine the calorific value range of the target material to be controlled according to the preset allowable floating range. For example, the recommended calorific value is 3150Kcal/kg, and the allowed floating range based on the recommended calorific value is ⁇ 15Kcal/kg. Then the calorific value of the target material is controlled within 3135-3165Kcal/kg.
  • the compatibility amount Constraint conditions include that the compatible amount of each hazardous waste is greater than or equal to zero, the compatible amount of each hazardous waste is less than or equal to the inventory amount of the hazardous waste, and the sum of the compatible amounts of all hazardous wastes is less than or equal to the allowable incineration weight of the incineration kiln.
  • the calorific value constraints based on the recommended calorific value and the unit calorific value of each hazardous waste in the attribute information.
  • the recommended calorific value range is determined by the recommended calorific value and the allowed floating range of the calorific value.
  • the unit calorific value of the target material must be within the recommended calorific value range.
  • the element limit value constraints include the potassium content rate Constraints, sodium content rate constraints, sulfur content rate constraints, phosphorus rate constraints, chlorine rate constraints, fluorine rate constraints, bromine rate constraints, iodine rate constraints, zinc rate constraints At least one of the constraint conditions of lead content, chromium content, mercury content, cadmium content, arsenic content, copper content, moisture content and ash content
  • the ash melting point is used to indicate the ash content in hazardous waste.
  • the element limit constraints also include potassium and sodium constraints, sulfur and chlorine constraints, halogen constraints, heavy metal constraints, and mercury and arsenic constraints at least one of the conditions.
  • the compatibility rules constructed by the compatibility rule unit 300 in the embodiment of the present application also include compatibility rules to ensure that there is no incompatible hazardous waste in the compatibility scheme. Compared with the element limit rules, the compatibility rules are not convenient to be directly converted into constraints. Therefore, the embodiment of the application combines the compatibility rules and the pH of each hazardous waste, the category of hazardous waste, etc. to determine the incompatible hazardous waste, and generate at least A compatibility matrix, the compatibility matrix is a diagonal matrix, and the value of the diagonal elements is used to judge whether each hazardous waste is selected to participate in this compatibility. You can use 0 to indicate that you have not selected to participate in this compatibility, and 1 to indicate that you have chosen to participate For this compatibility, the compatibility matrix B is expressed as:
  • b i is the diagonal element value of the ith hazardous waste representative.
  • the hazardous waste category of the first hazardous waste is mercury-containing waste
  • the hazardous waste category of the second hazardous waste is waste containing halogenated hydrocarbons.
  • the first hazardous waste and the second hazardous waste are incompatible hazardous waste, and the elements in other hazardous waste do not conflict and can be incinerated together.
  • the specific scheme can be selected manually or by the system. The two selection schemes are as follows:
  • B 1 is the first option, indicating that the first hazardous waste did not choose to participate in this compatibility
  • B 2 is the second option, indicating that the second hazardous waste did not choose to participate in this compatibility.
  • the storage time of mutually incompatible hazardous waste can be obtained, and according to the storage time, the values of the diagonal elements of the compatibility matrix can be determined to select which solution to adopt. For example, to obtain the storage time of the first mercury-containing waste and the second halocarbon-containing waste, if the first mercury-containing waste is earlier than the second halocarbon-containing waste, the first mercury-containing waste is preferred Participating in this match means choosing B 2 first.
  • a total of 5 liquid hazardous wastes participate in this compatibility, and the pH value of each hazardous waste is obtained. If it is stipulated that acids and bases cannot enter the kiln at the same time, you can choose acidic liquids to participate in this compatibility or alkaline liquids to participate. For this compatibility, for example, choose an acidic liquid to participate in this compatibility, and obtain the pH value of each hazardous waste. If the pH value is less than or equal to 7, the value corresponding to the diagonal element is 1. If the pH value is greater than 7, then The value of the corresponding position of the diagonal element is 0, and the value of other non-pH attributes is 1.
  • the intelligent compatibility model unit 400 executes the acquisition of the compatibility rules in the hazardous waste information database and the attribute information of each hazardous waste, it is further configured to: if a certain hazardous waste is marked by an alarm, then Give up the hazardous waste to participate in this compatibility.
  • the warehousing management unit 200 has completed preliminary compatibility data screening, marking and alarming hazardous waste that does not meet the conditions. Therefore, after obtaining the attribute information of each hazardous waste in the hazardous waste information database, it can Alarm information, selectively determine whether it participates in this compatibility, if a certain hazardous waste is marked by an alarm, delete the hazardous waste information in this compatibility.
  • the element limit rules, compatibility rules and attribute information of each hazardous waste in the hazardous waste information database are obtained, the attribute information includes unit calorific value, inventory, potassium element content ratio, Proportion of sodium content, sulfur content, phosphorus content, chlorine content, fluorine content, bromine content, iodine content, zinc content, lead Content ratio, chromium element content ratio, mercury element content ratio, cadmium element content ratio, arsenic element content ratio, copper element content ratio, moisture, flash point, ash melting point and hazardous waste category.
  • two hazardous wastes are marked by alarm, and their flash points do not meet the conditions. After screening, n hazardous wastes can participate in this compatibility.
  • composition of the target material that is, the compatibility amount of hazardous waste is expressed as:
  • the unit calorific value of hazardous waste is expressed as:
  • q i represents the unit calorific value of the i-th hazardous waste.
  • the proportion of elements in hazardous waste is expressed as:
  • a 1 represents the proportion of K content
  • a 1 [a 1,1 ,a 1,2 ,...,a 1,n ]
  • a 1,i represents the proportion of K content of the i-th hazardous waste .
  • a 2 represents the proportion of Na content
  • a 2 [a 2,1 ,a 2,2 ,...,a 2,n ]
  • a 2,i represents the proportion of Na content of the i-th hazardous waste .
  • a 3 represents the proportion of S content
  • a 3 [a 3,1 ,a 3,2 ,...,a 3,n ]
  • a 3,i represents the proportion of S content of the i-th hazardous waste .
  • a 4 represents the proportion of P content
  • a 4 [a 4,1 ,a 4,2 ,...,a 4,n ]
  • a 4,i represents the proportion of P content of the i-th hazardous waste .
  • a 5 represents the proportion of Cl content
  • a 5 [a 5,1 ,a 5,2 ,...,a 5,n ]
  • a 5,i represents the proportion of Cl content of the i-th hazardous waste .
  • a 6 represents the proportion of F content
  • a 6 [a 6,1 ,a 6,2 ,...,a 6,n ]
  • a 6,i represents the proportion of F content of the i-th hazardous waste .
  • a 7 represents the proportion of Br content
  • a 7 [a 7,1 ,a 7,2 ,...,a 7,n ]
  • a 7,i represents the proportion of Br content of the i-th hazardous waste .
  • a 8 represents the proportion of I content
  • a 8 [a 8,1 ,a 8,2 ,...,a 8,n ]
  • a 8,i represents the proportion of I content of the i-th hazardous waste .
  • a 9 represents the proportion of Zn content
  • a 9 [a 9,1 ,a 9,2 , whil,a 9,n ]
  • a 9,i represents the proportion of Zn content of the i-th hazardous waste .
  • a 10 represents the proportion of Pb content
  • a 10 [a 10,1 ,a 10,2 ,...,a 10,n ]
  • a 10,i represents the proportion of Pb content in the i-th hazardous waste .
  • a 11 indicates the proportion of Cr content
  • a 11 [a 11,1 ,a 11,2 ,...,a 11,n ]
  • a 11,i indicates the proportion of Cr content of the i-th hazardous waste .
  • a 12 represents the proportion of Hg content
  • a 12 [a 12,1 ,a 12,2 ,...,a 12,n ]
  • a 12,i represents the proportion of Hg content of the i-th hazardous waste .
  • a 13 represents the proportion of Cd content
  • a 13 [a 13,1 ,a 13,2 ,...,a 13,n ]
  • a 13,i represents the proportion of Cd content in the i-th hazardous waste .
  • a 14 represents the proportion of As content
  • a 14 [a 14,1 ,a 14,2 ,...,a 14,n ]
  • a 14,i represents the proportion of As content of the i-th hazardous waste .
  • a 15 represents the proportion of Cu content
  • a 15 [a 15,1 ,a 15,2 ,...,a 15,n ]
  • a 15,i represents the proportion of Cu content of the i-th hazardous waste .
  • a 16 indicates moisture content, a 16,i represents the water content of the i-th hazardous waste.
  • a 17 indicates whether the ash melting point is lower than 600°C
  • a 17 [a 17,1 ,a 17,2 ,...,a 17,n ], a 17,i takes the value of 0 or 1, indicating Whether the melting point of the i-th hazardous waste ash is lower than the set value of 600°C, if it is lower than 600°C, the value is 1, and if it is higher than 600°C, the value is 0.
  • compatibility rules and the hazardous waste characteristics of n hazardous wastes generate a compatibility matrix denoted as B.
  • the compatibility constraint is generated, and the compatibility constraint can be expressed as:
  • the calorific value constraint is generated, and the calorific value constraint can be expressed as:
  • ⁇ q is the range allowed to fluctuate on the basis of the recommended calorific value.
  • the element limit constraint conditions are generated, and the element limit constraint conditions can be expressed as:
  • * threshold is the threshold value of each element in the element limit rule table in Table 3.
  • the calorific value entering the kiln is as large as possible within a reasonable range during the compatibility process, and other constraints can be appropriately relaxed; for example, the element content of hazardous waste, although the element content can also be smaller The better, but as long as it does not exceed the limit, it can also be incinerated; therefore, the multi-objective decision-making method that multiple compatible objectives are satisfied at the same time can be transformed into the main objective method.
  • the goal is established with the maximum calorific value of the target material function, that is, the sum of the products of the unit calorific value of each hazardous waste and the corresponding compatible quantity is the largest.
  • an objective function can be established by combining the compatibility matrix and the unit calorific value of each hazardous waste, and the objective function adopts the following model:
  • a compatibility model is constructed, and the compatibility amount of each hazardous waste is used as an optimization variable to calculate the compatibility amount of each hazardous waste in the target material.
  • the compatibility model can be calculated by using a mathematical-based programming method or a genetic algorithm. solution, the embodiment of the present application does not limit the specific solution method. During the solution process, the convergence condition of the solution is preset. If the solution is completed within the convergence condition, the optimized compatibility of each hazardous waste will be output. If the optimal solution is not found within the convergence condition, the compatibility will be adjusted according to the current index situation.
  • the current index situation includes the current compatibility amount, the calorific value after compatibility and the content of each element, and the adjustment compatibility plan includes increasing fuel to meet the calorific value and replacing the compatibility matrix. Finally, the current compatibility plan is obtained according to the determined compatibility amount.
  • the compatibility plan can also include the source of the selected hazardous waste, the calorific value of the target material after compatibility, and the content of each element of the target material.
  • a hazardous waste compatibility system provided in the embodiment of the present application further includes a compatibility report unit 500 and a warehouse-out management unit 600, the intelligent compatibility model unit 400 sends the compatibility plan to the compatibility report unit 500, and the compatibility report unit 500 is used to Forming a matching report according to the matching plan, and providing the matching report to the matching personnel.
  • the outbound management unit 600 is used to modify the hazardous waste information database according to the hazardous waste entering the furnace after the current compatibility is completed. If all hazardous waste A chooses to be incinerated this time, delete the information of the hazardous waste A. If If hazardous waste A is partially incinerated this time, the inventory of hazardous waste A will be revised.
  • a hazardous waste compatibility method provided in the embodiment of the present application includes the following steps:
  • the hazardous waste compatibility method specifically includes the following steps:
  • the unit calorific value and component content of hazardous waste can be expressed as:
  • a Na [1, 0, 0]
  • a K [0.5, 0, 0]
  • a Pb [0.1, 0, 0]
  • a Hg [0, 0.2, 0.005]
  • a M [20, 10, 0]
  • the recalculated compatibility scheme is The calorific value of the target material is 3699.87Kcal/kg, the weight of the target material is 1.99t, and the moisture and various hazardous waste elements meet the requirements of the compatibility rules.
  • the hazardous waste compatibility system and method provided by the embodiment of the present application includes a hazardous waste information unit 100, a storage management unit 200, a compatibility rule unit 300, and an intelligent compatibility model unit 400.
  • the hazardous waste information unit 100 is used to obtain each The attribute information of hazardous waste, the attribute information is sent to the storage management unit 200, the attribute information includes unit calorific value, inventory and component content, and the storage management unit 200 is used to import the received attribute information into the hazardous waste information Database
  • the compatibility rule unit 300 is used to construct a compatibility rule, and store the compatibility rule in the hazardous waste information database
  • the compatibility rule includes the element limit value rule of the target material
  • the intelligent compatibility model unit 400 is used to build a compatibility model, calculate The compatibility amount of each hazardous waste in the target material is obtained to obtain the current compatibility scheme.
  • the compatibility process of the hazardous waste compatibility system is complete, taking into account the constraints of elements and compatibility issues, establishing an objective function with the goal of maximizing the calorific value of the target material, and ensuring that the compatibility scheme is a non-inferior solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种危险废物配伍系统及方法,该系统包括危废信息单元(100)、入库管理单元(200)、配伍规则单元(300)和智能配伍模型单元(400),该危废信息单元(100)用于获取每个危废的属性信息,将属性信息发送至所述入库管理单元(200),该属性信息包括单位热值、库存量和成分含量,该入库管理单元(200)用于将接收的属性信息导入危废信息数据库,该配伍规则单元(300)用于构建配伍规则,并将该配伍规则存入危废信息数据库,该配伍规则包括目标物料的元素限值规则,该智能配伍模型单元(400)用于构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。所述危险废物配伍系统配伍流程完善,兼顾元素的约束和兼容性问题,并保证配伍方案为非劣解。

Description

一种危险废物配伍系统及方法 技术领域
本申请涉及危险废物处置技术领域,具体涉及一种危险废物配伍系统及方法。
背景技术
危险废物(以下简称“危废”)是指列入国家危险废物名录或着根据国家规定的危险废物鉴别标准和鉴别方法认定的具有危险特性的废弃物。当前处置危废常用的方法包括焚烧和填埋,其中,焚烧是将危废置于焚烧窑炉内,利用窑内的高温和足够的氧气环境,使得危废中的有机物质被氧化分解,有效降低危废体积和实现危废无害化。
在焚烧工艺中,危废的配伍是关键环节,危废配伍是指为了达到入窑处置的危废成分稳定可控、均匀和平衡燃烧的目的,对所收集的成分复杂和形态各异的各类别危废进行理化性质分析,并根据分析结果确定不同危废的配重,形成混合方案,按照该方案形成目标物料的过程。危废配伍首先需要保证配伍物料之间的相容性,确保焚烧过程安全,以防发生以下情况:发热、着火、爆炸、产生易燃有毒气体、剧烈的聚合反应以及有毒物质的溶解,例如,氧化剂和还原剂物质混合时可能引起强烈的爆炸性反应。其次,需要均衡入窑处置的目标物料的理化特性指标,例如挥发分和灰分指标,以及,均衡入窑处置的目标物料的热值、水分和有害元素成分,以保证焚烧稳定、节省辅助燃料和烟气排放达标。
现有技术中,危废焚烧处置厂的配伍过程基本依赖于工艺工程师,工艺工程师通过大量的人工计算确定方案,由于配伍过程中影响因素众多,对工作人员要求较高,工作量大且不够科学。即使有些配伍的过程采用计算机自动完成,但是由于数据库以及配伍流程等方面的不完善,导致最终形成的配伍方案不是一个非劣解,甚至有可能出现化学反应焚烧事故的发生。
发明内容
本申请提供一种危险废物配伍系统及方法,以解决现有危险废物配伍方法中人工工作量大以及最终形成的配伍方案不佳的问题。
本申请第一方面提供一种危险废物配伍系统,该系统包括危废信息单元、入库管理单元、配伍规则单元和智能配伍模型单元;所述危废信息单元用于获取每个危废的属性信息,将属性信息发送至所述入库管理单元,所述属性信息包括单位热值、库存量和成分含量;所述入库管理单元用于将接收的属性信息导入危废信息数据库;所述配伍规则单元用于构建配伍规则,并将所述配伍规则存入危废信息数据库,所述配伍规则包括目标物料的元素限值规则;所述智能配伍模型单元被配置为:
获取焚烧窑的允许焚烧重量和炉内温度,根据炉内温度确定本次配伍目标物料的建议热值;
获取所述危废信息数据库中配伍规则和每个危废的属性信息,以及,根据属性信 息、配伍规则、允许焚烧重量和建议热值,生成约束条件,其中,所述约束条件包括元素限值约束条件、热值约束条件和配伍量约束条件;
以目标物料的热值最大为目标建立目标函数,以及,结合所述目标函数和所述约束条件,构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。
可选的,所述属性信息还包括危废类别和pH值中的至少一种,所述危废类别包括卤代烃废物、含硫废物、含氰化物废物、亚硝酸盐废液、氨水、含碘溴废物和含氯废液;所述配伍规则还包括危废兼容性规则;所述智能配伍模型单元被进一步配置为:
根据危废兼容性规则和每个危废的属性信息,确定不兼容危废,以及,生成至少一个兼容性矩阵,所述兼容性矩阵用于判断各个危废是否被选择参加本次配伍。
可选的,所述根据危废兼容性规则和每个危废的属性信息,生成至少一个兼容性矩阵,包括:
获取不兼容危废的入库时间,根据所述入库时间,确定兼容性矩阵对角线元素的取值。
可选的,所述智能配伍模型单元在执行所述以目标物料的热值最大为目标建立目标函数,被进一步配置为:
结合兼容性矩阵和每个危废的单位热值,建立目标函数,所述目标函数采用以下模型:
Figure PCTCN2022079696-appb-000001
式中,f(x)为目标物料的总热值,Q为危废的单位热值,q i表示第i个危废的单位热值,X为危废的配伍量,x i表示第i个危废的配伍量,B为兼容性矩阵,其中,兼容性矩阵的对角线元素b i的取值代表第i个危废是否被选择参加本次配伍。
可选的,所述智能配伍模型单元在执行所述结合所述目标函数和所述约束条件,构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案,被进一步配置为:
利用基于数学的规划方法或基于遗传算法,以各个危废的配伍量为优化变量,对配伍模型进行求解;
预设求解的收敛条件,如果在收敛条件内完成求解,则输出当前配伍方案;
如果在收敛条件内未找到最优解,则根据当前指标情况,调整配伍方案,所述当前指标情况包括当前配伍的重量、配伍后的热值和每个元素的含量,所述调整配伍方案包括增加燃料以满足热值和更换兼容性矩阵。
可选的,还包括配伍报表单元和出库管理单元;
所述智能配伍模型单元将配伍方案发送至配伍报表单元,所述配伍报表单元用于根据配伍方案形成配伍报表,以及,将所述配伍报表提供给配伍人员;
所述出库管理单元用于在完成当前配伍后,根据本次入窑的危废,修改危废信息数据库。
可选的,所述入库管理单元包括特征参数报警模块,所述特征参数报警模块用于当某个危废的属性信息超过预设条件时,在所述危废信息数据库中对该危废进行报警标记;所述智能配伍模型单元在执行所述获取所述危废信息数据库中配伍规则和每个危废的属性信息之后,被进一步配置为:
如果某个危废被报警标记,则放弃该危废参与本次配伍。
可选的,所述配伍量约束条件包括:
每个危废的配伍量大于或等于零;
每个危废的配伍量小于或等于该危废的库存量;
所有危废的配伍量之和小于或等于焚烧窑的允许焚烧重量。
可选的,所述元素限值约束条件包括含钾率约束条件、含钠率约束条件、含硫率约束条件、含磷率约束条件、含氯率约束条件、含氟率约束条件、含溴率约束条件、含碘率约束条件、含锌率约束条件、含铅率约束条件、含铬率约束条件、含汞率约束条件、含镉率约束条件、含砷率约束条件、含铜率约束条件、含水分约束条件和含灰分约束条件中的至少一种。
本申请第二方面提供一种危险废物配伍方法,所述方法由上述的危险废物配伍系统执行,包括以下步骤:
获取焚烧窑的允许焚烧重量和炉内温度,根据炉内温度确定本次配伍目标物料的建议热值;
获取所述危废信息数据库中配伍规则和每个危废的属性信息,以及,根据属性信息、配伍规则、允许焚烧重量和建议热值,生成约束条件,其中,所述约束条件包括元素限值约束条件、热值约束条件和配伍量约束条件;
以目标物料的热值最大为目标建立目标函数,以及,结合所述目标函数和所述约束条件,构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。
由以上技术方案可知,本申请提供的危险废物配伍系统及方法,该系统包括危废信息单元、入库管理单元、配伍规则单元和智能配伍模型单元,该危废信息单元用于获取每个危废的属性信息,将属性信息发送至所述入库管理单元,该属性信息包括单位热值、库存量和成分含量,该入库管理单元用于将接收的属性信息导入危废信息数据库,该配伍规则单元用于构建配伍规则,并将该配伍规则存入危废信息数据库,该配伍规则包括目标物料的元素限值规则,该智能配伍模型单元用于构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。本申请提供的危险废物配伍系统配伍流程完善,兼顾元素的约束和兼容性问题,以目标物料的热值最大为目标建立目标函数,并保证配伍方案为非劣解。
附图说明
参照附图来说明本发明的公开内容。应当了解,附图仅仅用于说明目的,而并非意在对本发明的保护范围构成限制。在附图中,相同的附图标记用于指代相同的部件。其中:
图1为本申请实施例提供的一种危险废物配伍系统的结构示意图。
具体实施方式
容易理解,根据本发明的技术方案,在不变更本发明实质精神下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
参见图1,为本申请实施例提供的一种危险废物配伍系统的结构示意图,该危险废物配伍系统包括危废信息单元100、入库管理单元200、配伍规则单元300和智能配伍模型单元400。
危废信息单元100用于获取每个危废的属性信息,危废可以在危废产生端、第三方检测公司或者焚烧处理厂进行检测分析,确定危废的属性信息,再由危废信息单元100进行获取后规范化处理,其中,属性信息包括单位热值、库存量和成分含量。在一个优选实施例中,危废在进入危废焚烧处理厂时,已进行检测分析,为了规范危废数据,危废信息单元100提供危废属性信息相关的危废报表给用户填写,用户根据表格字段,完成入厂危废属性信息的填写,之后危废信息单元100再将危废的属性信息导入至危废信息数据库中,以便配伍的获取调用。
参见表1,为一种危废信息单元100提供的危废报表,危废报表包括危废的属性信息和对应的填写提示及要求,其中,危废的属性信息还可以包括来源、相态、包装、pH值、闪点、危废特性、危废类别和入库日期,危废的成分含量可以包括水分(M)、灰熔点、氯(Cl)、硫(S)、砷(As)、铜(Cu)、钾(K)、钠(Na)、锌(Zn)、铅(Pb)、铬(Cr)、溴(Br)、磷(P)、碘(I)、氟(F)、汞(Hg)和镉(Cd)。其中,危废类别包括卤代烃废物、含硫废物、含氰化物废物、亚硝酸盐废液、氨水、含碘溴废物和含氯废液,危废可以是上述类别中的一种或不为上述类别中的任一种。危废报表中的字段可以根据实际情况新增、删除和修改。
表1危废报表
Figure PCTCN2022079696-appb-000002
Figure PCTCN2022079696-appb-000003
本申请实施例中的每个危废是指同一时间同一来源同一批次的危废,例如,表2中入库时间为10月23日,来源为A公司,危废类别为卤代烃的a危废入库;入库时间为11月3日,同来源为A公司,危废类别为卤代烃的b危废入库,虽然两者来源相同且危废类别相同,但不会进行汇总,a为一个危废,b为另一个危废。
表2一个实施例中危废的属性信息
来源 热值 M Cl S Na K Zn Pb Cr Hg 危废类别 入库时间 库存(t)
A公司 3158 20 0 2 1 0.5 2 0.1 0 0 卤代烃 2021.11.3 5
A公司 4857 10 1 1 0 0 0 0 0 0.2 卤代烃 2021.10.23 2
入库管理单元200用于将接收的属性信息导入危废信息数据库,可以将危废数据以报表的形式直接导入,根据报表的危废数据,将各个属性信息填入危废信息数据库中。进一步的,入库管理单元200还包括特征参数报警模块,该特征参数报警模块用于当危废的某个属性信息超过预设条件时,在危废信息数据库中对该危废进行报警标记;例如,当危废的某个元素、闪点或水分等不符合条件时,在危废信息数据库中进行报警标记,提醒此危废为超过限值的危废,需要经过处理才可参与配伍。所以,入库管理单元200可以完成初步的配伍数据筛选,将不满足条件的危废进行标记和报警。
配伍规则单元300用于构建配伍规则,将配伍规则存入危废信息数据库,并支持对配伍规则进行新增、修改和删除。
配伍规则包括目标物料的元素限值规则,元素限值是根据配伍要求,为保证焚烧烟气中元素含量不超过排放指标。因此,配伍时要求入窑的目标物料中元素含量要小于指定值。参见表3,为元素限值规则表,表3中的名称和取值为本申请实施例的示意值,需要约束的名称和取值范围可以根据实际情况进行修改,其中,关于混匀后的水分要求以保证目标物料的稳定燃烧,并节省燃料为前提。关于取值范围的约束均可以放入表3中进行管理,以备配伍时调用。
表3元素限值规则表
序号 名称 限值
1 K+Na <1%
2 S <2%
3 P <0.5%
4 Cl <2%
5 F <0.01%
6 Pb <0.1%
7 S+Cl <4%
8 F+Cl+Br+I <3%
9 Zn+Pb+Cr+Hg+Cd+As+Cu <0.5%
10 Hg+As <0.01%
11 Pb <0.1%
12 M(水分) <10%
13 灰熔点低于600℃添加量 <5%
此外,由于不同危废的理化特性和元素成分不同,为确保焚烧过程安全,避免危废之间产生有害反应,所述配伍规则还可以包括兼容性规则,兼容性规则用于确定不兼容成分的危废不可同时进入配伍方案;例如氧化性物质和还原性物质不可同时存在、酸性物质和碱性物质不可同时存在,卤代烃废物和含汞废物不可同时存在。如下表4所示,为本申请实施例提供的兼容性规则表,其中,0表示不允许一起焚烧,1表示可以一起焚烧,2表示一起焚烧效果更好。
表4兼容性规则表
Figure PCTCN2022079696-appb-000004
智能配伍模型单元400是建立配伍模型以及对每个危废的配伍量进行优化计算的单元,该智能配伍模型单元400被配置为执行以下步骤:
S1、获取焚烧窑的允许焚烧重量和炉内温度,根据炉内温度确定本次配伍目标物料的建议热值。
本申请实施例中,目标物料是指危废经过配伍后,按照配伍量进行搭配,最后入窑焚烧处置的危废。在危废焚烧中,需要获取焚烧窑的允许焚烧重量和炉内温度,其中,允许焚烧重量是指每次焚烧窑炉所能处置的危废质量总和的上限,以保证每次配伍方案的目标物料重量在允许焚烧重量的范围之内。
目标物料的热值是另一首要满足条件,在保持入窑配伍的危废质量一定时,目标物料的热值与窑内的温度有关,当温度偏高时,应降低其配伍的热值,当窑内温度偏低时,应当升高配伍热值;例如,炉窑焚烧正常温度范围为800~850℃,建议热值为3500Kcal/kg。如表5所示,实施例提供一种建议热值的调整方式,当炉膛内的温度T在800~850℃之间时,配伍目标物料的热值建议选择Q 建议热值,若温度T高于850℃,则在Q 建议热值的基础上,适当降低,温度越高,降低越多。同理,若温度T低于800℃,则在Q 建议热值的基础上,适当提高,温度越高,提高越多。例如,当T在800~850℃之间时,配伍目标物料的建议热值Q 建议热值为3500Kcal/kg,当T在865~880℃之间时,建议热值以3500Kcal/kg为基础下调10%,即3150Kcal/kg。除了上述方式之外,也可以选用其他非线性的调整方式,本申请实施例不作具体的限定。
在确定建议热值之后,根据预设的允许浮动范围,确定目标物料需控制的热值范围, 例如建议热值为3150Kcal/kg,在建议热值基础上允许浮动的范围为±15Kcal/kg,则目标物料的热值控制在3135~3165Kcal/kg之内。
表5建议热值调整范围
当前炉膛温度(℃) 调整范围ΔQ
T>900 -20%
880<T≤900 -15%
865<T≤880 -10%
850<T≤865 -5%
800<T≤850 0%
780<T≤800 +5%
760<T≤780 +10%
750<T≤760 +15%
T≤750 +20%
S2、获取所述危废信息数据库中配伍规则和每个危废的属性信息,以及,根据属性信息、配伍规则、允许焚烧重量和建议热值,生成约束条件。
在本申请实施例中,为保证配伍量的精确性,使得入窑危废得以有效处置,需要根据允许焚烧重量和属性信息中每个危废的库存量,确定配伍量约束条件,该配伍量约束条件包括每个危废的配伍量大于或等于零、每个危废的配伍量小于或等于该危废的库存量以及所有危废的配伍量之和小于或等于焚烧窑的允许焚烧重量。
为保证焚烧安全稳定,需要根据建议热值和属性信息中每个危废的单位热值,确定热值约束条件,具体地,由建议热值和热值允许的浮动范围确定建议热值范围,目标物料的单位热值需在建议热值范围之内。
为保证焚烧烟气中有害元素含量不超标,需要根据元素限值规则和属性信息中每个危废的成分含量,确定元素限值约束条件;根据实际情况,元素限值约束条件包括含钾率约束条件、含钠率约束条件、含硫率约束条件、含磷率约束条件、含氯率约束条件、含氟率约束条件、含溴率约束条件、含碘率约束条件、含锌率约束条件、含铅率约束条件、含铬率约束条件、含汞率约束条件、含镉率约束条件、含砷率约束条件、含铜率约束条件、含水分约束条件和含灰分约束条件中的至少一种,其中灰熔点用于表示危废中的灰分含量。
此外,根据表3元素限值规则表中元素组合的限值要求,元素限制约束条件还包括含钾钠约束条件、含硫氯约束条件、含卤素约束条件、含重金属约束条件和含汞砷约束条件中的至少一种。
本申请实施例中配伍规则单元300构建的配伍规则还包括兼容性规则,为保证配伍方案不存在不兼容的危废。同元素限值规则相比,兼容性规则不便于直接转换为约束条件,因此,本申请实施例结合兼容性规则和每个危废的pH、危废类别等,确定不兼容危废,生成至少一个兼容性矩阵,该兼容性矩阵为对角矩阵,对角线元素的取值用于判断各个危废是否被选择参加本次配伍,可以用0表示未选择参加此次配伍,1表示选择参加此次配伍,兼容性矩阵B表示为:
Figure PCTCN2022079696-appb-000005
式中,b i为第i个危废代表的对角线元素取值。例如,在一个实施例中,共有5个危废参加本次配伍,第一个危废的危废类别为含汞废物,第二个危废的危废类别为含卤代烃废物,根据表4所示的兼容性规则表,第一个危废和第二个危废为互不兼容危废,其他危废中元素均不冲突,可以一起焚烧,则兼容性矩阵有两种选择方案,具体方案可人工选择,也可系统选择,两种选择方案如下所示:
Figure PCTCN2022079696-appb-000006
Figure PCTCN2022079696-appb-000007
式中,B 1为第一个选择方案,表示第一个危废未选择参加此次配伍,B 2为第二个选择方案,表示第二个危废未选择参加此次配伍。
进一步的,可以获取互不兼容危废的入库时间,根据所述入库时间,来确定兼容性矩阵对角线元素的取值,以选择采取何种方案。例如,获取第一个含汞废物和第二个含卤代烃废物的入库时间,如果第一个含汞废物早于第二个含卤代烃废物,则优先选择第一个含汞废物参与此次配伍,即优先选择B 2
在另一个实施例中,共有5个液态危废参加本次配伍,获取每个危废的pH值,如果规定酸碱不可同时入窑,则可以选择酸性液体参与本次配伍或碱性液体参加本次配伍,比如,选择酸性液体参加本次配伍,获取每个危废的pH值,如果pH值小于或等于7,则对角线元素对应的位置取值为1,如果pH大于7,则对角线元素对应位置的取值为0,其他无pH属性的取值为1。
本申请实施例在所述智能配伍模型单元400在执行所述获取所述危废信息数据库中配伍规则和每个危废的属性信息之后,被进一步配置为如果某个危废被报警标记,则放弃该危废参与本次配伍。入库管理单元200已完成初步的配伍数据筛选,将不满足条件的危废进行标记和报警,因此在获取危废信息数据库中每个危废的属性信息之后,可以根据危废是否被标记和报警的信息,选择性地确定其是否参加本次配伍,如果某个危废被报警标记,则在本次配伍中删除该危废信息。
在一个优选实施例中,获取所述危废信息数据库中的元素限值规则、兼容性规则和每个危废的属性信息,该属性信息包括单位热值、库存量、钾元素含量占比、钠元素含量占比、硫元素含量占比、磷元素含量占比、氯元素含量占比、氟元素含量占比、溴元素含量占比、碘元素含量占比、锌元素含量占比、铅元素含量占比、铬元素含量占比、汞元素含量占比、镉元素含量占比、砷元素含量占比、铜元素含量占比、水分、闪点、灰熔点和危废类别。其中,两个危废被报警标记,其闪点不符合条件,筛选后有n个危废可以参与此次配伍。
在该优选实施例中,目标物料的组成即危废的配伍量表示为:
X=[x 1,x 2,......,x n];
式中,x i表示第i个危废的配伍量,i=1,2,…,n。
危废的单位热值表示为:
Q=[q 1,q 2,......,q n];
式中,q i表示第i个危废的单位热值。
危废的元素含量占比表示为:
Figure PCTCN2022079696-appb-000008
其中:
A 1表示K含量占比,A 1=[a 1,1,a 1,2,......,a 1,n],a 1,i表示第i个危废的K含量占比。
A 2表示Na含量占比,A 2=[a 2,1,a 2,2,......,a 2,n],a 2,i表示第i个危废的Na含量占比。
A 3表示S含量占比,A 3=[a 3,1,a 3,2,......,a 3,n],a 3,i表示第i个危废的S含量占比。
A 4表示P含量占比,A 4=[a 4,1,a 4,2,......,a 4,n],a 4,i表示第i个危废的P含量占比。
A 5表示Cl含量占比,A 5=[a 5,1,a 5,2,......,a 5,n],a 5,i表示第i个危废的Cl含量占比。
A 6表示F含量占比,A 6=[a 6,1,a 6,2,......,a 6,n],a 6,i表示第i个危废的F含量占比。
A 7表示Br含量占比,A 7=[a 7,1,a 7,2,......,a 7,n],a 7,i表示第i个危废的Br含量占比。
A 8表示I含量占比,A 8=[a 8,1,a 8,2,......,a 8,n],a 8,i表示第i个危废的I含量占比。
A 9表示Zn含量占比,A 9=[a 9,1,a 9,2,......,a 9,n],a 9,i表示第i个危废的Zn含量占比。
A 10表示Pb含量占比,A 10=[a 10,1,a 10,2,......,a 10,n],a 10,i表示第i个危废的Pb含量占比。
A 11表示Cr含量占比,A 11=[a 11,1,a 11,2,......,a 11,n],a 11,i表示第i个危废的Cr含量占比。
A 12表示Hg含量占比,A 12=[a 12,1,a 12,2,......,a 12,n],a 12,i表示第i个危废的Hg含量占比。
A 13表示Cd含量占比,A 13=[a 13,1,a 13,2,......,a 13,n],a 13,i表示第i个危废的Cd含量占比。
A 14表示As含量占比,A 14=[a 14,1,a 14,2,......,a 14,n],a 14,i表示第i个危废的As含量占比。
A 15表示Cu含量占比,A 15=[a 15,1,a 15,2,......,a 15,n],a 15,i表示第i个危废的Cu含量占比。
A 16表示水分含量,
Figure PCTCN2022079696-appb-000009
a 16,i表示第i个危废的含水量。
A 17表示灰熔点是否低于600℃,A 17=[a 17,1,a 17,2,......,a 17,n],a 17,i取值为0或1,表示第i个危废灰熔点是否低于设定值600℃,如低于600℃则取值为1,高于600℃则取值为0。
根据兼容性规则和n个危废的危废特性,生成兼容性矩阵表示为B。
根据允许焚烧重量和属性信息中每个危废的库存量,生成配伍量约束条件,配伍量约束条件可以表示为:
Figure PCTCN2022079696-appb-000010
Figure PCTCN2022079696-appb-000011
式中,
Figure PCTCN2022079696-appb-000012
为第i个危废的库存量,W threshol为允许焚烧重量。
根据建议热值和属性信息中每个危废的单位热值,生成热值约束条件,热值约束条件可以表示为:
Figure PCTCN2022079696-appb-000013
式中,Δq为在建议热值基础上允许浮动的范围。
根据元素限值规则和属性信息中每个危废的成分含量,生成元素限值约束条件,元素限值约束条件可以表示为:
Figure PCTCN2022079696-appb-000014
Figure PCTCN2022079696-appb-000015
Figure PCTCN2022079696-appb-000016
Figure PCTCN2022079696-appb-000017
Figure PCTCN2022079696-appb-000018
Figure PCTCN2022079696-appb-000019
Figure PCTCN2022079696-appb-000020
Figure PCTCN2022079696-appb-000021
Figure PCTCN2022079696-appb-000022
Figure PCTCN2022079696-appb-000023
Figure PCTCN2022079696-appb-000024
Figure PCTCN2022079696-appb-000025
其中,* threshold为表3元素限值规则表中各元素的阈值。
S3、以目标物料的热值最大为目标建立目标函数,以及,结合所述目标函数和所述约 束条件,构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。
在配伍问题中,需要满足的条件往往达到10种以上,例如,表3的元素限值就有13种,如果要求若干目标同时实现最优比较困难。由于很多固体危废的热值相对较低,废溶剂特别是废液水分含量较高时热值也较低,入窑后需要大量热量进行预热,增加辅助燃料的消耗,加大运营成本,因此,本申请实施例为简化求解过程,在配伍过程中优先保证入窑的热值在合理范围内尽量大,其他约束条件可以适当放松;例如危废的元素含量,虽然元素含量也可以越小越好,但是只要满足不超过限值,也可以进行焚烧;因此可以将配伍的多个目标同时满足的多目标决策转换为主目标法,具体地,以目标物料的热值最大为目标建立目标函数,即各个危废的单位热值和对应配伍量的乘积之和最大。
当采用兼容性规则和兼容性矩阵时,可以结合兼容性矩阵和每个危废的单位热值,建立目标函数,所述目标函数采用以下模型:
Figure PCTCN2022079696-appb-000026
根据上述的目标函数和约束条件,构建配伍模型,以各个危废的配伍量为优化变量,计算目标物料中各个危废的配伍量,可以利用基于数学的规划方法或基于遗传算法对配伍模型进行求解,本申请实施例不限定具体的求解方法。在求解过程中,预设求解的收敛条件,如果在收敛条件内完成求解,则输出优化的各个危废的配伍量,如果在收敛条件内未找到最优解,则根据当前指标情况,调整配伍方案,所述当前指标情况包括当前配伍量、配伍后的热值和每个元素的含量,所述调整配伍方案包括增加燃料以满足热值和更换兼容性矩阵。最终根据确定的配伍量得到当前配伍方案,配伍方案还可以包括选择的危废的来源、配伍后目标物料的热值和目标物料每个元素的含量。
本申请实施例提供的一种危险废物配伍系统还包括配伍报表单元500和出库管理单元600,所述智能配伍模型单元400将配伍方案发送至配伍报表单元500,所述配伍报表单元500用于根据配伍方案形成配伍报表,以及,将所述配伍报表提供给配伍人员。
所述出库管理单元600用于在完成当前配伍后,根据本次入炉的危废,修改危废信息数据库,如果危废A本次全部选择焚烧,则删除该危废A的信息,如果危废A本次部分焚烧,则修改该危废A的库存量。
为了更加清楚地说明本申请实施例提供的危险废物配伍系统的控制过程及所取得的有益效果,本申请实施例还提供了一种危险废物配伍方法,该方法由上述实施例提供的一种危险废物配伍系统执行,本申请实施例提供的一种危险废物配伍方法包括以下步骤:
S101、获取焚烧窑的允许焚烧重量和炉内温度,根据炉内温度确定本次配伍目标物料的建议热值;
S102、获取所述危废信息数据库中配伍规则和每个危废的属性信息,以及,根据属性信息、配伍规则、允许焚烧重量和建议热值,生成约束条件,其中,所述约束条件包括元素限值约束条件、热值约束条件和配伍量约束条件;
S103、以目标物料的热值最大为目标建立目标函数,以及,结合所述目标函数和所述约束条件,构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。
在一个实施例中,该危险废物配伍方法具体包括下述步骤:
S201、获取焚烧窑的允许焚烧重量,该允许焚烧重量为2t;传感器检测到当前窑内温度为788℃,初始建议热值Q 建议热值为3500Kcal/kg,根据表5设置本次建议热值为3675Kcal/kg,允许上下浮动30Kcal/kg。
S202、获取每个危废的属性信息,危废的属性信息具体如下表6所示。
表6配伍前危废数据库中危废的属性信息
来源 热值 M Cl S Na K Zn Pb Cr Hg 危废类别 入库时间 库存(t)
A公司 3158 20 0 2 1 0.5 2 0.1 0 0 卤代烃 2021.11.3 5
A公司 4857 10 1 1 0 0 0 0 0 0.2 \ 2021.10.23 2
B公司 3000 0 1 0 0 0 0.1 0 0 0.005 含汞 2021.11.5 4
根据危废属性信息,危废的单位热值和成分含量可以分别表示为:
Q=[3158,4857,3000];
A Cl=[0,1,1];
A S=[2,1,0];
A Na=[1,0,0];
A K=[0.5,0,0];
A Zn=[2,0,0.1];
A Pb=[0.1,0,0];
A Cr=[0,0,0];
A Hg=[0,0.2,0.005];
A M=[20,10,0];
S203、获取兼容性规则和危废类别[卤代烃,0,含汞],由于卤代烃和含汞物质不可同时入窑,根据入库时间,第一个危废(卤代烃)入库时间早于第三个危废(含汞物质),本申请实施例的危险废物配伍系统根据配伍规则,生成兼容性矩阵
Figure PCTCN2022079696-appb-000027
S204、设每个危废本次参与配伍的配伍量为X=[x 1,x 2,x 3],以目标物料的热值最大为目标建立目标函数,目标函数采用下述模型:
Figure PCTCN2022079696-appb-000028
S205、根据属性信息、配伍规则、允许焚烧重量和建议热值,生成约束条件表示为:
Figure PCTCN2022079696-appb-000029
Figure PCTCN2022079696-appb-000030
Figure PCTCN2022079696-appb-000031
Figure PCTCN2022079696-appb-000032
Figure PCTCN2022079696-appb-000033
Figure PCTCN2022079696-appb-000034
Figure PCTCN2022079696-appb-000035
Figure PCTCN2022079696-appb-000036
Figure PCTCN2022079696-appb-000037
S206、结合目标函数和约束条件,构建配伍模型并求解,由于第一个危废的含水量为20%,第二个危废的含水量为10%,因此无法满足元素限值规则,未求出最优解。
S207、系统提示含水量超过配伍要求,建议干预更换兼容性矩阵,调整配伍方案,兼容性矩阵更换为
Figure PCTCN2022079696-appb-000038
S208、更换兼容性矩阵后,重新计算得到配伍方案为
Figure PCTCN2022079696-appb-000039
目标物料的热值为3699.87Kcal/kg,目标物料的重量为1.99t,水分和各类危废元素均符合配伍规则要求。
S209、根据配伍方案,更新危废信息数据库中危废属性信息,如表7所示。
表7配伍后危废数据库中危废的属性信息
来源 热值 M Cl S Na K Zn Pb Cr Hg 危废类别 入库时间 库存(t)
A公司 3158 20 0 2 1 0.5 2 0.1 0 0 卤代烃 2021.11.3 5
A公司 4857 10 1 1 0 0 0 0 0 0.2 \ 2021.10.23 1.25
B公司 3000 0 1 0 0 0 0.1 0 0 0.005 含汞 2021.11.5 2.76
本申请实施例提供的危险废物配伍系统及方法,该系统包括危废信息单元100、入库管理单元200、配伍规则单元300和智能配伍模型单元400,该危废信息单元100用于获取每个危废的属性信息,将属性信息发送至所述入库管理单元200,该属性信息包括单位热值、库存量和成分含量,该入库管理单元200用于将接收的属性信息导入危废信息数据库,该配伍规则单元300用于构建配伍规则,并将该配伍规则存入危废信息数据库,该配伍规则包括目标物料的元素限值规则,该智能配伍模型单元400用于构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。本申请提供的危险废物配伍系统配伍流程完善,兼顾元素的约束和兼容性问题,以目标物料的热值最大为目标建立目标函数,并保证配伍方案为非劣解。
本申请的技术范围不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的保护范围内。

Claims (10)

  1. 一种危险废物配伍系统,其特征在于,包括:危废信息单元、入库管理单元、配伍规则单元和智能配伍模型单元;所述危废信息单元用于获取每个危废的属性信息,将属性信息发送至所述入库管理单元,所述属性信息包括单位热值、库存量和成分含量;所述入库管理单元用于将接收的属性信息导入危废信息数据库;所述配伍规则单元用于构建配伍规则,并将所述配伍规则存入危废信息数据库,所述配伍规则包括目标物料的元素限值规则;所述智能配伍模型单元被配置为:
    获取焚烧窑的允许焚烧重量和炉内温度,根据炉内温度确定本次配伍目标物料的建议热值;
    获取所述危废信息数据库中配伍规则和每个危废的属性信息,以及,根据属性信息、配伍规则、允许焚烧重量和建议热值,生成约束条件,其中,所述约束条件包括元素限值约束条件、热值约束条件和配伍量约束条件;
    以目标物料的热值最大为目标建立目标函数,以及,结合所述目标函数和所述约束条件,构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。
  2. 根据权利要求1所述的一种危险废物配伍系统,其特征在于,所述属性信息还包括危废类别和pH值中的至少一种,所述危废类别包括卤代烃废物、含硫废物、含氰化物废物、亚硝酸盐废液、氨水、含碘溴废物和含氯废液;所述配伍规则还包括危废兼容性规则;所述智能配伍模型单元被进一步配置为:
    根据危废兼容性规则和每个危废的属性信息,确定不兼容危废,以及,生成至少一个兼容性矩阵,所述兼容性矩阵用于判断各个危废是否被选择参加本次配伍。
  3. 根据权利要求2所述的一种危险废物配伍系统,其特征在于,所述根据危废兼容性规则和每个危废的属性信息,生成至少一个兼容性矩阵,包括:
    获取不兼容危废的入库时间,根据所述入库时间,确定兼容性矩阵对角线元素的取值。
  4. 根据权利要求2所述的一种危险废物配伍系统,其特征在于,所述智能配伍模型单元在执行所述以目标物料的热值最大为目标建立目标函数,被进一步配置为:
    结合兼容性矩阵和每个危废的单位热值,建立目标函数,所述目标函数采用以下模型:
    Figure PCTCN2022079696-appb-100001
    式中,f(x)为目标物料的总热值,Q为危废的单位热值,q i表示第i个危废的单位热值,X为危废的配伍量,x i表示第i个危废的配伍量,B为兼容性矩阵,其中,兼容性矩阵的对角线元素b i的取值代表第i个危废是否被选择参加本次配伍。
  5. 根据权利要求1所述的一种危险废物配伍系统,其特征在于,所述智能配伍模型单元在执行所述结合所述目标函数和所述约束条件,构建配伍模型,计算目标物 料中各个危废的配伍量,得到当前的配伍方案,被进一步配置为:
    利用基于数学的规划方法或基于遗传算法,以各个危废的配伍量为优化变量,对配伍模型进行求解;
    预设求解的收敛条件,如果在收敛条件内完成求解,则输出当前配伍方案;
    如果在收敛条件内未找到最优解,则根据当前指标情况,调整配伍方案,所述当前指标情况包括当前配伍的重量、配伍后的热值和每个元素的含量,所述调整配伍方案包括增加燃料以满足热值和更换兼容性矩阵。
  6. 根据权利要求1所述的一种危险废物配伍系统,其特征在于,还包括配伍报表单元和出库管理单元;
    所述智能配伍模型单元将配伍方案发送至配伍报表单元,所述配伍报表单元用于根据配伍方案形成配伍报表,以及,将所述配伍报表提供给配伍人员;
    所述出库管理单元用于在完成当前配伍后,根据本次入炉的危废,修改危废信息数据库。
  7. 根据权利要求1所述的一种危险废物配伍系统,其特征在于,所述入库管理单元包括特征参数报警模块,所述特征参数报警模块用于当某个危废的属性信息超过预设条件时,在所述危废信息数据库中对该危废进行报警标记;所述智能配伍模型单元在执行所述获取所述危废信息数据库中配伍规则和每个危废的属性信息之后,被进一步配置为:
    如果某个危废被报警标记,则放弃该危废参与本次配伍。
  8. 根据权利要求1所述的一种危险废物配伍系统,其特征在于,所述配伍量约束条件包括:
    每个危废的配伍量大于或等于零;
    每个危废的配伍量小于或等于该危废的库存量;
    所有危废的配伍量之和小于或等于焚烧窑的允许焚烧重量。
  9. 根据权利要求1所述的一种危险废物配伍系统,其特征在于,所述元素限值约束条件包括含钾率约束条件、含钠率约束条件、含硫率约束条件、含磷率约束条件、含氯率约束条件、含氟率约束条件、含溴率约束条件、含碘率约束条件、含锌率约束条件、含铅率约束条件、含铬率约束条件、含汞率约束条件、含镉率约束条件、含砷率约束条件、含铜率约束条件、含水分约束条件和含灰分约束条件中的至少一种。
  10. 一种危险废物配伍方法,其特征在于,所述方法由权利要求1-9中任一项所述的危险废物配伍系统执行,包括以下步骤:
    获取焚烧窑的允许焚烧重量和炉内温度,根据炉内温度确定本次配伍目标物料的建议热值;
    获取所述危废信息数据库中配伍规则和每个危废的属性信息,以及,根据属性信息、配伍规则、允许焚烧重量和建议热值,生成约束条件,其中,所述约束条件包括元素限值约束条件、热值约束条件和配伍量约束条件;
    以目标物料的热值最大为目标建立目标函数,以及,结合所述目标函数和所述约束条件,构建配伍模型,计算目标物料中各个危废的配伍量,得到当前的配伍方案。
PCT/CN2022/079696 2022-01-06 2022-03-08 一种危险废物配伍系统及方法 WO2023130563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210010281.3 2022-01-06
CN202210010281.3A CN115221773B (zh) 2022-01-06 2022-01-06 一种危险废物配伍系统及方法

Publications (1)

Publication Number Publication Date
WO2023130563A1 true WO2023130563A1 (zh) 2023-07-13

Family

ID=83606485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079696 WO2023130563A1 (zh) 2022-01-06 2022-03-08 一种危险废物配伍系统及方法

Country Status (2)

Country Link
CN (1) CN115221773B (zh)
WO (1) WO2023130563A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117877779A (zh) * 2024-02-02 2024-04-12 北京群源电力科技有限公司 一种放射性废物的智能化处理系统及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439645A1 (en) * 1990-01-30 1991-08-07 Officine Metalmeccaniche Nova S.P.A. Method for the controlled feeding of thermal destruction plants for urban and/or special refuse, and the plant for implementing the method
DE102007025396A1 (de) * 2007-05-31 2008-12-04 Piotr Rodecki Verfahren zur Nutzbarmachung von Rückständen bestehend aus Bitumen-Abfällen verschiedener Art sowie Altholz
CN107705235A (zh) * 2017-09-08 2018-02-16 上海电气集团股份有限公司 一种危险废物配伍系统
CN109708114A (zh) * 2018-12-24 2019-05-03 四川大学 一种危废焚烧配伍方法
CN110175350A (zh) * 2019-04-11 2019-08-27 光大环保技术研究院(南京)有限公司 一种危险废弃物焚烧处置的配伍方法
CN110688741A (zh) * 2019-09-11 2020-01-14 南京释加软件科技有限公司 危险废物焚烧处置智能配伍算法
CN112330258A (zh) * 2020-12-01 2021-02-05 神彩科技股份有限公司 焚烧配伍方法、装置、终端设备和存储介质
CN112361348A (zh) * 2020-11-19 2021-02-12 上海电气集团股份有限公司 危险废物水泥窑焚烧处置的排产方法、系统、设备及介质
CN112503546A (zh) * 2020-11-30 2021-03-16 新中天环保股份有限公司 危废智能化配伍系统
CN213334398U (zh) * 2020-07-22 2021-06-01 中冶长天国际工程有限责任公司 一种危险废物热解焚烧系统
CN113052341A (zh) * 2021-04-16 2021-06-29 中国恩菲工程技术有限公司 危废焚烧配伍方法、装置、存储介质及电子设备
CN113077104A (zh) * 2021-04-16 2021-07-06 中国恩菲工程技术有限公司 危废焚烧配伍方法、装置、存储介质及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049676A (ja) * 2000-08-01 2002-02-15 Hitachi Building Systems Co Ltd 設備機器の緊急部品在庫管理装置
CN112365213A (zh) * 2020-11-30 2021-02-12 新中天环保股份有限公司 危废智能化配伍方法
CN113191669A (zh) * 2021-05-18 2021-07-30 中冶长天国际工程有限责任公司 一种固废协同处置中固废端选取方法及系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439645A1 (en) * 1990-01-30 1991-08-07 Officine Metalmeccaniche Nova S.P.A. Method for the controlled feeding of thermal destruction plants for urban and/or special refuse, and the plant for implementing the method
DE102007025396A1 (de) * 2007-05-31 2008-12-04 Piotr Rodecki Verfahren zur Nutzbarmachung von Rückständen bestehend aus Bitumen-Abfällen verschiedener Art sowie Altholz
CN107705235A (zh) * 2017-09-08 2018-02-16 上海电气集团股份有限公司 一种危险废物配伍系统
CN109708114A (zh) * 2018-12-24 2019-05-03 四川大学 一种危废焚烧配伍方法
CN110175350A (zh) * 2019-04-11 2019-08-27 光大环保技术研究院(南京)有限公司 一种危险废弃物焚烧处置的配伍方法
CN110688741A (zh) * 2019-09-11 2020-01-14 南京释加软件科技有限公司 危险废物焚烧处置智能配伍算法
CN213334398U (zh) * 2020-07-22 2021-06-01 中冶长天国际工程有限责任公司 一种危险废物热解焚烧系统
CN112361348A (zh) * 2020-11-19 2021-02-12 上海电气集团股份有限公司 危险废物水泥窑焚烧处置的排产方法、系统、设备及介质
CN112503546A (zh) * 2020-11-30 2021-03-16 新中天环保股份有限公司 危废智能化配伍系统
CN112330258A (zh) * 2020-12-01 2021-02-05 神彩科技股份有限公司 焚烧配伍方法、装置、终端设备和存储介质
CN113052341A (zh) * 2021-04-16 2021-06-29 中国恩菲工程技术有限公司 危废焚烧配伍方法、装置、存储介质及电子设备
CN113077104A (zh) * 2021-04-16 2021-07-06 中国恩菲工程技术有限公司 危废焚烧配伍方法、装置、存储介质及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117877779A (zh) * 2024-02-02 2024-04-12 北京群源电力科技有限公司 一种放射性废物的智能化处理系统及方法

Also Published As

Publication number Publication date
CN115221773A (zh) 2022-10-21
CN115221773B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN110175350A (zh) 一种危险废弃物焚烧处置的配伍方法
CN110688741A (zh) 危险废物焚烧处置智能配伍算法
CN107705235A (zh) 一种危险废物配伍系统
CN112330258B (zh) 焚烧配伍方法、装置、终端设备和存储介质
CN112365213A (zh) 危废智能化配伍方法
WO2023130563A1 (zh) 一种危险废物配伍系统及方法
CN109708114A (zh) 一种危废焚烧配伍方法
CN113052341A (zh) 危废焚烧配伍方法、装置、存储介质及电子设备
CN111457392B (zh) 城市生活垃圾焚烧过程风量智能设定方法
CN112503546A (zh) 危废智能化配伍系统
CN110246547B (zh) 一种烧结过程配矿优化方法
Ren et al. A novel MADM algorithm for landfill site selection based on q-rung orthopair probabilistic hesitant fuzzy power Muirhead mean operator
CN113077104A (zh) 危废焚烧配伍方法、装置、存储介质及电子设备
CN101109511A (zh) 固体废物焚烧菜单配比系统
WO2023130564A1 (zh) 危废焚烧配伍优化方法、装置、终端设备及存储介质
CN115221671B (zh) 一种垃圾物料配伍优化方法
Xu et al. Leader-follower optimized approach for carbon-economy equilibrium in the municipal solid waste (MSW) incineration industry
CN113551231B (zh) 垃圾焚烧炉控制方法、系统、电子设备及存储介质
Akpe et al. The design of a portable municipal waste incinerator with fuzzy logic based support for emission estimation
Tejaswini et al. Design and evaluation of advanced automatic control strategies in a total nitrogen removal activated sludge plant
Adar Yazar et al. Comprehensive Evaluation of Hazardous Solid Waste Treatment and Disposal Technologies by a New Integrated AHP&MARCOS Approach
CN114638412A (zh) 一种危废处置能力预警方法、装置、电子设备及存储介质
CN112598254A (zh) 一种水泥窑前危废物料配伍方法
CN116511227B (zh) 基于物联网溯源管理的危废螯合再生利用平台、装置及存储介质
CN115408933A (zh) 一种配料优化方法、系统、烧结系统、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918029

Country of ref document: EP

Kind code of ref document: A1