WO2023130525A1 - 水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法 - Google Patents

水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法 Download PDF

Info

Publication number
WO2023130525A1
WO2023130525A1 PCT/CN2022/075696 CN2022075696W WO2023130525A1 WO 2023130525 A1 WO2023130525 A1 WO 2023130525A1 CN 2022075696 W CN2022075696 W CN 2022075696W WO 2023130525 A1 WO2023130525 A1 WO 2023130525A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
water
voltage
plasma
hydrated
Prior art date
Application number
PCT/CN2022/075696
Other languages
English (en)
French (fr)
Inventor
何杨
陈晓晖
Original Assignee
成都万物之成科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都万物之成科技有限公司 filed Critical 成都万物之成科技有限公司
Publication of WO2023130525A1 publication Critical patent/WO2023130525A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to the technical field of air disinfecting, in particular to a hydration plasma generator, an air disinfecting device, an air disinfecting control system and a control method.
  • the existing air purification or disinfection technologies mainly include:
  • HEPA is the abbreviation of High Efficiency Particulate Air Filter (High Efficiency Air Microfiltration Filter Element), which is an internationally recognized best high-efficiency filter material. It is now widely used in precision laboratories, pharmaceutical production, yard research and surgical operations that require high cleanliness. places of degree. HEPA is interwoven with very fine organic fibers. It has strong ability to capture particles, small pore size, large adsorption capacity, high purification efficiency, good physical stability, wide application, good environmental adaptability, simple modules and easy processing. , Easy to install and so on. However, as the filter element is used for a long time, a large number of live viruses and bacteria are attached to the channel of the filter element.
  • Disinfecting drugs or aerosols are sprayed into the air by spraying. This method requires regular spraying, but people in the spraying cannot be in the air environment being sprayed, and safe coexistence of man and machine cannot be achieved.
  • Ozone is obtained by simulating the method of producing ozone in nature. Using the strong oxidation characteristics of ozone, it can remove the toxic substances released by decoration, synthetic boards and paints, kill bacteria and viruses in the air, and kill microorganisms that grow in carpets. Eliminate cold germs and prevent the occurrence of influenza.
  • ozone also has adverse effects on the human body. It can irritate the mucous membranes of the eyes, nose, and throat, and affect the respiratory system such as the bronchi and lungs.
  • the ozone concentration is not easy to control, and it is impossible to achieve safe coexistence between man and machine.
  • Ultraviolet rays of appropriate wavelengths can destroy the molecular structure of DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) in the cells of microorganisms, causing growth cell death and regenerative cell death, and achieving the effect of sterilization.
  • excessive ultraviolet rays can cause damage to the skin, eyes, and immune system of the human body. Since the amount of ultraviolet radiation, especially the radiation amount of each radiation point, is not easy to be accurately controlled, it is impossible to achieve safe coexistence between humans and machines.
  • a certain concentration of air negative ions is used to purify and disinfect the air, because the negative ions are easily adsorbed with tiny pollution particles in the air (these particles are usually positively charged), become charged large particles, and settle on the ground and other surfaces, thereby making the air get cleansed.
  • Negative ions are usually obtained through high-pressure air ionization technology, but because the air ionization voltage is high, reaching above 10KV, it is easy to produce nitrogen compounds, ozone and other harmful by-products under high voltage, which cannot achieve safe coexistence between man and machine. Negative ions are easy to generate static electricity accumulation in the use environment, which will cause great interference or failure to the operation of equipment in the environment.
  • Plasma also known as plasma, is an ionized gas-like substance composed of positive and negative ions produced by ionized atoms and atomic groups after part of the electrons are deprived. It is a macroscopic electrically neutral ionized gas.
  • the positive and negative ions or ion clusters inside the plasma can keep for a period of time (several seconds to several minutes) without recombination, the positive and negative ions or ion clusters in the plasma will release binding energy when they recombine.
  • the present invention aims at at least solving the technical problems existing in the prior art, realizes the air disinfecting that can coexist with man and machine, actively kills, consumes less energy, and has no or less harmful by-products, especially innovatively proposes a hydrated plasma Generator, air disinfecting device, air disinfecting control system and control method.
  • the present invention provides a hydrated plasma generator, comprising an electrode with water attached to the surface, a high-voltage power supply for powering the electrode, and a hydrated plasma delivery mechanism ; Under the action of high-voltage pulses, the surface of water attached to the electrode forms hydrated plasma, and the hydrated plasma delivery mechanism drives the hydrated plasma away from the electrode and transports the hydrated plasma in one or more designated directions. Hydrated plasma; the voltage amplitude of the high-voltage electrical signal output by the high-voltage power supply is greater than or equal to 1KV.
  • the water attached to the electrode surface divides the electrode-air interface into electrode-water interface and water-air interface, and the electrode ionizes the water in the electrode-water interface under the action of high voltage to generate positive and negative ion bubbles, positive and negative ions Bubbles move to the surface of the electrode attached to water and bring out water molecules to form a large number of positive and negative hydrated ion clusters; positive and negative hydrated ion clusters form a tip discharge effect, which produces positive and negative ions for air ionization at the water-air interface, and a large number
  • the positive and negative hydrated ion groups of the positive and negative ions, and the newly generated positive and negative ions together constitute the hydrated plasma attached to the water surface.
  • the hydrated plasma is stripped from the electrode by the plasma transport mechanism and transported in a directional manner to realize the output of isohydrated ions.
  • the voltage amplitude of the high-voltage electrical signal output by the high-voltage power supply is set to be greater than or equal to 1KV, and some value ranges are smaller than the existing air ionization voltage of 7KV to 10KV, which realizes the generation of hydrated plasma by ionization at a lower voltage, which saves energy and reduces voltage. Will reduce the production of harmful by-products.
  • the ionization potential interface is changed by the electrode with water attached to the surface.
  • the ionization voltage is greatly reduced, the cost is reduced, and energy saving is achieved.
  • the reduction of the ionization voltage also makes no or less generation such as ozone, Harmful by-products such as nitrides; the positive and negative ions produced by ionization in water are brought out through the diffusion of bubbles, and then plasma is formed on the surface of the electrode attached to the water; the output hydrated plasma is carried by nanoscale small molecule water clusters, which can reduce
  • the static electricity in the use environment accumulates and prolongs the recombination time of positive and negative ions or ion groups in the plasma.
  • small molecule water groups can also inhibit the generation of harmful by-products such as ozone and nitride.
  • the hydrated plasma generator can produce no or very few harmful by-products, can reduce the high-voltage demand for high-voltage power supply, and then realize environmental protection, safe coexistence of man and machine, cost reduction, and energy saving.
  • the present invention provides an air killing device, including a housing, in which a hydration plasma generator as provided in the first aspect of the present invention is arranged , an air inlet and a plasma outlet are arranged on the housing; the plasma conveying mechanism conveys the hydrated plasma with the electrode attached to the water surface towards the plasma outlet.
  • the device outputs hydrated plasma into the air, utilizes the high-energy binding energy generated when the positive and negative ions and ion clusters in the hydrated plasma recombine, and destroys the protein structure of viruses and bacteria through this binding energy, thereby achieving sterilization, antivirus, The effect of purifying the air.
  • the hydrated plasma uses nanoscale small molecular water clusters as carriers, which can reduce static electricity accumulation, inhibit the generation of harmful substances such as ozone and nitride, and prolong the recombination time of positive and negative ions or ion clusters in the plasma, which is convenient for broadening the disinfecting range.
  • the device can safely coexist with man and machine, consume less energy, and have no or less harmful by-products.
  • the present invention provides an air killing control system, including at least one air killing device as provided in the second aspect of the present invention, a data platform and the acquisition of all The environment collection module of the environment information of the target killing area of the air killing device; the data platform receives the environmental information output by the environment collecting module and transmits it to the control module, and the control module controls the hydration plasma output by the air killing device based on the environmental information All or part of the concentration, flow rate, and water content of the body; the environmental collection module includes a temperature collection unit, a humidity collection unit, an ozone concentration collection unit, a carbon dioxide concentration collection unit, a nitride concentration collection unit, and an air particle detection unit , at least one of the VOC concentration collection units.
  • the above technical solution realizes the generation of hydrated plasma with different concentrations, flow rates and water contents according to the air environment of the target disinfecting area, and realizes dynamic control so that it can be used in different environments and climates.
  • the control system can realize the safe coexistence of man and machine, consume less energy, and have no or less harmful by-products.
  • the present invention provides an air disinfecting control method for the air disinfecting control system described in the third aspect of the present invention, including:
  • the environmental information includes all or part of air humidity, air temperature, carbon dioxide concentration, ozone concentration, nitrogen compound concentration, particulate matter concentration, and VOC concentration; based on the current
  • the obtained environmental information obtains corresponding control information
  • the control information includes a set of instructions for adjusting the power signal output by the high-voltage power supply, the wind speed of the fan, and the water replenishment amount of the water replenishment mechanism; based on the control information, the operation of the high-voltage power supply, the fan, and the water replenishment mechanism is controlled .
  • control method adjusts and adjusts the power signal output by the high-voltage power supply, the wind speed of the fan, and the water replenishment amount of the water supply mechanism according to the real-time environmental information of the target killing area, and the joint control of multi-dimensional variables is expected to achieve dynamic balance, and can be used in different environments and climates. Use to improve environmental applicability.
  • the control method can realize the safe coexistence of man and machine, consume less energy, and have no or less harmful by-products.
  • Fig. 1 is a schematic structural view of a hydration plasma generator in a specific embodiment of the present invention
  • Fig. 2 is a schematic structural view of an electrode in a specific embodiment of the present invention.
  • Fig. 3 is a schematic structural view of an electrode in another specific embodiment of the present invention.
  • Fig. 4 is a functional block diagram of an air disinfecting control system in a specific embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it can be mechanical connection or electrical connection, or two
  • connection should be understood in a broad sense, for example, it can be mechanical connection or electrical connection, or two
  • connection should be understood in a broad sense, for example, it can be mechanical connection or electrical connection, or two
  • the internal communication of each element may be directly connected or indirectly connected through an intermediary.
  • intermediary Those skilled in the art can understand the specific meanings of the above terms according to specific situations.
  • the invention discloses a hydrated plasma generator.
  • the hydrated plasma generator includes an electrode 1 with water 2 attached to its surface, a high-voltage power supply for the electrode 1, and a hydrated plasma body transport mechanism; under the action of high voltage, the surface of water 2 attached to electrode 1 forms hydrated plasma, and the hydrated plasma transport mechanism drives the hydrated plasma to leave electrode 1 and transports the hydrated plasma in one or more designated directions .
  • the electrode 1 is preferably, but not limited to, a metal electrode or an alloy electrode or a graphite electrode.
  • the shape of the electrode 1 can be cylindrical, needle-point, etc.
  • the electrode 1 is an electrode with a porous structure, which is convenient for storing the water 2 and expanding the attachment area of the water 2 .
  • the water 2 adhering to the electrode 1 can be poured on the surface of the electrode 1 in advance, and can also be replenished intermittently or continuously during use.
  • the water 2 is preferably but not limited to water with free ions such as mineral water and tap water; the voltage amplitude of the high-voltage electrical signal output by the high-voltage power supply is greater than or equal to 1KV.
  • the high-voltage power supply refers to a power supply whose output power signal has a voltage amplitude above 1KV, and the output power signal of the high-voltage power supply is a DC or AC signal.
  • the hydrated plasma generator provided by the present invention effectively reduces the requirement on the output voltage of the high-voltage power supply. For example, when the voltage amplitude of the high-voltage power supply is 2KV to 6KV, the hydrated plasma output can be efficiently generated, while the existing air The ionization voltage is generally 7KV to 10KV.
  • the high-voltage power supply is a high-voltage pulse power supply.
  • the pulse frequency of the high-voltage pulse power supply is 10KHz to 60KHz.
  • the pulse signal voltage amplitude output by the high-voltage pulse power supply reaches more than 1KV pulse power supply.
  • the high-voltage pulse power supply is preferably but not limited to the KSWY-100020D model product of Chongqing Wenrui Technology Co., Ltd.
  • the output frequency range is 0-50KHz, and the output voltage range is 0-10KV.
  • a water baffle 5 is provided below the electrode 1 to prevent water dripping from the electrode 1 from flowing down.
  • the water baffle 5 is preferably but not limited to an insulating plate to improve Safety, avoid short circuit.
  • the hydrated plasma transport mechanism is preferably but not limited to a wind force transport mechanism, which can realize non-contact transport and improve safety.
  • the hydrated plasma transport mechanism is a fan 6.
  • the fan 6 blows air to the electrode 1 in one or more designated directions, and transports the hydrated plasma by wind force.
  • the blower 6 can be set to shake the head within a certain range to blow air, so that the hydrated plasma can be delivered in multiple directions.
  • the fan 6 is preferably but not limited to a down-inlet turbo fan.
  • the hydrated plasma delivery mechanism also includes a turntable 7 on which the electrode 1 is installed, the electrode 1 rotates under the drive of the turntable 7, and the blower 6 blows air toward the electrode 1 in a specified direction.
  • the rotating table 7 drives the electrode 1 to rotate, so that the blower 6 blows through all sides of the electrode 1 in sequence, so that all the hydrated plasma on the electrode 1 is blown away.
  • the central axis of the electrode 1 is not aligned with the air outlet of the blower 6 , that is, the blowing is eccentric, so as to transport the hydrated plasma in a directional manner.
  • the turntable 7 may be an electronically controlled turntable, so as to avoid human contact and improve safety.
  • the portion of the turntable 7 that is in contact with the electrode 1 is preferably made of insulating material, and a wire groove is opened in the turntable 7 to facilitate the passage of the connecting wires connecting the electrode 1 and the high-voltage power supply.
  • the electrode 1 includes one or more For the distributed sub-electrodes 11 , the fan 6 blows air toward the width direction of the sub-electrodes 11 , and the width of the sub-electrodes 11 is smaller than the length of the sub-electrodes 11 .
  • the cross-section of the sub-electrode 11 is preferably but not limited to an ellipse as shown in FIG. 3 , or a strip shape or a rectangle.
  • the multiple sub-electrodes 11 are respectively electrically connected to the output terminals of the high-voltage power supply.
  • the sub-electrodes 11 distributed in parallel may be distributed in columns as shown in FIG. 3 , that is, in the longitudinal direction, or in rows (not shown), that is, in the horizontal direction.
  • it also includes a water replenishing mechanism for replenishing the water on the surface of the electrode 1 .
  • the water supply mechanism may be a water sprayer, which sprays water mist to the outer surface of the electrode 1 when water supply is required.
  • the water supply mechanism can also be a water dripper, as shown in Figure 1, the dripper includes a water regulating valve 4, the inlet end of the water regulating valve 4 is connected to the water supply source through a pipeline, and the outlet of the water regulating valve 4 The end is located above the electrode 1, and the water droplets dripping from the outlet end of the water adjustment valve 4 just fall on the electrode 1.
  • the outlet end of the water adjustment valve 4 drips water to the electrode 1, and different The valve opening corresponds to different drip speeds, that is, to different replenishment volumes.
  • the water regulating valve 4 is preferably but not limited to an electromagnetic proportional valve, and the opening of the valve can be controlled by an electric signal.
  • the water supply mechanism can also be a humidifier, which is installed close to the electrode 1, and the humidity of the environment where the electrode 1 is located is increased as much as possible through the humidifier, so that there are a large number of liquefied water droplets on the electrode 1. Hydration, especially suitable for hydration in confined spaces.
  • the present invention also discloses an air killing device.
  • the device includes a casing, the above-mentioned hydration plasma generator provided by the present invention is arranged inside the casing, and an air inlet and Plasma outlet; the plasma delivery mechanism transports the hydrated plasma attached to the surface of the water 2 on the electrode 1 towards the plasma outlet.
  • the casing is preferably but not limited to a casing made of insulating material or a fireproof ABS metal casing to improve safety.
  • the shell is a metal shell
  • the metal shell needs to be reliably shielded and grounded. Since the hydrated plasma generator will ionize the air at the water-air interface, and blow out the hydrated plasma by wind, air circulation is required, so an air inlet is provided.
  • a water tank can be set in the housing.
  • the height of the water tank is higher than the electrode 1, so that the water in the water tank can drop under the action of gravity, and there is no need for other power mechanisms to transport the water.
  • the outlet of the water tank is connected with the water inlet end of the water supply mechanism through a pipeline.
  • a water inlet is also provided on the housing, and the water inlet is connected to the water inlet end of the water supply mechanism through a pipeline, and the external water source is directly used to simplify the structure and cost.
  • the water inlet can be directly Connect with tap water hose.
  • the filter module filters the air flowing into the air inlet to prevent the hydrated plasma output from the hydrated plasma generator from being clean and causing secondary pollution.
  • the filter module is a micro-electrostatic high-voltage purification module.
  • the micro-electrostatic dust collection area utilizes the high-voltage electrostatic effect to collect air particles, aerosols, and attached planktonic bacteria and viruses when the indoor air flows through.
  • the cleaning liquid can be discharged freely during the dust collection module, and the inactivated dust will not cause secondary pollution to the environment and human body.
  • the micro-static high-voltage purification module is preferably but not limited to the micro-static high-voltage purification module of Dongguan Good Technology Co., Ltd.
  • the water regulating valve 4 is connected; the water regulating valve 4 is used to adjust the water replenishment amount of the water replenishment mechanism attached to the electrode 1 2 .
  • control module is preferably but not limited to a microprocessor such as 51 single-chip microcomputers and ARM.
  • the human-computer interaction module is preferably but not limited to buttons, and these buttons are respectively connected to the control module, through which adjustment functions such as plasma flow rate, plasma concentration, and power signal output by the high-voltage power supply are realized.
  • the communication module is preferably, but not limited to, a wired or wireless communication module, which is used for connecting and communicating with an external network or a host computer, such as connecting and communicating with a data platform.
  • the high-voltage power supply can be selected from existing products, such as the high-voltage pulse power supply of Dalian Tesman's model TP3012; the fan 6 is preferably but not limited to a centrifugal fan, a spiral fan, a bottom-inlet turbine fan, etc.
  • the water regulating valve 4 is preferably, but not limited to, an electromagnetic proportional valve.
  • the control module can be respectively connected and communicated with the high-voltage power supply, the fan 6 and the water regulating valve 4 through the serial port.
  • the operating parameter acquisition module includes a flow acquisition unit 3 that detects the water replenishment flow rate of the attached water 2 on the electrode 1 of the water replenishment mechanism, and a plasma that is positioned at the plasma outlet. At least one of the flow rate acquisition unit, the plasma concentration acquisition unit located at the plasma outlet, the current acquisition unit for detecting the output current of the high voltage power supply, the power acquisition unit for detecting the output power of the high voltage power supply, and the voltage acquisition unit for detecting the output voltage of the high voltage power supply.
  • the flow acquisition unit 3 is arranged on the connecting pipe between the water regulating valve 4 and the external or internal water source, and is used to detect the amount of water output from the water regulating valve 4 to the electrode 1 .
  • the ion concentration acquisition unit is preferably but not limited to a positive ion concentration sensor or a negative ion concentration sensor, such as the American AIC Helicy Air Positive and Negative Ion Test Equipment.
  • the current acquisition unit includes a sampling resistor connected in series between the electrode 1 and the output terminal of the high-voltage power supply, a differential amplifier circuit connected across the two ends of the sampling resistor, and a current acquisition module, the output voltage of the differential amplifier circuit and the high-voltage power supply There is a proportional constant between the output currents, and the current acquisition module is used to collect the output voltage of the differential amplifier circuit and convert according to the proportional constant to obtain the current of the high-voltage pulse.
  • the voltage acquisition unit may acquire the average voltage or real-time voltage or peak voltage or amplitude voltage of the high-voltage pulse.
  • the voltage acquisition unit includes a voltage sensor that detects the real-time voltage of the high-voltage pulse and a peak voltage acquisition module.
  • the peak voltage acquisition module is used to acquire the output voltage of the voltage sensor, and finds the positive or negative voltage with the largest absolute value as the peak voltage.
  • the power acquisition module includes a power acquisition module, which is used to acquire the real-time current obtained by the current acquisition module and the real-time voltage output by the voltage sensor, and is used to calculate the product of the real-time current and the real-time voltage to obtain real-time power.
  • the current acquisition unit, the power acquisition unit, and the voltage acquisition unit can also be selected from existing products.
  • the current acquisition unit is preferably, but not limited to, the model BA05-AIDE AC current sensor from Ankerui Electric Co., Ltd., and the voltage acquisition unit is preferably, but not limited to, an existing voltage transmitter.
  • the present invention also discloses an air killing control system.
  • the system includes at least one air killing device, a data platform, and the target killing area of the air killing device.
  • Environmental collection module for environmental information; the data platform receives the environmental information output by the environmental collection module and transmits it to the control module, and the control module controls all of the concentration, flow rate, and water content of the hydrated plasma output by the air killing device based on the environmental information Or a part; the environmental collection module includes at least one of a temperature collection unit, a humidity collection unit, an ozone concentration collection unit, a carbon dioxide concentration collection unit, a nitride concentration collection unit, an air particle detection unit, and a VOC concentration collection unit.
  • the target disinfecting area may be an entire indoor area, a partial indoor area, or a partial outdoor area.
  • the control module will control the hydrated plasma generator to output hydrated plasma with different concentrations, flow rates and water contents according to specific environmental information.
  • the temperature collection unit, humidity collection unit, ozone concentration collection unit, carbon dioxide concentration collection unit, nitride concentration collection unit, air particle detection unit, and VOC concentration collection unit are respectively connected to the data platform.
  • Nitride concentration collection unit, temperature collection unit, humidity collection unit, air particle detection unit, carbon dioxide concentration collection unit, and VOC concentration collection unit can be arranged indoors collectively or scattered indoors.
  • the data platform, the air disinfecting device, and the environment collection module are connected through a communication network.
  • the communication network may be the Internet of Things.
  • a corresponding Internet of Things communication node is set at each acquisition unit or detection unit of the environment acquisition module, and a corresponding Internet of Things communication node is also respectively set at the data platform and the control module,
  • Each unit, data platform, and control module in the environment collection module respectively establish an Internet of Things network through their corresponding Internet of Things communication nodes, and transmit information through the Internet of Things network.
  • the air particle detection unit is preferably but not limited to choose the laser dust sensor PM2107 of Sifang Optoelectronics Co., Ltd. for PM2.5 concentration detection, which can be connected to the corresponding IoT communication node through a serial port.
  • VOC is the English abbreviation of volatile organic compounds (volatile organic compounds). VOC in the general sense refers to volatile organic compounds.
  • the temperature sensor of the VOC concentration acquisition unit is preferably but not limited to the VOC sensor MS-VOC of Sifang Optoelectronics Company, which can be passed The serial port is connected with the corresponding IoT communication node.
  • the carbon dioxide concentration acquisition unit is preferably but not limited to PM3003SN laser particle counting sensor from Sifang Optoelectronics Co., Ltd., which can be connected to the corresponding communication node of the Internet of Things through a serial port.
  • the nitride concentration acquisition unit is preferably but not limited to a nitrogen oxide NOX sensor from Shenzhen Dongri Yingneng Technology Co., Ltd., which can output through a serial port and be connected to the corresponding communication node of the Internet of Things through the serial port.
  • the temperature acquisition unit and the humidity acquisition unit can be selected from existing products, or can be connected to the corresponding IoT communication node through a serial port, so I won’t repeat them here.
  • a display screen and an input device are also included, and the display screen and the input device are respectively connected to the data platform.
  • the display screen is preferably but not limited to an LED display screen
  • the input device is preferably but not limited to a keyboard.
  • the display screen and the input device are integrated, it can be a touch screen.
  • the present invention also discloses an air disinfecting control method, which is used in the above-mentioned air disinfecting control system.
  • the control method includes:
  • Real-time collection of environmental information in the target killing area of the air killing device including air humidity, air temperature, carbon dioxide concentration, ozone concentration, nitrogen compound concentration, particulate matter concentration, and VOC concentration; all or part of it; based on the currently acquired environment
  • the information obtains corresponding control information
  • the control information includes a set of instructions for adjusting all or part of the power signal output by the high-voltage power supply, the wind speed of the fan 6, and the water replenishment amount of the water replenishment mechanism.
  • adjusting the power signal output by the high-voltage power supply mainly includes adjusting the output voltage, current, and power of the high-voltage DC power supply.
  • adjusting the power signal output by the high-voltage power supply includes adjusting all or part of the frequency, peak voltage, and power of the high-voltage pulse. Increase the frequency of high-voltage pulses under the premise of high-voltage pulse power.
  • the control information of the high-voltage power supply corresponds to the adjustment of the frequency, peak voltage, and power of the high-voltage pulse (or the adjustment of the output voltage, current, and power of the high-voltage DC power supply)
  • the control information of the fan 6 corresponds to the adjustment of the wind speed of the fan 6, and the control information of the water supply mechanism Corresponding to the adjustment of the amount of water replenished to the electrode 1 by the water replenishment mechanism.
  • the following solutions may be adopted for obtaining corresponding control information based on the currently obtained environmental information, including:
  • Step S1 establish targets for by-products (including ozone concentration, nitride concentration, and static electricity accumulation), conduct multiple tests, and set different initial environmental information for each test, and each test process is continuously adjusted under the initial environment of the test
  • the frequency, peak voltage, power of high-voltage pulse, wind speed of fan 6, and water replenishment amount of the water supply mechanism are used to achieve the by-product target.
  • the by-product target is reached, record the frequency, peak voltage, power, wind speed of fan 6, and
  • the numerical value of the replenishment amount of the water replenishment mechanism is used as a set of optimal control information matching the initial environmental information, and of course, each initial environmental information can match at least one optimal control information.
  • Step S2 establish the corresponding relationship between the initial environment information and the optimal control information, and obtain the matching optimal control information based on the currently acquired environmental information according to the corresponding relationship, and when each initial environment information matches multiple optimal control information, it can be Calculate the correlation coefficient between the current control information and each matching optimal control information, and select the matching optimal control information with the largest correlation coefficient as the final optimal control information, so as to speed up the goal of air killing toxic by-products ( no or less toxic by-products).
  • step S2 the method of establishing the corresponding relationship between the initial environment information and the optimal control information is preferably but not limited to a table look-up method or a machine learning method.
  • the look-up table method is: obtain a large amount of initial environmental information and the optimal control information matched with it, and establish a relationship correspondence table between the two according to the matching relationship between the two. After obtaining the current environmental information, compare the relationship correspondence table with the current environment The optimal control information corresponding to the initial environment information with the highest information correlation (which may be a correlation coefficient or similarity) is used as the control information corresponding to the current environment information.
  • the machine learning method is as follows: construct a learning model, take the initial environment information as the input of the learning model, and take the optimal control information matched by the initial environment (when matching multiple optimal control information, one of them can be selected as the output of the learning model) as The output of the learning model, continuously train and optimize the learning model until the error rate of the learning model reaches the preset error threshold, then use the trained learning model as the final model, and input the current environment information into the final model to obtain the corresponding control information of the current environment information.
  • the learning model is preferably but not limited to a neural network model.
  • the corresponding control information is obtained based on the environmental information, It also includes: obtaining the operating parameters of the internal operation of the air disinfection device.
  • the operating parameters include the water replenishment amount of the water supply mechanism, the plasma flow rate at the plasma outlet, the plasma concentration at the plasma outlet, the output current of the high-voltage power supply, the output power of the high-voltage power supply, and the high-voltage power supply. at least one of the output voltages; obtain corresponding control information in combination with environmental information and operating parameters.
  • the high-voltage power supply is a high-voltage pulse power supply
  • the operating parameters include at least one.
  • a parameter boundary that is not allowed to be exceeded is set for each operating parameter, and the adjustment range of each operating parameter is constrained according to the respective parameter boundary.
  • control information is acquired in combination with environmental information and operating parameters, including:
  • Step A if the air temperature and/or air humidity decrease, then reduce the output power of the high-voltage power supply and/or reduce the wind speed of the fan and/or increase the water supply of the water supply mechanism; preferably but not limited to adjust the output voltage or current of the high-voltage power supply Or frequency to adjust the output power of the high voltage power supply.
  • the air temperature decreases and/or the air humidity decreases the air becomes drier and harmful by-products are more likely to be produced in a dry environment. Therefore, reducing the output power of the high-voltage power supply can reduce the harmful by-products.
  • Step B if the concentration of ozone and/or nitrogen compounds in the air increases, lower the output power of the high-voltage power supply and/or reduce the wind speed of the fan and/or increase the water replenishment capacity of the water replenishment mechanism.
  • the output power of the high voltage power supply can be reduced to reduce the generation of harmful by-products. It is also possible to reduce the wind speed of the fan to reduce the loss of water in the hydrated plasma, and increase the water supply of the water replenishment mechanism, so that the water in the output hydrated plasma increases, because the water molecules have the ability to inhibit the generation of ozone and nitrides and the accumulation of static electricity .
  • Step C if the air temperature and/or air humidity rise, adjust the output power of the high-voltage power supply and/or increase the wind speed of the fan and/or reduce the water replenishment amount of the water replenishment mechanism.
  • the air temperature and/or air humidity increase, the air humidity increases, and the difficulty of producing by-products increases. A higher plasma concentration is required to have a good killing effect. Therefore, it is necessary to adjust the output power of the high-voltage power supply and increase the plasma concentration. , to increase the transport distance of hydrated plasma. Increasing the wind speed of the fan can reduce the water content in the hydrated plasma, and reduce the water replenishment amount of the water replenishment mechanism, both of which can increase the plasma concentration.
  • Step D if the concentration of carbon dioxide or VOC or particle concentration in the air increases, then adjust the output power of the high-voltage power supply and/or increase the wind speed of the fan and/or reduce the water replenishment amount of the water replenishment mechanism.
  • concentration of carbon dioxide or VOC or particulate matter in the air increases, the resistance of hydrated plasma transport in the air increases.
  • the output power of the high-voltage power supply can be increased.
  • Plasma concentration, reducing the water replenishment amount of the water replenishment mechanism can increase the plasma concentration to achieve a better air killing effect.
  • the high-voltage power supply is a high-voltage pulse power supply
  • increase the pulse frequency control of the high-voltage pulse power supply because the pulse frequency can adjust the mixing degree of positive and negative ions and ion clusters, improve the disinfecting effect, and combine environmental information and operation Parameters to obtain corresponding control information, including:
  • concentration of ozone and/or nitrogen compounds in the air increases, reduce the frequency of high-voltage pulses, peak voltage, and power in whole or in part, and/or reduce the wind speed of the fan, and/or increase the water replenishment capacity of the water replenishment mechanism.
  • air temperature and/or air humidity increase, then increase the frequency of high-voltage pulses, peak voltage, and power in whole or in part, and/or increase the wind speed of the fan, and/or reduce the water replenishment capacity of the water replenishment mechanism.
  • concentration of carbon dioxide or VOC or the concentration of particulate matter in the air increases, increase the frequency of high-voltage pulses, peak voltage, and power in whole or in part, and/or increase the wind speed of the fan, and/or reduce the amount of water replenished by the water replenishment mechanism.
  • the air temperature and/or air humidity decrease, or the ozone concentration and/or nitride concentration increase reduce some or all of the frequency, peak voltage, and power of the high-voltage pulse, because by-products are more likely to be produced in a dry environment , so this can reduce the by-products; and/or increase the water supply of the water supply mechanism, which can reduce the accumulation of static electricity, reduce the by-products during recombination, and prolong the recombination time of positive and negative ions and ion clusters; and/or reduce the wind speed of the fan 6
  • this can reduce the generation of by-products and reduce the accumulation of static electricity, and in a low temperature and dry environment, there is less moisture in the air, more dust, and the plasma is easier to recombine.
  • a lower concentration of hydrated plasma can also achieve the purpose of killing dust, viruses, suspended solids, and bacteria. If the temperature and/or humidity increase, and/or the concentration of carbon dioxide or VOC or particulate matter increases, adjust some or all of the frequency of high-voltage pulses, peak voltage, and power, and/or reduce the water supply of the water supply mechanism , and/or increase fan 6 wind speed. As the temperature and/or humidity increase, the air humidity increases, and the difficulty in producing by-products increases. A higher plasma concentration is required to have a good disinfecting effect. Therefore, it is necessary to increase the frequency of high-voltage pulses, peak voltage, and power. some or all.
  • the specific process in order to achieve overall effective control, the specific process can be:
  • Step 1 Set a target value for the environmental information.
  • the human body considers the air environment corresponding to the target value to be the safest or most comfortable.
  • the target value of the environmental information can be set manually.
  • the target value includes all or part of the air humidity target value, air temperature target value, carbon dioxide concentration target value, ozone concentration target value, nitride concentration target value, particulate matter concentration target value, and VOC concentration target value; according to multiple tests, A set of operating parameter target values corresponding to the environmental information target value is obtained; and the operating parameter target value is used as an initial value for each machine startup.
  • the target value of the operating parameters includes the target value of the replenishment flow rate of the attached water 2 on the electrode 1, the target value of the plasma flow rate and the target value of the plasma concentration at the plasma outlet, the current target value of the high-voltage pulse, the voltage target value of the high-voltage pulse, and the target value of the high-voltage pulse. All or part of the power target value.
  • Step 2 During the operation of the entire control system, execute the following steps cyclically: judge the gap between the current environmental information and the target value of the environmental information, and execute according to the judgment result:
  • the current air temperature is lower than the air temperature target value, and/or the current air humidity is lower than the air humidity target value, and/or the ozone concentration is greater than the ozone concentration target value, and/or the nitride concentration is greater than the nitride concentration target value, but:
  • increasing the water supply of the water supply mechanism can reduce the accumulation of static electricity, reduce the by-products during plasma recombination, and prolong the recombination time of positive and negative ions and ion clusters;
  • the current air temperature is higher than the air temperature target value, and/or the current air humidity is higher than the air humidity target value, and/or the carbon dioxide concentration is higher than the carbon dioxide concentration target value, and/or the VOC concentration is higher than the VOC concentration target value, and/or or the particle concentration is higher than the target particle concentration, then:
  • the faster the wind speed the faster the output of the hydrated plasma clusters.
  • the greater the velocity of the plasma the farther it can reach before recombining.
  • the wind speed of the fan 6 changes periodically, and the product of the maximum wind speed and the recombination time of positive and negative ions and ion clusters in the hydrated plasma should be greater than the distance between the farthest point of the air disinfecting device and the air disinfecting device in the target disinfecting area.
  • the recombination time of positive and negative ions and ion clusters in the hydrated plasma involved in the calculation can be selected as the average value of multiple actual experiments.
  • the wind speed of fan 6 not only changes according to the conditions in steps A to D, but also has a periodically changing background component
  • the maximum wind speed of the background component is related to the hydration
  • the product of the recombination time of plasma positive and negative ions and ion clusters should be greater than the distance between the farthest point from the air killing device in the target killing area and the air killing device.

Abstract

一种水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法。该水合等离子发生器包括表面附着水(2)的电极(1)、为电极(1)供电的高压电源、以及水合等离子体输送机构;在高压电作用下附着在电极(1)上的水(2)的表面形成水合等离子体,水合等离子体输送机构带动水合等离子体离开电极(1)并按照指定的一个或多个方向输送水合等离子体,高压电源输出的高压电信号的电压幅值大于等于1KV。通过改变电离势垒界面,相较于现有的空气电离技术极大地降低了电离电压,降低了成本、节能,同时也不产生或较少产生比如臭氧、氮化物等有害副产物;输出的等离子体以水为载体,能够减少静电累积,延长水合等离子体正负离子、离子团复合时间。

Description

水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法 技术领域
本发明涉及空气消杀技术领域,特别是涉及一种水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法。
背景技术
随着生活水平的提高,人们对健康也越来越重视,而由病毒和细菌等引发的呼吸道疾病严重影响人类身体健康,进而影响社会发展,因此,如何实现空气中的病毒和细菌消杀或净化越来越受重视。现有的空气净化或消杀技术主要有:
1.HEPA技术
HEPA是High Efficiency Particulate air Filter(高效率空气微滤滤芯)的缩写,是一种国际公认最好的高效滤材,现在大量应用于精密实验室、医药生产、院子研究和外科手术等需要高洁净度的场所。HEPA由非常细小的有机纤维交织而成,对微粒的捕捉能力较强,孔径微小,吸附容量大,净化效率高,具有物理稳定性好,应用广,环境适应性好,以及模块简单、易加工、易安装等优点。但是,随着滤芯使用时间增长,滤芯通道中附着有大量活的病毒和病菌,孔径变小会增大耗能,并且这些附着物存在二次污染;玻璃纤维制成的滤芯不能降解,不环保,且需要定期更换滤芯,耗材大,成本高。
2、向空气中喷放消杀因子
通过喷雾方式向空气中喷放消杀药品或雾剂,这种方式需要定期进行喷杀,但是喷杀中人不能处于被喷杀的空气环境中,不能实现人机安全共处。
3、臭氧空气消毒机
通过自然界产生臭氧的方法模拟而来得到臭氧,利用臭氧的强氧化特性可去除装潢、合成板、油漆所释放出来的有毒物质,可杀灭空气中细菌、病毒,杀灭地毯中滋生的微生物,消灭感冒病菌,预防流感的发生。但是,臭氧对人体也有不良影响,可刺激眼、鼻、喉咙黏膜,对支气管和肺等呼吸系统造成影响,并且臭氧浓度不易控制,无法实现人机安全共存。
4、紫外线空气消毒
利用适当波长的紫外线能够破坏微生物机体细胞中的DNA(脱氧核糖核酸)或RNA(核糖核酸)的分子结构,造成生长性细胞死亡和再生性细胞死亡,达到杀菌消毒的效果。但是过量的紫外线会对人体的皮肤、眼睛、免疫系统等造成伤害,由于紫外线辐射量特别是每个辐 射点的辐射量不易精确控制,因此,无法实现人机安全共存。
5、负离子空气净化技术
利用一定浓度的空气负离子来净化空气及消毒,是因为负离子极易与空气中微小污染颗粒(这些颗粒通常带正电)相吸附,成为带电的大粒子,沉落在地面等表面,从而使空气得到净化。负离子通常通过高压空气电离技术获得,但由于空气电离电压较高,达到10KV以上,高压下容易产生氮化物、臭氧等对人体有害的副产物,不能实现人机安全共存,此外,由于通过空气输送负离子,容易在使用环境内产生静电累积,对环境内的设备运行带来极大干扰或故障。
综上所述,目前还没有出现一种可人机共存、主动消杀、耗能少、没有或较少有害副产物的空气消杀技术。
等离子体(plasma)又叫做电浆,是由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质,呈宏观电中性电离气体,等离子体在空气传播中时,等离子体内部的正、负离子或离子团能够保持一段时间(几秒到几分钟时间内)不复合,等离子体的正、负离子或离子团复合时会释放结合能。
发明内容
本发明旨在至少解决现有技术中存在的技术问题,实现可人机共存、主动消杀、耗能少、没有或较少有害副产物的空气消杀,特别创新地提出了一种水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法。
为了实现本发明的上述目的,根据本发明的第一个方面,本发明提供了一种水合等离子发生器,包括表面附着水的电极、为所述电极供电的高压电源、以及水合等离子体输送机构;在高压脉冲作用下附着在所述电极上的水的表面形成水合等离子体,所述水合等离子体输送机构带动所述水合等离子体离开所述电极并按照指定的一个或多个方向输送所述水合等离子体;所述高压电源输出的高压电信号的电压幅值大于等于1KV。
上述技术方案:电极表面附着的水将电极到空气界面分割成电极到水界面和水到空气界面,电极在高压电作用下电离电极到水界面内的水产生正、负离子气泡,正、负离子气泡运动至电极附着水的表面并带出水分子团形成大量的正、负水合离子团;正、负水合离子团形成了尖端放电效应,对水到空气界面的空气电离产生正、负离子,大量的正、负水合离子团、以及新产生的正、负离子一起构成附着水表面的水合等离子体,通过等离子体输送机构将这些水合等离子体从电极上剥离并定向传输,实现等水合离子体输出。将高压电源输出的高压电信号的电压幅值设置为大于等于1KV,部分取值范围小于现有的空气电离电压 7KV到10KV,实现了较低电压电离产生水合等离子体,节能,同时电压降低也会减少有害副产物的产生。
通过表面附着水的电极改变了电离电势界面,相较于现有的空气电离技术极大地降低了电离电压,降低了成本,节能,同时电离电压的降低也使得不产生或较少产生比如臭氧、氮化物等有害副产物;通过气泡的扩散作用带出水中电离产生的正、负离子,进而在电极附着水表面形成等离子体;输出的水合等离子体以纳米尺度的小分子水团为载体,能够减少使用环境的静电累积,并延长等离体中正负离子或离子团的复合时间,同时小分子水团还能够抑制臭氧、氮化物等有害副产物的产生。综上,本水合等离子发生器能够不产生或产生很少的有害副产物,能够降低对高压电源的高压需求,进而实现环保、人机安全共存、降低成本、节能。
为了实现本发明的上述目的,根据本发明的第二个方面,本发明提供了一种空气消杀装置,包括壳体,在所述壳体内设置有如本发明第一方面提供的水合等离子发生器,在所述壳体上设置有空气入口和等离子出口;所述等离子体输送机构将电极附着水表面的水合等离子体朝向所述等离子出口输送。
上述技术方案:该装置向空气中输出水合等离子体,利用水合等离子体中正负离子、离子团复合时产生高能量的结合能,通过该结合能破坏病毒、细菌的蛋白质结构,进而达到杀菌、杀毒、净化空气的作用。该水合等离子体以纳米尺度的小分子水团作为载体,能够减少静电累积,抑制臭氧、氮化物等有害物质产生,并且能够延长等离子体中正负离子或离子团复合时间,这样便于拓宽消杀范围。该装置可人机安全共存、耗能少、没有害副产物或较少的有害副产物。
为了实现本发明的上述目的,根据本发明的第三个方面,本发明提供了一种空气消杀控制系统,包括至少一个如本发明第二方面提供的空气消杀装置、数据平台以及获取所述空气消杀装置目标消杀区域环境信息的环境采集模块;所述数据平台接收环境采集模块输出的环境信息并传输至控制模块,所述控制模块基于环境信息控制空气消杀装置输出的水合等离子体的浓度、流速、含水量三者中的全部或部分;所述环境采集模块包括温度采集单元、湿度采集单元、臭氧浓度采集单元、二氧化碳浓度采集单元、氮化物浓度采集单元、空气颗粒物检测单元、VOC浓度采集单元中至少一者。
上述技术方案:实现了依据目标消杀区域空气环境生成不同浓度、流速以及含水量的水合等离子体,实现了动态控制,以便于能够在不同环境气候下使用。该控制系统能够实现人机安全共存、耗能少、没有或较少有害副产物。
为了实现本发明的上述目的,根据本发明的第四个方面,本发明提供了一种空气消杀控制方法,用于本发明第三个方面所述的空气消杀控制系统,包括:
实时采集空气消杀装置的目标消杀区域内的环境信息,所述环境信息包括空气湿度、空气温度、二氧化碳浓度、臭氧浓度、氮化物浓度、颗粒物浓度、VOC浓度中的全部或部分;基于当前获取的所述环境信息获取相应的控制信息,所述控制信息包括调节高压电源输出的电源信号、风机风速、补水机构补水量的指令集合;基于所述控制信息控制高压电源、风机、补水机构运行。
上述技术方案:该控制方法依据目标消杀区域实时的环境信息来调节调节高压电源输出的电源信号、风机风速、补水机构补水量,多维变量联合控制以期达到动态平衡,并且能够在不同环境气候下使用,提高环境适用性。该控制方法能够实现人机安全共存、耗能少、没有或较少有害副产物。
附图说明
图1是本发明一具体实施方式中水合等离子发生器的结构示意图;
图2是本发明一具体实施方式中电极的结构示意图;
图3是本发明另一具体实施方式中电极的结构示意图;
图4是本发明一具体实施方式中空气消杀控制系统的原理框图。
附图标记:
1电极;11子电极;2水;3流量采集单元;4调水阀门;5隔水板;6风机;7转动台。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根 据具体情况理解上述术语的具体含义。
本发明公开了一种水合等离子发生器,在一种优选实施方式中,如图1所示,该水合等离子发生器包括表面附着水2的电极1、为电极1供电的高压电源、以及水合等离子体输送机构;在高压电作用下附着在电极1上的水2的表面形成水合等离子体,水合等离子体输送机构带动水合等离子体离开电极1并按照指定的一个或多个方向输送水合等离子体。
在本实施方式中,电极1优选但不限于为金属电极或合金电极或石墨电极。电极1的形状可以是圆柱型、针尖型等。优选地,电极1为多孔结构电极,这样便于锁存水2,扩大水2的附着面积。电极1上附着的水2可以事先浇在电极1表面,也可以在使用过程中断续或连续的补水。水2优选但不限于为矿泉水、自来水等带有自由离子的水;高压电源输出的高压电信号的电压幅值大于等于1KV。
在本实施方式中,高压电源是指输出的电源信号的电压幅值达到1KV以上的电源,高压电源输出电源信号为直流或交变信号。本发明提供的水合等离子发生器有效地降低了对高压电源的输出电压的大小的要求,如高压电源的电压幅值在2KV到6KV时就能高效的生成水合等离子体输出,而现有的空气电离电压一般在7KV到10KV。
在本实施方式中,优选地,为了提高水合等离子体中正离子、离子团与负离子、离子团的混合度,提高正负离子、离子团复合率,实现进一步节能,高压电源为高压脉冲电源。进一步优选地,高压脉冲电源的脉冲频率为10KHz到60KHz。高压脉冲电源输出的脉冲信号电压幅值达到1KV以上的脉冲电源。高压脉冲电源优选但不限于选择重庆稳睿科技有限公司的KSWY-100020D型号产品,其输出频率范围为0-50KHz,输出电压范围为0-10KV。
在本实施方式中,优选地,如图1所示,在电极1下方设置阻挡电极1上滴落的水往下流的隔水板5,隔水板5优选但不限于为绝缘板,以提高安全性,避免短路。
在本实施方式中,为便于实施,简化结构,如图1所示,水合等离子体输送机构优选但不限于为风力输送机构,能够实现无接触输送,提高安全性,水合等离子体输送机构为风机6,风机6按照指定的一个或多个方向向电极1吹风,通过风力输送水合等离子体。风机6可以为一个或多个,当为多个时,每个风机6吹的风向可以不相同,实现多个方向吹出水合等离子体。需要说明的是,当只设置一个风机6时,可以将风机6设置为在一定范围内摇头式吹风,这样就能实现多个方向输送出水合等离子体。风机6优选但不限于为下进风涡轮式风机。
在一种优选实施方式中,为了实现电极1上附着水2的表面的所有或绝大部分水合等离子体被输送走,当电极1为单体一个时,可采用如图2所示的方案,水合等离子体输送 机构还包括转动台7,电极1安装在转动台7上,电极1在转动台7带动下转动,风机6按照指定方向朝电极1吹风。通过转动台7带动电极1转动,使得风机6会顺次吹过电极1的所有侧面,实现电极1上的所有水合等离子体均被吹走。
在本实施方式中。优选地,电极1的中心轴与风机6出风口不对准,即偏心吹风,以便定向输送水合等离子体。
在本实施方式中,优选地,转动台7可为电控式转动台,以避免人员接触,提高安全性。转动台7上与电极1接触部分优选地为绝缘材料,在转动台7内开设有导线槽,以便连接电极1与高压电源的连接导线通过。
在一种优选实施方式中,为进一步简化系统,提高水合等离子体的数量,实现电极1上全部或绝大多数水合等离子体被吹走,如图3所示,电极1包括一个或多个并列分布的子电极11,风机6朝向子电极11的宽度方向吹风,子电极11的宽度小于子电极11的长度。
在本实施方式中,子电极11的横截面优选但不限于如图3所示的椭圆形,或者为条形、长方形。多个子电极11分别与高压电源的输出端电连接。并列分布的子电极11可以是按照图3所示的成列分布,即纵向分布,也可以是成行分布(未图示),即横向分布。
在一种优选实施方式中,还包括用于补充电极1表面水量的补水机构。
在本实施方式中,补水机构可为水喷雾器,需要补水时向电极1外表面喷射水雾。
在本实施方式中,补水机构还可为滴水器,如图1所示,该滴水器包括调水阀门4,该调水阀门4的入口端与供水源通过管道连接,调水阀门4的出口端位于电极1的上方,从调水阀门4的出口端滴落的水滴刚好落在电极1上,通过打开调水阀门4的阀门使得调水阀门4的出口端向电极1滴水,并且不同的阀门开度对应不同的滴水速度,即对应不同的补水量。优选地,调水阀门4优选但不限于为电磁比例阀,可通过电信号控制阀门开度。
在本实施方式中,补水机构还可为加湿器,加湿器靠近电极1设置,通过加湿器尽可能加大电极1所处环境的湿度,使得电极1上存在大量液化水滴,以这种方式进行补水,尤其适用于密闭空间的补水。
本发明还公开了一种空气消杀装置,在一种优选实施方式中,该装置包括壳体,在壳体内设置有本发明提供的上述水合等离子发生器,在壳体上设置有空气入口和等离子出口;等离子体输送机构将电极1附着水2表面的水合等离子体朝向等离子出口输送。
在本实施方式中,壳体优选但不限于采用绝缘材料制成的壳体或者防火型ABS金属壳体,以便提高安全性。壳体为金属壳体时,该金属壳体需要可靠屏蔽并接地。由于水合等离子发生器会对水到空气界面的空气进行电离,并且通过风力吹出水合等离子体,因此需要 空气流通,故开设空气入口。
在本实施方式中,为便于使用,可在壳体内设置一个水箱,优选地,该水箱的高度高于电极1,这样便于水箱中的水在重力作用下滴落,不需要其他动力机构输送谁2,该水箱的出口与补水机构的进水端通过管道连接。
在一种优选实施方式中,为节省成本,在壳体上还设置有进水口,进水口与补水机构的进水端通过管道连接,直接使用外部水源,简化结构和成本,如进水口可直接与自来水水管连接。
在一种优选实施方式中,为了净化空气,避免空气中污染物质(如空气颗粒物、气溶胶及附着的浮游菌、病毒等)进入水合等离子发生器,尤其避免污染物质经过电离后产生不可控物质(不可控物质很大部分为有毒物质),还包括设置于空气入口处的过滤模块,过滤模块对流入空气入口的空气进行过滤,避免水合等离子发生器输出的水合等离子体不干净形成二次污染。
在一种优选实施方式中,过滤模块为微静电高压净化模块。微静电收尘区利用高压静电效应,当室内空气流过时,收集空气颗粒物、气溶胶及附着的浮游菌、病毒,在高场强微电场中,活性蛋白被瞬间击穿失活,并在清洗收尘模块时可随意清洗液排出,灭活后的积尘对环境及人体无二次污染。微静电高压净化模块优选但不限于为东莞固特科技有限公司的微静电高压净化模块。
在一种优选实施方式中,还包括控制模块和人机交互模块,或者,还包括控制模块、人机交互模块和通信模块;控制模块分别与人机交互模块、通信模块、高压电源、风机6、调水阀门4连接;调水阀门4用于调节补水机构对电极1附着水2的补水量的大小。
在本实施方式中,控制模块优选但不限于为51单片机、ARM等微处理器。人机交互模块优选但不限于为按钮,这些按钮分别与控制模块连接,通过这些按钮实现等离子体流速、等离子体浓度、高压电源输出的电源信号等调节功能。通信模块优选但不限于为有线或无线通信模块,用于与外部网络或上位机连接通信,如与数据平台连接通信。高压电源可选择现有产品,如大连泰斯曼的型号为TP3012的高压脉冲电源;风机6优选但不限于为离心风机、螺旋式风机、下进风涡轮式风机等。调水阀门4优选但不限于为电磁比例阀。控制模块可通过串口分别与高压电源、风机6、调水阀门4连接通信。
在一种优选实施方式中,还包括与控制模块连接的运行参数采集模块,运行参数采集模块包括检测补水机构对电极1上附着水2的补水流量大小的流量采集单元3、位于等离子出口的等离子流速采集单元、位于等离子出口的等离子浓度采集单元、检测高压电源输出 电流大小的电流采集单元、检测高压电源输出功率的功率采集单元、检测高压电源输出电压的电压采集单元中至少一者。
在本实施方式中,优选地,流量采集单元3设置在调水阀门4与外部或内部水源的连接管道上,用于检测调水阀门4输出给电极1的水量大小。离子浓度采集单元优选但不限于正离子浓度传感器或负离子浓度传感器,如美国AIC系利空气正负离子测试设备。优选地,电流采集单元包括一个串接在电极1与高压电源的输出端之间的采样电阻、跨接在采样电阻两端的差分放大电路,以及电流获取模块,差分放大电路输出的电压与高压电源输出的电流之间存在一个比例常数,电流获取模块用于采集差分放大电路的输出电压并根据比例常数换算进而获知高压脉冲的电流。电压采集单元可以是采集高压脉冲的平均值电压或实时电压或峰值电压或幅值电压。电压采集单元包括检测高压脉冲实时电压的电压传感器和峰值电压获取模块,峰值电压获取模块用于采集电压传感器输出电压,并从中找出绝对值最大的正电压或负电压作为峰值电压。功率采集模块包括功率获取模块,该功率获取用于获取电流获取模块获得的实时电流以及电压传感器输出的实时电压,且用于计算实时电流和实时电压的乘积获得实时功率。电流采集单元、功率采集单元、电压采集单元也可选用现有产品。电流采集单元优选但不限于选择安科瑞电气股份有限公司的型号为BA05-AIDE交流电流传感器,电压采集单元优选但不限于为现有的电压变送器。
本发明还公开了一种空气消杀控制系统,在一种优选实施方式中,如图4所示,该系统包括至少一个上述空气消杀装置、数据平台以及获取空气消杀装置目标消杀区域环境信息的环境采集模块;数据平台接收环境采集模块输出的环境信息并传输至控制模块,控制模块基于环境信息控制空气消杀装置输出的水合等离子体的浓度、流速、含水量三者中的全部或部分;环境采集模块包括温度采集单元、湿度采集单元、臭氧浓度采集单元、二氧化碳浓度采集单元、氮化物浓度采集单元、空气颗粒物检测单元、VOC浓度采集单元中至少一者。
在本实施方式中,目标消杀区域可为室内全区域、室内部分区域或者室外部分区域。控制模块会根据具体的环境信息控制水合等离子发生器输出不同浓度、流速、含水量的水合等离子体。
在本实施方式中,温度采集单元、湿度采集单元、臭氧浓度采集单元、二氧化碳浓度采集单元、氮化物浓度采集单元、空气颗粒物检测单元、VOC浓度采集单元分别与数据平台连接。氮化物浓度采集单元、温度采集单元、湿度采集单元、空气颗粒物检测单元、二氧化碳浓度采集单元、VOC浓度采集单元可在室内集中布置,也可在室内分散布置。
在本实施方式中,优选地,数据平台、空气消杀装置、环境采集模块三者通过通信 网络连接。该通信网络可为物联网。
在本实施方式中,优选地,分别在环境采集模块的每个采集单元或检测单元处设置一个对应的物联网通信节点,在数据平台和控制模块处也分别设置一个对应的物联网通信节点,环境采集模块中各单元、数据平台和控制模块分别通过各自对应的物联网通信节点建立物联网络,通过物联网络传输信息。
在本实施方式中,空气颗粒物检测单元优选但不限于选择四方光电公司的PM2.5浓度检测的激光粉尘传感器PM2107,其可通过串口与对应的物联网通信节点连接。VOC是挥发性有机化合物(volatile organic compounds)的英文缩写,普通意义上的VOC就是指挥发性有机物,VOC浓度采集单元温度传感器优选但不限于选择四方光电公司的VOC传感器MS-VOC,其可通过串口与对应的物联网通信节点连接。二氧化碳浓度采集单元优选但不限于选择四方光电公司的PM3003SN激光粒子计数传感器,其可通过串口与对应的物联网通信节点连接。氮化物浓度采集单元优选但不限于为深圳市东日瀛能科技有限公司的氮氧化物NOX传感器,该传感器可串口输出,通过串口与对应的物联网通信节点连接。温度采集单元、湿度采集单元可选择现有产品,也可通过串口与对应的物联网通信节点连接,在此不再赘述。
在一种优选实施方式中,还包括显示屏、输入设备,显示屏和输入设备分别与数据平台连接。显示屏优选但不限于为LED显示屏,输入设备优选但不限于为键盘。显示屏和输入设备集成一体时可为触摸屏。
本发明还公开了一种空气消杀控制方法,用于上述空气消杀控制系统,在一种优选实施方式中,该控制方法包括:
实时采集空气消杀装置目标消杀区域内的环境信息,环境信息包括空气湿度、空气温度、二氧化碳浓度、臭氧浓度、氮化物浓度、颗粒物浓度、VOC浓度中的全部或部分;基于当前获取的环境信息获取相应的控制信息,控制信息包括调节高压电源输出的电源信号、风机6风速、补水机构补水量中全部或部分的指令集合。
在本实施方式中,当高压电源为高压直流电源时,调节高压电源输出的电源信号主要包括调节高压直流电源的输出电压、电流、功率大小。当高压电源为高压脉冲电源时,调节高压电源输出的电源信号包括调节高压脉冲的频率、峰值电压、功率中的全部或部分,如为了提高正负离子、离子团混合度时,可以在不增大高压脉冲功率的前提下增大高压脉冲的频率。
基于控制信息控制高压电源、风机6、补水机构运行,进而实现对空气消杀装置输出 的水合等离子体的浓度、流速、含水量三者中的全部或部分的控制。高压电源的控制信息对应高压脉冲的频率、峰值电压、功率的调节(或者高压直流电源的输出电压、电流、功率的调节),风机6的控制信息对应风机6风速的调节,补水机构的控制信息对应补水机构给电极1的补水量的调节。
在本实施方式中,基于当前获取的环境信息获取相应的控制信息可采用如下方案,包括:
步骤S1,建立副产物(包括臭氧浓度、氮化物浓度、静电累积)目标,进行多次试验,为每次试验设置不同的初始环境信息,每次试验过程为在该试验的初始环境下不断调整高压脉冲的频率、峰值电压、功率、风机6的风速、补水机构补水量来达到副产物目标,当达到副产物目标时,记录此时高压脉冲的频率、峰值电压、功率、风机6的风速、补水机构补水量的数值并作为一组与初始环境信息匹配的最优控制信息,当然,每个初始环境信息可匹配至少一个最优控制信息。
步骤S2,建立初始环境信息与最优控制信息的对应关系,根据该对应关系基于当前获取的环境信息获取匹配的最优控制信息,在每个初始环境信息匹配多个最优控制信息时,可计算当前的控制信息与每个匹配的最优控制信息的相关系数,选择相关系数最大的匹配的最优控制信息作为最终获取的最优控制信息,这样加快达到空气消杀的有毒副产物目标(没有或较少的有毒副产物)的速度。
在步骤S2中,建立初始环境信息与最优控制信息的对应关系的方法优选但不限于为查表法或机器学习法。
其中,查表法为:获取大量初始环境信息和与其匹配的最优控制信息,按照两者的匹配关系建立两者的关系对应表,在获得当前环境信息后,将关系对应表中与当前环境信息相关度(可以为相关系数或相似度)最高的初始环境信息对应的最优控制信息作为当前环境信息相应的控制信息。
机器学习法为:构建学习模型,以初始环境信息为该学习模型的输入,以初始环境匹配的最优控制信息(当匹配多个最优控制信息时,可选择其中一个作为学习模型输出)为学习模型的输出,不断训练和优化学习模型直到该学习模型误差率达到预设误差阈值,则将训练好的学习模型作为最终模型,将当前环境信息输入最终模型获得当前环境信息相应的控制信息。学习模型优选但不限于为神经网络模型。
在一种优选实施方式中,为便于实时了解当前机器运行参数,避免各运行参数超出预设的界限,提高安全性和可靠性,以及提高控制效果,因此,基于环境信息获取相应的控 制信息,还包括:获取空气消杀装置内部运行的运行参数,运行参数包括补水机构补水量、等离子出口处的等离子流速、等离子出口处的等离子浓度、高压电源的输出电流、高压电源的输出功率、高压电源的输出电压中至少一者;结合环境信息和运行参数获取相应的控制信息。具体的,当高压电源为高压脉冲电源时,运行参数包括补水机构补水量、等离子出口处的等离子流速、等离子出口处的等离子浓度、高压脉冲的电流、高压脉冲的功率、高压脉冲的电压中至少一者。
在本实施方式中,优选地,为每个运行参数设置一个不允许超出的参数边界,根据各自的参数边界约束各运行参数的调整范围。
在一种优选实施方式中,为提高环境和气候适应性,结合环境信息和运行参数获取相应的控制信息,包括:
步骤A,若空气温度和/或空气湿度降低,则调低高压电源的输出功率和/或减小风机风速和/或增加补水机构的补水量;优选但不限于调节高压电源的输出电压或电流或频率来调节高压电源的输出功率。空气温度降低和/或空气湿度下降时,空气会变更干燥,而在干燥环境中更易产生有害副产物,因此,通过调低高压电源的输出功率能够降低有害副产物。增加补水机构的补水量,这样能够减少静电累积,减少复合时的副产物,并且能够延长正负离子、离子团的复合时间。降低风机6风速以避免水合等离子体中水分过快蒸发而引起的静电累积增大,这样能够降低有害副产物产生和降低静电累积,并且在低温和干燥环境中,空气中水分较少,灰尘较多,等离子体更易复合,因此较低浓度的水合等离子体浓度也能达到消杀灰尘、病毒、悬浮物、细菌的目的。
步骤B,若空气中臭氧浓度和/或氮化物浓度增大,则调低高压电源的输出功率和/或减小风机风速和/或增加补水机构的补水量。当空气中臭氧浓度和/或氮化物浓度增大时,可以调低高压电源的输出功率以减少有害副产物的产生。还可以减小风机风速以减少水合等离子体中水分流失,以及增加补水机构的补水量,使得输出的水合等离子体中的水分增加,因为水分子团具有抑制臭氧、氮化物的产生以及抑制静电累积。
步骤C,若空气温度和/或空气湿度升高,则调高压电源的输出功率和/或增大风机风速和/或减少补水机构的补水量。当空气温度和/或空气湿度升高时,空气湿度增大,副产物产生难度增加,需要更高的等离子浓度才能有好的消杀效果,因此需要调高压电源的输出功率,增大等离子浓度,增大水合等离子体的输送距离。增大风机风速能较少水合等离子体中水分含量,减少补水机构的补水量,均能提高等离子浓度。
步骤D,若空气中二氧化碳或VOC浓度或颗粒物浓度增大,则调高压电源的输出功 率和/或增大风机风速和/或减少补水机构的补水量。当空气中二氧化碳或VOC浓度或颗粒物浓度增大时,水合等离子体在空气中输送的阻力增大,通过增大风机风速能够使水合等离子体输送更远距离,调高高压电源的输出功率能够增加等离子体浓度,减少补水机构的补水量能提高等离子浓度,以达到更好的空气消杀效果。
在一种优选实施方式中,当高压电源为高压脉冲电源时,增加高压脉冲电源的脉冲频率控制,因为脉冲频率可以调节正负离子、离子团的混合度,提高消杀效果,结合环境信息和运行参数获取相应的控制信息,包括:
若空气温度和/或空气湿度降低,则调低高压脉冲的频率、峰值电压、功率中的全部或部分,和/或减小风机风速,和/或增加补水机构的补水量。
若空气中臭氧浓度和/或氮化物浓度增大,则调低高压脉冲的频率、峰值电压、功率中的全部或部分,和/或减小风机风速,和/或增加补水机构的补水量。
若空气温度和/或空气湿度升高,则调高高压脉冲的频率、峰值电压、功率中的全部或部分,和/或增大风机风速,和/或减少补水机构的补水量。
若空气中二氧化碳或VOC浓度或颗粒物浓度增大,则调高高压脉冲的频率、峰值电压、功率中的全部或部分,和/或增大风机风速,和/或减少补水机构的补水量。
若空气温度和/或空气湿度降低,或者臭氧浓度和/或氮化物浓度增大,则调低高压脉冲的频率、峰值电压、功率三者中的部分或全部,由于干燥环境中更易产生附产物,因此这样能够降低副产物;和/或增加补水机构的补水量,这样能够减少静电累积,减少复合时的副产物,并且能够延长正负离子、离子团的复合时间;和/或降低风机6风速以避免水合等离子体中水分过快蒸发引起静电累积增大,这样能够降低副产物产生和降低静电累积,并且在低温和干燥环境中,空气中水分较少,灰尘较多,等离子体更易复合,因此较低浓度的水合等离子体浓度也能达到消杀灰尘、病毒、悬浮物、细菌的目的。若温度和/或湿度升高,和/或二氧化碳或VOC浓度或颗粒物浓度增大则调高高压脉冲的频率、峰值电压、功率三者中的部分或全部,和/或减少补水机构的补水量,和/或增大风机6风速。温度和/或湿度升高,空气湿度增大,副产物产生难度增加,需要更高的等离子浓度才能有好的消杀效果,因此需要调高高压脉冲的频率、峰值电压、功率三者中的部分或全部。
在本实施方式中,为实现整体有效控制,具体流程可为:
步骤一,为环境信息设置一个目标值,在该目标值对应的空气环境下人体认为最安全或最舒服,环境信息的目标值可人为设定。该目标值包括空气湿度目标值、空气温度目标值、二氧化碳浓度目标值、臭氧浓度目标值、氮化物浓度目标值、颗粒物浓度目标值、VOC浓度目 标值中的全部或部分;根据多次试验,获得该环境信息目标值对应的一组运行参数目标值;将该运行参数目标值作为每次机器启动的初始值。运行参数目标值包括补水机构对电极1上附着水2的补水流量目标值、等离子出口的等离子流速目标值和等离子浓度目标值、高压脉冲的电流目标值、高压脉冲的电压目标值、高压脉冲的功率目标值中的全部或部分。
步骤二,在整个控制系统运行过程中,循环执行以下步骤:判断当前环境信息与环境信息的目标值的差距,根据判断结果,执行:
若当前空气温度比空气温度目标值低,和/或当前空气湿度比空气湿度目标值低,和/或臭氧浓度比臭氧浓度目标值大,和/或氮化物浓度比氮化物浓度目标值大,则:
调低高压脉冲的频率、峰值电压、功率三者中的部分或全部,由于干燥环境中更易产生有害副产物,因此这样能够降低有害副产物的产生,同时有害副产物过多时更需要通过降低高压脉冲的频率、峰值电压、功率来减少副产物;
和/或,增加补水机构的补水量,能减少静电累积,减少等离子体复合时的副产物,并且能够延长正负离子、离子团复合时间;
和/或,降低风机6风速以避免水合等离子体中水分过快蒸发引起静电累积增大,这样能够降低副产物产生和降低静电累积,并且在低温和干燥环境中,空气中水分较少,灰尘较多,等离子体更易复合利用结合能消杀灰尘、病毒、悬浮物、细菌等。
若当前空气温度比空气温度目标值高,和/或当前空气湿度比空气湿度目标值高,和/或二氧化碳浓度比二氧化碳浓度目标值高,和/或VOC浓度比VOC浓度目标值高,和/或颗粒物浓度比颗粒物浓度目标值高,则:
调高高压脉冲的频率、峰值电压、功率三者中的部分或全部用于增加等离子体浓度;
和/或,减少补水机构的补水量用于减少等离子含水量;
和/或,增大风机6风速增加等离子体动能。
温度和/或湿度升高,空气湿度增大,副产物产生难度增加,需要更高的等离子浓度才能有好的消杀效果,因此需要调高高压脉冲的频率、峰值电压、功率三者中的部分或全部。
在一种优选实施方式中,为了使全部目标区域内所有地方均能在水合等离子团的正负离子、离子团复合时进行空气消杀,在复合时间一定的情况下,风速越快,输出的水合等离子的流速越大,能到达更远的地方才复合。风机6风速呈周期性变化,最大风速与水合等离子体正负离子、离子团的复合时间的乘积应大于目标消杀区域中距离空气消杀装置最远点与空气消杀装置的距离。这里参与计算的水合等离子体正负离子、离子团的复合时间可选取多次实试验的平均值。
在应用在步骤A到步骤D的应用场景中,风机6风速的除了根据步骤A到步骤D中的情况进行变化外,还具有一个周期性变化的本底分量,本底分量的最大风速与水合等离子体正负离子、离子团的复合时间的乘积应大于目标消杀区域中距离空气消杀装置最远点与空气消杀装置的距离。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (22)

  1. 一种水合等离子发生器,其特征在于,包括表面附着水的电极、为所述电极供电的高压电源、以及水合等离子体输送机构;
    在高压电作用下附着在所述电极上的水的表面形成水合等离子体,所述水合等离子体输送机构带动所述水合等离子体离开所述电极并按照指定的一个或多个方向输送所述水合等离子体;所述高压电源输出的高压电信号的电压幅值大于等于1KV。
  2. 如权利要求1所述的水合等离子发生器,其特征在于,所述水合等离子体输送机构为风机,所述风机按照指定的一个或多个方向向所述电极吹风,通过风力输送所述水合等离子体。
  3. 如权利要求2所述的水合等离子发生器,其特征在于,所述水合等离子体输送机构还包括转动台,所述电极安装在所述转动台上,所述电极在所述转动台带动下转动,所述风机按照指定方向朝所述电极吹风。
  4. 如权利要求2所述的水合等离子发生器,其特征在于,所述电极包括一个或多个并列分布的子电极,所述风机朝向所述子电极的宽度方向吹风,所述子电极的宽度小于所述子电极的长度。
  5. 如权利要求1-4之一所述的水合等离子发生器,其特征在于,所述高压电源为高压脉冲电源;
    和/或所述高压电源的输出电压幅值为2KV到6KV。
  6. 如权利要求1-4之一所述的水合等离子发生器,其特征在于,还包括用于补充所述电极表面水量的补水机构。
  7. 如权利要求1-4之一所述的水合等离子发生器,其特征在于,所述电极为多孔结构电极。
  8. 一种空气消杀装置,其特征在于,包括壳体,在所述壳体内设置有如权利要求1-7之一所述的水合等离子发生器,在所述壳体上设置有空气入口和等离子出口;
    所述等离子体输送机构将电极附着水表面的水合等离子体朝向所述等离子出口输送。
  9. 如权利要求8所述的空气消杀装置,其特征在于,在所述壳体上还设置有进水口,所述进水口与所述补水机构的进水端通过管道连接。
  10. 如权利要求8或9所述的空气消杀装置,其特征在于,还包括设置于所述空气入口处的过滤模块,所述过滤模块对流入所述空气入口的空气进行过滤。
  11. 如权利要求10所述的空气消杀装置,其特征在于,所述过滤模块为微静电高压净化模块。
  12. 如权利要求8或9或11所述的空气消杀装置,其特征在于,还包括控制模块和人机交互模块,或者,还包括控制模块、人机交互模块和通信模块;
    所述控制模块分别与人机交互模块、通信模块、高压电源、风机、调水阀门连接;
    所述调水阀门用于调节补水机构对电极附着水的补水流量大小。
  13. 如权利要求12所述的空气消杀装置,其特征在于,还包括与控制模块连接的运行参数采集模块,所述运行参数采集模块包括检测补水机构对电极附着水的补水流量大小的流量采集单元、位于所述等离子出口的等离子流速采集单元、位于所述等离子出口的等离子浓度采集单元、检测高压电源输出电流大小的电流采集单元、检测高压电源输出功率的功率采集单元、检测高压电源输出电压的电压采集单元中至少一者。
  14. 一种空气消杀控制系统,其特征在于,包括至少一个如权利要求8-13之一所述的空气消杀装置、数据平台以及获取所述空气消杀装置目标消杀区域环境信息的环境采集模块;
    所述数据平台接收环境采集模块输出的环境信息并传输至控制模块,所述控制模块基于环境信息控制空气消杀装置输出的水合等离子体的浓度、流速、含水量三者中的全部或部分;
    所述环境采集模块包括温度采集单元、湿度采集单元、臭氧浓度采集单元、二氧化碳浓度采集单元、氮化物浓度采集单元、空气颗粒物检测单元、VOC浓度采集单元中至少一者。
  15. 如权利要求14所述的空气消杀控制系统,其特征在于,所述数据平台、空气消杀装置、环境采集模块三者通过通信网络连接。
  16. 如权利要求15所述的空气消杀控制系统,其特征在于,还包括显示屏、输入设备,所述显示屏和输入设备分别与数据平台连接。
  17. 一种空气消杀控制方法,其特征在于,用于如权利要求14-16之一所述的空气消杀控制系统,包括:
    实时采集空气消杀装置的目标消杀区域内的环境信息,所述环境信息包括空气湿度、空气温度、二氧化碳浓度、臭氧浓度、氮化物浓度、颗粒物浓度、VOC浓度中的全部或部分;
    基于当前获取的所述环境信息获取相应的控制信息,所述控制信息包括调节高压电源输出的电源信号、风机风速、补水机构补水量中全部或部分的指令集合;
    基于所述控制信息控制高压电源、风机、补水机构运行。
  18. 如权利要求17所述的空气消杀控制方法,其特征在于,调节高压电源输出的电源信号包括调节高压脉冲的频率、峰值电压、功率中的全部或部分。
  19. 如权利要求17或18所述的空气消杀控制方法,其特征在于,所述基于所述环境信息获取相应的控制信息,包括:
    获取空气消杀装置内部运行的运行参数,所述运行参数包括补水机构补水量、等离子出口处的等离子流速、等离子出口处的等离子浓度、高压电源的输出电流、高压电源的输出功率、 高压电源的输出电压中至少一者;
    结合所述环境信息和所述运行参数获取相应的控制信息。
  20. 如权利要求19所述的空气消杀控制方法,其特征在于,所述结合所述环境信息和所述运行参数获取相应的控制信息,包括:
    若空气温度和/或空气湿度降低,则调低高压电源的输出功率和/或减小风机风速和/或增加补水机构的补水量;
    若空气中臭氧浓度和/或氮化物浓度增大,则调低高压电源的输出功率和/或减小风机风速和/或增加补水机构的补水量;若空气温度和/或空气湿度升高,则调高压电源的输出功率和/或增大风机风速和/或减少补水机构的补水量;
    若空气中二氧化碳或VOC浓度或颗粒物浓度增大,则调高压电源的输出功率和/或增大风机风速和/或减少补水机构的补水量。
  21. 如权利要求19所述的空气消杀控制方法,其特征在于,所述结合所述环境信息和所述运行参数获取相应的控制信息,包括:
    若空气温度和/或空气湿度降低,则调低高压脉冲的频率、峰值电压、功率中的全部或部分,和/或减小风机风速,和/或增加补水机构的补水量;
    若空气中臭氧浓度和/或氮化物浓度增大,则调低高压脉冲的频率、峰值电压、功率中的全部或部分,和/或减小风机风速,和/或增加补水机构的补水量;
    若空气温度和/或空气湿度升高,则调高高压脉冲的频率、峰值电压、功率中的全部或部分,和/或增大风机风速,和/或减少补水机构的补水量;
    若空气中二氧化碳或VOC浓度或颗粒物浓度增大,则调高高压脉冲的频率、峰值电压、功率中的全部或部分,和/或增大风机风速,和/或减少补水机构的补水量。
  22. 如权利要求17或18或20或21所述的空气消杀控制方法,其特征在于,风机风速呈周期性变化,风机的最大风速与水合等离子体正负离子、离子团的复合时间的乘积应大于目标消杀区域中距离空气消杀装置最远点与空气消杀装置的距离。
PCT/CN2022/075696 2022-01-06 2022-02-09 水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法 WO2023130525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210014157.4 2022-01-06
CN202210014157.4A CN114340129A (zh) 2022-01-06 2022-01-06 水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2023130525A1 true WO2023130525A1 (zh) 2023-07-13

Family

ID=81025440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075696 WO2023130525A1 (zh) 2022-01-06 2022-02-09 水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN114340129A (zh)
WO (1) WO2023130525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920218B (zh) * 2022-04-28 2024-01-05 湖南天际智慧材料科技有限公司 一种氮化物纳米或和亚微米粉末材料制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148446A1 (en) * 2010-12-08 2012-06-14 Samsung Electronics Co., Ltd. Plasma generation method and apparatus
CN105327375A (zh) * 2015-11-30 2016-02-17 大连民族大学 等离子体液滴双态杀菌消毒装置
JP2018130208A (ja) * 2017-02-14 2018-08-23 日本特殊陶業株式会社 空気清浄器
CN111380127A (zh) * 2020-04-17 2020-07-07 青岛华云空气科技有限公司 人机可共存的空气消毒净化一体机及其使用方法
CN211925986U (zh) * 2020-04-17 2020-11-13 青岛华云空气科技有限公司 人机可共存的空气消毒净化一体机
CN112344506A (zh) * 2020-11-10 2021-02-09 朱鹏达 一种空气净化系统及其控制方法
CN112923498A (zh) * 2021-02-19 2021-06-08 合肥中科离子医学技术装备有限公司 一种强度自动调节低温等离子体空气消毒装置
CN113124528A (zh) * 2021-04-09 2021-07-16 青岛海信日立空调系统有限公司 一种空气净化装置及其控制方法、空调器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529290T3 (es) * 2000-05-18 2015-02-18 Sharp Kabushiki Kaisha Método de esterilización
JP2003151719A (ja) * 2001-11-16 2003-05-23 Sharp Corp イオン発生装置、電気機器およびイオン発生方法
JP2004193091A (ja) * 2002-12-06 2004-07-08 Norio Murazaki 水性イオン発生装置
JP3952204B2 (ja) * 2004-10-14 2007-08-01 春日電機株式会社 送風型イオン発生器
JP2012066755A (ja) * 2010-09-27 2012-04-05 Panasonic Corp 脱臭・除菌機能を備えた航空機
CN203757957U (zh) * 2014-03-05 2014-08-06 中国科学院等离子体物理研究所 一种优选等离子体净化装置
JP6090393B2 (ja) * 2015-08-26 2017-03-08 三菱電機株式会社 空気調和機
CN111228557A (zh) * 2020-03-24 2020-06-05 杭州亿友信息技术有限公司 一种基于人工智能的物理和化学双重消毒杀菌系统及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148446A1 (en) * 2010-12-08 2012-06-14 Samsung Electronics Co., Ltd. Plasma generation method and apparatus
CN105327375A (zh) * 2015-11-30 2016-02-17 大连民族大学 等离子体液滴双态杀菌消毒装置
JP2018130208A (ja) * 2017-02-14 2018-08-23 日本特殊陶業株式会社 空気清浄器
CN111380127A (zh) * 2020-04-17 2020-07-07 青岛华云空气科技有限公司 人机可共存的空气消毒净化一体机及其使用方法
CN211925986U (zh) * 2020-04-17 2020-11-13 青岛华云空气科技有限公司 人机可共存的空气消毒净化一体机
CN112344506A (zh) * 2020-11-10 2021-02-09 朱鹏达 一种空气净化系统及其控制方法
CN112923498A (zh) * 2021-02-19 2021-06-08 合肥中科离子医学技术装备有限公司 一种强度自动调节低温等离子体空气消毒装置
CN113124528A (zh) * 2021-04-09 2021-07-16 青岛海信日立空调系统有限公司 一种空气净化装置及其控制方法、空调器

Also Published As

Publication number Publication date
CN114340129A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN105709931B (zh) 一种静电除尘空气净化器
CN103791560B (zh) 一种空气净化装置
WO2011152016A1 (ja) 微生物・ウイルスの捕捉・不活化装置及びその方法
KR101507559B1 (ko) 공기와 액체 플라즈마 반응 방식의 살균, 탈취 및 미립 분사 기능을 가지는 환경 공기 청정용 하이브리드 모듈
CN103331209B (zh) 一种利用电晕放电去除室内空气中微生物气溶胶的方法和装置
CN111520876A (zh) 一种室内空气质量自动调节系统
WO2023130525A1 (zh) 水合等离子发生器、空气消杀装置、空气消杀控制系统及控制方法
CN104390271A (zh) 等离子放电结合改性分子筛的空气净化装置及其使用方法
JP5774119B2 (ja) 微生物・ウイルスの捕捉・不活化方法
CN201802647U (zh) 无扇叶风扇
CN203731562U (zh) 一种空气净化装置
CN106440087B (zh) 一种消除空气中超微悬浮物的净化装置
CN205461587U (zh) Pm2.5空气净化装置
CN107062413A (zh) 空气净化装置及其控制方法
CN102538092A (zh) 空气智能处理装置
US20070022876A1 (en) Apparatus and method for enhancing filtration
CN201855453U (zh) 一种雾化加湿静电杀菌除臭净化器
CN217546386U (zh) 水合等离子发生器、空气消杀装置及空气消杀控制系统
JP2002319470A (ja) イオン発生制御方法、イオン発生素子、及びそれを備えた空気調節装置
KR100535705B1 (ko) 입체형 셀 구조의 플라즈마 방전부를 이용한 가습장치 및그 방법
TW202338267A (zh) 防治空污新風機
CN116697512A (zh) 水雾洗装置
CN212431146U (zh) 一种应用于中央空调通风系统的超声灭菌装置
CN204555075U (zh) 一种室内空气净化装置
TW202331161A (zh) 防治空污清淨機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917992

Country of ref document: EP

Kind code of ref document: A1