WO2023127322A1 - 電動作業車 - Google Patents

電動作業車 Download PDF

Info

Publication number
WO2023127322A1
WO2023127322A1 PCT/JP2022/041913 JP2022041913W WO2023127322A1 WO 2023127322 A1 WO2023127322 A1 WO 2023127322A1 JP 2022041913 W JP2022041913 W JP 2022041913W WO 2023127322 A1 WO2023127322 A1 WO 2023127322A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotation speed
control unit
driving
load
Prior art date
Application number
PCT/JP2022/041913
Other languages
English (en)
French (fr)
Inventor
高瀬竣也
山中之史
岡崎一人
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2023127322A1 publication Critical patent/WO2023127322A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric work vehicle that runs on electrical energy.
  • Patent Document 1 describes an electric working vehicle that includes a battery, a motor driven by electric power supplied from the battery, and a traveling device driven by the motor.
  • JP2021-957A Japanese Patent Application Publication No. 2021-957
  • a motor which is a power source of an electric working vehicle, is configured to be capable of outputting high torque even at a low rotational speed compared to an engine.
  • the engine when an attempt is made to obtain high torque at a low rotational speed, the engine may stop (so-called engine stall).
  • engine stall when an attempt is made to obtain high torque at a low rotational speed, the engine may stop (so-called engine stall).
  • some users who switch from a work vehicle powered by an engine to an electric work vehicle may find that the motor continues to drive without stopping even when the engine stalls at low rpm and high torque. I sometimes feel uncomfortable.
  • the motor does not stop even when the rotation speed is low and the torque is high, there is a possibility that the motor will be burdened by the continuation of the high load state.
  • An electric working vehicle is characterized by: a battery mounted on a machine body; an inverter for converting DC power of the battery into AC power; a motor driven by the AC power converted by the inverter; a rotation speed information acquiring unit for acquiring rotation speed information indicating the rotation speed of a motor; a traveling device driven by the motor; an operation tool for changing a required rotation speed required of the motor; a control unit for driving the inverter according to the required rotation speed and controlling the current flowing through the motor, wherein the control unit controls the current flowing through the motor when the load of the motor becomes higher than a preset load. , the driving of the motor is stopped regardless of the required rotation speed.
  • Motors often have higher output torque than engines at low revolutions. With such a characteristic configuration, the motor can be stopped when the load on the motor becomes higher than the preset load. This allows the behavior of the motor to be similar to that of an engine that stops driving when the load becomes too high at low rpm. Therefore, for example, even when switching from a work vehicle using an engine as a power source to an electric work vehicle using a motor as a power source, the operator can drive the electric work vehicle without feeling discomfort.
  • a current sensor for detecting a current value of a current flowing through the motor, and a torque calculation unit for calculating a torque output by the motor based on the current value, wherein the control unit controls the output of the motor.
  • the motor is deactivated when the torque exceeds a preset torque value.
  • the torque output by the motor can be easily calculated. Therefore, since the control unit can easily determine whether the load is high or not according to the calculated torque, it can be appropriately determined whether the load of the motor is higher than the preset load. becomes possible. Moreover, since it is possible to prevent an excessive load from acting on the motor, deterioration of the motor can be improved.
  • control unit stops driving the motor regardless of the required rotation speed when the rotation speed of the motor becomes equal to or less than a preset rotation speed.
  • control unit stops driving the motor when the number of revolutions of the motor is equal to or less than the preset number of revolutions and continues for a predetermined period of time.
  • control unit stops driving the motor when the rotation speed of the motor becomes equal to or lower than the idling rotation speed, which is lower than the required rotation speed, as the load on the motor increases.
  • control unit controls the hydraulic pressure in the hydrostatic continuously variable transmission of the traveling device. is lowered by driving a relief valve, and if the load on the motor continues to be high after the relief valve is driven, the motor is stopped.
  • control unit enters a restricted state in which the driving of the inverter is restricted. It is preferably released accordingly.
  • control unit initializes the hydrostatic continuously variable transmission included in the travel device when the release instruction information is input.
  • the load on the hydrostatic continuously variable transmission of the traveling device can be reduced, making it easier for the electric working vehicle to travel.
  • control unit prevents the aircraft from running when the restricted state is cancelled.
  • the controller can prevent the aircraft from running unintentionally by, for example, setting the transmission to a neutral state or returning the accelerator pedal to the initial position to prevent the aircraft from running. .
  • the restriction state is canceled when the cancellation instruction information is input and the state of the aircraft is a preset state.
  • a notification unit that notifies that the driving of the motor has been stopped when the driving of the motor has been stopped regardless of the required rotation speed.
  • the operating noise of the motor is low not only when it is stopped but also when it is being driven. Depending on the situation, it may be difficult for the operator to know whether the machine is stopped or is being driven. Therefore, when the driving of the motor is stopped regardless of the required number of rotations, the notifying unit notifies the operator of the fact that the motor has been stopped.
  • the control unit further includes a second rotation speed lower than the first rotation speed when a predetermined time has passed after the notification by the notification unit and when the rotation speed of the motor is lower than the first rotation speed after the notification by the notification unit. It is preferable that the driving of the motor is stopped in at least one of the cases where the number of rotations reaches .
  • FIG. 4 is an explanatory diagram of a functional unit that drives a motor
  • FIG. 5 is a diagram showing the relationship between the amount of operation of the operating tool and the required number of rotations of the motor
  • 4 is a state transition diagram showing motor control states
  • FIG. It is a figure which shows an example of the alerting
  • the electric working vehicle according to the present invention is configured to behave like a working vehicle using an engine as a power source when the motor rotates at a low speed.
  • the electric working vehicle of this embodiment will be described below. In the following description, an example in which the electric working vehicle is a tractor will be described.
  • the tractor of this embodiment includes left and right front wheels 10 , left and right rear wheels 11 , and a cover member 12 .
  • the tractor includes a body frame 2 and a driving section 3.
  • the body frame 2 is supported by left and right front wheels 10 and left and right rear wheels 11 .
  • the cover member 12 is arranged in the front part of the fuselage.
  • the operating section 3 is provided behind the cover member 12 .
  • the cover member 12 is arranged in front of the driving section 3 .
  • the driving section 3 has a protective frame 30, a driver's seat 31, and a steering wheel 32.
  • An operator can sit on the driver's seat 31 . This allows the operator to get on the driving section 3 .
  • the steering wheel 32 By operating the steering wheel 32, the left and right front wheels 10 are steered. The operator can perform various driving operations in the driving section 3 .
  • the tractor is equipped with a running battery 4. Further, the cover member 12 is configured to be swingable around an opening/closing axis Q extending in the lateral direction of the machine body. Thereby, the cover member 12 is configured to be openable and closable. When cover member 12 is in the closed state, driving battery 4 is covered with cover member 12 .
  • the tractor includes an inverter 14 and a motor M.
  • the running battery 4 supplies electric power to the inverter 14 .
  • Inverter 14 converts the DC power from running battery 4 into AC power and supplies it to motor M.
  • the motor M is driven by AC power supplied from the inverter 14 .
  • the tractor includes a hydrostatic continuously variable transmission 15 and a transmission 16.
  • the hydrostatic continuously variable transmission 15 has a hydraulic pump 15a and a hydraulic motor 15b.
  • the hydraulic pump 15a is driven by rotational power from the motor M. Rotational power is output from the hydraulic motor 15b by driving the hydraulic pump 15a.
  • the hydrostatic continuously variable transmission 15 is configured such that the rotational power is changed between the hydraulic pump 15a and the hydraulic motor 15b. Further, the hydrostatic continuously variable transmission 15 is configured so that the gear ratio can be changed steplessly.
  • the rotational power output from the hydraulic motor 15b is transmitted to the transmission 16.
  • the rotational power transmitted to the transmission 16 is changed in speed by a gear transmission mechanism of the transmission 16 and distributed to the left and right front wheels 10 and the left and right rear wheels 11 .
  • the left and right front wheels 10 and the left and right rear wheels 11 are driven.
  • the tractor also has a mid PTO shaft 17 and a rear PTO shaft 18, as shown in FIGS.
  • Rotational power output from the motor M is distributed to the hydraulic pump 15a, the mid PTO shaft 17, and the rear PTO shaft 18. Thereby, the mid PTO shaft 17 and the rear PTO shaft 18 rotate.
  • a working device is connected to the mid PTO shaft 17 or the rear PTO shaft 18, the rotating power of the mid PTO shaft 17 or the rear PTO shaft 18 drives the working device.
  • a mower 19 is connected to the mid PTO shaft 17 in this embodiment.
  • the rotary power of the mid PTO shaft 17 drives the lawn mower 19 .
  • FIG. 4 is a block diagram showing functional units for driving the motor M.
  • the block diagram of FIG. 4 includes a battery (running battery) 4, an inverter 14, a motor M, a rotation speed information acquiring unit 41, a running device 42, an operation tool 43, a control unit 44, a current sensor 51, a torque calculating unit 52, A notification unit 57 is shown.
  • each functional unit is constructed with hardware or software, or both, with a CPU as a core member.
  • the battery 4 is mounted on the fuselage while being covered with the cover member 12 as described above. Also, the electrical energy stored in the battery 4 is used to drive the motor M. As shown in FIG.
  • the inverter 14 converts the DC power of the battery 4 into AC power.
  • the inverter 14 includes a first switching element Q1 and a second switching element Q2 which are connected in series and which are provided between a first power supply line L1 and a second power supply line L2. It is configured to have three arm portions A.
  • the first power line L1 is a power line connected to the positive terminal of the two output terminals of the battery 4, and the second power line L2 is one of the two output terminals of the battery 4. This is the power supply line connected to the negative terminal.
  • the inverter 14 has three arms A between the first power line L1 and the second power line L2.
  • P-type IGBTs are used for both the first switching element Q1 and the second switching element Q2.
  • a collector terminal of the first switching element Q1 is connected to the first power supply line L1, and an emitter terminal of the first switching element Q1 and a collector terminal of the second switching element Q2 are connected.
  • the emitter terminal of the second switching element Q2 is connected to the second power supply line L2.
  • a diode D1 having an anode terminal connected to the emitter terminal and a cathode terminal connected to the collector terminal is provided between the emitter terminal and the collector terminal of the first switching element Q1.
  • a diode D2 having an anode terminal connected to the emitter terminal and a cathode terminal connected to the collector terminal is provided between the emitter terminal and the collector terminal of the second switching element Q2.
  • Gate terminals of the first switching element Q1 and the second switching element Q2 are connected to a control section 44, which will be described later.
  • the inverter 14 is controlled by the control unit 44 to switch the first switching element Q1 of one of the three arms A and the second switching element Q1 of one of the other two arms A.
  • Q2 is energized by PWM control. As a result, the DC power of the battery 4 is converted into AC power according to the frequency of the PWM control signal.
  • the motor M is driven by the AC power converted by the inverter 14.
  • the three terminals of the motor M are a first node n1 to which the first switching element Q1 and the second switching element Q2 in the arm portion A1 are connected, and the first switching element Q1 in the arm portion A2. It is connected to a second node n2 to which the second switching element Q2 is connected, and to a third node n3 to which the first switching element Q1 and the second switching element Q2 in the arm portion A3 are connected.
  • a first node n1 to which the first switching element Q1 and the second switching element Q2 in the arm portion A1 are connected is the emitter terminal of the first switching element Q1 and the second switching element Q1 forming the arm portion A1.
  • FIG. 4 shows an example in which the coils of the motor M are delta-connected, but the coils of the motor M may be star-connected.
  • the rotation speed information acquisition unit 41 acquires rotation speed information indicating the rotation speed of the motor M.
  • the rotation speed of the motor M is the rotation speed of the rotor that the motor M has.
  • Such a rotation speed can be detected using, for example, a rotation sensor 41A having a Hall element. It is also possible to calculate the rotation speed of the motor M based on the magnitude of the current flowing through the motor M instead of the rotation sensor 41A. In this case, it is preferable to calculate based on the detection result of the current sensor 51, which will be described later.
  • a detection result of the rotation speed of the motor M by the rotation sensor 41A is transmitted to the rotation speed information acquisition unit 41 as rotation speed information.
  • the travel device 42 is driven by the motor M.
  • the travel device 42 is a general term for the hydrostatic continuously variable transmission 15, the transmission 16, the left and right front wheels 10, and the left and right rear wheels 11 described above.
  • the rotational power of the motor M is transmitted to the transmission 16 via the hydrostatic continuously variable transmission 15 .
  • the rotational power transmitted to the transmission 16 is changed in speed by a gear transmission mechanism of the transmission 16 and distributed to the left and right front wheels 10 and the left and right rear wheels 11 .
  • the left and right front wheels 10 and the left and right rear wheels 11 are driven, so that the tractor can travel.
  • the operation tool 43 changes the required number of rotations required of the motor M.
  • the required number of rotations required of the motor M corresponds to a command value of the number of rotations of the rotational power that the operator wants the motor M to output, that is, the so-called command number of rotations.
  • the operation tool 43 corresponds to a lever that is configured to be swingable in the front-rear direction on the side portion of the driver's seat 31 . The more the operation tool 43 is operated to tilt it forward, the more the required number of rotations increases, and the motor M rotates at a higher speed. is configured as follows.
  • FIG. 5 shows the relationship between the amount of operation of the operation tool 43 and the required number of rotations of the motor M. As shown in FIG. In FIG.
  • the vertical axis represents the required number of revolutions of the motor M
  • the horizontal axis represents the amount of operation of the operation tool 43 .
  • the required rotational speed is N1 [rpm] when the manipulated variable is 10[%]
  • the required rotational speed is N2 [rpm] when the manipulated variable is 90[%].
  • the required rotational speed is set so as to be proportional to the amount of operation between 10% and 90% of the amount of operation.
  • the amount of operation is shown in %, which is 0% when the operation tool 43 is at the most front side, and 100% at the most forward tilted state.
  • the required rotation speed is 0 [rpm] when the operation amount is less than 10 [%]
  • the required rotation speed is N2 [rpm] when the operation amount is 90 [%] or more.
  • a state in which the rotational speed is N1 [rpm] is defined as an idling state, and this rotational speed is defined as an idling rotational speed.
  • the operation amount of the operation tool 43 that is, the position in the front-rear direction is detected by the position detection section 43A. Therefore, it is possible to specify the required number of revolutions of the motor M based on the position of the operation tool 43 detected by the position detection section 43A.
  • the control unit 44 controls the current flowing through the motor M by driving the inverter 14 according to the rotational speed information and the required rotational speed.
  • the rotation speed information is transmitted from the rotation speed information acquisition section 41 to the control section 44 .
  • a detection result of the position of the operation tool 43 is transmitted from the position detection unit 43A, and the required rotation speed can be specified based on this detection result.
  • the current flowing through the motor M is the current output from the inverter 14 and the current flowing through the coil of the motor M. As shown in FIG. Therefore, the control unit 44 controls the inverter 14 so that the current rotation speed of the motor M indicated by the rotation speed information becomes the required rotation speed specified by the detection result of the position detection unit 43A. Controls the current flowing through the coil. Thereby, it becomes possible to control the rotational power output from the motor M according to the operation of the operation tool 43 .
  • the present tractor is an electric tractor that travels with the rotational power of the motor M, but there are also tractors that travel with the rotational power of the engine.
  • An engine mounted on such a tractor has a torque that can be output (output torque) according to the engine speed.
  • An engine stops (so-called engine stalls) when a torque that is excessively larger than the torque that can be output by the rotation speed of the engine acts on the engine.
  • the motor M also has a predetermined torque that can be output according to the rotation speed. It decreases to zero, and it rarely stops suddenly like an engine. For this reason, for example, when switching from a tractor powered by an engine to an electric tractor, the operator may feel uncomfortable. Therefore, the present tractor is configured so that the operator does not feel the sense of discomfort as described above.
  • the control unit 44 stops driving the motor M regardless of the required rotation speed.
  • the load of the motor M is the torque acting on the motor M.
  • the preset load is a load for which driving of the motor M is to be stopped when the load acts on the motor M. FIG. For example, it may be set based on the load acting on the engine when the engine stalls. Regardless of the required rotation speed means that the rotation speed of the motor M does not follow the required rotation speed requested by the operation tool 43 .
  • To stop driving the motor M means to prevent the current from flowing through the coil of the motor M from the inverter 14 .
  • the control unit 44 requests the rotation speed of the motor M by the operation tool 43.
  • the motor M is stopped by preventing current from flowing from the inverter 14 to the coil of the motor M without following the required rotation speed. Specifically, when the required number of revolutions is 2000 [rpm] and the load on the motor M increases and the actual number of revolutions of the motor M reaches 1500 [rpm], the driving of the motor M is set to stop. good.
  • the driving of the motor M may be stopped.
  • the torque of the motor M can be calculated based on the current flowing through the motor M.
  • the current value of the current flowing through the motor M is detected by the current sensor 51 .
  • the current flowing through the motor M flows through the cable connecting the first node n1 and the motor M, the cable connecting the second node n2 and the motor M, and the cable connecting the third node n3 and the motor M. Since it is almost the same as the current, the current sensor 51 may detect the current value of the current flowing through the motor M based on the current flowing through these cables. Further, the current sensor 51 may be one that detects using a Hall element that measures these cables without disconnecting them, or a current between each of these cables and a reference potential (for example, ground potential).
  • a resistor may be provided to detect the voltage drop across the resistor.
  • a detection result of the current value by the current sensor 51 is transmitted to the torque calculator 52 .
  • the detection result of the current value may be transmitted to the control section 44, and the control section 44 may perform PWM control of the inverter 14 in consideration of the current flowing through the motor M as well.
  • the torque calculator 52 calculates the torque output by the motor M based on the current value. That is, there is a predetermined relationship between the current value of the current flowing through the motor M and the torque output by the motor M. It is preferable to store a map showing such a relationship in advance in the torque calculation unit 52 and calculate the output torque corresponding to the current value of the current flowing through the motor M based on the map.
  • control unit 44 should stop driving the motor M when the torque output by the motor M becomes greater than a preset torque value.
  • the torque output by the motor M is torque calculated by the torque calculator 52 .
  • the control unit 44 compares this torque with a preset torque value, and determines that the load of the motor M is higher than the preset load when the torque is greater than the preset torque value. It is better to stop driving the
  • control unit 44 may be configured to stop driving the motor M regardless of the required rotation speed when the rotation speed of the motor M becomes equal to or less than a preset rotation speed.
  • the rotation speed of the motor M is acquired by the rotation speed information acquisition unit 41 .
  • the preset number of rotations can be, for example, several hundred rotations per minute. It is also possible to set the rotation speed that is 30% lower than the target rotation speed or the rotation speed that is several hundred rotations lower than the target rotation speed. Therefore, the control unit 44 determines that the rotation speed of the motor M acquired by the rotation speed information acquisition unit 41 is a preset rotation speed, which is several hundred rotations (rpm), or a rotation that is 30% lower than the target rotation speed.
  • the driving of the motor M is stopped when the rotation speed is several hundred rotations lower than the target rotation speed. At this time, instead of stopping the driving of the motor M immediately, the driving of the motor M is stopped after the state in which the number of revolutions of the motor M has become equal to or less than the preset number of revolutions continues for a while, such as several seconds. may Further, when the load on the motor M is increased due to the travel device 42, the hydraulic pressure of the hydrostatic continuously variable transmission 15 is lowered by the relief valve, and the load on the motor M remains high. If this continues, the driving of the motor M may be stopped. A load caused by the traveling device 42 may be, for example, stuck in mud.
  • the control unit 44 puts the inverter 14 into a restricted state in which the driving of the inverter 14 is restricted when the driving of the motor M is stopped regardless of the required rotation speed.
  • the case where the driving of the motor M is stopped irrespective of the required number of rotations includes the case where the driving of the motor M is stopped when the torque output by the motor M becomes larger than a preset torque value, or when the number of rotations of the motor M is stopped. This is a case where the load of the motor M becomes higher than a preset load and the driving of the motor M is stopped, such as when the rotation speed of the motor M becomes equal to or less than a preset number of revolutions.
  • Restricting the driving of the inverter 14 means that the inverter 14 cannot be energized. Such a state is called a restricted state. Therefore, when the load of the motor M becomes higher than the preset load and the driving of the motor M is stopped, the control unit 44 cannot energize the inverter 14 .
  • this restricted state can be canceled in response to input of cancellation instruction information from the operator.
  • the cancellation information instruction is an instruction for canceling the restricted state of the control unit 44.
  • the operator presses the start button 61 provided on the front panel of the operation unit 3, or when the operation tool 43 is used to change the required number of rotations. It is possible to have an operation by an operator to set it to zero. It is preferable that the pressing of the start button 61 is received by the release instruction information receiving unit 55 . Further, the operation of setting the required number of rotations by the operating tool 43 to zero is preferably configured such that the position of the operating tool 43 is detected by the position detecting section 43A, and the release instruction information receiving section 55 receives the detection result.
  • the cancellation instruction information reception unit 55 When the cancellation instruction information reception unit 55 receives such a cancellation instruction, it is preferable to transmit information indicating that the cancellation instruction has been issued to the control unit 44 . This makes it possible to release the restricted state of the control unit 44 .
  • a state transition diagram showing the control state of the motor M is shown in FIG.
  • the operator When driving the motor M, the operator operates the operating tool 43 .
  • the position of the operation tool 43 at this time is detected by the position detection section 43A and transmitted to the control section 44 as the required rotation speed.
  • the control unit 44 energizes the inverter 14 on the assumption that there is an instruction to energize the inverter 14 (#1).
  • the motor M is energized via the inverter 14 (#2).
  • the controller 44 stops energizing the inverter 14 . This causes the motor M to stop (#3). Since the stop of the motor M is not due to the operation tool 43 requesting 0 [rpm] as the required rotation speed, the control unit 44 is placed in the restricted state (#4).
  • the control unit 44 When the control unit 44 is in the restricted state, when the operator presses the start button 61 or the operation tool 43 is once returned to the position where the operation amount is 0 [%], the release instruction information receiving unit 55 These are detected, and release instruction information is transmitted to the control unit 44 (#5). When the release instruction information is transmitted, the control unit 44 releases the restricted state and enters the released state (#6). When the restricted state is released, the control unit 44 enters a state of waiting for an energization instruction (#7). In this state of waiting for an energization instruction, when the operator operates the operation tool 43 and inputs the required rotation speed of the motor M, the control unit 44 energizes the inverter 14 according to the required rotation speed, and the motor M is energized. (#2). In this embodiment, the control state of the motor M transitions based on such a state transition diagram.
  • the control unit 44 does not enter the restricted state, and the # 7 is in a state of waiting for an energization instruction.
  • the hydrostatic continuously variable transmission 15 of the travel device 42 may be initialized when the release instruction is given in #5.
  • the hydrostatic continuously variable transmission 15 is put in the neutral state to be in the initial state. This may be done by the operator using a switch or the like to set the state to the initial state, or by automatically lowering the pressure by a relief valve in the hydrostatic continuously variable transmission 15 to make it neutral.
  • processing can be performed so that the tractor does not travel when the restricted state is released.
  • the transmission 16 includes a secondary shift at the time of the release instruction of #5, it is possible to set the secondary shift to neutral or return the accelerator pedal to the initial state.
  • the cancellation instruction of #5 is given, the PTO is stopped from rotating, for example, the rotation of the mid PTO shaft 17 and the rear PTO shaft 18 is stopped by disengaging the clutch, etc., and the restriction state is released. A state in which no load is actually applied may be set.
  • the notification unit 57 notifies that the driving of the motor M is stopped when the driving of the motor M is stopped irrespective of the required rotation speed so that the user can grasp whether the driving of the motor M is stopped. That is, when the driving of the motor M is stopped regardless of the required number of revolutions, as shown in FIG. Please release the restriction.”, or output a voice message such as “The motor is stopped. Please release the restriction.” from the speaker 59.
  • the electric working vehicle is a tractor
  • the electric working vehicle may be a working vehicle other than a tractor, such as a rice transplanter, a combine harvester, a construction machine, a lawn mower, or the like.
  • the motor M is a three-phase motor and the inverter 14 is provided with three arms A.
  • the motor M may not be a three-phase motor. It is preferable that the number of arm portions A be provided according to the number of phases of the motor M.
  • the electric working vehicle includes the current sensor 51 and the torque calculation section 52, and the control section 44 detects the torque calculated by the torque calculation section 52 based on the current value detected by the current sensor 51. It has been explained that the driving of the motor M is controlled. However, the electric working vehicle can also be configured without the current sensor 51 and the torque calculator 52 . In this case, the control unit 44 should control the driving of the motor M according to the load of the motor M as described in the above embodiment.
  • the control unit 44 puts the control unit 44 into a restricted state in which the driving of the inverter 14 is restricted when the driving of the motor M is stopped regardless of the required rotation speed. It was explained that it will be lifted according to.
  • the control unit 44 can be configured so that the restriction state does not occur when the driving of the motor M is stopped regardless of the required rotation speed.
  • the restricted state is set to the restricted state for a preset time after stopping the driving of the motor M regardless of the required number of rotations. It is also possible to configure such that the restricted state is automatically released when time has passed.
  • the notification unit 57 notifies that the driving of the motor M has been stopped when the driving of the motor M has been stopped regardless of the required number of revolutions.
  • the notification unit 57 has been described as being configured to notify by performing a predetermined display on the display screen of the display device 58 or to output a sound from the speaker 59 to notify. may be displayed on the display screen of a mobile terminal possessed by the mobile terminal, or the audio may be output from the speaker of the mobile terminal.
  • the notification unit 57 notifies that the driving of the motor M has been stopped after the driving of the motor M has been stopped. However, when the number of rotations of the motor M drops below the required number of rotations by a certain amount, the notification unit 57 displays a message such as "The motor is overloaded. Please reduce the load.” is overloaded. Please reduce the load.” Moreover, you may alert
  • the present invention can be used for electric working vehicles that run on electrical energy.

Abstract

電動作業車は、機体に搭載されるバッテリ(4)と、バッテリ(4)の直流電力を交流電力に変換するインバータ(14)と、インバータ(14)により変換された交流電力により駆動するモータ(M)と、モータ(M)の回転数を示す回転数情報を取得する回転数情報取得部(41)と、モータ(M)により駆動される走行装置(42)と、モータ(M)に要求する要求回転数を変更する操作具(43)と、回転数情報と要求回転数とに応じてインバータ(14)を駆動して、モータ(M)を流れる電流を制御する制御部(44)と、を備えている。制御部(44)は、モータ(M)の負荷が予め設定された負荷より高くなった場合に、要求回転数にかかわらず、モータ(M)の駆動を停止する。

Description

電動作業車
 本発明は、電気エネルギーで走行する電動作業車に関する。
 従来、電気エネルギーを動力源として走行する電動作業車が利用されてきた。このような電動作業車として、例えば下記に出典を示す特許文献1に記載のものがある。
 特許文献1には、バッテリと、当該バッテリから供給される電力により駆動するモータと、当該モータにより駆動される走行装置とを備えた電動作業車について記載されている。
日本国特開2021-957号公報(JP2021-957A)
 作業車には、上述した電動作業車の他に、エンジンを動力源とする作業車もある。電動作業車の動力源であるモータは、エンジンに比べて低い回転数でも高トルクを出力可能に構成される。一方、エンジンにあっては、例えば低い回転数の状態で高トルクを得ようとすると、エンジンが停止する(所謂、エンスト)場合がある。例えば、エンジンを動力源とする作業車から、電動作業車に乗り換えたユーザによっては、エンジンではエンストが生じるような低回転数高トルクの状態でも、モータは停止することなく継続して駆動するため違和感を持つことがある。また、モータは低回転数高トルクの状態でも停止しないため、高負荷状態が継続することでモータに負担がかかる可能性もある。
 そこで、低回転数高トルクの状態において、エンジンを動力源とする作業車と同様の挙動となる電動作業車が求められる。
 本発明に係る電動作業車の特徴構成は、機体に搭載されるバッテリと、前記バッテリの直流電力を交流電力に変換するインバータと、前記インバータにより変換された前記交流電力により駆動するモータと、前記モータの回転数を示す回転数情報を取得する回転数情報取得部と、前記モータにより駆動される走行装置と、前記モータに要求する要求回転数を変更する操作具と、前記回転数情報と前記要求回転数とに応じて前記インバータを駆動して、前記モータを流れる電流を制御する制御部と、を備え、前記制御部は、前記モータの負荷が予め設定された負荷より高くなった場合に、前記要求回転数にかかわらず、前記モータの駆動を停止する点にある。
 モータは、エンジンに比べて低回転時に出力可能なトルクが高いものが多い。このような特徴構成とすれば、モータに対する負荷が予め設定された負荷よりも高くなった場合にモータを停止することができる。これにより、モータの挙動を、低回転数で負荷が高くなり過ぎたときに、駆動を停止するエンジンと同様の挙動とすることが可能となる。したがって、例えばエンジンを動力源とする作業車から、モータを動力源とする電動作業車に乗り換えた場合であっても、オペレータが違和感を持つことなく電動作業車を運転することが可能となる。
 また、前記モータを流れる電流の電流値を検出する電流センサと、前記電流値に基づいて前記モータが出力するトルクを算定するトルク算定部と、を備え、前記制御部は、前記モータが出力するトルクが予め設定されたトルク値よりも大きくなった場合に、前記モータの駆動を停止すると好適である。
 このような構成とすれば、モータが出力しているトルクを容易に算定することができる。したがって、制御部が、算定されたトルクに応じて、負荷が高いか否かを容易に判定することができるので、モータの負荷が予め設定された負荷より高いか否かを適切に判定することが可能となる。また、モータに対して過大な負荷が作用することを防止できるので、モータの劣化を良くすることが可能となる。
 また、前記制御部は、前記モータの回転数が予め設定された回転数以下となった場合に、前記要求回転数にかかわらず、前記モータの駆動を停止すると好適である。
 このような構成とすれば、例えば発進時のように、モータの回転数が予め設定された回転数以下となった場合には、所謂エンストを擬似的に生じさせることができる。したがって、オペレータがエンジンを動力源とする作業車と同様に、電動作業車を運転することが可能となる。
 また、前記制御部は、前記モータの回転数が前記予め設定された回転数以下となった状態が、所定の間に亘って継続した場合に、前記モータの駆動を停止すると好適である。
 このような構成とすれば、例えば一時的にモータの回転数が予め設定された回転数以下となった状況である場合にはモータの駆動が停止されないので、継続して電動作業車を駆動させることが可能となる。
 また、前記制御部は、前記モータの負荷の増大に伴って、前記モータの回転数が前記要求回転数よりも低いアイドリング回転数以下になった場合に、前記モータの駆動を停止すると好適である。
 このような構成とすれば、よりエンジンを動力源とする作業車の挙動に近づけることが可能となる。
 また、前記制御部は、前記モータの負荷が前記予め設定された負荷より高くなった原因が前記走行装置に起因するものである場合に、前記走行装置が有する静油圧式無段変速機における油圧をリリーフ弁を駆動して低下させ、当該リリーフ弁の駆動後、前記モータの負荷が継続して高い状態が続いた場合は前記モータの駆動を停止すると好適である。
 このような構成とすれば、例えば電動作業車が、泥地でスタックした場合等のように走行装置の負荷が増大した際は、走行装置が有する静油圧式無段変速機の油圧を開放し、モータの負荷が高くなくなった場合にはモータの駆動が停止されないので電動作業車が走行を継続することができる。一方、走行装置が有する静油圧式無段変速機の油圧を開放した後、モータの負荷が高い状態が継続した場合には、モータの駆動を停止させ、よりエンジンを動力源とする作業車の挙動に近づけることが可能となる。
 また、前記制御部は、前記要求回転数にかかわらず前記モータの駆動を停止した場合に、前記インバータの駆動が規制される規制状態となり、前記規制状態は、オペレータからの解除指示情報の入力に応じて解除されると好適である。
 例えばエンジンが停止した後、エンジンを再始動する場合には、エンジンキーを操作したり、スタートボタンを押下したりする必要がある。そこで、このような構成とすれば、モータが要求回転数にかかわらず停止された後、再始動する場合に、オペレータからの解除指示情報の入力が必要となるので、再始動時の操作においてもエンジンで駆動する作業車と同様にすることができる。したがって、よりエンジンを動力源とする作業車の挙動に近づけることが可能となる。
 また、前記制御部は、前記解除指示情報の入力があった場合に、前記走行装置が有する静油圧式無段変速機を初期状態にすると好適である。
 このような構成とすれば、走行装置が有する静油圧式無段変速機の負荷を軽減することで、電動作業車が走行し易くできる。
 また、前記制御部は、前記規制状態が解除された場合に、前記機体を走行させないようにすると好適である。
 このような構成とすれば、制御部が例えば変速装置を中立状態にしたり、アクセルペダルを初期位置に戻して機体を走行させないようにすることで、意図せず走行するといった状況の発生を防止できる。
 また、前記規制状態の解除は、前記解除指示情報の入力があり、且つ、前記機体の状態が予め設定された状態である場合に行われると好適である。
 このような構成とすれば、規制状態が解除された場合に、意図せず走行するといったことを防止できる。
 また、前記要求回転数にかかわらず前記モータの駆動が停止された場合に、前記モータの駆動が停止されたことを報知する報知部を更に備えると好適である。
 モータは停止中はもちろん、駆動中も動作音が小さいため、状況(例えば走行している路面の状況に応じて生じる音が大きい場合や、作業ユニットから生じる音が大きい場合や、作業に起因して生じる音が大きい場合)によっては、オペレータが停止中であるか駆動中であるか把握し難い場合がある。そこで、要求回転数にかかわらずモータの駆動が停止された場合に、報知部が報知することで、オペレータにモータが停止されたことを把握させることができる。
 また、前記モータの負荷が増大して、前記モータの回転数が、前記要求回転数よりも低い第1の回転数になった場合に、前記モータの負荷が増大していることを報知する報知部を更に備え、前記制御部は、前記報知部が報知してから所定時間が経過した場合及び前記報知部が報知してから前記モータの回転数が前記第1の回転数よりも低い第2の回転数になった場合の少なくともいずれか一方の場合に、前記モータの駆動を停止すると好適である。
 このような構成とすれば、モータの回転数が増大してからモータの駆動を停止するまでの間に、オペレータに対してモータの負荷が増大していることを報知することができる。したがって、モータの駆動が停止されるまでの間に、オペレータにモータの負荷を軽減できる対応を取らせる時間を確保することが可能となる。
トラクタの左側面図である。 インバータ等の配置を示す左側面図である。 動力伝達の流れを示す図である。 モータの駆動を行う機能部の説明図である。 操作具の操作量とモータに対する要求回転数との関係を示す図である。 モータの制御状態を示す状態遷移図である。 報知部による報知の一例を示す図である。
 本発明に係る電動作業車は、モータの低回転時にエンジンを動力源とする作業車と同様の挙動となるように構成される。以下、本実施形態の電動作業車について説明する。尚、以下では、電動作業車がトラクタである場合の例を挙げて説明する。
 本発明を実施するための形態について、図面に基づき説明する。尚、以下の説明においては、特に断りがない限り、図中の矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図中の矢印Uの方向を「上」、矢印Dの方向を「下」とする。
〔トラクタの全体構成〕
 以下では、本実施形態のトラクタについて説明する。図1に示すように、トラクタは、左右の前車輪10、左右の後車輪11、カバー部材12を備えている。
 また、トラクタは、機体フレーム2及び運転部3を備えている。機体フレーム2は、左右の前車輪10及び左右の後車輪11に支持されている。
 カバー部材12は、機体前部に配置されている。そして、運転部3は、カバー部材12の後方に設けられている。言い換えれば、カバー部材12は、運転部3の前方に配置されている。
 運転部3は、保護フレーム30、運転座席31、ステアリングホイール32を有している。オペレータは、運転座席31に着座可能である。これにより、オペレータは、運転部3に搭乗可能である。ステアリングホイール32の操作によって、左右の前車輪10は操向操作される。オペレータは、運転部3において、各種の運転操作を行うことができる。
 トラクタは、走行用バッテリ4を備えている。また、カバー部材12は、機体左右方向に沿う開閉軸芯Q周りに揺動可能に構成されている。これにより、カバー部材12は、開閉可能に構成されている。カバー部材12が閉状態であるとき、走行用バッテリ4は、カバー部材12に覆われている。
 図2に示すように、トラクタは、インバータ14及びモータMを備えている。走行用バッテリ4は、インバータ14へ電力を供給する。インバータ14は、走行用バッテリ4からの直流電力を交流電力に変換してモータMへ供給する。そして、モータMは、インバータ14から供給される交流電力により駆動する。
 図2及び図3に示すように、トラクタは、静油圧式無段変速機15及びトランスミッション16を備えている。図3に示すように、静油圧式無段変速機15は、油圧ポンプ15a及び油圧モータ15bを有している。
 油圧ポンプ15aは、モータMからの回転動力により駆動する。油圧ポンプ15aが駆動することにより、油圧モータ15bから回転動力が出力される。尚、静油圧式無段変速機15は、油圧ポンプ15aと油圧モータ15bとの間で回転動力が変速されるように構成されている。また、静油圧式無段変速機15は、変速比を無段階に変更可能に構成されている。
 油圧モータ15bから出力された回転動力は、トランスミッション16に伝達される。トランスミッション16に伝達された回転動力は、トランスミッション16の有するギヤ式変速機構によって変速され、左右の前車輪10及び左右の後車輪11へ分配される。これにより、左右の前車輪10及び左右の後車輪11が駆動する。
 また、図2及び図3に示すように、トラクタは、ミッドPTO軸17及びリヤPTO軸18を備えている。モータMから出力された回転動力は、油圧ポンプ15a、ミッドPTO軸17、リヤPTO軸18へ分配される。これにより、ミッドPTO軸17及びリヤPTO軸18が回転する。
 ミッドPTO軸17またはリヤPTO軸18に作業装置が接続されていれば、ミッドPTO軸17またはリヤPTO軸18の回転動力により、作業装置が駆動することとなる。例えば、図2に示すように、本実施形態では、ミッドPTO軸17に草刈装置19が接続されている。ミッドPTO軸17の回転動力により、草刈装置19が駆動する。
〔モータの制御〕
 図4は、モータMの駆動にかかる機能部を示すブロック図である。図4のブロック図には、バッテリ(走行用バッテリ)4、インバータ14、モータM、回転数情報取得部41、走行装置42、操作具43、制御部44、電流センサ51、トルク算定部52、報知部57が示される。各機能部は、モータMの駆動を行うために、CPUを中核部材としてハードウェア又はソフトウェア或いはその両方で構築されている。
 バッテリ4は、上述したようにカバー部材12に覆われた状態で、機体に搭載される。また、バッテリ4に蓄えられた電気エネルギーは、モータMの駆動に利用される。
 インバータ14は、バッテリ4の直流電力を交流電力に変換する。本実施形態では、インバータ14は、第1の電源ラインL1と第2の電源ラインL2との間に設けられた、第1のスイッチング素子Q1と第2のスイッチング素子Q2とが直列に接続された3本のアーム部Aを有して構成される。第1の電源ラインL1とは、バッテリ4の2つの出力端子のうちの正端子に接続される電源ラインであって、第2の電源ラインL2とは、バッテリ4の2つの出力端子のうちの負端子に接続される電源ラインである。インバータ14は、この第1の電源ラインL1と第2の電源ラインL2との間に、3本のアーム部Aを設けている。以下では、3本のアーム部Aの夫々を区別する場合には、夫々、アーム部A1、アーム部A2、アーム部A3として示す。本実施形態では、第1のスイッチング素子Q1及び第2のスイッチング素子Q2は、共に、P型のIGBTが用いられる。第1のスイッチング素子Q1のコレクタ端子が第1の電源ラインL1に接続され、第1のスイッチング素子Q1のエミッタ端子と第2のスイッチング素子Q2のコレクタ端子とが接続される。また、第2のスイッチング素子Q2のエミッタ端子は、第2の電源ラインL2に接続される。第1のスイッチング素子Q1のエミッタ端子とコレクタ端子との間には、アノード端子がエミッタ端子に接続され、カソード端子がコレクタ端子に接続されたダイオードD1が設けられる。また、第2のスイッチング素子Q2のエミッタ端子とコレクタ端子との間には、アノード端子がエミッタ端子に接続され、カソード端子がコレクタ端子に接続されたダイオードD2が設けられる。第1のスイッチング素子Q1及び第2のスイッチング素子Q2の夫々のゲート端子は、後述する制御部44に接続される。インバータ14は、制御部44により、3つのアーム部Aにおける1つのアーム部Aの第1のスイッチング素子Q1と、他の2つのアーム部Aのうちの一方のアーム部Aの第2のスイッチング素子Q2とがPWM制御により通電される。これにより、バッテリ4の直流電力は、PWM制御信号の周波数に応じた交流電力に変換される。
 モータMは、インバータ14により変換された交流電力により駆動する。モータMの3つの端子は、夫々、アーム部A1における第1のスイッチング素子Q1と第2のスイッチング素子Q2とが接続される第1のノードn1と、アーム部A2における第1のスイッチング素子Q1と第2のスイッチング素子Q2とが接続される第2のノードn2と、アーム部A3における第1のスイッチング素子Q1と第2のスイッチング素子Q2とが接続される第3のノードn3とに接続される。アーム部A1における第1のスイッチング素子Q1と第2のスイッチング素子Q2とが接続される第1のノードn1とは、アーム部A1を構成する第1のスイッチング素子Q1のエミッタ端子と第2のスイッチング素子Q2のコレクタ端子とが接続される部分である。アーム部A2における第1のスイッチング素子Q1と第2のスイッチング素子Q2とが接続される第2のノードn2とは、アーム部A2を構成する第1のスイッチング素子Q1のエミッタ端子と第2のスイッチング素子Q2のコレクタ端子とが接続される部分である。アーム部A3における第1のスイッチング素子Q1と第2のスイッチング素子Q2とが接続される第3のノードn3とは、アーム部A3を構成する第1のスイッチング素子Q1のエミッタ端子と第2のスイッチング素子Q2のコレクタ端子とが接続される部分である。図4では、モータMのコイルはデルタ結線で構成されている場合の例を挙げているが、モータMのコイルはスター結線で構成されていても良い。
 回転数情報取得部41は、モータMの回転数を示す回転数情報を取得する。モータMの回転数とは、モータMが有するロータの回転数である。このような回転数は、例えばホール素子を有する回転センサ41Aを用いて検出することが可能である。また、回転センサ41Aに代えて、モータMを流れる電流の大きさに基づき、モータMの回転数を算定することも可能である。この場合には、後述する電流センサ51の検出結果に基づき算定すると良い。回転センサ41AによるモータMの回転数の検出結果は、回転数情報として回転数情報取得部41に伝達される。
 走行装置42は、モータMにより駆動される。本実施形態では、走行装置42とは、上述した静油圧式無段変速機15、トランスミッション16、左右の前車輪10、及び左右の後車輪11の総称である。上述したように、モータMの回転動力が、静油圧式無段変速機15を介して、トランスミッション16に伝達される。トランスミッション16に伝達された回転動力は、トランスミッション16が有するギヤ式変速機構によって変速され、左右の前車輪10及び左右の後車輪11へ分配される。これにより、上述したように、左右の前車輪10及び左右の後車輪11が駆動され、トラクタが走行可能となる。
 操作具43は、モータMに要求する要求回転数を変更する。モータMに要求する要求回転数とは、オペレータがモータMから出力してほしい回転動力の回転数の指令値、所謂、指令回転数にあたる。本実施形態では、操作具43は、運転座席31の側部において、前後方向に揺動可能に構成されたレバーが相当する。操作具43を、前方側へ傾倒するように操作される程、要求回転数が増大して、モータMが高速で回転するように構成されており、操作された位置で安定的に位置保持されるように構成されている。図5には、操作具43の操作量とモータMに対する要求回転数との関係が示される。図5では、縦軸がモータMに要求される要求回転数であり、横軸が操作具43の操作量である。図5の例では、操作量が10〔%〕の時の要求回転数がN1〔rpm〕であり、操作量が90〔%〕の時の要求回転数がN2〔rpm〕である。操作量が10〔%〕から90〔%〕までの間は、要求回転数は操作量に比例するように設定されている。なお、操作量は%で示されているが、これは、操作具43が最も手前側にある状態が0〔%〕であり、最も前方側へ傾倒した状態が100〔%〕である。また、詳細は後述するが、本例では、操作量が10〔%〕未満では、要求回転数が0〔rpm〕となり、操作量が90〔%〕以上では、要求回転数がN2〔rpm〕となるように構成されている。本例では、このような関係に基づき、操作具43の操作量に応じて、モータMの要求回転数を設定することが可能となる。回転数がN1〔rpm〕の状態をアイドリング状態、この回転数をアイドリング回転数とする。
 図4に戻り、本実施形態では、操作具43の操作量、すなわち上記前後方向における位置は、位置検出部43Aにより検出される。したがって、位置検出部43Aにより検出された操作具43の位置により、モータMに要求された要求回転数を特定することが可能となる。
 制御部44は、回転数情報と要求回転数とに応じてインバータ14を駆動して、モータMを流れる電流を制御する。回転数情報は、回転数情報取得部41から制御部44に伝達される。要求回転数は、位置検出部43Aから操作具43の位置の検出結果が伝達され、この検出結果に基づき特定可能である。モータMを流れる電流とは、インバータ14から出力された電流であって、モータMのコイルに流れる電流である。したがって、制御部44は、回転数情報により示される現在のモータMの回転数が、位置検出部43Aの検出結果により特定された要求回転数となるように、インバータ14を制御してモータMのコイルに流れる電流を制御する。これにより、操作具43の操作に応じて、モータMから出力される回転動力を制御することが可能となる。
 ここで、本トラクタは、モータMの回転動力により走行する電動トラクタであるが、トラクタには、エンジンの回転動力により走行するものもある。このようなトラクタに搭載されるエンジンは、エンジンの回転数に応じて出力可能なトルク(出力トルク)が決まっている。エンジンは、当該エンジンの回転数により出力可能なトルクよりも過大なトルクがエンジンに作用すると停止する(所謂、エンストする)。一方、モータMも、回転数に応じて出力可能なトルクが決まっているが、当該出力可能なトルクよりも過大なトルクがモータMに作用しても、モータMの場合には回転数が次第に減少してゼロになり、エンジンのような急に停止することは少ない。このため、例えばエンジンを動力源とするトラクタから、電動トラクタに乗り換えた場合、オペレータが違和感を持つ可能性がある。そこで、本トラクタでは、オペレータが上記のような違和感を持つことがないように構成される。
 具体的には、制御部44は、モータMの負荷が予め設定された負荷より高くなった場合に、要求回転数にかかわらず、モータMの駆動を停止する。モータMの負荷とは、モータMに作用するトルクである。予め設定された負荷とは、当該負荷がモータMに作用した場合に、モータMの駆動を停止させたい負荷である。例えばエンジンがエンストする際にエンジンに作用する負荷に基づいて設定すると良い。要求回転数にかかわらずとは、モータMの回転数を、操作具43により要求される要求回転数に追従させることがないことを意味する。モータMの駆動を停止するとは、インバータ14からモータMのコイルに電流が流れないようにすることをいう。したがって、制御部44は、モータMに作用するトルクが、予め設定されたモータMの駆動を停止させたい負荷よりも高くなった場合に、モータMの回転数を、操作具43により要求される要求回転数に追従させることなく、インバータ14からモータMのコイルに電流が流れないようにしてモータMを停止させる。
 具体的には、要求回転数が2000〔rpm〕で、モータMの負荷が高くなりモータMの実回転数が1500〔rpm〕となった場合に、モータMの駆動を停止するように設定するとよい。よりエンジンを動力源とするトラクタとフィーリングを近づけるために、要求回転数がアイドリング回転数以上であり、モータMの負荷が高くなりモータMの実回転数がアイドリング回転数以下となった場合に、モータMの駆動を停止するように設定してもよい。
 モータMのトルクは、モータMを流れる電流に基づいて算定することが可能である。モータMを流れる電流の電流値は、電流センサ51により検出される。モータMを流れる電流は、第1のノードn1とモータMとを接続するケーブル、第2のノードn2とモータMとを接続するケーブル、第3のノードn3とモータMとを接続するケーブルを流れる電流とほぼ同じであるので、電流センサ51はこれらのケーブルを流れる電流に基づき、モータMを流れる電流の電流値を検出しても良い。また、電流センサ51は、これらのケーブルを断線することなく測定するホール素子を利用して検出するものであっても良いし、これらのケーブルの夫々と基準電位(例えば接地電位)との間に抵抗器を設けて、当該抵抗器における電圧降下により検出するものであっても良い。電流センサ51による電流値の検出結果は、トルク算定部52に伝達される。なお、この電流値の検出結果を、制御部44に伝達し、制御部44はモータMを流れる電流も考慮して、インバータ14をPWM制御しても良い。
 トルク算定部52は、電流値に基づいてモータMが出力するトルクを算定する。すなわち、モータMを流れる電流の電流値と、モータMが出力するトルクとの間には、所定の関係がある。トルク算定部52に、予めこのような関係を示すマップを記憶しておき、当該マップに基づいてモータMを流れる電流の電流値に対応する出力トルクを算定すると良い。
 この場合には、制御部44は、モータMが出力するトルクが予め設定されたトルク値よりも大きくなった場合に、モータMの駆動を停止すると良い。モータMが出力するトルクとは、トルク算定部52により算定されたトルクである。制御部44は、このトルクを、予め設定されたトルク値と比較し、当該トルク値よりも大きくなった場合に、モータMの負荷が予め設定された負荷よりも高くなっているとして、モータMの駆動を停止すると良い。
 また、制御部44は、モータMの回転数が予め設定された回転数以下となった場合に、要求回転数にかかわらず、モータMの駆動を停止するように構成すると良い。モータMの回転数は、回転数情報取得部41により取得される。予め設定された回転数とは、例えば1分間の回転数が数百回転とすることが可能である。また、目標回転数から30%下がった回転数、もしくは目標回転数から数百回転下がった回転数といった設定をすることも可能である。したがって、制御部44は、回転数情報取得部41により取得されたモータMの回転数が、予め設定された回転数である、数百回転(rpm)、あるいは目標回転数から30%下がった回転数、目標回転数から数百回転下がった回転数となった場合に、モータMの駆動を停止すると良い。
 このとき、すぐにモータMの駆動を停止するのではなくモータMの回転数が予め設定された回転数以下となった状態が数秒程度などしばらく継続した後、モータMの駆動を停止するようにしてもよい。
 また、モータMの負荷が高くなった原因が走行装置42に起因するものであった場合、静油圧式無段変速機15の油圧をリリーフ弁により下げ、それでもモータMの負荷が変わらず高い状態が続いた場合はモータMの駆動を停止するようにしてもよい。走行装置42による負荷の原因としては、例えば泥地でスタックした場合が挙げられる。
 以上のように構成することで、例えばエンジンを搭載したトラクタのエンストを擬似的に発生させることが可能となる。これにより、例えばエンジンを搭載したトラクタから乗り換えたオペレータが違和感を持つことなく当該モータMを搭載するトラクタを利用することが可能となる。
 ここで、本実施形態では、制御部44は、上述したように、要求回転数にかかわらずモータMの駆動を停止した場合に、インバータ14の駆動が規制される規制状態となる。要求回転数にかかわらずモータMの駆動を停止した場合とは、モータMが出力するトルクが予め設定されたトルク値よりも大きくなった際のモータMの駆動停止や、モータMの回転数が予め設定された回転数以下となった際のモータMの駆動停止等のように、モータMの負荷が予め設定された負荷よりも高くなってモータMの駆動が停止された場合である。インバータ14の駆動が規制されるとは、インバータ14に対する通電を行うことができなくされることを意味する。このような状態は、規制状態と称される。したがって、制御部44は、モータMの負荷が予め設定された負荷よりも高くなってモータMの駆動が停止された場合に、インバータ14に対する通電を行うことができない状態となる。
 本実施形態では、この規制状態は、オペレータからの解除指示情報の入力に応じて解除することが可能である。解除情報指示とは、制御部44の規制状態を解除するための指示であって、例えばオペレータによる運転部3のフロントパネル部に設けられるスタートボタン61の押下や、操作具43による要求回転数を零とするオペレータによる操作とすることが可能である。スタートボタン61の押下は、解除指示情報受付部55が受け付けるように構成すると良い。また、操作具43による要求回転数を零とする操作は、操作具43の位置を位置検出部43Aが検出し、この検出結果を解除指示情報受付部55が受け付けるように構成すると良い。
 解除指示情報受付部55が、このような解除指示を受け付けると制御部44に解除指示があったことを示す情報を伝達すると良い。これにより、制御部44の規制状態を解除することが可能となる。
 図6には、モータMの制御状態を示す状態遷移図が示される。モータMを駆動する場合には、オペレータにより操作具43が操作される。この時の操作具43の位置が位置検出部43Aにより検出され、要求回転数として制御部44に伝達される。制御部44は、この要求回転数が伝達されると、インバータ14に対する通電指示があったとして、インバータ14に対して通電する(#1)。これにより、インバータ14を介してモータMが通電状態となる(#2)。モータMが通電状態にある時に、モータMの負荷が予め設定された負荷より高くなると、制御部44はインバータ14に対する通電を停止する。これにより、モータMが停止する(#3)。このモータMの停止は、操作具43により要求回転数として0〔rpm〕が要求された結果によるものではないため、制御部44は規制状態とされる(#4)。
 制御部44が規制状態である場合において、オペレータによりスタートボタン61が押下されたり、操作具43が一旦、操作量が0〔%〕となる位置に戻された場合、解除指示情報受付部55がこれらを検出し、制御部44に対して解除指示情報が伝達される(#5)。制御部44は、解除指示情報が伝達されると、規制状態が解除され、解除状態となる(#6)。規制状態が解除されると、制御部44は通電指示待ちの状態となる(#7)。この通電指示待ちの状態において、オペレータにより操作具43が操作され、モータMの要求回転数が入力されると、制御部44は要求回転数に応じてインバータ14を通電し、モータMが通電状態となる(#2)。本実施形態では、このような状態遷移図に基づきモータMの制御状態が遷移する。
 なお、#2のモータMに対する通電中に、オペレータによる操作具43の操作に応じてモータMに対する通電が停止された場合には(#3)、制御部44は規制状態とならずに、#7の通電指示待ちの状態となる。
 また、#5の解除指示の際に、走行装置42の静油圧式無段変速機15を初期状態にするようにしてもよい。例えば、静油圧式無段変速機15を中立状態にして初期状態にする。これは、オペレータがスイッチなどで初期状態にするようにしてもよく、自動で静油圧式無段変速機15内のリリーフ弁により圧力を下げて中立にするようにしてもよい。
 その他にも、規制状態が解除された際にトラクタが走行しないような処理を行うことができる。例えば、#5の解除指示の際に、トランスミッション16に副変速を含む場合は、副変速をニュートラルとすることや、アクセルペダルを初期状態に戻すことも可能である。また、#5の解除指示の際に、PTOが回転しないような処理、例えばミッドPTO軸17、リヤPTO軸18の回転を、クラッチを切断するなどの方法で停止させ、規制状態が解除された際に負荷がかからない状態となるようにしてもよい。
 ここで、上述したように、要求回転数にかかわらずモータMの駆動が停止された場合に、オペレータが、モータMの負荷が予め設定された負荷よりも高くなってモータMの駆動が停止されたのか否かを把握することができるように、報知部57が要求回転数にかかわらずモータMの駆動が停止された場合に、モータMの駆動が停止されたことを報知すると良い。すなわち、要求回転数にかかわらずモータMの駆動が停止された場合に、図7に示されるように、トラクタの運転部3に設けられる表示装置58の表示画面に、「モータが停止中です。規制を解除してください。」というようなメッセージを表示したり、スピーカ59から「モータが停止中です。規制を解除してください。」というような音声を出力するように構成すると良い。これにより、オペレータが、モータMの負荷が予め設定された負荷よりも高くなってモータMの駆動が停止されたのか否かを把握することが可能となる。
 また、#5の解除指示の際に、トラクタが走行しないような処理やPTOが回転しないような処理が予めなされていないと解除できないようにしてもよい。例えば、トラクタが走行しないような処理として静油圧式無段変速機15を中立状態に自動で行う処理を#4の規制状態になった後に加えたり、手動で行うようにする。
〔その他の実施形態〕
 上記実施形態では、電動作業車がトラクタである場合の例を挙げて説明したが、電動作業車はトラクタ以外の作業車、すなわち田植機、コンバイン、建設機械、芝刈り機などであっても良い。
 上記実施形態では、モータMが三相モータであって、インバータ14が3本のアーム部Aを備えているとして説明したが、モータMは三相モータでなくても良く、この場合、インバータ14のアーム部Aの本数はモータMの相数に応じて設けると良い。
 上記実施形態では、電動作業車が、電流センサ51とトルク算定部52とを備え、制御部44は、トルク算定部52が電流センサ51により検出された電流値に基づいて算定したトルクに応じてモータMの駆動を制御するとして説明した。しかしながら、電動作業車は電流センサ51とトルク算定部52とを備えずに構成することも可能である。この場合、制御部44は、上記実施形態で説明したようにモータMの負荷に応じてモータMの駆動を制御すると良い。
 上記実施形態では、制御部44は、要求回転数にかかわらずモータMの駆動を停止した場合に、インバータ14の駆動が規制される規制状態となり、規制状態は、オペレータからの解除指示情報の入力に応じて解除されるとして説明した。しかしながら、制御部44は、要求回転数にかかわらずモータMの駆動を停止した場合に、上記規制状態とならないように構成することも可能である。また、規制状態は、オペレータからの解除指示情報の入力に代えて、例えば、要求回転数にかかわらずモータMの駆動を停止してから予め設定された時間だけ規制状態となり、当該予め設定された時間が経過した場合に、自動的に規制状態を解除するように構成することも可能である。
 上記実施形態では、要求回転数にかかわらずモータMの駆動が停止された場合に、報知部57が、モータMの駆動が停止されたことを報知するとして説明した。しかしながら、要求回転数にかかわらずモータMの駆動が停止された場合に、モータMの駆動が停止されたことを報知しないように構成することも可能である。また、報知部57は、表示装置58の表示画面に所定の表示を行って報知したり、スピーカ59から音声を出力して報知するように構成されているとして説明したが、報知部57はオペレータが所持する携帯端末の表示画面に表示したり、携帯端末のスピーカから音声を出力したりするように構成することも可能である。また、報知部57が、機体に設けられるブザーやランプを用いてモータMの駆動が停止されたことを報知するように構成することも可能である。
 上記実施形態では、モータMの駆動が停止された後に報知部57が、モータMの駆動が停止されたことを報知するとして説明した。しかしながら、モータMが要求回転数よりも一定程度下がった場合に、報知部57が「モータが過負荷です。負荷を軽減してください。」というようなメッセージを表示したり、スピーカ59から「モータが過負荷です。負荷を軽減してください。」というような音声を出力するように構成すると良い。また、ブザーやランプを用いて報知してもよい。この場合、例えば要求回転数が2000〔rpm〕で、モータMの負荷が高くなりモータMの実回転数が1500〔rpm〕となった場合に報知し、その後一定時間経過後、あるいは実回転数が1000〔rpm〕となった場合にモータMの駆動を停止するように設定することも可能である。
 本発明は、電気エネルギーで走行する電動作業車に用いることが可能である。
 4:バッテリ
 14:インバータ
 15:静油圧式無段変速機
 41:回転数情報取得部
 42:走行装置
 43:操作具
 44:制御部
 51:電流センサ
 52:トルク算定部
 57:報知部
 M:モータ
 

Claims (12)

  1.  機体に搭載されるバッテリと、
     前記バッテリの直流電力を交流電力に変換するインバータと、
     前記インバータにより変換された前記交流電力により駆動するモータと、
     前記モータの回転数を示す回転数情報を取得する回転数情報取得部と、
     前記モータにより駆動される走行装置と、
     前記モータに要求する要求回転数を変更する操作具と、
     前記回転数情報と前記要求回転数とに応じて前記インバータを駆動して、前記モータを流れる電流を制御する制御部と、を備え、
     前記制御部は、前記モータの負荷が予め設定された負荷より高くなった場合に、前記要求回転数にかかわらず、前記モータの駆動を停止する電動作業車。
  2.  前記モータを流れる電流の電流値を検出する電流センサと、
     前記電流値に基づいて前記モータが出力するトルクを算定するトルク算定部と、を備え、
     前記制御部は、前記モータが出力するトルクが予め設定されたトルク値よりも大きくなった場合に、前記モータの駆動を停止する請求項1に記載の電動作業車。
  3.  前記制御部は、前記モータの回転数が予め設定された回転数以下となった場合に、前記要求回転数にかかわらず、前記モータの駆動を停止する請求項1又は2に記載の電動作業車。
  4.  前記制御部は、前記モータの回転数が前記予め設定された回転数以下となった状態が、所定の間に亘って継続した場合に、前記モータの駆動を停止する請求項3に記載の電動作業車。
  5.  前記制御部は、前記モータの負荷の増大に伴って、前記モータの回転数が前記要求回転数よりも低いアイドリング回転数以下になった場合に、前記モータの駆動を停止する請求項1から4のいずれか一項に記載の電動作業車。
  6.  前記制御部は、前記モータの負荷が前記予め設定された負荷より高くなった原因が前記走行装置に起因するものである場合に、前記走行装置が有する静油圧式無段変速機における油圧をリリーフ弁を駆動して低下させ、当該リリーフ弁の駆動後、前記モータの負荷が継続して高い状態が続いた場合は前記モータの駆動を停止する請求項1から5のいずれか一項に記載の電動作業車。
  7.  前記制御部は、前記要求回転数にかかわらず前記モータの駆動を停止した場合に、前記インバータの駆動が規制される規制状態となり、
     前記規制状態は、オペレータからの解除指示情報の入力に応じて解除される請求項1から6のいずれか一項に記載の電動作業車。
  8.  前記制御部は、前記解除指示情報の入力があった場合に、前記走行装置が有する静油圧式無段変速機を初期状態にする請求項7に記載の電動作業車。
  9.  前記制御部は、前記規制状態が解除された場合に、前記機体を走行させないようにする請求項7又は8に記載の電動作業車。
  10.  前記規制状態の解除は、前記解除指示情報の入力があり、且つ、前記機体の状態が予め設定された状態である場合に行われる請求項7から9のいずれか一項に記載の電動作業車。
  11.  前記要求回転数にかかわらず前記モータの駆動が停止された場合に、前記モータの駆動が停止されたことを報知する報知部を更に備える請求項1から10のいずれか一項に記載の電動作業車。
  12.  前記モータの負荷が増大して、前記モータの回転数が、前記要求回転数よりも低い第1の回転数になった場合に、前記モータの負荷が増大していることを報知する報知部を更に備え、
     前記制御部は、前記報知部が報知してから所定時間が経過した場合及び前記報知部が報知してから前記モータの回転数が前記第1の回転数よりも低い第2の回転数になった場合の少なくともいずれか一方の場合に、前記モータの駆動を停止する請求項1から10のいずれか一項に記載の電動作業車。
     
PCT/JP2022/041913 2021-12-27 2022-11-10 電動作業車 WO2023127322A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021213172A JP2023097044A (ja) 2021-12-27 2021-12-27 電動作業車
JP2021-213172 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127322A1 true WO2023127322A1 (ja) 2023-07-06

Family

ID=86998743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041913 WO2023127322A1 (ja) 2021-12-27 2022-11-10 電動作業車

Country Status (2)

Country Link
JP (1) JP2023097044A (ja)
WO (1) WO2023127322A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248104A (ja) * 1997-03-04 1998-09-14 Honda Motor Co Ltd 電気自動車の制御装置
JP2003143704A (ja) * 2001-11-02 2003-05-16 Honda Motor Co Ltd 電動車両
JP2011046300A (ja) * 2009-08-27 2011-03-10 Kubota Corp ハイブリッド駆動車両
JP2012011936A (ja) * 2010-07-02 2012-01-19 Kobelco Cranes Co Ltd 作業車両の走行装置
JP2014117026A (ja) * 2012-12-07 2014-06-26 Kanzaki Kokyukoki Mfg Co Ltd モータ駆動車両の制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248104A (ja) * 1997-03-04 1998-09-14 Honda Motor Co Ltd 電気自動車の制御装置
JP2003143704A (ja) * 2001-11-02 2003-05-16 Honda Motor Co Ltd 電動車両
JP2011046300A (ja) * 2009-08-27 2011-03-10 Kubota Corp ハイブリッド駆動車両
JP2012011936A (ja) * 2010-07-02 2012-01-19 Kobelco Cranes Co Ltd 作業車両の走行装置
JP2014117026A (ja) * 2012-12-07 2014-06-26 Kanzaki Kokyukoki Mfg Co Ltd モータ駆動車両の制御システム

Also Published As

Publication number Publication date
JP2023097044A (ja) 2023-07-07

Similar Documents

Publication Publication Date Title
US9825559B2 (en) Motor control system and control system for electric motor-driven vehicle
US7017327B2 (en) Hybrid electric tool carrier
JP6040360B2 (ja) モータ駆動車両の制御システム
WO2013145362A1 (ja) ハイブリッド作業車
JP5580606B2 (ja) Pto制御システム
WO2007052658A1 (ja) 油圧ショベルのエンジン制御装置
JP6019321B2 (ja) モータ制御システム
US11247723B2 (en) Traveling vehicle
JP2003136970A (ja) 電動式動力農機
WO2023127322A1 (ja) 電動作業車
JP2013188161A (ja) 芝刈車両
JP2020079057A (ja) 作業車両
WO2023127295A1 (ja) 電動作業車
US20200088270A1 (en) Work vehicle having implement
JP3330908B2 (ja) 作業車両の油圧パワーユニットシステム
US20140277884A1 (en) Drive system and method for driving a vehicle
JP5776221B2 (ja) 作業車両
JPH07132874A (ja) ペダル付き電動車輌
JPH07300022A (ja) モ−タ駆動型トラクタ−
WO2023210087A1 (ja) 電動作業車
JPH05176402A (ja) 電気車の状態表示装置
JP2014065348A (ja) ハイブリッド車両
JP6142202B2 (ja) モータ制御システム
JP2012207560A (ja) 作業車両
CN113561795B (zh) 单电机驱动装载机的驱动系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915554

Country of ref document: EP

Kind code of ref document: A1