WO2023127273A1 - 無線アクセスネットワークノード、User Equipment、及びこれらの方法 - Google Patents

無線アクセスネットワークノード、User Equipment、及びこれらの方法 Download PDF

Info

Publication number
WO2023127273A1
WO2023127273A1 PCT/JP2022/040271 JP2022040271W WO2023127273A1 WO 2023127273 A1 WO2023127273 A1 WO 2023127273A1 JP 2022040271 W JP2022040271 W JP 2022040271W WO 2023127273 A1 WO2023127273 A1 WO 2023127273A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditional
message
pscell
candidate
mobility
Prior art date
Application number
PCT/JP2022/040271
Other languages
English (en)
French (fr)
Inventor
尚 二木
貞福 林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN202280092636.6A priority Critical patent/CN118765523A/zh
Priority to JP2023570686A priority patent/JPWO2023127273A5/ja
Publication of WO2023127273A1 publication Critical patent/WO2023127273A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to wireless communication systems, and more particularly to conditional mobility of wireless terminals.
  • CPC Conditional Handover (CHO) and Conditional Secondary Cell Group (SCG) Cell (PSCell) Change (CPC).
  • CPC in 3GPP Release 16 is inter-SN CPC within Secondary Node (SN) without Master Node (MN) involvement, and one or more source PSCells within one SN Support conditional PSCell change to any of the above candidate cells (i.e., Candidate PSCell).
  • This CPC is also called SN-initiated Conditional SN Modification without MN involvement without MN involvement and SN-initiated.
  • Conditional mobility that will be newly introduced in 3GPP Release 17 includes Conditional PSCell Addition (CPA) and inter-SN CPC.
  • CPA is also called conditional SN addition and inter-SN CPC is also called conditional SN change.
  • Inter-SN CPC or conditional SN change is initiated by MN or source SN.
  • Multi-Radio Dual Connectivity (MR-DC) with selective activation of cell groups for example, Non-Patent Documents 4 and 5 .
  • the UE selects any candidate target PSCell and performs random access to the selected target PSCell, depending on which unused (not selected) CPC/CPA You need to free the settings. Therefore, the UE has no chance to perform subsequent CPCs without reconfiguring and reinitializing the CPCs from the network.
  • Multi-Radio Dual Connectivity (MR-DC) with selective activation of cell groups” aims to address this issue.
  • MR-DC with selective activation of cell groups reconfigures and reinitializes CPC/CPA preparations from the network after changing the SCG. initialization) to allow subsequent CPC/CPA, which can reduce CPC/CPA signaling overhead and interruption time.
  • MR-DC Radio Access Network
  • gNB Radio Access Network node
  • CU Central Unit
  • DUs Distributed Units
  • Non-Patent Document 5 for 3GPP Release 18, the purpose is to specify the mechanism and procedure of MR-DC with selective activation of cell groups through Layer 3 (L3) enhancement 1 It is said that However, in certain scenarios, e.g. selective activation of cell groups within one RAN node (e.g., MN or SN), Layer 1/layer 2 (L1/L2) instead of L3-based inter-cell mobility It may be feasible with based inter-cell mobility.
  • One of the objectives that the embodiments disclosed herein seek to achieve, including the problems described above, is that after the first conditional mobility, subsequent second without reconfiguration or reinitialization from the network It is an object of the present invention to provide an apparatus, a method, and a program that contribute to solving at least one of a plurality of problems regarding implementation of a function or operation mode that enables 2 conditional mobility. It should be noted that this objective is only one of the objectives that the embodiments disclosed herein seek to achieve. Other objects or problems and novel features will become apparent from the description of the specification or the accompanying drawings.
  • a first aspect is directed to a RAN node configured to act as an SN associated with a Secondary Cell Group (SCG) in dual connectivity for a UE.
  • the RAN node includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor sends a first SN Radio Resource Control (RRC) message containing configuration of multiple candidate PSCells for a first conditional PSCell change to the UE, via the MN or the SN and said UE via a direct signaling radio bearer.
  • RRC Radio Resource Control
  • An operation in which the configuration of at least one candidate PSCell that was not selected in the first conditional PSCell change is reused by the UE for a subsequent second conditional PSCell change in the first SN RRC message. Indicates that the mode applies, is required, is recommended, or is available.
  • a second aspect is directed to a method performed by a RAN node configured to act as an SN associated with an SCG in dual connectivity for a UE.
  • the method sends a first SN RRC message containing configuration of multiple candidate PSCells for a first conditional PSCell change to the UE, via an MN or directly between the SN and the UE.
  • An operation in which the configuration of at least one candidate PSCell that was not selected in the first conditional PSCell change is reused by the UE for a subsequent second conditional PSCell change in the first SN RRC message. Indicates that the mode applies, is required, is recommended, or is available.
  • a third aspect is directed to the UE.
  • the UE includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor sends a first SN RRC message containing configuration of multiple candidate PSCells for a first conditional PSCell change via MN or direct signaling radio between the UE and SN. It is configured to receive via a bearer.
  • the at least one processor is configured to, if an execution condition for one of the plurality of candidate PSCells is satisfied, apply settings corresponding to one candidate PSCell for which the execution condition is satisfied.
  • the at least one processor performs an operation in which at least one candidate PSCell configuration that was not selected in the first conditional PSCell change is reused by the UE for a subsequent second conditional PSCell change. If the first SN RRC message indicates that a mode is applied, requested, recommended, or available, configure the at least one candidate PSCell with the second conditional PSCell change configured to be maintained for use.
  • a fourth aspect is directed to a method performed by a UE.
  • the method includes the following steps: (a) sending a first SN RRC message containing multiple candidate PSCells configurations for a first conditional PSCell change via the MN or via a direct signaling radio bearer between the UE and the SN; , to receive; (b) if one of the plurality of candidate PSCells satisfies an execution condition, applying a configuration corresponding to one candidate PSCell for which the execution condition is satisfied; and (c) the first conditional an operating mode is applied, required, recommended, or in which at least one candidate PSCell configuration that was not selected in a PSCell change is reused by the UE for a subsequent second conditional PSCell change; Retaining the at least one candidate PSCell configuration for use in the second conditional PSCell change if the first SN RRC message indicates that it is available.
  • a fifth aspect is directed to the Central Unit (CU) of the RAN node.
  • the CU includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to send a first message to a Distributed Unit (DU) and receive a second message from the DU that is a response to the first message.
  • the first message indicates a first conditional mobility request for the UE.
  • the first message is configured such that at least one candidate target cell configuration not selected in the first conditional mobility is reused by the UE for a subsequent second conditional mobility. Indicates that the mode applies, is required, is recommended, or is available.
  • a sixth aspect is directed to a method performed by a CU of a RAN node.
  • the method includes sending a first message to a DU and receiving from the DU a second message in response to the first message.
  • the first message indicates a first conditional mobility request for the UE.
  • the first message is configured such that at least one candidate target cell configuration not selected in the first conditional mobility is reused by the UE for a subsequent second conditional mobility. Indicates that the mode applies, is required, is recommended, or is available.
  • the seventh aspect is directed to DUs of RAN nodes.
  • the DU includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive a first message from a CU and send a second message to the CU that is a response to the first message.
  • the first message indicates a first conditional mobility request for the UE.
  • the first message is configured such that at least one candidate target cell configuration not selected in the first conditional mobility is reused by the UE for a subsequent second conditional mobility. Indicates that the mode applies, is required, is recommended, or is available.
  • the eighth aspect is directed to the method performed by the DU of the RAN node.
  • the method includes receiving a first message from a CU and sending a second message to the CU that is a response to the first message.
  • the first message indicates a first conditional mobility request for the UE.
  • the first message is configured such that at least one candidate target cell configuration not selected in the first conditional mobility is reused by the UE for a subsequent second conditional mobility. Indicates that the mode applies, is required, is recommended, or is available.
  • a ninth aspect is directed to the CU of the RAN node.
  • the CU includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive a first message from the first DU indicating candidate target cells that the UE has successfully accessed during the first conditional mobility.
  • the first message indicates that the readiness of other candidate target cells accepted for the first conditional mobility is maintained for a subsequent second conditional mobility.
  • a tenth aspect is directed to a method performed by a CU of a RAN node.
  • the method includes receiving a first message from a first DU indicating candidate target cells that the UE has successfully accessed during a first conditional mobility.
  • the first message indicates that the readiness of other candidate target cells accepted for the first conditional mobility is maintained for a subsequent second conditional mobility.
  • the eleventh aspect is directed to DUs of RAN nodes.
  • the DU includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to send a first message to the CU indicating candidate target cells that the UE has successfully accessed during the first conditional mobility.
  • the first message indicates that the readiness of other candidate target cells accepted for the first conditional mobility is maintained for a subsequent second conditional mobility.
  • a twelfth aspect is directed to a method performed by a DU of a RAN node.
  • the method includes sending a first message to the CU indicating candidate target cells that the UE successfully accessed during the first conditional mobility.
  • the first message indicates that the readiness of other candidate target cells accepted for the first conditional mobility is maintained for a subsequent second conditional mobility.
  • the thirteenth aspect is directed to CUs of RAN nodes.
  • the CU includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive a first message from the first DU indicating candidate target cells that the UE has successfully accessed during the first conditional mobility. Additionally, the at least one processor, after receiving the first message, prepares one or more candidate target cells for the first conditional mobility for a subsequent second conditional mobility. is configured to send a second message to the second DU indicating that it needs to be maintained in
  • a fourteenth aspect is directed to a method performed by a CU of a RAN node.
  • the method includes the following steps: (a) receiving a first message from the first DU indicating candidate target cells that the UE has successfully accessed during the first conditional mobility; and (b) after receiving said first message. , a second message indicating that the preparation of one or more candidate target cells for said first conditional mobility needs to be maintained for a subsequent second conditional mobility; Send to DU.
  • the fifteenth aspect is directed to CUs of RAN nodes.
  • the CU includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive a first message from the first DU indicating candidate target cells that the UE has successfully accessed during the first conditional mobility.
  • the at least one processor determines that after receiving the first message, the configuration of the source cell of the first conditional mobility should be maintained for a subsequent second conditional mobility. is configured to send a second message to the source DU serving said source cell, informing it.
  • a sixteenth aspect is directed to a method performed by a CU of a RAN node.
  • the method includes the following steps: (a) receiving a first message from the first DU indicating candidate target cells that the UE has successfully accessed during the first conditional mobility; and (b) after receiving said first message. , sending a second message to the source DU serving said source cell informing that the configuration of the source cell of said first conditional mobility needs to be maintained for subsequent second conditional mobility. to do.
  • the seventeenth aspect is directed to the UE.
  • the UE includes at least one memory and at least one processor coupled to the at least one memory.
  • the at least one processor is configured to receive configuration of multiple candidate Cell Group (CG) sets with different candidate Special Cells (SpCells) from a RAN node. Further, the at least one processor is configured to select one candidate SpCell by Layer 1/layer 2 based inter-cell mobility and apply the configuration of the candidate CG set corresponding to the selected candidate SpCell.
  • CG Cell Group
  • SpCells Special Cells
  • An eighteenth aspect is directed to a method performed by a UE.
  • the method includes the following steps: (a) the candidate SpCell receives configurations of multiple candidate CG sets that are different from each other from the RAN node; Apply the settings of the candidate CG set corresponding to the SpCell.
  • the nineteenth aspect is directed to the program.
  • the program comprises instructions (software code) that, when read into a computer, cause the computer to perform a method according to any of the aspects described above.
  • FIG. 1 is a diagram illustrating a configuration example of a radio communication system according to an embodiment
  • FIG. FIG. 4 is a diagram illustrating a configuration example of a RAN node according to the embodiment
  • 4 is a flow chart showing an example of operation of a RAN node (i.e., SN) according to the embodiment
  • 4 is a flow chart showing an example of the operation of a UE according to the embodiment
  • FIG. 4 is a sequence diagram illustrating an example of signaling for Intra-SN CPC (or conditional SN modification) according to an embodiment
  • FIG. 4 is a sequence diagram illustrating an example of signaling for Intra-SN CPC (or conditional SN modification) according to an embodiment
  • FIG. 4 is a sequence diagram illustrating an example of signaling for Intra-SN CPC (or conditional SN modification) according to an embodiment
  • FIG. 4 is a sequence diagram illustrating an example of signaling for Intra-SN CPC (or conditional SN modification) according to an embodiment
  • FIG. 4 is a sequence diagram illustrating an example of signaling for Intra-SN CPC (or conditional SN modification) according to an embodiment
  • FIG. 4 is a sequence diagram showing an example of signaling between a CU and a DU according to the embodiment
  • FIG. 4 is a diagram showing an example format of a UE CONTEXT MODIFICATION REQUEST message according to the embodiment
  • FIG. 10 is a diagram illustrating an example format of a UE CONTEXT MODIFICATION RESPONSE message according to an embodiment
  • FIG. 4 is a diagram showing an example of the format of a UE CONTEXT SETUP REQUEST message according to the embodiment
  • FIG. 10 is a diagram showing an example format of a UE CONTEXT SETUP RESPONSE message according to the embodiment
  • FIG. 4 is a sequence diagram showing an example of signaling between a CU and a DU according to the embodiment
  • FIG. 4 is a sequence diagram showing an example of signaling between a CU and a DU according to the embodiment
  • FIG. 4 is a sequence diagram showing an example of signaling between a CU and a DU according to the embodiment
  • 4 is a flow chart showing an example of the operation of a UE according to the embodiment
  • FIG. 4 is a sequence diagram illustrating an example of signaling for L1/L2 based inter-cell mobility according to an embodiment
  • 3 is a block diagram showing a configuration example of a RAN node according to the embodiment
  • FIG. 2 is a block diagram showing a configuration example of a UE according to an embodiment
  • FIG. 4 is a sequence diagram illustrating an example of signaling for L1/L2 based inter-cell mobility according to an embodiment
  • 3 is a block diagram showing a configuration example of a RAN node according to the embodiment
  • FIG. 2 is a block diagram showing a configuration example of a UE according to an embodiment
  • LTE Long Term Evolution
  • 5G system 5th generation mobile communication system
  • LTE Long Term Evolution
  • LTE-Advanced 5th generation mobile communication system
  • ⁇ if'' is ⁇ when'', ⁇ at or around the time'', ⁇ after ( “after”, “upon”, “in response to determining", “in accordance with a determination", or “detecting may be interpreted to mean “in response to detecting”. These expressions may be interpreted to have the same meaning depending on the context.
  • FIG. 1 shows a configuration example of a wireless communication system according to multiple embodiments.
  • the wireless communication system includes RAN node 1, RAN node 2 and UE3.
  • Each element (network function) shown in FIG. 1 can be, for example, as a network element on dedicated hardware, as a software instance running on dedicated hardware, or on an application platform. It can be implemented as an instantiated virtualization function.
  • the RAN node 1 may be a Central Unit (e.g. eNB-CU or gNB-CU) in a cloud RAN (C-RAN) deployment, or a CU and one or more Distributed Units (e.g. eNB-DUs , or gNB-DUs). C-RAN is also called CU/DU split. Additionally, a CU may include a Control Plane (CP) Unit (e.g. gNB-CU-CP) and one or more User Plane (UP) Units (e.g. gNB-CU-UP). Therefore, RAN node 1 may be a CU-CP or a combination of CU-CP and CU-UP. Similarly, RAN node 2 may be a CU or a combination of a CU and one or more DUs. RAN node 2 may be a CU-CP or a combination of CU-CP and CU-UP.
  • RAN node 2 may be a CU-CP or a combination of CU
  • Each of RAN nodes 1 and 2 may be an Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (EUTRAN) node or a Next generation Radio Access Network (NG-RAN) node.
  • EUTRAN nodes may be eNBs or en-gNBs.
  • NG-RAN nodes may be gNBs or ng-eNBs.
  • An en-gNB is a node that provides NR user plane and control plane protocol termination to the UE and acts as a secondary node (SN) for E-UTRA-NR Dual Connectivity (EN-DC).
  • ng-eNB is a node that provides E-UTRA user plane and control plane protocol termination to UE and is connected to 5GC via NG interface.
  • the Radio Access Technology (RAT) of RAN node 1 may be different from that of RAN node 2.
  • RAT Radio Access Technology
  • RAN node 1 and RAN node 2 communicate with each other via an inter-node interface (i.e., X2 interface or Xn interface) 103 .
  • RAN node 1 and RAN node 2 operate as a dual connectivity master node (MN) and secondary node (SN), respectively. Therefore, in the following, RAN node 1 may be referred to as MN1, and RAN node 2 may be referred to as candidate SN2.
  • MN1 can be either a master eNB (in EN-DC), a master ng-eNB (in NGEN-DC), or a master gNB (in NR-DC and NE-DC).
  • SN2 may be any of en-gNB (in EN-DC), secondary ng-eNB (in NE-DC), and secondary gNB (in NR-DC and NGEN-DC).
  • UE3 In EN-DC, UE3 is connected to eNB acting as MN1 and to en-gNB acting as SN2. In NGEN-DC, UE3 is connected to ng-eNB acting as MN1 and to gNB acting as SN2. NE-DC is connected to gNB operating as MN1 and to ng-eNB operating as SN2. In NR-DC, UE3 is connected to one gNB (or gNB-DU) acting as MN1 and to another gNB (or gNB-DU) acting as SN2.
  • MCG is a group of serving cells associated with (or served by) MN1, SpCell (i.e., Primary Cell (PCell)) and optionally one or more secondary cells ( Secondary Cells (SCells)).
  • SCG is a group of serving cells associated with (or provided by) SN2, including a primary SCG cell (PSCell) and optionally one or more secondary cells (Secondary Cells (SCells)).
  • PSCell is a Special Cell (SpCell) of SCG and supports Physical Uplink Control Channel (PUCCH) transmission and contention-based Random Access.
  • PSCell may be an abbreviation for Primary SCell.
  • the term “primary SCG cell” and its abbreviation “PSCell” are included in a group of cells served by a SN with dual connectivity, have uplink component carriers, and have uplink control channels (e.g. PUCCH) means the cell for which the resource is configured.
  • the term “primary SCG cell” and its abbreviation “PSCell” are provided by SNs supporting 5G NR (e.g. en-gNB in EN-DC, gNB in NGEN-DC, or gNB in NR-DC).
  • 5G NR e.g. en-gNB in EN-DC, gNB in NGEN-DC, or gNB in NR-DC
  • CPA Conditional PSCell Addition
  • RAN nodes 1 and 2 and UE3 support Conditional PSCell Addition (CPA) to add the SCG provided by RAN node 2 for UE3.
  • CPA may be referred to as conditional SN addition.
  • CPA (or conditional SN addition) is a PSCell addition procedure (or SN addition procedure) that is executed only when CPA execution conditions are met.
  • each candidate PSCell configuration is an Information Element (IE) (e.g., condRRCReconfig) of the RRC message of MN1, which contains one or more candidate PSCell configurations and associated CPA execution conditions. is included in the conditional mobility configuration information (e.g., conditionalReconfiguration IE) generated by MN1.
  • IE Information Element
  • conditional mobility configuration information e.g., conditionalReconfiguration IE
  • the configuration of each candidate PSCell is generated by the candidate SN (e.g., candidate SN2) that provides (or prepares) this candidate PSCell.
  • Configuration of each candidate PSCell includes at least configuration information for the candidate PSCell.
  • Configuration of each candidate PSCell may further include configuration information for one or more SCells associated with the candidate PSCell (ie, configured together with or associated with the candidate PSCell).
  • the configuration of each candidate PSCell may be radio bearer (RB) configuration, CG configuration, SCG configuration, or SCG radio resource configuration, or any combination thereof. More specifically, the configuration of each candidate PSCell may be an SN RRC Reconfiguration message generated by the candidate SN (e.g., candidate SN2) that provides (or prepares) this candidate PSCell.
  • a CPA configuration is a list of one or more MN RRC Reconfiguration messages.
  • Each MN RRC Reconfiguration message includes configuration of candidate PSCells received from candidate SNs (e.g., one or any combination of RB configuration, CG configuration, SCG configuration, SCG radio resource configuration, and SN RRC Reconfiguration message). .
  • CPA execution conditions are generated by MN1.
  • a CPA execution condition may consist of one or more trigger conditions.
  • the conditions or criteria that trigger a CPA event may be similar to those for measurement reporting events, eg CondEvent A3, CondEvent A4, or CondEvent A5.
  • CondEvent A3 is "Conditional reconfiguration candidate becomes amount of offset better than PCell/PSCell”.
  • CondEvent A4 is "Conditional reconfiguration candidate becomes better than absolute threshold”.
  • CondEvent A5 is "PCell/PSCell becomes worse than absolute threshold1 AND Conditional reconfiguration candidate becomes better than another absolute threshold2".
  • UE3 evaluates CPA execution conditions.
  • UE3 sets the PSCell corresponding to the selected candidate PSCell (i.e., the candidate PSCell whose execution condition is satisfied) (e.g., RB setting, CG setting, SCG configuration, SCG radio resource configuration, and SN RRC Reconfiguration message or any combination) is applied. If a bearer requiring SCG radio resources is configured, UE3 synchronizes to the selected PSCell. If the execution conditions of two or more candidate PSCells are met, UE3 may select one from those candidate PSCells and perform the above operations.
  • the candidate PSCell i.e., the candidate PSCell whose execution condition is satisfied
  • Intra-SN CPC may be referred to as SN-initiated Conditional SN Modification without MN involvement without MN involvement.
  • Intra-SN CPC is an intra-SN PSCell change procedure that is executed only when CPC execution conditions are met.
  • UE3 receives from SN2 the configuration of one or more candidate PSCells prepared by SN2 and one or more CPC execution conditions associated therewith.
  • the configuration and associated CPC execution conditions for each candidate PSCell are included in the CPC configuration for intra-SN CPC.
  • SN2 may send these to UE3 via MN1 or via a direct signaling radio bearer (i.e., Signaling Radio Bearer 3 (SRB3)) between SN2 and UE3 to UE3.
  • SRB3 Signaling Radio Bearer 3
  • each candidate PSCell configuration is an information element (IE) (e.g., condRRCReconfig) in the RRC message of SN2, and one or more candidate PSCell configurations and associated CPC execution conditions are specified by SN2.
  • IE information element
  • the configuration of each candidate PSCell includes at least configuration information for the candidate PSCell. Configuration of each candidate PSCell may further include configuration information for one or more SCells associated with the candidate PSCell (ie, configured together with or associated with the candidate PSCell).
  • the configuration of each candidate PSCell may be radio bearer (RB) configuration, cell group (CG) configuration, SCG configuration, or SCG radio resource configuration, or any combination thereof.
  • the configuration of each candidate PSCell may be an SN RRC Reconfiguration message generated by SN2.
  • Intra-SN CPC CPC execution conditions may consist of one or more trigger conditions.
  • the conditions or criteria that trigger a CPC event may be similar to those for measurement reporting events, eg CondEvent A3, CondEvent A4, or CondEvent A5.
  • UE3 evaluates CPC execution conditions. If the execution condition of one candidate PSCell is satisfied, UE3 detaches from the source PSCell, applies the corresponding configuration to the selected candidate PSCell (i.e., the candidate PSCell whose execution condition is satisfied), and selects Synchronize with the candidate PSCell. If the execution conditions of two or more candidate PSCells are met, UE3 may select one from those candidate PSCells and perform the above operations.
  • RAN nodes 1 and 2 may have the configuration shown in FIG.
  • Each element (network function) shown in FIG. 2 can be, for example, a network element on dedicated hardware, a software instance running on dedicated hardware, or a virtualized function instantiated on an application platform.
  • One or both of RAN nodes 1 and 2 may include, but are not limited to, CU 21 and one or more DUs 22 as shown in FIG.
  • An interface 201 connects between the CU 21 and each DU 22 .
  • UE 3 is connected to at least one DU 22 via at least one air interface 202 .
  • CU21 may be a logical node that hosts the gNB's Radio Resource Control (RRC), Service Data Adaptation Protocol (SDAP), and Packet Data Convergence Protocol (PDCP) protocols (or gNB's RRC and PDCP protocols).
  • DU 22 may be a logical node that hosts the gNB's Radio Link Control (RLC), Medium Access Control (MAC), and Physical (PHY) layers. If CU21 is a gNB-CU and DUs22 are gNB-DUs, interface 201 may be an F1 interface.
  • CU21 may include CU-CP and CU-UP.
  • Conditional mobility is a generic term that refers to one or more of CHO, CPA, intra-SN CPC (or conditional SN modification), and inter-SN CPC (or conditional SN modification).
  • conditional mobility improvements provide conditional mobility improvements to support a feature or mode of operation called “Multi-Radio Dual Connectivity (MR-DC) with selective activation of cell groups”.
  • MR-DC Multi-Radio Dual Connectivity
  • the feature or mode of operation herein may be applied to conditional mobility not necessarily with MR-DC, ie CHO.
  • the feature or mode of operation may be applied to improved CHO where SCGs (at least PSCells) are added along with CHO execution.
  • the function or mode of operation includes at least re-initialization of conditional mobility preparation, e.g., after changing or adding a serving cell, serving cell group, PSCell, or SCG in first conditional mobility.
  • the function or mode of operation is, for example, the candidate target cell configuration or candidate PSCell configuration received from the network in the first conditional mobility (e.g., RB configuration, CG configuration, SCG configuration, radio resource configuration, and SCG radio resource configuration (one or any combination) for subsequent second conditional mobility.
  • the conditions for the first conditional mobility may be reconfigured, updated or modified for the second conditional mobility.
  • at least a part of the information on the configuration of security keys for the first conditional mobility e.g., sk-Counter, NextHop (NH), NH Chaining Count (NCC)
  • security key information e.g.
  • the second conditional mobility type may be different than the first conditional mobility type.
  • the first conditional mobility may be CPA
  • the second conditional mobility may be Inter-SN CPC or Intra-SN CPC.
  • the first conditional mobility may be Inter-SN CPC
  • the second conditional mobility may be Intra-SN CPC.
  • Such functions or modes of operation include, but are not limited to, selective cell activation, selective cell group (CG) activation, selective SCG activation, adaptive cell switch, adaptive CG switch, adaptive SCG switch, subsequent cell change, subsequent CG change, subsequent CG May also be called selection, CPC keep, or CHO keep.
  • the function or operation mode is called selective CG activation or selective cell activation in the following embodiments.
  • the term selective CG activation may be used for conditional mobility with MR-DC (e.g., CPA, inter-SN CPC, intra-SN CPC).
  • the term selective cell activation may be used for conditional mobility (e.g., CHO) that does not necessarily involve MR-DC.
  • a combination of a candidate Special Cell (SpCell) and SCell(s) may be referred to as a candidate Cell Group (CG) set for conditional mobility or selective CG activation. Selective CG activation can also be viewed as changing or switching the serving SCG between multiple candidate CG sets.
  • One candidate CG set contains at least candidate SpCells and optionally one or more SCells.
  • a candidate cell (candidate SpCell) may be the current SCell (that is, the SCell included in the current SCG), or may be a non-serving cell that is not provided to UE3.
  • UE3 may be configured with multiple candidate CG sets whose candidate SpCells are different from each other.
  • Candidate SpCells are candidate PCells and multiple candidate CG sets are multiple candidate MCG sets if conditional mobility on MCG (e.g., CHO).
  • conditional mobility on MCG e.g., CHO
  • SCG e.g., CPA, intra-SN CPC, inter-SN CPC
  • candidate SpCells are candidate PSCells and multiple candidate CG sets are multiple candidate SCG sets.
  • MN RRC message MN RRC Reconfiguration message
  • SN RRC message SN RRC Reconfiguration message
  • SN RRC Reconfiguration message SN RRC Reconfiguration message
  • This embodiment provides an improvement of intra-SN CPC for selective CG activation. Specifically, this embodiment relates to clarification of various procedures regarding selective CG/cell activation.
  • a configuration example of the wireless communication system according to this embodiment may be the same as the examples shown in FIGS. 1 and 2 .
  • SN2 when starting intra-SN CPC, decides whether to perform, use, prepare, or recommend selective CG activation. In other words, in providing UE3 with the CPC configuration for the first CPC, SN2 ensures that the configuration of at least one candidate PSCell that was not selected in the first CPC is passed to UE3 for the subsequent second CPC. determines if it needs to be maintained by Having decided to perform, utilize, prepare for, or recommend Selective CG activation, SN2 operates as shown in FIG.
  • an SN RRC message is generated that includes the configuration of multiple candidate PSCells for the first CPC and an indication of selective CG activation.
  • the Selective CG activation indication indicates to UE3 that selective CG activation is applicable, required, recommended, or available.
  • the indication of selective CG activation applies to a mode of operation in which the configuration of at least one candidate PSCell that was not selected in the first CPC is reused by UE3 for a subsequent second CPC. recommended, recommended, or available. Display of Selective CG activation may be rephrased as selective CG activation configuration, for example.
  • SN2 sends the generated SN RRC message to UE3.
  • SN2 may send the SN RRC message to UE3 via MN1 or via a direct signaling radio bearer (i.e., Signaling Radio Bearer 3 (SRB3)) between SN2 and UE3 to UE3. .
  • SRB3 Signaling Radio Bearer 3
  • FIG. 4 shows the operation of UE3 corresponding to the operation of SN2 in FIG.
  • UE3 receives an SN RRC message from SN2, including the configuration of multiple candidate PSCells for the first CPC and an indication of selective CG activation.
  • the UE3 applies the configuration corresponding to the selected one candidate PSCell (that is, the candidate PSCell whose execution condition is satisfied).
  • the SN RRC message in step 401 includes an indication of selective CG activation
  • UE3 uses the configuration of at least one candidate PSCell that was not selected in the first CPC in the subsequent second CPC. to maintain.
  • SN2 may update or modify the CPC execution conditions for at least one candidate PSCell that was not selected in the first CPC for the second CPC after completion of the first CPC.
  • SN2 may switch the reference cell in one or more CPC execution conditions (e.g., CondEvent A3 or CondEvent A5) from the source PSCell of the first CPC to the PSCell selected by the first CPC.
  • CPC execution conditions e.g., CondEvent A3 or CondEvent A5
  • SN2 may send an SN RRC message to UE3 containing the updated or modified CPC execution conditions for the second CPC.
  • UE3 may receive this SN RRC message and update the CPC execution conditions for at least one candidate PSCell that was not selected in the first CPC.
  • UE3 reuses the execution condition for the candidate PSCell that was not selected in the first CPC for the subsequent second CPC, and converts the reference cell in the execution condition from the source PSCell of the first CPC to the first may be autonomously switched to the candidate PSCell selected by the CPC. That is, UE3 may autonomously update or modify the reference cell of the execution condition of the first CPC. This allows UE3 to start evaluating the execution conditions for the subsequent second CPC without receiving signaling from SN2 to update the execution conditions.
  • UE3 may maintain the configuration of the source PSCell after completion of the first CPC without releasing it in order to use the source PSCell of the first CPC as one of the candidate PSCells in the second CPC. . This may allow the CPC's source cell to be used as one of the candidate PSCells for subsequent CPCs.
  • SN2 may inform UE3 whether the source PSCell of the first CPC is made a candidate PSCell in the subsequent second CPC. Specifically, SN2 uses the SN RRC message sent to UE3 to set up the first CPC (step 302 in FIG. 3, step 401 in FIG.
  • step 401 in FIG. 4 the UE3 may keep the source PSCell setup after completing the first CPC without releasing it.
  • SN2 may, after completion of the first CPC, send to UE3 execution conditions for subsequent second conditional mobility on the new candidate PSCell corresponding to the source PSCell of the first CPC.
  • SN2 may send the execution condition to UE3 using an SN RRC message.
  • UE3 may receive from SN2 the CPC execution conditions for the new candidate PSCell corresponding to the source PSCell of the first CPC and use this for the second CPC.
  • FIGS 5A and 5B show an example of signaling for an intra-SN CPC procedure in which a direct SRB (i.e., SRB3) between SN2 and UE3 is used.
  • SRB3 direct SRB
  • SN2 sends an SN RRC Reconfiguration message to UE3 via SRB3 to configure CPC.
  • the SN RRC Reconfiguration message includes CPC setting and selective CG activation indication (or setting).
  • CPC configuration for intra-SN CPC includes configuration of one or more candidate PSCells and associated CPC execution conditions. There is no particular limitation on how the CPC setting and selective CG activation setting are included in the SN RRC Reconfiguration message.
  • the information element (IE) or field indicating the CPC setting may be independent of the IE or field indicating the selective CG activation setting.
  • an IE or field indicating a selective CG activation setting may mean that the associated CPC setting applies to (or is subject to) selective CG activation.
  • an information element (IE) or field indicating CPC settings may contain an IE or field indicating selective CG activation settings, or vice versa.
  • the IE or field indicating the CPC setting is condRRCReconfig, and the SN RRC Reconfiguration message it contains may further include the IE or field indicating the selective CG activation setting.
  • the settings specified by the SN RRC Reconfiguration are applied to selective CG activation (or subject to selective CG activation).
  • the IE or field indicating the selective CG activation setting may be, for example, selectiveCG-Activation, adaptiveCG-Switch, subsequentCell-Change, subsequentCG-Change, or cpc-Kept).
  • the new settings are applied and evaluation of CPC execution conditions for multiple candidate PSCells is initiated.
  • UE3 maintains the connection with the source PSCell and responds to SN2 with an SN RRC Reconfiguration Complete message via SRB3.
  • step 503 if the execution condition for one candidate PSCell (here, candidate cell #1) is satisfied, UE3 starts CPC execution while keeping the selective CG activation setting (and CPC setting). Specifically, the UE3 detaches from the source PSCell, applies the stored configuration corresponding to the selected candidate PSCell (i.e., the candidate PSCell whose execution condition is satisfied), and synchronizes with the candidate PSCell. In step 504, UE3 completes the CPC execution procedure by sending a SN RRC Reconfiguration Complete message to the selected candidate PSCell (i.e., Cell #1).
  • UE3 After completing CPC execution, UE3 maintains the configuration of one or more candidate PSCells that were not selected for reuse in subsequent CPCs. UE3 may maintain CPC execution conditions associated with one or more candidate PSCells that were not selected. As described above, the UE 3 may autonomously change the reference cell for these CPC execution conditions from the source PSCell to the selected candidate PSCell (i.e., Cell #1). UE 3 may determine whether to autonomously change the reference cell of the CPC execution condition based on the selective CG activation setting received in step 501 . Alternatively, UE3 may receive updated or modified CPC execution conditions from SN2.
  • UE3 may use the source PSCell of the first CPC as one of the candidate PSCells of the subsequent CPC. UE 3 may determine whether the source PSCell of the first CPC should be the new candidate PSCell based on the selective CG activation configuration received in step 501 .
  • UE3 may receive an SN RRC Reconfiguration message indicating updated or modified CPC execution conditions from SN2 via SRB3.
  • This SN RRC Reconfiguration message may include CPC execution conditions for the source PSCell of the first CPC to be made a new candidate PSCell.
  • UE3 applies the received CPC execution conditions and responds to SN2 with an SN RRC Reconfiguration Complete message via SRB3. Steps 505 and 506 may be omitted if updating, modifying, or adding CPC execution conditions is not required.
  • UE3 After completing the first CPC, UE3 continues evaluating the execution conditions of the unselected candidate PSCell(s). UE3 may start evaluating the CPC execution conditions for the source PSCell of the first CPC made the new candidate PSCell. In step 507, if the execution condition of one candidate PSCell (here, candidate cell #2) is satisfied, UE3 starts CPC execution while keeping the selective CG activation setting (and CPC setting). Specifically, the UE3 detaches from the current source PSCell (i.e., Cell #1) and applies the stored configuration corresponding to the selected candidate PSCell (i.e. the candidate PSCell whose execution condition is satisfied). and synchronize with the candidate PSCell. In step 508, UE3 completes the CPC execution procedure by sending a SN RRC Reconfiguration Complete message to the selected candidate PSCell (i.e., Cell #2).
  • UE3 may continue evaluating the CPC execution conditions of the remaining non-selected candidate PSCell(s).
  • the UE 3 may autonomously change the reference cell for these CPC execution conditions from the source PSCell (i.e., Cell #1) to the selected candidate PSCell (i.e., Cell #2).
  • UE 3 may determine whether to autonomously change the reference cell of the CPC execution condition based on the selective CG activation setting received in step 501 .
  • UE3 may receive updated or modified CPC execution conditions from SN2.
  • UE3 may use the source PSCell (i.e., Cell #1) as one of the candidate PSCells.
  • UE 3 may determine whether the source PSCell (i.e., Cell #1) should be the new candidate PSCell based on the selective CG activation configuration received in step 501 .
  • FIGS. 6A and 6B show an example of signaling for an intra-SN CPC procedure in which direct SRBs (i.e., SRB3) between SN2 and UE3 are not used.
  • the procedures of FIGS. 6A and 6B are identical to those of FIGS. 5A and 5B, except that the transfer of SN RRC messages between SN2 and UE3 is via MN1.
  • steps 601 and 602 correspond to step 501 .
  • SN2 sends to MN1 an SN Modification Required message containing an SN RRC Reconfiguration message containing CPC settings.
  • MN1 forwards the SN RRC Reconfiguration message to UE3, including this in the MN RRC Reconfiguration message.
  • Steps 603 and 604 correspond to step 502.
  • UE3 responds to MN1 with a MN RRC Reconfiguration message containing an SN RRC Reconfiguration Complete message.
  • UE3 maintains a connection with the source PSCell and starts evaluating CPC execution conditions for multiple candidate PSCells.
  • MN1 forwards the SN RRC Reconfiguration Complete message to SN2, including it in the SN Modification Confirm message.
  • Step 605 corresponds to step 503.
  • Steps 606 and 607 correspond to step 504 .
  • UE3 completes the CPC execution procedure by sending a UL Information Transfer MRDC message to MN1.
  • the UL Information Transfer MRDC message contains the (embedded) SN RRC Reconfiguration Complete message to the selected candidate PSCell (i.e., Cell #1).
  • MN1 forwards the SN RRC Reconfiguration Complete message to SN2 by including it in the RRC Transfer message.
  • Steps 608 and 609 correspond to step 505.
  • SN2 may send an SN Modification Required message to MN1 containing an SN RRC Reconfiguration message indicating the updated or modified CPC execution conditions.
  • MN1 forwards the SN RRC Reconfiguration message to UE3, including this in the MN RRC Reconfiguration message.
  • Steps 610 and 611 correspond to step 506.
  • UE3 responds to MN1 with a MN RRC Reconfiguration message containing an SN RRC Reconfiguration Complete message.
  • MN1 forwards the SN RRC Reconfiguration Complete message to SN2, including it in the SN Modification Confirm message.
  • Step 612 corresponds to step 507.
  • Steps 613 and 614 correspond to step 508 .
  • UE3 completes the CPC execution procedure by sending a UL Information Transfer MRDC message to MN1.
  • the UL Information Transfer MRDC message contains the (embedded) SN RRC Reconfiguration Complete message to the selected candidate PSCell (i.e., Cell #2).
  • MN1 forwards the SN RRC Reconfiguration Complete message to SN2 by including it in the RRC Transfer message.
  • This embodiment provides details of signaling between CU and DU to support selective cell/CG activation.
  • a configuration example of the wireless communication system according to this embodiment may be the same as the examples shown in FIGS. 1 and 2 .
  • the SN2 of this embodiment may have the CU-DU configuration shown in FIG. SN2 may include CU21 and one or more DUs22.
  • SN2 supports intra-DU conditional mobility of UE3 within one DU.
  • SN2 supports inter-DU conditional mobility of UE3 between DUs.
  • These intra-DU conditional mobility and inter-DU conditional mobility may be CPC or CPA.
  • Inter-DU conditional mobility may be inter-SN CPC.
  • the MN 1 of this embodiment may have the CU-DU configuration shown in FIG. MN21 may include CU21 and one or more DUs22.
  • MN1 supports intra-DU conditional mobility of UE3 within one DU.
  • MN1 supports inter-DU conditional mobility of UE3 between DUs.
  • These intra-DU conditional mobility and inter-DU conditional mobility may be CHO, conditional intra-MN handover (or conditional PCell change).
  • FIG. 7 shows an example of signaling between CU21 and DU22.
  • CU21 and DU22 may belong to SN2 or may belong to MN1.
  • CU21 sends a CU-DU control message (e.g., F1AP message) indicating a first conditional mobility request for UE3 to DU22.
  • the control message requests DU22 to prepare one or more candidate target cells for the first conditional mobility for UE3.
  • the first conditional mobility may be any of CHO, CPA, and CPC.
  • candidate target cell means candidate (target) PSCell.
  • the control message in step 701 includes an indication of selective cell/CG activation.
  • the Selective cell/CG activation indication indicates to DU 22 that selective cell/CG activation is applicable, required, recommended, or available.
  • the indication of selective cell/CG activation is an operation in which at least one candidate target cell configuration that was not selected in the first conditional mobility is reused by UE3 for subsequent second conditional mobility. Indicates that the mode applies, is required, is recommended, or is available. Display of Selective cell/CG activation may be rephrased as a request for selective cell/CG activation, for example.
  • Both the first and second conditional mobility may be CHO.
  • Both the first and second conditional mobility may be CPC.
  • the first conditional mobility may be CPA and the second conditional mobility may be CPC. This allows DU 22 to determine whether the readiness of candidate target cells for first conditional mobility should be maintained after completion of first conditional mobility to any candidate target cell. can recognize
  • DU22 sends a response message to CU21.
  • the response message may indicate whether DU22 determines that selective cell/CG activation does not apply to one or more candidate target cells prepared by DU22.
  • the response message may indicate whether DU22 has prepared selective cell/CG activation for one or more candidate target cells prepared by DU22. If DU 22 can accept the preparation of one or more candidate target cells for the first conditional mobility, but cannot accept the request for selective cell/CG activation, DU 22 accepts the first conditional mobility.
  • CU 21 may be informed of the acceptance of the preparation for activation and the refusal of selective cell/CG activation with a response message.
  • the request message in step 701 may be a UE CONTEXT MODIFICATION REQUEST message or a UE CONTEXT SETUP REQUEST message.
  • the response message in step 702 may be a UE CONTEXT MODIFICATION RESPONSE message or a UE CONTEXT SETUP RESPONSE message. More specifically, if the first conditional mobility is intra-DU mobility, the request message in step 701 is the UE CONTEXT MODIFICATION REQUEST message, and the response message in step 702 is the UE CONTEXT MODIFICATION RESPONSE message. good. If the first conditional mobility is inter-DU mobility, the request message in step 701 may be the UE CONTEXT SETUP REQUEST message and the response message in step 702 may be the UE CONTEXT SETUP RESPONSE message.
  • Fig. 8 shows a specific example of the format of the UE CONTEXT MODIFICATION REQUEST message.
  • the DU 22 will set the first condition indicated by the Conditional Intra-DU Mobility Information IE Recognize that selective cell/CG activation may apply, be required, be recommended, or be available for attached mobility. In other words, DU 22 is required to maintain the first conditional mobility readiness indicated by the Conditional Intra-DU Mobility Information IE for subsequent conditional mobility after the first conditional mobility. recognize that there are
  • CHO Trigger IE may be a value indicating a selective cell/CG activation request (e.g., Selective CG Activation-initiation).
  • Fig. 9 shows a specific example of the format of the UE CONTEXT MODIFICATION RESPONSE message.
  • the IE indicates whether the selective cell/CG activation has been accepted (or prepared) by the DU 22.
  • Fig. 10 shows a specific example of the format of the UE CONTEXT SETUP REQUEST message.
  • the DU 22 detects the first condition indicated by the Conditional Inter-DU Mobility Information IE Recognize that selective cell/CG activation may apply, be required, be recommended, or be available for attached mobility. In other words, the DU 22 is required to maintain the first conditional mobility readiness indicated by the Conditional Inter-DU Mobility Information IE for subsequent conditional mobility after the first conditional mobility. recognize that there are
  • CHO Trigger IE may be a value indicating a selective cell/CG activation request (e.g., Selective CG Activation-initiation).
  • Fig. 11 shows a specific example of the format of the UE CONTEXT SETUP RESPONSE message.
  • the IE indicates whether the selective cell/CG activation has been accepted (or prepared) by the DU 22.
  • the signaling between the CU and DU described in this embodiment can contribute to supporting selective cell/CG activation in the CU-DU configuration.
  • This embodiment provides details of signaling between CU and DU to support selective cell/CG activation.
  • a configuration example of the wireless communication system according to this embodiment may be the same as the examples shown in FIGS. 1 and 2 .
  • the SN2 of this embodiment may have the CU-DU configuration shown in FIG. SN2 may include CU21 and one or more DUs22.
  • SN2 supports intra-DU conditional mobility of UE3 within one DU.
  • SN2 supports inter-DU conditional mobility of UE3 between DUs.
  • These intra-DU conditional mobility and inter-DU conditional mobility may be CPC or CPA.
  • Inter-DU conditional mobility may be inter-SN CPC.
  • the MN 1 of this embodiment may have the CU-DU configuration shown in FIG. MN21 may include CU21 and one or more DUs22.
  • MN1 supports intra-DU conditional mobility of UE3 within one DU.
  • MN1 supports inter-DU conditional mobility of UE3 between DUs.
  • These intra-DU conditional mobility and inter-DU conditional mobility may be CHO, conditional intra-MN handover (or conditional PCell change).
  • FIG. 12 shows an example of signaling between the CU 21 and the target DU 22A.
  • target DU 22A sends CU21 a CU-DU control message (e.g., F1AP message) indicating the candidate target cells that UE3 has successfully accessed during the first conditional mobility.
  • the control message may be an ACCESS SUCCESS message.
  • the first conditional mobility may be any of CHO, CPA, and CPC.
  • candidate target cell means candidate (target) PSCell.
  • control message indicates that the readiness of other candidate target cells accepted by the target DU 22A for the first conditional mobility is maintained for the subsequent second conditional mobility.
  • Both the first and second conditional mobility may be CHO.
  • Both the first and second conditional mobility may be CPC.
  • the first conditional mobility may be CPA and the second conditional mobility may be CPC. This allows CU 21 to recognize that preparation of candidate target cells by target DU 22A for first conditional mobility is maintained even after completion of first conditional mobility to the selected candidate target cell. can.
  • the CU 21 may operate as follows. After receiving the message of step 1201, CU21 indicates that the preparation of one or more candidate target cells for the first conditional mobility needs to be maintained for the second conditional mobility. A first conditional mobility target DU, different from target DU 22A, may be informed. CU21 may send this notification via the UE CONTEXT MODIFICATION REQUEST message. This allows other target DUs to know that the preparation of candidate target cells for the first conditional mobility needs to be maintained even after the first conditional mobility is completed.
  • the CU 21 instructs the source DU providing the source cell for the first conditional mobility that the source cell configuration is maintained for the second conditional mobility. You may also let us know that you need to be CU21 may send this notification via the UE CONTEXT MODIFICATION REQUEST message. This allows the source DU to know that the source cell configuration of the first conditional mobility needs to be maintained for the subsequent second conditional mobility. In other words, the source DU can recognize that the source cell for the first conditional mobility is taken as one of the candidate target cells for the subsequent second conditional mobility.
  • This embodiment provides details of signaling between CU and DU to support selective cell/CG activation.
  • a configuration example of the wireless communication system according to this embodiment may be the same as the examples shown in FIGS. 1 and 2 .
  • the SN2 of this embodiment may have the CU-DU configuration shown in FIG. SN2 may include CU21 and one or more DUs22.
  • SN2 supports intra-DU conditional mobility of UE3 within one DU.
  • SN2 supports inter-DU conditional mobility of UE3 between DUs.
  • These intra-DU conditional mobility and inter-DU conditional mobility may be CPC or CPA.
  • Inter-DU conditional mobility may be inter-SN CPC.
  • the MN 1 of this embodiment may have the CU-DU configuration shown in FIG. MN21 may include CU21 and one or more DUs22.
  • MN1 supports intra-DU conditional mobility of UE3 within one DU.
  • MN1 supports inter-DU conditional mobility of UE3 between DUs.
  • These intra-DU conditional mobility and inter-DU conditional mobility may be CHO, conditional intra-MN handover (or conditional PCell change).
  • FIG. 13 shows an example of signaling between the CU 21 and two target DUs 22A and 22B.
  • the target DU 22A sends a CU-DU control message (e.g., F1AP message) to CU21 indicating the candidate target cells that UE3 has successfully accessed during the first conditional mobility.
  • the control message may be identical to the existing ACCESS SUCCESS message.
  • step 1302 after receiving the message of step 1301, CU21 determines that the preparation of one or more candidate target cells for the first conditional mobility needs to be maintained for the second conditional mobility. It informs the target DU 22B of the first conditional mobility, which is different from the target DU 22A, that there is one. CU21 may send this notification via the UE CONTEXT MODIFICATION REQUEST message. This allows the target DU 22B to recognize that the readiness of candidate target cells for the first conditional mobility needs to be maintained even after the first conditional mobility is completed.
  • CU21 informs the source DU that provides the source cell for the first conditional mobility that the configuration of the source cell needs to be maintained for the second conditional mobility. You can let us know. CU21 may send this notification via the UE CONTEXT MODIFICATION REQUEST message. This allows the source DU to know that the source cell configuration of the first conditional mobility needs to be maintained for the subsequent second conditional mobility. In other words, the source DU can recognize that the source cell for the first conditional mobility is taken as one of the candidate target cells for the subsequent second conditional mobility.
  • CU11, MN1, candidate SN4, and UE3 shown in FIG. 13 may be modified as follows.
  • This embodiment provides details of signaling between CU and DU to support selective cell/CG activation.
  • a configuration example of the wireless communication system according to this embodiment may be the same as the examples shown in FIGS. 1 and 2 .
  • the SN2 of this embodiment may have the CU-DU configuration shown in FIG. SN2 may include CU21 and one or more DUs22.
  • SN2 supports intra-DU conditional mobility of UE3 within one DU.
  • SN2 supports inter-DU conditional mobility of UE3 between DUs.
  • These intra-DU conditional mobility and inter-DU conditional mobility may be CPC or CPA.
  • Inter-DU conditional mobility may be inter-SN CPC.
  • the MN 1 of this embodiment may have the CU-DU configuration shown in FIG. MN21 may include CU21 and one or more DUs22.
  • MN1 supports intra-DU conditional mobility of UE3 within one DU.
  • MN1 supports inter-DU conditional mobility of UE3 between DUs.
  • These intra-DU conditional mobility and inter-DU conditional mobility may be CHO, conditional intra-MN handover (or conditional PCell change).
  • FIG. 14 shows an example of signaling between the CU 21 and two target DUs 22A and 22B.
  • the target DU 22A sends a CU-DU control message (e.g., F1AP message) to CU21 indicating the candidate target cells that UE3 has successfully accessed during the first conditional mobility.
  • the control message may be identical to the existing ACCESS SUCCESS message.
  • step 1402 after receiving the message in step 1401, the CU 21 informs the source DU 22S that provides the source cell for the first conditional mobility that the source cell configuration should be maintained for the second conditional mobility. let you know that there is CU21 may send this notification via the UE CONTEXT MODIFICATION REQUEST message.
  • This allows the source DU 22S to know that the source cell configuration of the first conditional mobility needs to be maintained for the subsequent second conditional mobility.
  • the source DU 22S can recognize that the source cell for the first conditional mobility is made one of the candidate target cells for the subsequent second conditional mobility.
  • This embodiment provides selective activation of cell groups within one RAN node (eg, MN1 or SN2) with L1/L2 based inter-cell mobility.
  • RAN node eg, MN1 or SN2
  • L1/L2 L1/L2 based inter-cell mobility.
  • a configuration example of the wireless communication system according to this embodiment may be the same as the examples shown in FIGS. 1 and 2 .
  • L1/L2 based inter-cell mobility may be inter-cell mobility based on Layer 1 (L1) measurements.
  • L1 measurements may be L1 Synchronization Signal (SS)-RSRP measurements, or L1 Channel State Information (CSI)-RSRP measurements, or both.
  • L1/L2 based inter-cell mobility may be inter-cell mobility using L1 signaling or L2 signaling.
  • L1 signaling may be, for example, Uplink Control Information (UCI) on Physical Uplink Control Channel (PUCCH).
  • L2 signaling may be, for example, Medium Access Control (MAC) Control Element (CE).
  • MAC Medium Access Control
  • CE Medium Access Control
  • L1/L2 based inter-cell mobility may be inter-cell mobility based on L1 measurements and using L1 or L2 signaling.
  • L1 (Physical (PHY) layer) or L2 (e.g., MAC layer) of UE3 is triggered to perform L1/L2-based inter-cell mobility, or when it starts running (in terms of L1/L2) may inform the RRC layer of UE3 to perform L1/L2 based inter-cell mobility.
  • L1 or L2 of UE3 may notify the RRC layer of which candidate cell (e.g., PCell, PSCell) the serving cell is to be changed (or switched to).
  • L1 or L2 of UE3 may notify the RRC layer which CG set to change (or switch to). In response to this, the RRC layer of UE3 may change (or switch) the CG set to be used.
  • L1 or L2 of the RAN node detects that UE3 performs (or has completed) L1/L2 based inter-cell mobility
  • L1 or L2 of the RAN node is sent to the RRC layer of the RAN node. You can notify it.
  • the L1 or L2 of the RAN node may inform the RRC layer which candidate cell (e.g. PCell, PSCell) to change (or switch to) the serving cell.
  • candidate cell e.g. PCell, PSCell
  • L1 or L2 of the RAN node may inform which CG set to change (or switch to).
  • the RAN node may transmit to UE3 in advance the configuration for candidate cells under its control and information for executing L1/L2 based inter-cell mobility. These may collectively be referred to as L1/L2 based inter-cell mobility configuration information (e.g., L1/L2 mobility configuration).
  • L1/L2 based inter-cell mobility configuration information e.g., L1/L2 mobility configuration.
  • the configuration for a candidate target cell may include, for example, a cell group configuration (CellGroupConfig) (generated by the DU) and a radio bearer configuration (RadioBearerConfig) (generated by the CU).
  • Information for execution of L1/L2 based inter-cell mobility may include execution/triggering conditions (generated by DU or CU).
  • the RAN node and UE3 regard a combination of SpCell and SCell(s) when a candidate cell is a candidate Special Cell (SpCell) as a candidate Cell Group (CG) set.
  • One candidate CG set contains at least candidate SpCells and optionally one or more SCells.
  • a candidate cell (candidate SpCell) may be the current SCell (that is, the SCell included in the current SCG), or may be a non-serving cell that is not provided to UE3.
  • UE3 is configured with multiple candidate CG sets whose candidate SpCells are different from each other. If the RAN node is MN1, the candidate SpCells are candidate PCells and multiple candidate CG sets are multiple candidate MCG sets.
  • the candidate SpCells are candidate PSCells
  • the candidate CG sets are candidate SCG sets.
  • UE3 switches serving CG between multiple candidate CG sets by Layer 1/layer 2 based inter-cell mobility.
  • FIG. 15 shows an example of the operation of UE3.
  • UE3 receives configurations of multiple candidate CG sets with different candidate SpCells from the serving RAN node (i.e., MN1 or SN2).
  • the serving RAN node i.e., MN1 or SN2.
  • select one candidate SpCell by Layer 1/layer 2 based inter-cell mobility, and apply the configuration of the candidate CG set corresponding to the selected candidate SpCell.
  • UE3 switches from the current CG set to the candidate CG set corresponding to the selected candidate SpCell.
  • UE3 initiates a PSCell change if it determines based on L1 measurements that the execution/triggering condition for one candidate cell has been met.
  • the lower layer e.g., MAC layer or Physical (PHY) layer
  • PHY Physical
  • UE3 may report the execution of L1/L2 based inter-cell mobility to the serving RAN node.
  • the serving RAN node may detect the execution of L1/L2 based inter-cell mobility by UE3 from random access of UE3 to the selected candidate cell.
  • the DU of the serving RAN node may report the execution of L1/L2 based inter-cell mobility by UE3 to the CU.
  • the DU may report this to the CU using the ACCESS SUCCESS message.
  • the serving RAN node switches from the current CG set to the candidate CG set corresponding to the candidate SpCell selected by UE3 based on the report from UE3 or detection by the serving RAN node.
  • FIG. 16 shows an example of signaling for preparation and execution of L1/L2 based inter-cell mobility.
  • the serving RAN node is SN2, and UE3 switches the serving SCG among multiple candidate SCG sets provided by SN2.
  • SN2 sets multiple candidate SCG sets to UE3. Specifically, SN2 provides UE3 with configuration of multiple candidate SCG sets and information for execution of L1/L2 based inter-cell mobility (e.g., execution/triggering condition). SN2 sends these settings to UE3 using the SN RRC Reconfiguration message. The SN RRC Reconfiguration message is sent to UE3 via direct SRB between SN2 and UE3 or via MN1. In step 1602, UE3 responds to SN2 with an SN RRC Reconfiguration Complete message.
  • step 1603 if UE3 determines based on the L1 measurement that the execution/triggering condition of one candidate cell (here, candidate cell #1) is satisfied, the selected candidate PSCell (i.e., Cell #1 ) to initiate a PSCell change. Specifically, UE3 detaches from the source PSCell, applies the stored SCG configuration corresponding to the selected candidate PSCell (i.e., the candidate PSCell whose execution conditions are satisfied), and applies the stored SCG configuration to the candidate PSCell (i.e., Cell #1). In step 1604, UE3 may perform random access to the candidate PSCell (i.e., Cell #1).
  • UE3 continues to evaluate the execution/triggering conditions for the candidate SCG set even after SCG switching.
  • step 1605 if UE3 determines based on the L1 measurement that the execution/triggering condition of the other candidate cell (here candidate cell #2) is satisfied, the selected candidate PSCell (i.e., Cell #2 ) to initiate a PSCell change.
  • step 1606 UE3 may perform random access to the candidate PSCell (i.e., Cell #1).
  • selective activation of cell groups within one RAN node can be achieved by L1/L2 based inter-cell mobility. can be realized.
  • FIG. 15 is a block diagram showing a configuration example of the RAN node 1 according to the embodiment described above.
  • the configuration of RAN node 2 may also be similar to the configuration shown in FIG.
  • RAN node 1 includes Radio Frequency transceiver 1701 , network interface 1703 , processor 1704 and memory 1705 .
  • RF transceiver 1701 performs analog RF signal processing to communicate with UEs, including UE3.
  • RF transceiver 1701 may include multiple transceivers.
  • RF transceiver 1701 is coupled to antenna array 1702 and processor 1704 .
  • RF transceiver 1701 receives modulation symbol data from processor 1704 , generates transmit RF signals, and provides the transmit RF signals to antenna array 1702 .
  • RF transceiver 1701 also generates baseband received signals based on the received RF signals received by antenna array 1702 and provides them to processor 1704 .
  • RF transceiver 1701 may include analog beamformer circuitry for beamforming.
  • the analog beamformer circuit includes, for example, multiple phase shifters and multiple power amplifiers.
  • the network interface 1703 is used to communicate with network nodes (e.g. RAN nodes 2 and 4, and control and forwarding nodes of the core network).
  • Network interface 1703 may include, for example, an IEEE 802.3 series compliant network interface card (NIC).
  • NIC network interface card
  • a processor 1704 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Processor 1704 may include multiple processors.
  • the processor 1704 includes a modem processor (e.g. Digital Signal Processor (DSP)) for digital baseband signal processing and a protocol stack processor (e.g. Central Processing Unit (CPU) or Micro Processing Unit (MPU) for control plane processing). ) may be included.
  • DSP Digital Signal Processor
  • MPU Micro Processing Unit
  • digital baseband signal processing by processor 1704 includes a Service Data Adaptation Protocol (SDAP) layer, a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, a Medium Access Control (MAC) layer, and a Physical (PHY ) layer signal processing.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • Control plane processing by processor 1704 may also include processing of Non-Access Stratum (NAS) messages, RRC messages, MAC Control Elements (CE), and Downlink Control Information (DCI).
  • NAS Non-Access Stratum
  • RRC Radio Link Control
  • CE MAC Control Elements
  • DCI Downlink Control Information
  • the processor 1704 may include a digital beamformer module for beamforming.
  • a digital beamformer module may include a Multiple Input Multiple Output (MIMO) encoder and precoder.
  • MIMO Multiple Input Multiple Output
  • the memory 1705 is configured by a combination of volatile memory and non-volatile memory.
  • Volatile memory is, for example, Static Random Access Memory (SRAM) or Dynamic RAM (DRAM) or a combination thereof.
  • the non-volatile memory is masked Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, or hard disk drive, or any combination thereof.
  • Memory 1705 may include storage remotely located from processor 1704 . In this case, processor 1704 may access memory 1705 via network interface 1703 or an I/O interface (not shown).
  • Memory 1705 may store one or more software modules (computer programs) 1706 containing instructions and data for processing by RAN node 1 as described in the above embodiments.
  • the processor 1704 may be configured to retrieve and execute the software module 1706 from the memory 1705 to perform the RAN node 1 processing described in the above embodiments.
  • the RAN node 1 may not include the RF transceiver 1701 (and antenna array 1702).
  • FIG. 18 is a block diagram showing a configuration example of UE3.
  • Radio Frequency (RF) transceiver 1801 performs analog RF signal processing to communicate with RAN nodes 1, 2, 4, 6, and 7.
  • RF transceiver 1801 may include multiple transceivers. Analog RF signal processing performed by RF transceiver 1801 includes frequency upconversion, frequency downconversion, and amplification.
  • RF transceiver 1801 is coupled with antenna array 1802 and baseband processor 1803 .
  • RF transceiver 1801 receives modulation symbol data (or OFDM symbol data) from baseband processor 1803 , generates transmit RF signals, and provides transmit RF signals to antenna array 1802 .
  • RF transceiver 1801 also generates baseband received signals based on the received RF signals received by antenna array 1802 and provides them to baseband processor 1803 .
  • RF transceiver 1801 may include analog beamformer circuitry for beamforming.
  • the analog beamformer circuit includes, for example, multiple phase shifters and multiple power amplifiers.
  • the baseband processor 1803 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing consists of (a) data compression/decompression, (b) data segmentation/concatenation, (c) transmission format (transmission frame) generation/decomposition, and (d) channel coding/decoding. , (e) modulation (symbol mapping)/demodulation, and (f) generation of OFDM symbol data (baseband OFDM signal) by Inverse Fast Fourier Transform (IFFT).
  • Control plane processing includes layer 1 (e.g. transmit power control), layer 2 (e.g. radio resource management and hybrid automatic repeat request (HARQ) processing), and layer 3 (e.g. signaling for attach, mobility and call management). communication management.
  • layer 1 e.g. transmit power control
  • layer 2 e.g. radio resource management and hybrid automatic repeat request (HARQ) processing
  • layer 3 e.g. signaling for attach, mobility and call management.
  • the digital baseband signal processing by the baseband processor 1803 may include signal processing of the SDAP layer, PDCP layer, RLC layer, MAC layer, and PHY layer.
  • Control plane processing by the baseband processor 1803 may also include processing of Non-Access Stratum (NAS) protocols, RRC protocols, MAC CEs, and DCIs.
  • NAS Non-Access Stratum
  • the baseband processor 1803 may perform MIMO encoding and precoding for beamforming.
  • the baseband processor 1803 may include a modem processor (e.g. DSP) that performs digital baseband signal processing and a protocol stack processor (e.g. CPU or MPU) that performs control plane processing.
  • a protocol stack processor that performs control plane processing may be shared with the application processor 1804 described later.
  • the application processor 1804 is also called CPU, MPU, microprocessor, or processor core.
  • the application processor 1804 may include multiple processors (multiple processor cores).
  • the application processor 1804 includes a system software program (Operating System (OS)) read from the memory 1806 or a memory (not shown) and various application programs (e.g., call application, WEB browser, mailer, camera operation application, music playback, etc.).
  • OS Operating System
  • application programs e.g., call application, WEB browser, mailer, camera operation application, music playback, etc.
  • Various functions of UE3 are realized by executing the application).
  • the baseband processor 1803 and application processor 1804 may be integrated on one chip, as indicated by the dashed line (1805) in FIG.
  • baseband processor 1803 and application processor 1804 may be implemented as one System on Chip (SoC) device 1805 .
  • SoC devices are sometimes called system Large Scale Integration (LSI) or chipsets.
  • the memory 1806 is volatile memory, non-volatile memory, or a combination thereof.
  • Memory 1806 may include multiple physically independent memory devices. Volatile memory is, for example, SRAM or DRAM or a combination thereof. Non-volatile memory is MROM, EEPROM, flash memory, or hard disk drive, or any combination thereof.
  • memory 1806 may include external memory devices accessible from baseband processor 1803 , application processor 1804 , and SoC 1805 .
  • Memory 1806 may include embedded memory devices integrated within baseband processor 1803 , within application processor 1804 , or within SoC 1805 . Additionally, memory 1806 may include memory within a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 1806 may store one or more software modules (computer programs) 1807 containing instructions and data for processing by the UE 3 as described in multiple embodiments above.
  • the baseband processor 1803 or the application processor 1804 is configured to read and execute the software module 1807 from the memory 1806 to perform the processing of UE3 illustrated in the above embodiments. may be
  • control plane processing and operations performed by UE 3 as described in the above embodiments are performed by other elements apart from RF transceiver 1801 and antenna array 1802 : baseband processor 1803 and/or application processor 1804 and software module 1807 . can be implemented by a memory 1806 that stores the
  • each of the processors of the RAN nodes 1 and 2 and the UE 3 has a set of instructions for causing the computer to execute the algorithm described with reference to the drawings. can run one or more programs including
  • a program includes instructions (or software code) that, when read into a computer, cause the computer to perform one or more of the functions described in the embodiments.
  • the program may be stored in a non-transitory computer-readable medium or tangible storage medium.
  • computer readable media or tangible storage media may include random-access memory (RAM), read-only memory (ROM), flash memory, solid-state drives (SSD) or other memory technology, CDs - ROM, digital versatile disk (DVD), Blu-ray disc or other optical disc storage, magnetic cassette, magnetic tape, magnetic disc storage or other magnetic storage device.
  • the program may be transmitted on a transitory computer-readable medium or communication medium.
  • transitory computer readable media or communication media include electrical, optical, acoustic, or other forms of propagated signals.
  • a Radio Access Network (RAN) node configured to operate as a Secondary Node (SN) associated with a Secondary Cell Group (SCG) in dual connectivity for User Equipment (UE), at least one memory; at least one processor coupled to the at least one memory; with The at least one processor sends a first SN Radio Resource Control (RRC) message containing multiple candidate PSCells settings for a first conditional Primary Secondary Cell Group (SCG) Cell (PSCell) change, configured to transmit to a UE via a Master Node (MN) or via a direct signaling radio bearer between said SN and said UE;
  • RRC Radio Resource Control
  • MN Master Node
  • An operation in which the first SN RRC message is reused by the UE for a subsequent second conditional PSCell change at least one candidate PSCell configuration that was not selected in the first conditional PSCell change.
  • the at least one processor requires that the configuration of at least one candidate PSCell not selected in the first conditional PSCell change be maintained by the UE for the subsequent second conditional PSCell change. configured to determine whether The RAN node according to Appendix 1.
  • the at least one processor includes at least one execution condition updated for the subsequent second conditional mobility for the at least one candidate PSCell after completion of the first conditional PSCell change. 2 SN RRC message to the UE; The RAN node according to Appendix 1 or 2.
  • the first SN RRC message indicates to the UE that the source PSCell of the first conditional PSCell change is to be one of the candidate PSCells in the subsequent second conditional PSCell change;
  • the RAN node according to any one of Appendixes 1-3.
  • the at least one processor after completion of the first conditional PSCell change, a third condition that includes an execution condition for the subsequent second conditional mobility for a new candidate PSCell corresponding to the source PSCell. configured to send an SN RRC message to the UE;
  • the RAN node according to Supplementary Note 4.
  • RRC Radio Resource Control
  • RAN Radio Access Network
  • SCG Secondary Cell Group
  • a program of The method comprises sending to the UE a first SN Radio Resource Control (RRC) message containing configuration of multiple candidate PSCells for a first conditional Primary Secondary Cell Group (SCG) Cell (PSCell) change; transmitting via a Master Node (MN) or via a direct signaling radio bearer between said SN and said UE;
  • RRC Radio Resource Control
  • MN Master Node
  • An operation in which the first SN RRC message is reused by the UE for a subsequent second conditional PSCell change at least one candidate PSCell configuration that was not selected in the first conditional PSCell change. indicate that the mode is applicable, required, recommended or available; program.
  • UE User Equipment
  • SN Secondary Node
  • RRC Radio Resource Control
  • SCG Primary Secondary Cell Group
  • PSCell Primary Secondary Cell Group
  • MN Master Node
  • the at least one processor includes at least one execution condition updated for the subsequent second conditional PSCell change for the at least one candidate PSCell after completion of the first conditional PSCell change. configured to receive a second SN RRC message from said SN;
  • the UE of Supplementary Note 8. (Appendix 10)
  • the at least one processor configures the source PSCell to use the source PSCell of the first conditional PSCell change as one of the candidate PSCells in the subsequent second conditional PSCell change. configured to maintain after completion of the conditional PSCell modification of UE according to Supplementary Note 8 or 9.
  • the at least one processor if the first SN RRC message indicates that the source PSCell of the first conditional PSCell change is made one of the candidate PSCells in the subsequent second conditional PSCell change, configured to maintain settings of the source PSCell for use in the second conditional PSCell modification; UE according to Supplementary Note 8 or 9.
  • the at least one processor after completion of the first conditional PSCell change, a third condition including an execution condition for the subsequent second conditional PSCell change for a new candidate PSCell corresponding to the source PSCell. configured to receive from said SN an SN RRC message of UE according to Supplementary Note 10 or 11.
  • UE User Equipment
  • UE User Equipment
  • SN Primary Secondary Cell Group
  • RRC Radio Resource Control
  • SCG Primary Secondary Cell Group
  • PSCell Primary Secondary Cell Group
  • MN Master Node
  • SN Primary Node
  • RRC Radio Resource Control
  • the first message indicates a request for a first conditional mobility for User Equipment (UE), and configuration of at least one candidate target cell not selected in the first conditional mobility is subsequent indicating that a mode of operation reused by the UE for a second conditional mobility is applicable, required, recommended or available;
  • UE User Equipment
  • the second message indicates whether the DU has determined that the mode of operation does not apply to one or more candidate target cells prepared by the DU; A CU as described in Appendix 15.
  • the second message indicates whether the DU has prepared the mode of operation for one or more candidate target cells prepared by the DU; A CU as described in Appendix 15.
  • the first message is a UE CONTEXT MODIFICATION REQUEST message or a UE CONTEXT SETUP REQUEST message; wherein the second message is a UE CONTEXT MODIFICATION RESPONSE message or a UE CONTEXT SETUP RESPONSE message; A CU according to any one of appendices 15-17.
  • the first conditional mobility is conditional handover, conditional Primary Secondary Cell Group (SCG) Cell (PSCell) change, or conditional PSCell addition, the subsequent second conditional mobility is conditional handover or conditional PSCell change;
  • SCG Primary Secondary Cell Group
  • PSCell Cell
  • a CU according to any one of appendices 15-18.
  • Appendix 20 A method performed by a Central Unit (CU) of a Radio Access Network (RAN) node, comprising: sending a first message to a Distributed Unit (DU), and receiving from the DU a second message in response to the first message; with The first message indicates a request for a first conditional mobility for User Equipment (UE), and configuration of at least one candidate target cell not selected in the first conditional mobility is subsequent indicating that a mode of operation reused by the UE for a second conditional mobility change is applicable, required, recommended or available; Method.
  • UE User Equipment
  • a Distributed Unit (DU) of a Radio Access Network (RAN) node at least one memory; at least one processor coupled to the at least one memory; with The at least one processor is configured to receive a first message from a Central Unit (CU) and send a second message to the CU that is a response to the first message;
  • the first message indicates a request for a first conditional mobility for User Equipment (UE), and configuration of at least one candidate target cell not selected in the first conditional mobility is subsequent indicating that a mode of operation reused by the UE for a second conditional mobility is applicable, required, recommended or available; DU.
  • UE User Equipment
  • the second message indicates whether the DU has determined that the mode of operation does not apply to one or more candidate target cells prepared by the DU; A DU according to Appendix 21.
  • the second message indicates whether the DU has prepared the mode of operation for one or more candidate target cells prepared by the DU; A DU according to Appendix 21.
  • the first message is a UE CONTEXT MODIFICATION REQUEST message or a UE CONTEXT SETUP REQUEST message; wherein the second message is a UE CONTEXT MODIFICATION RESPONSE message or a UE CONTEXT SETUP RESPONSE message; DU according to any one of appendices 21-23.
  • the first conditional mobility is conditional handover, conditional Primary Secondary Cell Group (SCG) Cell (PSCell) change, or conditional PSCell addition
  • the subsequent second conditional mobility is conditional handover or conditional PSCell change; DU according to any one of appendices 21-24.
  • a method performed by a Distributed Unit (DU) of a Radio Access Network (RAN) node comprising: receiving a first message from a Central Unit (CU) and sending a second message to the CU that is a response to the first message; with The first message indicates a request for a first conditional mobility for User Equipment (UE), and configuration of at least one candidate target cell not selected in the first conditional mobility is subsequent indicating that a mode of operation reused by the UE for a second conditional mobility is applicable, required, recommended or available; Method.
  • UE User Equipment
  • DU Distributed Unit
  • UE User Equipment
  • the at least one processor after receiving the first message, instructs a source DU providing a source cell for the first conditional mobility that the source cell configuration is for the subsequent second conditional mobility. configured to signal that it should be maintained for A CU according to Appendix 27 or 28.
  • the first message is an ACCESS SUCCESS message; CU according to any one of appendices 27-29.
  • a method performed by a Central Unit (CU) of a Radio Access Network (RAN) node comprising: receiving a first message from a first Distributed Unit (DU) indicating candidate target cells that the User Equipment (UE) has successfully accessed during the first conditional mobility; the first message indicates that the readiness of other candidate target cells accepted for the first conditional mobility is maintained for a subsequent second conditional mobility; Method.
  • CU Central Unit
  • RAN Radio Access Network
  • Appendix 32 A Distributed Unit (DU) of a Radio Access Network (RAN) node, at least one memory; at least one processor coupled to the at least one memory; with The at least one processor is configured to send a first message to a Central Unit (CU) indicating candidate target cells that User Equipment (UE) has successfully accessed during a first conditional mobility; the first message indicates that the readiness of other candidate target cells accepted for the first conditional mobility is maintained for a subsequent second conditional mobility; DU.
  • CU Central Unit
  • UE User Equipment
  • a method performed by a Distributed Unit (DU) of a Radio Access Network (RAN) node comprising: sending a first message to a Central Unit (CU) indicating candidate target cells that the User Equipment (UE) has successfully accessed during the first conditional mobility; the first message indicates that the readiness of other candidate target cells accepted for the first conditional mobility is maintained for a subsequent second conditional mobility; Method.
  • DU Distributed Unit
  • RAN Radio Access Network
  • DU Distributed Unit
  • UE User Equipment
  • a CU as described in Appendix 35.
  • Appendix 37 A method performed by a Central Unit (CU) of a Radio Access Network (RAN) node, comprising: receiving a first message from a first Distributed Unit (DU) indicating a candidate target cell that User Equipment (UE) has successfully accessed during first conditional mobility; and After receiving a second message indicating that the preparation of one or more candidate target cells for said first conditional mobility should be maintained for a subsequent second conditional mobility. sending to 2 DUs; How to prepare.
  • DU Distributed Unit
  • UE User Equipment
  • DU Distributed Unit
  • UE User Equipment
  • a method performed by a Central Unit (CU) of a Radio Access Network (RAN) node comprising: receiving a first message from a first Distributed Unit (DU) indicating a candidate target cell that User Equipment (UE) has successfully accessed during first conditional mobility; and After receiving a second message indicating that the configuration of the source cell for the first conditional mobility needs to be maintained for the subsequent second conditional mobility, the source DU providing the source cell to send to How to prepare.
  • DU Distributed Unit
  • UE User Equipment
  • MN Master Node
  • S-SN Source Secondary Node
  • UE User Equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Secondary Node(SN)(2)は、第1の条件付きPSCell変更のための複数の候補PSCellsの設定を包含するSN RRCメッセージを、UE(3)に、Master Node(MN)を介して又はSN(2)とUE(3)との間の直接シグナリング無線ベアラを介して、送信する。当該SN RRCメッセージは、第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のためにUE(3)により再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。これは、例えば、第1の条件付きモビリティの後にネットワークからの再設定又は再初期化をせずに後続の第2の条件付きモビリティを可能にする機能又は動作モードの実現に寄与できる。

Description

無線アクセスネットワークノード、User Equipment、及びこれらの方法
 本開示は、無線通信システムに関し、特に無線端末の条件付きモビリティに関する。
 The 3rd Generation Partnership Project(3GPP(登録商標)) Release 16は、条件付きハンドオーバ(Conditional Handover(CHO))及び条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更(Conditional PSCell Change (CPC))をサポートしている(例えば、非特許文献1及び2を参照)。なお、3GPP Release 16でのCPCは、Master Node(MN)が関与しない(without MN involvement)Secondary Node(SN)内(inter-SN)CPCであり、1つのSN内でのソースPSCellから1又はそれ以上の候補セル(i.e., 候補PSCell)のいずれかへの条件付きPSCell変更をサポートする。このCPCは、MNが関与せず且つSNにより開始される条件付きSN修正(SN-initiated Conditional SN Modification without MN involvement)とも呼ばれる。
 3GPP Radio Access Network (RAN) Working Groupは、条件付きモビリティの機能強化(enhancements)を現在検討しており、これは3GPP Release 17に導入される(例えば、非特許文献3を参照)。3GPP Release 17で新たに導入される予定の条件付きモビリティは、条件付きPSCell追加(Conditional PSCell Addition(CPA))およびSN間(inter-SN)CPCを含む。CPAは条件付きSN追加とも呼ばれ、inter-SN CPCは条件付きSN変更とも呼ばれる。Inter-SN CPC又は条件付きSN変更は、MN又はソースSNによって開始される。
 さらに、3GPP Release 18のために、“Multi-Radio Dual Connectivity (MR-DC) with selective activation of cell groups”を含むさらなるモビリティ機能強化についての議論が開始されている(例えば、非特許文献4及び5を参照)。Release 17のCPA及びCPCでは、UEは、いずれかの候補ターゲットPSCellを選択して当該選択されたターゲットPSCellへのランダムアクセスを行うことに応じて、未使用の(選択されなかった)CPC/CPA設定を解放する必要がある。したがって、UEは、ネットワークからのCPCの再設定および再初期化を行うことなく、後続のCPCを実行する機会がない。“Multi-Radio Dual Connectivity (MR-DC) with selective activation of cell groups”は、この課題に対処することを目的とする。具体的には、非特許文献5によれば、MR-DC with selective activation of cell groupsは、SCGを変更した後に、ネットワークからCPC/CPA準備についての再設定(reconfiguration)及び再初期化(re-initialization)をせずに、後続のCPC/CPAを可能にすることを目的としており、これによりCPC/CPAのシグナリングオーバーヘッドや中断時間を削減することができる。
3GPP TS 38.300 V16.7.0 (2021-09), "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2, (Release 16)", 2021年9月 3GPP TS 37.340 V16.7.0 (2021-09), "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Multi-connectivity; Stage 2 (Release 16)", 2021年9月 CATT, "Introduction of CPA and inter-SN CPC", R2-2111640, 3GPP TSG-RAN WG2 Meeting #116-e, November 1-12, 2021 MediaTek, "Moderator’s summary of discussion for [94e-14-R18-MobEnh]", RP-213541, 3GPP TSG RAN Meeting #94e, December 6-17, 2021 MediaTek, "New WID on Further NR mobility enhancements", RP-213565, 3GPP TSG RAN Meeting #94e, December 6-17, 2021
 発明者等は、“MR-DC with selective activation of cell groups”と呼ばれる機能又は動作モードを実現するためのメカニズム及び手順について検討し、様々な課題を見出した。
 これらの課題の1つは、“MR-DC with selective activation of cell groups”と呼ばれる機能又は動作モードに関する様々な手順の明確化に関する。例えば、現時点では、この機能又は動作モードをintra-SN CPCに適用する場合に、当該機能を利用するための手順が明確でない。加えて、無線アクセスネットワーク(Radio Access Network(RAN))ノード(e.g., gNB)がCentral Unit(CU)と1又はそれ以上のDistributed Units(DUs)を含む場合に、この機能又は動作モードをサポートするためにCUと1又はそれ以上のDUsの間に必要となるシグナリングが明確でない。
 これらの課題の他の1つは、Layer 1/layer 2(L1/L2)ベースド・セル間モビリティに関する。非特許文献5によれば、3GPP Release 18のために、MR-DC with selective activation of cell groupsのメカニズム及び手順をLayer 3(L3)強化を介して明確にする(specify)することが目的の1つとされている。しかしながら、特定のシナリオ、例えば1つのRANノード(e.g., MN又はSN)内でのセルグループの選択的なアクティベーションは、L3ベースド・セル間モビリティの代わりにLayer 1/layer 2(L1/L2)ベースド・セル間モビリティによって実現可能であるかもしれない。
 本明細書に開示される実施形態が達成しようとする目的の1つは、上述した課題を含め、第1の条件付きモビリティの後にネットワークからの再設定又は再初期化をせずに後続の第2の条件付きモビリティを可能にする機能又は動作モードの実現に関する複数の課題のうち少なくとも1つを解決することに寄与する装置、方法、及びプログラムを提供することである。なお、この目的は、本明細書に開示される複数の実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
 第1の態様は、UEのためのデュアルコネクティビティにおいてSecondary Cell Group(SCG)に関連付けられたSNとして動作するよう構成されたRANノードに向けられる。当該RANノードは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、第1の条件付きPSCell変更のための複数の候補PSCellsの設定を包含する第1のSN Radio Resource Control(RRC)メッセージを、前記UEに、MNを介して又は前記SNと前記UEとの間の直接シグナリング無線ベアラを介して、送信するよう構成される。前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。
 第2の態様は、UEのためのデュアルコネクティビティにおいてSCGに関連付けられたSNとして動作するよう構成されたRANノードにより行われる方法に向けられる。当該方法は、第1の条件付きPSCell変更のための複数の候補PSCellsの設定を包含する第1のSN RRCメッセージを、前記UEに、MNを介して又は前記SNと前記UEとの間の直接シグナリング無線ベアラを介して、送信することを含む。前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。
 第3の態様は、UEに向けられる。当該UEは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、第1の条件付きPSCell変更のための複数の候補PSCellsの設定を包含する第1のSN RRCメッセージを、MNを介して又は前記UEとSNとの間の直接シグナリング無線ベアラを介して、受信するよう構成される。前記少なくとも1つのプロセッサは、前記複数の候補PSCellのうち1つの実行条件が満たされたなら、前記実行条件が満たされた1つの候補PSCellに対応する設定を適用するよう構成される。さらに、前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを前記第1のSN RRCメッセージが示すなら、前記少なくとも1つの候補PSCellの設定を前記第2の条件付きPSCell変更で利用するために維持するよう構成される。
 第4の態様は、UEにより行われる方法に向けられる。当該方法は以下のステップを含む:
(a)第1の条件付きPSCell変更のための複数の候補PSCellsの設定を包含する第1のSN RRCメッセージを、MNを介して又は前記UEとSNとの間の直接シグナリング無線ベアラを介して、受信すること;
(b)前記複数の候補PSCellのうち1つの実行条件が満たされたなら、前記実行条件が満たされた1つの候補PSCellに対応する設定を適用すること;及び
(c)前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを前記第1のSN RRCメッセージが示すなら、前記少なくとも1つの候補PSCellの設定を前記第2の条件付きPSCell変更で利用するために維持すること。
 第5の態様は、RANノードのCentral Unit(CU)に向けられる。当該CUは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、第1のメッセージをDistributed Unit(DU)に送り、前記第1のメッセージへの応答である第2のメッセージを前記DUから受信するよう構成される。前記第1のメッセージは、UEのための第1の条件付きモビリティの要求を示す。加えて、前記第1のメッセージは、前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。
 第6の態様は、RANノードのCUにより行われる方法に向けられる。当該方法は、第1のメッセージをDUに送り、前記第1のメッセージへの応答である第2のメッセージを前記DUから受信することを含む。前記第1のメッセージは、UEのための第1の条件付きモビリティの要求を示す。加えて、前記第1のメッセージは、前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。
 第7の態様は、RANノードのDUに向けられる。当該DUは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、第1のメッセージをCUから受信し、前記第1のメッセージへの応答である第2のメッセージを前記CUに送るよう構成される。前記第1のメッセージは、UEのための第1の条件付きモビリティの要求を示す。加えて、前記第1のメッセージは、前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。
 第8の態様は、RANノードのDUにより行われる方法に向けられる。当該方法は、第1のメッセージをCUから受信し、前記第1のメッセージへの応答である第2のメッセージを前記CUに送ることを含む。前記第1のメッセージは、UEのための第1の条件付きモビリティの要求を示す。加えて、前記第1のメッセージは、前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。
 第9の態様は、RANノードのCUに向けられる。当該CUは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、UEが第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDUから受信するよう構成される。前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す。
 第10の態様は、RANノードのCUにより行われる方法に向けられる。当該方法は、UEが第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDUから受信することを含む。前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す。
 第11の態様は、RANノードのDUに向けられる。当該DUは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、UEが第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージをCUに送るよう構成される。前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す。
 第12の態様は、RANノードのDUにより行われる方法に向けられる。当該方法は、UEが第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージをCUに送ることを含む。前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す。
 第13の態様は、RANノードのCUに向けられる。当該CUは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、UEが第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDUから受信するよう構成される。加えて、前記少なくとも1つのプロセッサは、前記第1のメッセージの受信後、前記第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持される必要があることを示す第2のメッセージを第2のDUに送信するよう構成される。
 第14の態様は、RANノードのCUにより行われる方法に向けられる。当該方法は、以下のステップを含む:
(a)UEが第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDUから受信すること;及び
(b)前記第1のメッセージの受信後、前記第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持される必要があることを示す第2のメッセージを第2のDUに送信すること。
 第15の態様は、RANノードのCUに向けられる。当該CUは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、UEが第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDUから受信するよう構成される。加えて、前記少なくとも1つのプロセッサは、前記第1のメッセージの受信後、前記第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを知らせる第2のメッセージを、前記ソースセルを提供するソースDUに送信するよう構成される。
 第16の態様は、RANノードのCUにより行われる方法に向けられる。当該方法は、以下のステップを含む:
(a)UEが第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDUから受信すること;及び
(b)前記第1のメッセージの受信後、前記第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを知らせる第2のメッセージを、前記ソースセルを提供するソースDUに送信すること。
 第17の態様は、UEに向けられる。当該UEは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、候補Special Cell(SpCell)が互いに異なる複数の候補Cell Group(CG)セットの設定をRANノードから受信するよう構成される。さらに、前記少なくとも1つのプロセッサは、Layer 1/layer 2ベースド・セル間モビリティにより1つの候補SpCellを選択し、選択された候補SpCellに対応する候補CGセットの設定を適用するよう構成される。
 第18の態様は、UEにより行われる方法に向けられる。当該方法は、以下のステップを含む:
(a)候補SpCellが互いに異なる複数の候補CGセットの設定をRANノードから受信すること、及び
(b)Layer 1/layer 2ベースド・セル間モビリティにより1つの候補SpCellを選択し、選択された候補SpCellに対応する候補CGセットの設定を適用すること。
 第19の態様は、プログラムに向けられる。当該プログラムは、コンピュータに読み込まれた場合に、上述の態様のいずれかに係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様によれば、第1の条件付きモビリティの後にネットワークからの再設定又は再初期化をせずに後続の第2の条件付きモビリティを可能にする機能又は動作モードの実現に関する複数の課題のうち少なくとも1つを解決することに寄与する装置、方法、及びプログラムを提供できる。
実施形態に係る無線通信システムの構成例を示す図である。 実施形態に係るRANノードの構成例を示す図である。 実施形態に係るRANノード(i.e., SN)の動作の一例を示すフローチャートである。 実施形態に係るUEの動作の一例を示すフローチャートである。 実施形態に係るIntra-SN CPC(又は条件付きSN修正)に関するシグナリングの一例を示すシーケンス図である。 実施形態に係るIntra-SN CPC(又は条件付きSN修正)に関するシグナリングの一例を示すシーケンス図である。 実施形態に係るIntra-SN CPC(又は条件付きSN修正)に関するシグナリングの一例を示すシーケンス図である。 実施形態に係るIntra-SN CPC(又は条件付きSN修正)に関するシグナリングの一例を示すシーケンス図である。 実施形態に係るCUとDUの間のシグナリングの一例を示すシーケンス図である。 実施形態に係るUE CONTEXT MODIFICATION REQUESTメッセージのフォーマットの一例を示す図である。 実施形態に係るUE CONTEXT MODIFICATION RESPONSEメッセージのフォーマットの一例を示す図である。 実施形態に係るUE CONTEXT SETUP REQUESTメッセージのフォーマットの一例を示す図である。 実施形態に係るUE CONTEXT SETUP RESPONSEメッセージのフォーマットの一例を示す図である。 実施形態に係るCUとDUの間のシグナリングの一例を示すシーケンス図である。 実施形態に係るCUとDUの間のシグナリングの一例を示すシーケンス図である。 実施形態に係るCUとDUの間のシグナリングの一例を示すシーケンス図である。 実施形態に係るUEの動作の一例を示すフローチャートである。 実施形態に係るL1/L2ベースド・セル間モビリティに関するシグナリングの一例を示すシーケンス図である。 実施形態に係るRANノードの構成例を示すブロック図である。 実施形態に係るUEの構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
 以下に説明される複数の実施形態は、独立に実施されることもできるし、適宜組み合わせて実施されることもできる。これら複数の実施形態は、互いに異なる新規な特徴を有している。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
 以下に示される複数の実施形態は、3GPP Long Term Evolution (LTE)システム及び第5世代移動通信システム(5G system)を主な対象として説明される。しかしながら、これらの実施形態は、3GPPのmulti-connectivity(e.g. Dual Connectivity)と類似の技術をサポートする他の無線通信システムに適用されてもよい。なお、本明細書で使用されるLTEとの用語は、特に断らない限り、5G Systemとのインターワーキングを可能とするためのLTE及びLTE-Advancedの改良・発展を含む。
 本明細書で使用される場合、文脈に応じて、「(もし)~なら(if)」は、「場合(when)」、「その時またはその前後(at or around the time)」、「後に(after)」、「に応じて(upon)」、「判定(決定)に応答して(in response to determining)」、「判定(決定)に従って(in accordance with a determination)」、又は「検出することに応答して(in response to detecting)」を意味するものとして解釈されてもよい。これらの表現は、文脈に応じて、同じ意味を持つと解釈されてもよい。
 初めに、複数の実施形態に共通である複数のネットワーク要素の構成及び動作が説明される。図1は、複数の実施形態に係る無線通信システムの構成例を示している。図1の例では、無線通信システムは、RANノード1、RANノード2、及びUE3を含む。図1に示された各要素(ネットワーク機能)は、例えば、専用ハードウェア(dedicated hardware)上のネットワークエレメントとして、専用ハードウェア上で動作する(running)ソフトウェア・インスタンスとして、又はアプリケーション・プラットフォーム上にインスタンス化(instantiated)された仮想化機能として実装されることができる。
 RANノード1は、cloud RAN(C-RAN)配置(deployment)におけるCentral Unit(e.g. eNB-CU、又はgNB-CU)であってもよいし、CU及び1又は複数のDistributed Units(e.g. eNB-DUs、又はgNB-DUs)の組み合わせであってもよい。C-RANは、CU/DU splitとも呼ばれる。さらに、CUは、Control Plane (CP) Unit(e.g. gNB-CU-CP)及び1又はそれ以上のUser Plane (UP) Unit(e.g. gNB-CU-UP)を含んでもよい。したがって、RANノード1は、CU-CPであってもよく、CU-CP及びCU-UPの組み合わせであってもよい。同様に、RANノード2は、CUであってもよいし、CU及び1又は複数のDUsの組み合わせであってもよい。RANノード2は、CU-CPであってもよく、CU-CP及びCU-UPの組み合わせであってもよい。
 RANノード1及び2の各々は、Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network(EUTRAN)ノード又はNext generation Radio Access Network(NG-RAN)ノードであってもよい。EUTRANノードは、eNB又はen-gNBであってもよい。NG-RANノードは、gNB又はng-eNBであってもよい。en-gNBは、UEへのNRユーザープレーン及びコントールプレーン・プロトコル終端を提供し、E-UTRA-NR Dual Connectivity(EN-DC)のセカンダリノード(SN)として動作するノードである。ng-eNBは、UEへのE-UTRAユーザープレーン及びコントールプレーン・プロトコル終端を提供し、NGインタフェースを介して5GCに接続されるノードである。RANノード1のRadio Access Technology(RAT)は、RANノード2のそれと異なっていてもよい。
 RANノード1及びRANノード2は、ノード間インタフェース(i.e., X2インタフェース又はXnインタフェース)103を介して互いに通信する。RANノード1及びRANノード2は、それぞれデュアルコネクティビティのマスターノード(MN)及びセカンダリノード(SN)として動作する。したがって、以下では、RANノード1をMN1と呼ぶことがあり、RANノード2を候補SN2と呼ぶことがある。
 このデュアルコネクティビティは、Multi-Radio Dual Connectivity (MR-DC)であってもよい。MR-DCは、E-UTRA-NR Dual Connectivity(EN-DC)、NG-RAN E-UTRA-NR Dual Connectivity(NGEN-DC)、NR-E-UTRA Dual Connectivity(NE-DC)、及びNR-NR Dual Connectivity(NR-DC)を含む。これに応じて、MN1は、マスターeNB(in EN-DC)、マスターng-eNB(in NGEN-DC)、及びマスターgNB(in NR-DC and NE-DC)のいずれであってもよい。同様に、SN2は、en-gNB(in EN-DC)、セカンダリng-eNB(in NE-DC)、及びセカンダリgNB(in NR-DC and NGEN-DC)のいずれであってもよい。EN-DCでは、UE3は、MN1として動作するeNBに接続されるとともに、SN2として動作するen-gNBに接続される。NGEN-DCでは、UE3は、MN1として動作するng-eNBに接続されるとともに、SN2として動作するgNBに接続される。NE-DCでは、MN1として動作するgNBに接続されるとともに、SN2として動作するng-eNBに接続される。NR-DCでは、UE3は、MN1として動作する1つのgNB(又はgNB-DU)に接続されるとともに、SN2として動作する他のgNB(又はgNB-DU)に接続される。
 MCGは、MN1に関連付けられた(又は提供される)サービングセルのグループであり、SpCell(i.e., プライマリセル(Primary Cell(PCell)))及び必要に応じて(optionally)1又はそれ以上のセカンダリセル(Secondary Cells(SCells))を含む。一方、SCGは、SN2に関連付けられた(又は提供される)サービングセルのグループであり、プライマリSCGセル(Primary SCG Cell (PSCell))及び必要に応じて(optionally)1又はそれ以上のセカンダリセル(Secondary Cells(SCells))を含む。PSCellは、SCGのSpecial Cell(SpCell)であり、Physical Uplink Control Channel(PUCCH)送信及びcontention-based Random Accessをサポートする。なお、LTE(e.g. LTE-DC及びNE-DC)では、PSCellは、Primary SCellの略語であってもよい。
 本明細書で使用される用語“プライマリSCGセル”及びその略語“PSCell”は、デュアルコネクティビティのSNによって提供されるセルグループに含まれ、アップリンク・コンポーネントキャリアを持ち、且つアップリンク制御チャネル(e.g. PUCCH)リソースを設定されるセルを意味する。具体的には、用語“プライマリSCGセル”及びその略語“PSCell”は、5G NRをサポートするSN(e.g. en-gNB in EN-DC, gNB in NGEN-DC, or gNB in NR-DC)によって提供されるセルグループのPrimary SCG Cellを意味してもよいし、E-UTRAをサポートするSN(e.g. eNB in LTE DC, or ng-eNB in NE-DC)によって提供されるセルグループのPrimary SCellを意味してもよい。
 RANノード1及び2並びにUE3は、RANノード2によって提供されるSCGをUE3のために追加する条件付きPSCell追加(CPA)をサポートする。CPAは、条件付きSN追加と呼ばれてもよい。CPA(又は条件付きSN追加)は、CPA実行条件が満たされた場合にのみ実行されるPSCell追加手順(又はSN追加手順)である。
 図1には示されていないが、複数の候補SN2によって提供される複数の候補セル(i.e., 候補PSCell)がCPAのために準備されてもよい。CPA手順では、UE3は、1又はそれ以上の候補SNによって準備された1又はそれ以上の候補PSCellの設定と、これらに関連付けられた1又はそれ以上のCPA実行条件をMN1から受信する。より具体的には、各候補PSCellの設定はMN1のRRCメッセージの情報要素(Information Element(IE))(e.g., condRRCReconfig)であり、1又はそれ以上の候補PSCellの設定及び関連付けられたCPA実行条件は、MN1により生成される条件付きモビリティ設定情報(e.g., conditionalReconfiguration IE)に包含される。
 各候補PSCellの設定は、この候補PSCellを提供する(又は準備した)候補SN(e.g., 候補SN2)によって生成される。各候補PSCellの設定は、候補PSCellに対する設定情報を少なくとも含む。各候補PSCellの設定は、候補PSCellに付随する(つまり、候補PSCellと一緒に又は関連付けられて設定される)1又はそれ以上のSCellsに対する設定情報をさらに含んでもよい。各候補PSCellの設定は、radio bearer(RB)設定、CG設定、SCG設定、若しくはSCG無線リソース設定、又はこれらの任意の組み合わせであってもよい。より具体的には、各候補PSCellの設定は、この候補PSCellを提供する(又は準備した)候補SN(e.g., 候補SN2)によって生成されたSN RRC Reconfigurationメッセージであってもよい。1又はそれ以上の候補PSCellの設定の一部又は全部は、MN1からUE3に送られるCPA設定に包含される。CPA設定は、1又はそれ以上のMN RRC Reconfigurationメッセージのリストである。各MN RRC Reconfigurationメッセージは、候補SNから受信した候補PSCellの設定(e.g., RB設定、CG設定、SCG設定、SCG無線リソース設定、及びSN RRC Reconfigurationメッセージのうち1つ又は任意の組み合わせ)を包含する。
 一方、CPA実行条件は、MN1により生成される。CPA実行条件は、1又はそれ以上のトリガー条件により構成されてもよい。CPAイベントをトリガーする条件又は基準は、測定報告イベントのためのそれと類似してもよく、例えばCondEvent A3、CondEvent A4、又はCondEvent A5であってもよい。CondEvent A3は、“Conditional reconfiguration candidate becomes amount of offset better than PCell/PSCell”である。CondEvent A4は、“Conditional reconfiguration candidate becomes better than absolute threshold”である。CondEvent A5は、“PCell/PSCell becomes worse than absolute threshold1 AND Conditional reconfiguration candidate becomes better than another absolute threshold2”である。UE3は、CPA実行条件(conditions)を評価する。1つの候補PSCellの実行条件が満たされたなら、UE3は、選択された候補PSCell(i.e., その実行条件が満たされた候補PSCell)に対応するPSCellの設定(e.g., RB設定、CG設定、SCG設定、SCG無線リソース設定、及びSN RRC Reconfigurationメッセージのうち1つ又は任意の組み合わせ)を適用する。SCG無線リソースを必要とするベアラを設定されているなら、UE3は、選択されたPSCellへの同期を行う。2つ以上の候補PSCellsの実行条件が満たされたなら、UE3はそれら候補PSCellsから1つを選択し、上述の動作を実行してもよい。
 加えて、RANノード2及びUE3は、intra-SN CPCをサポートする。Intra-SN CPCは、MNが関与せず且つSNにより開始される条件付きSN修正(SN-initiated Conditional SN Modification without MN involvement)と呼ばれてもよい。Intra-SN CPCは、CPC実行条件が満たされた場合にのみ実行されるintra-SN PSCell変更手順である。
 Intra-SN CPC手順では、UE3は、SN2によって準備された1又はそれ以上の候補PSCellの設定と、これらに関連付けられた1又はそれ以上のCPC実行条件をSN2から受信する。各候補PSCellの設定及び関連付けられたCPC実行条件は、intra-SN CPCのためのCPC設定に包含される。SN2は、これらをUE3にMN1を介して送ってもよいし、SN2とUE3の間の直接シグナリング無線ベアラ(i.e., Signalling Radio Bearer 3 (SRB3))を介してUE3に送ってもよい。より具体的には、各候補PSCellの設定はSN2のRRCメッセージの情報要素(IE)(e.g., condRRCReconfig)であり、1又はそれ以上の候補PSCellの設定及び関連付けられたCPC実行条件は、SN2により生成される条件付きモビリティ設定情報(e.g., conditionalReconfiguration IE)に包含される。
 各候補PSCellの設定は、候補PSCellに対する設定情報を少なくとも含む。各候補PSCellの設定は、候補PSCellに付随する(つまり、候補PSCellと一緒に又は関連付けられて設定される)1又はそれ以上のSCellsに対する設定情報をさらに含んでもよい。各候補PSCellの設定は、radio bearer(RB)設定、cell group(CG)設定、SCG設定、若しくはSCG無線リソース設定、又はこれらの任意の組み合わせであってもよい。具体的には、各候補PSCellの設定は、SN2によって生成されたSN RRC Reconfigurationメッセージであってもよい。
 Intra-SN CPCのCPC実行条件は、1又はそれ以上のトリガー条件により構成されてもよい。CPCイベントをトリガーする条件又は基準は、測定報告イベントのためのそれと類似してもよく、例えばCondEvent A3、CondEvent A4、又はCondEvent A5であってもよい。UE3は、CPC実行条件(conditions)を評価する。1つの候補PSCellの実行条件が満たされたなら、UE3は、ソースPSCellからデタッチし、選択された候補PSCell(i.e., その実行条件が満たされた候補PSCell)に対応する設定を適用し、選択された候補PSCellに同期する。2つ以上の候補PSCellsの実行条件が満たされたなら、UE3はそれら候補PSCellsから1つを選択し、上述の動作を実行してもよい。
 RANノード1及び2のうち一方又は両方は、図2に示される構成を有してもよい。図2に示された各要素(ネットワーク機能)は、例えば、専用ハードウェア上のネットワークエレメントとして、専用ハードウェア上で動作するソフトウェア・インスタンスとして、又はアプリケーション・プラットフォーム上にインスタンス化された仮想化機能として実装されることができる。RANノード1及び2のうち一方又は両方は、これには限定されないが、図2に示されるようにCU21及び1又はそれ以上のDUs22を含んでもよい。CU21及び各DU22の間はインタフェース201によって接続される。UE3は、少なくとも1つのエアインタフェース202を介して、少なくとも1つのDU22に接続される。
 CU21は、gNBのRadio Resource Control(RRC)、Service Data Adaptation Protocol(SDAP)、及びPacket Data Convergence Protocol(PDCP)protocols(又はgNBのRRC及びPDCP protocols)をホストする論理ノードであってもよい。DU22は、gNBのRadio Link Control(RLC)、Medium Access Control(MAC)、及びPhysical(PHY)layersをホストする論理ノードであってもよい。CU21がgNB-CUでありDUs22がgNB-DUsであるなら、インタフェース201はF1インタフェースであってもよい。CU21は、CU-CP及びCU-UPを含んでもよい。
 本明細書では、条件付きモビリティとの用語が使用される。条件付きモビリティは、CHO、CPA、intra-SN CPC(又は条件付きSN modification)、及びinter-SN CPC(又は条件付きSN変更)のうち1又はそれ以上を指す総称である。
 以下で説明される実施形態は、条件付きモビリティの改良を提供する。具体的には、以下の実施形態は、“Multi-Radio Dual Connectivity (MR-DC) with selective activation of cell groups”と呼ばれる機能又は動作モードをサポートするための条件付きモビリティの改良を提供する。なお、本明細書では、当該機能又は動作モードは、MR-DCを必ずしも伴わない条件付きモビリティ、つまりCHO、に適用されてもよい。さらに、当該機能又は動作モードは、CHOの実行と共にSCG(少なくともPSCell)が追加される改良されたCHOに適用されてもよい。本明細書での定義では、当該機能又は動作モードは、例えば、第1の条件付きモビリティでサービングセル、サービングセルグループ、PSCell、又はSCGを変更又は追加した後に、条件付きモビリティ準備についての少なくとも再初期化(re-initialization)をせずに、後続の第2の条件付きモビリティを可能にする。言い換えると、本明細書での定義では、当該機能又は動作モードは、例えば、第1の条件付きモビリティでネットワークから受信した候補ターゲットセル設定又は候補PSCellの設定(e.g., RB設定、CG設定、SCG設定、無線リソース設定、及びSCG無線リソース設定のうち1つ又は任意の組み合わせ)の少なくとも一部を後続の第2の条件付きモビリティのために再利用又は維持することをUE3に可能にする。第1の条件付きモビリティのための実行条件(conditions)の少なくとも一部は、第2の条件付きモビリティのために再設定、更新、又は修正されてもよい。同様に、第1の条件付きモビリティのためのセキュリティ鍵の設定に関する情報(e.g., sk-Counter, Next Hop (NH), NH Chaining Count (NCC))の少なくとも一部、又はセキュリティ鍵の情報(e.g., SN Security Key)は、第2の条件付きモビリティのために再設定、更新、又は修正されてもよい。第2の条件付きモビリティのタイプは、第1の条件付きモビリティのタイプと異なってもよい。例えば、第1の条件付きモビリティはCPAであるのに対し、第2の条件付きモビリティはInter-SN CPC又はIntra-SN CPCであってもよい。あるいは、第1の条件付きモビリティはInter-SN CPCであるのに対し、第2の条件付きモビリティはIntra-SN CPCであってもよい。
 当該機能又は動作モードは、限定されないが例えば、selective cell activation、selective cell group (CG) activation、selective SCG activation、adaptive cell switch、adaptive CG switch、adaptive SCG switch、subsequent cell change、subsequent CG change、subsequent CG selection、CPC kept、又はCHO keptと呼ばれてもよい。説明の便宜のため、以下の実施形態では、当該機能又は動作モードは、selective CG activation又はselective cell activationと呼ばれる。用語selective CG activationは、MR-DCを伴う条件付きモビリティ(e.g., CPA、inter-SN CPC、intra-SN CPC)のために使用されてもよい。一方、用語selective cell activationは、MR-DCを必ずしも伴わない条件付きモビリティ(e.g., CHO)のために使用されてもよい。
 本明細書では、候補Special Cell(SpCell)とSCell(s)の組み合わせが条件付きモビリティ又はselective CG activationの候補Cell Group(CG)セットと呼ばれてもよい。Selective CG activationは、複数の候補CGセットの間でのサービングSCGの変更又は切り替えとみなすこともできる。1つの候補CGセットは、少なくとも候補SpCellを含み、オプションで1又はそれ以上のSCellsを含む。候補セル(候補SpCell)は、現在のSCell(つまり、現在のSCGに含まれるSCell)であってもよいし、UE3に提供されていない非サービングセルであってもよい。UE3は、それらの候補SpCellsが互いに異なる複数の候補CGセットを設定されてもよい。MCGに関する条件付きモビリティ(e.g., CHO)であるなら、候補SpCellsは候補PCellsであり、複数の候補CGセットは複数の候補MCGセットである。一方、SCGに関する条件付きモビリティ(e.g., CPA、intra-SN CPC、inter-SN CPC)であるなら、候補SpCellsは候補PSCellsであり、複数の候補CGセットは複数の候補SCGセットである。
 本明細書では、MN RRCメッセージ、MN RRC Reconfigurationメッセージ、SN RRCメッセージ、SN RRC Reconfigurationメッセージとの用語が使用される。これらの用語は、MNによって生成されるRRCメッセージをSNによって生成されるRRCメッセージから区別するために便宜的に使用される。したがって、MN RRCメッセージ及びMN RRC Reconfigurationメッセージは、単にRRCメッセージ及びRRC Reconfigurationメッセージと呼ばれてもよい。同様に、SN RRCメッセージ及びSN RRC Reconfigurationメッセージは、単にRRCメッセージ及びRRC Reconfigurationメッセージと呼ばれてもよい。
<第1の実施形態>
 本実施形態は、selective CG activationのためのintra-SN CPCの改良を提供する。具体的には、本実施形態は、selective CG/cell activationに関する様々な手順の明確化に関する。本実施形態に係る無線通信システムの構成例は、図1及び図2に示された例と同様であってもよい。
 幾つかの実装では、intra-SN CPCを開始する際に、SN2は、selective CG activationを行うか否か、利用するか否か、準備するか否か、又は推奨するか否かを決定する。言い換えると、第1のCPCのためのCPC設定をUE3に供給する際に、SN2は、第1のCPCで選択されなかった少なくとも1つの候補PSCellの設定が後続の第2のCPCのためにUE3により維持される必要があるか否かを決定する。Selective CG activationを行う、利用する、準備する、又は推奨することを決定したなら、SN2は、図3に示すように動作する。
 ステップ301では、第1のCPCのための複数の候補PSCellsの設定とselective CG activationの表示を含むSN RRCメッセージを生成する。Selective CG activationの表示は、selective CG activationが適用される、要求される、推奨される、又は利用可能であることをUE3に示す。言い換えると、selective CG activationの表示は、第1のCPCで選択されなかった少なくとも1つの候補PSCellの設定が後続の第2のCPCのためにUE3により再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。Selective CG activationの表示は、例えば、selective CG activation構成と言い換えられてもよい。ステップ302では、SN2は、生成されたSN RRCメッセージをUE3に送信する。SN2は、SN RRCメッセージを、UE3にMN1を介して送ってもよいし、SN2とUE3の間の直接シグナリング無線ベアラ(i.e., Signalling Radio Bearer 3 (SRB3))を介してUE3に送ってもよい。
 図4は、図3のSN2の動作に対応したUE3の動作を示している。ステップ401では、UE3は、第1のCPCのための複数の候補PSCellsの設定とselective CG activationの表示を含むSN RRCメッセージをSN2から受信する。ステップ402では、UE3は、複数の候補PSCellのうち1つの実行条件が満たされたなら、選択された1つの候補PSCell(つまり、その実行条件が満たされた候補PSCell)に対応する設定を適用する。ステップ403では、UE3は、ステップ401のSN RRCメッセージがselective CG activationの表示の表示を含むなら、第1のCPCで選択されなかった少なくとも1つの候補PSCellの設定を後続の第2のCPCで利用するために維持する。
 図3及び図4を参照して説明されたSN2及びUE3の動作は適宜変更されることができる。例えば、SN2は、第1のCPCの完了後に、第1のCPCで選択されなかった少なくとも1つの候補PSCellに関するCPC実行条件を第2のCPCのために更新又は修正してもよい。例えば、SN2は、1又はそれ以上のCPC実行条件(e.g., CondEvent A3又はCondEvent A5)における基準セルを最初のCPCのソースPSCellから、第1のCPCで選択されたPSCellに切り替えてもよい。この場合、第1のCPCの完了後に、SN2は、第2のCPCのために更新又は修正されたCPC実行条件を包含するSN RRCメッセージをUE3に送信してもよい。UE3は、当該SN RRCメッセージを受信し、第1のCPCで選択されなかった少なくとも1つの候補PSCellに関するCPC実行条件を更新してもよい。
 例えば、UE3は、第1のCPCで選択されなかった候補PSCellに関する実行条件を後続の第2のCPCのために再利用し、当該実行条件における基準セルを第1のCPCのソースPSCellから第1のCPCで選択された候補PSCellに自律的に切り替えてもよい。すなわち、UE3は、第1のCPCの実行条件の基準セルを自律的に更新又は修正してもよい。これにより、UE3は、実行条件を更新するためのシグナリングをSN2から受信せずに後続の第2のCPCのための実行条件の評価を開始できる。
 例えば、UE3は、第1のCPCのソースPSCellを第2のCPCにおける候補PSCellの1つとして使用するために、第1のCPCの完了後にソースPSCellの設定を解放せずに維持してもよい。これは、CPCのソースセルを後続のCPCの候補PSCellの1つとして利用することを可能にできる。SN2は、第1のCPCのソースPSCellが後続の第2のCPCでの候補PSCellとされるか否かをUE3に知らせてもよい。具体的には、SN2は、第1のCPCを設定するためにUE3に送られるSN RRCメッセージ(図3のステップ302、図4のステップ401)を使用して、第1のCPCのソースPSCellが後続の第2のCPCにおける候補PSCellの1つとされることをUE3に示してもよい。SN RRCメッセージ(図3のステップ302、図4のステップ401)がそれを示すなら、UE3は、第1のCPCの完了後にソースPSCellの設定を解放せずに維持してもよい。
 SN2は、第1のCPCの完了後に、第1のCPCのソースPSCellに相当する新たな候補PSCellに関する後続の第2の条件付きモビリティのための実行条件を、UE3に送信してもよい。SN2は、当該実行条件をSN RRCメッセージを用いてUE3に送信してもよい。UE3は、第1のCPCのソースPSCellに相当する新たな候補PSCellに関するCPC実行条件をSN2から受信し、これを第2のCPCのために使用してもよい。
 図5A及び図5Bは、SN2とUE3の間の直接SRB(i.e., SRB3)が使用されるintra-SN CPC手順のシグナリングの一例を示している。ステップ501では、SN2は、CPCを設定するためにSN RRC ReconfigurationメッセージをUE3にSRB3を介して送る。当該SN RRC Reconfigurationメッセージは、CPC設定及びselective CG activation表示(又は設定)を含む。上述のように、intra-SN CPCのためのCPC設定は、1又はそれ以上の候補PSCellの設定及び関連付けられたCPC実行条件を含む。CPC設定とselective CG activation設定がどのようにSN RRC Reconfigurationメッセージに包含されるかは特に限定されない。具体的には、CPC設定を示す情報要素(IE)又はフィールドは、selective CG activation設定を示すIE又はフィールドと独立であってもよい。この場合、selective CG activation設定を示すIE又はフィールドは、関連付けられたCPC設定がselective CG activationに適用されること(又は、selective CG activationの対象であること)を意味してもよい。あるいは、CPC設定を示す情報要素(IE)又はフィールドは、selective CG activation設定を示すIE又はフィールドを包含してもよいし、その反対でもよい。例えば、CPC設定を示すIE又はフィールドはcondRRCReconfigで、これが包含するSN RRC Reconfigurationメッセージが、さらにselective CG activation設定を示すIE又はフィールドを包含してもよい。この場合、当該SN RRC Reconfigurationによって指定される設定が、selective CG activationに適用されること(又は、selective CG activationの対象であること)を意味してもよい。なお、selective CG activation設定を示すIE又はフィールドは、例えばselectiveCG-Activation、adaptiveCG-Switch、subsequentCell-Change、subsequentCG-Change、又はcpc-Kept)でもよい。
 ステップ502では、新たな設定を適用し、複数の候補PSCellsのためのCPC実行条件の評価を開始する。UE3は、ソースPSCellとのコネクションを維持し、SN RRC Reconfiguration CompleteメッセージによりSN2にSRB3を介して応答する。
 ステップ503では、1つの候補PSCell(ここでは、候補cell #1とする)の実行条件が満たされたなら、UE3は、selective CG activation設定(及びCPC設定)をキープしつつCPC実行を開始する。具体的には、UE3は、ソースPSCellからデタッチし、選択された候補PSCell(つまり、その実行条件が満たされた候補PSCell)に対応する格納された設定を適用し、当該候補PSCellに同期する。ステップ504では、UE3は、SN RRC Reconfiguration Completeメッセージを選択された候補PSCell(i.e., Cell #1)に送ることによって、CPC実行手順を完了する。
 CPC実行の完了後、UE3は、選択されなかった1又はそれ以上の候補PSCellsの設定を後続のCPCに再利用するために維持する。UE3は、選択されなかった1又はそれ以上の候補PSCellsに関連付けられたCPC実行条件を維持してもよい。上述のように、UE3は、これらCPC実行条件の基準セルをソースPSCellから、選択された候補PSCell(i.e., Cell #1)に自律的に変更してもよい。UE3は、CPC実行条件の基準セルを自律的に変更するか否かを、ステップ501で受信したselective CG activation設定に基づいて判断してもよい。これに代えて、UE3は、更新または修正されたCPC実行条件をSN2から受信してもよい。
 さらに、UE3は、最初のCPCのソースPSCellを後続のCPCの候補PSCellsの1つとして使用もよい。UE3は、最初のCPCのソースPSCellを新たな候補PSCellとするか否かを、ステップ501で受信したselective CG activation設定に基づいて判断してもよい。
 ステップ505において、UE3は、更新または修正されたCPC実行条件を示すSN RRC ReconfigurationメッセージをSN2からSRB3を介して受信してもよい。このSN RRC Reconfigurationメッセージは、新たな候補PSCellとされる最初のCPCのソースPSCellのためのCPC実行条件を含んでもよい。ステップ506では、UE3は、受信したCPC実行条件を適用し、SN RRC Reconfiguration CompleteメッセージによりSN2にSRB3を介して応答する。CPC実行条件の更新、修正、又は追加が不要であるなら、ステップ505及び506は省略されてもよい。
 最初のCPCの完了後、UE3は、選択されたなかった候補PSCell(s)の実行条件の評価を継続する。UE3は、新たな候補PSCellとされた最初のCPCのソースPSCellのためのCPC実行条件の評価を開始してもよい。ステップ507では、1つの候補PSCell(ここでは、候補cell #2とする)の実行条件が満たされたなら、UE3は、selective CG activation設定(及びCPC設定)をキープしつつCPC実行を開始する。具体的には、UE3は、現在のソースPSCell(i.e., Cell #1)からデタッチし、選択された候補PSCell(つまり、その実行条件が満たされた候補PSCell)に対応する格納された設定を適用し、当該候補PSCellに同期する。ステップ508では、UE3は、SN RRC Reconfiguration Completeメッセージを選択された候補PSCell(i.e., Cell #2)に送ることによって、CPC実行手順を完了する。
 ステップ508以降も、UE3は、残りの選択されなかった候補PSCell(s)のCPC実行条件の評価を継続してもよい。UE3は、これらCPC実行条件の基準セルをソースPSCell(i.e., Cell #1)から、選択された候補PSCell(i.e., Cell #2)に自律的に変更してもよい。UE3は、CPC実行条件の基準セルを自律的に変更するか否かを、ステップ501で受信したselective CG activation設定に基づいて判断してもよい。これに代えて、UE3は、更新または修正されたCPC実行条件をSN2から受信してもよい。さらに、UE3は、ソースPSCell(i.e., Cell #1)を候補PSCellの1つとして使用してもよい。UE3は、ソースPSCell(i.e., Cell #1)を新たな候補PSCellとするか否かを、ステップ501で受信したselective CG activation設定に基づいて判断してもよい。
 図6A及び図6Bは、SN2とUE3の間の直接SRB(i.e., SRB3)が使用されないintra-SN CPC手順のシグナリングの一例を示している。図6A及び図6Bの手順は、SN2とUE3の間のSN RRCメッセージの転送がMN1を介して行われる点を除くと、図5A及び図5Bの手順と同一である。具体的には、ステップ601及び602は、ステップ501に対応する。ステップ601では、SN2は、CPC設定を含むSN RRC Reconfigurationメッセージを包含するSN Modification RequiredメッセージをMN1に送る。ステップ602では、MN1は、SN RRC Reconfigurationメッセージを、これをMN RRC Reconfigurationメッセージに含めて、UE3にフォワードする。
 ステップ603及び604は、ステップ502に対応する。ステップ603では、UE3は、SN RRC Reconfiguration Completeメッセージを包含するMN RRC ReconfigurationメッセージによってMN1に応答する。UE3は、ソースPSCellとのコネクションを維持し、複数の候補PSCellsのためのCPC実行条件の評価を開始する。ステップ604では、MN1は、SN RRC Reconfiguration Completeメッセージを、これをSN Modification Confirmメッセージに含めて、SN2にフォワードする。
 ステップ605は、ステップ503に対応する。ステップ606及び607は、ステップ504に対応する。ステップ606では、UE3は、UL Information Transfer MRDCメッセージをMN1に送ることによって、CPC実行手順を完了する。UL Information Transfer MRDCメッセージは、選択された候補PSCell(i.e., Cell #1)への(埋め込まれた(embedded))SN RRC Reconfiguration Completeメッセージを含む。ステップ607では、MN1は、SN RRC Reconfiguration Completeメッセージを、これをRRC Transferメッセージに含めて、SN2にフォワードする。
 ステップ608及び609は、ステップ505に対応する。ステップ608では、SN2は、更新または修正されたCPC実行条件を示すSN RRC Reconfigurationメッセージを包含するSN Modification RequiredメッセージをMN1に送ってもよい。ステップ609では、MN1は、SN RRC Reconfigurationメッセージを、これをMN RRC Reconfigurationメッセージに含めて、UE3にフォワードする。
 ステップ610及び611は、ステップ506に対応する。ステップ610では、UE3は、SN RRC Reconfiguration Completeメッセージを包含するMN RRC ReconfigurationメッセージによってMN1に応答する。ステップ611では、MN1は、SN RRC Reconfiguration Completeメッセージを、これをSN Modification Confirmメッセージに含めて、SN2にフォワードする。
 ステップ612は、ステップ507に対応する。ステップ613及び614は、ステップ508に対応する。ステップ613では、UE3は、UL Information Transfer MRDCメッセージをMN1に送ることによって、CPC実行手順を完了する。UL Information Transfer MRDCメッセージは、選択された候補PSCell(i.e., Cell #2)への(埋め込まれた(embedded))SN RRC Reconfiguration Completeメッセージを含む。ステップ607では、MN1は、SN RRC Reconfiguration Completeメッセージを、これをRRC Transferメッセージに含めて、SN2にフォワードする。
<第2の実施形態>
 本実施形態は、selective cell/CG activationをサポートするためのCUとDUの間のシグナリングの詳細を提供する。本実施形態に係る無線通信システムの構成例は、図1及び図2に示された例と同様であってもよい。
 本実施形態のSN2は、図2に示されたCU-DU構成を有してもよい。SN2は、CU21と1又はそれ以上のDUs22を含んでもよい。この場合、SN2は、1つのDU内でのUE3のintra-DU条件付きモビリティをサポートする。同様に、SN2は、DUs間でのUE3のinter-DU条件付きモビリティをサポートする。これらのintra-DU条件付きモビリティ及びinter-DU条件付きモビリティは、CPC又はCPAであってもよい。Inter-DU条件付きモビリティは、inter-SN CPCであってもよい。
 さらに又はこれに代えて、本実施形態のMN1は、図2に示されたCU-DU構成を有してもよい。MN21は、CU21と1又はそれ以上のDUs22を含んでもよい。この場合、MN1は、1つのDU内でのUE3のintra-DU条件付きモビリティをサポートする。同様に、MN1は、DUs間でのUE3のinter-DU条件付きモビリティをサポートする。これらのintra-DU条件付きモビリティ及びinter-DU条件付きモビリティは、CHO、すなわち条件付きintra-MNハンドオーバ(又は条件付きPCell変更)であってもよい。
 図7は、CU21とDU22の間のシグナリングの一例を示している。上述のとおり、CU21及びDU22は、SN2に属してもよいし、MN1に属してもよい。ステップ701では、CU21は、UE3のための第1の条件付きモビリティの要求を示すCU-DU制御メッセージ(e.g., F1APメッセージ)をDU22に送る。当該制御メッセージは、UE3のための第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備をDU22に要求する。第1の条件付きモビリティは、CHO、CPA、及びCPCのいずれであってもよい。第1の条件付きモビリティがCPA又はCPCであるとき、候補ターゲットセルは候補(ターゲット)PSCellを意味する。
 加えて、ステップ701の制御メッセージは、selective cell/CG activationの表示を含む。Selective cell/CG activationの表示は、selective cell/CG activationが適用される、要求される、推奨される、又は利用可能であることをDU22に示す。言い換えると、selective cell/CG activationの表示は、第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのためにUE3により再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す。Selective cell/CG activationの表示は、例えば、selective cell/CG activationの要求と言い換えられてもよい。第1及び第2の条件付きモビリティは共にCHOであってもよい。第1及び第2の条件付きモビリティは共にCPCであってもよい。あるいは、第1の条件付きモビリティはCPAであり、第2の条件付きモビリティはCPCであってもよい。これにより、DU22は、第1の条件付きモビリティのための候補ターゲットセルの準備が、いずれかの候補ターゲットセルへの第1の条件付きモビリティが完了した後も維持される必要があるか否かを認識できる。
 ステップ702では、DU22は、応答メッセージをCU21に送る。当該応答メッセージは、DU22により準備される1又はそれ以上の候補ターゲットセルにselective cell/CG activationが適用されないことをDU22が判断したか否かを示してもよい。あるいは、当該応答メッセージは、DU22により準備される1又はそれ以上の候補ターゲットセルのためにselective cell/CG activationをDU22が準備したか否かを示してもよい。DU22が第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備を受け入れ可能であるがselective cell/CG activationの要求を受け入れられないなら、DU22は、第1の条件付きモビリティのための準備を受け入れとselective cell/CG activationの拒否を応答メッセージでCU21に知らせてもよい。
 ステップ701の要求メッセージは、UE CONTEXT MODIFICATION REQUESTメッセージ又はUE CONTEXT SETUP REQUESTメッセージであってもよい。ステップ702の応答メッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージ又はUE CONTEXT SETUP RESPONSEメッセージであってもよい。より具体的には、第1の条件付きモビリティがintra-DUモビリティであるなら、ステップ701の要求メッセージはUE CONTEXT MODIFICATION REQUESTメッセージであり、ステップ702の応答メッセージはUE CONTEXT MODIFICATION RESPONSEメッセージであってもよい。第1の条件付きモビリティがinter-DUモビリティであるなら、ステップ701の要求メッセージはUE CONTEXT SETUP REQUESTメッセージであり、ステップ702の応答メッセージはUE CONTEXT SETUP RESPONSEメッセージであってもよい。
 図8は、UE CONTEXT MODIFICATION REQUESTメッセージのフォーマットの具体例を示している。図8の例では、Selective CG Activation IEがUE CONTEXT MODIFICATION REQUESTメッセージ内のConditional Intra-DU Mobility Information IEに包含されているなら、DU22は、当該Conditional Intra-DU Mobility Information IEによって示される第1の条件付きモビリティに関してselective cell/CG activationが適用される、要求される、推奨される、又は利用可能であることを認識する。言い換えると、DU22は、Conditional Intra-DU Mobility Information IEによって示される第1の条件付きモビリティの準備を、第1の条件付きモビリティの後の後続の条件付きモビリティのために維持するように要求されていると認識する。
 図8のフォーマットは適宜変更されてもよい。例えば、列挙(enumerated)型IEであるCHO Trigger IEのとり得る値の1つが、selective cell/CG activation要求を示す値(e.g., Selective CG Activation-initiation)であってもよい。
 図9は、UE CONTEXT MODIFICATION RESPONSEメッセージのフォーマットの具体例を示している。図9の例では、Selective CG Activation IEがUE CONTEXT MODIFICATION RESPONSEメッセージに含まれているなら、当該IEは、selective cell/CG activationがDU22により受け入れられたか(又は準備されたか)否かを示す。
 図10は、UE CONTEXT SETUP REQUESTメッセージのフォーマットの具体例を示している。図10の例では、Selective CG Activation IEがUE CONTEXT SETUP REQUESTメッセージ内のConditional Inter-DU Mobility Information IEに包含されているなら、DU22は、当該Conditional Inter-DU Mobility Information IEによって示される第1の条件付きモビリティに関してselective cell/CG activationが適用される、要求される、推奨される、又は利用可能であることを認識する。言い換えると、DU22は、Conditional Inter-DU Mobility Information IEによって示される第1の条件付きモビリティの準備を、第1の条件付きモビリティの後の後続の条件付きモビリティのために維持するように要求されていると認識する。
 図10のフォーマットは適宜変更されてもよい。例えば、列挙(enumerated)型IEであるCHO Trigger IEのとり得る値の1つが、selective cell/CG activation要求を示す値(e.g., Selective CG Activation-initiation)であってもよい。
 図11は、UE CONTEXT SETUP RESPONSEメッセージのフォーマットの具体例を示している。図11の例では、Selective CG Activation IEがUE CONTEXT SETUP RESPONSEメッセージに含まれているなら、当該IEは、selective cell/CG activationがDU22により受け入れられたか(又は準備されたか)否かを示す。
 本実施形態で説明されたCUとDUの間のシグナリングは、CU-DU構成におけるselective cell/CG activationのサポートに寄与できる。
<第3の実施形態>
 本実施形態は、selective cell/CG activationをサポートするためのCUとDUの間のシグナリングの詳細を提供する。本実施形態に係る無線通信システムの構成例は、図1及び図2に示された例と同様であってもよい。
 本実施形態のSN2は、図2に示されたCU-DU構成を有してもよい。SN2は、CU21と1又はそれ以上のDUs22を含んでもよい。この場合、SN2は、1つのDU内でのUE3のintra-DU条件付きモビリティをサポートする。同様に、SN2は、DUs間でのUE3のinter-DU条件付きモビリティをサポートする。これらのintra-DU条件付きモビリティ及びinter-DU条件付きモビリティは、CPC又はCPAであってもよい。Inter-DU条件付きモビリティは、inter-SN CPCであってもよい。
 さらに又はこれに代えて、本実施形態のMN1は、図2に示されたCU-DU構成を有してもよい。MN21は、CU21と1又はそれ以上のDUs22を含んでもよい。この場合、MN1は、1つのDU内でのUE3のintra-DU条件付きモビリティをサポートする。同様に、MN1は、DUs間でのUE3のinter-DU条件付きモビリティをサポートする。これらのintra-DU条件付きモビリティ及びinter-DU条件付きモビリティは、CHO、すなわち条件付きintra-MNハンドオーバ(又は条件付きPCell変更)であってもよい。
 図12は、CU21とターゲットDU22Aの間のシグナリングの一例を示している。ステップ1201では、ターゲットDU22Aは、UE3が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示すCU-DU制御メッセージ(e.g., F1APメッセージ)をCU21に送る。当該制御メッセージは、ACCESS SUCCESSメッセージであってもよい。第1の条件付きモビリティは、CHO、CPA、及びCPCのいずれであってもよい。第1の条件付きモビリティがCPA又はCPCであるとき、候補ターゲットセルは候補(ターゲット)PSCellを意味する。
 加えて、当該制御メッセージは、第1の条件付きモビリティのためにターゲットDU22Aにより受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す。第1及び第2の条件付きモビリティは共にCHOであってもよい。第1及び第2の条件付きモビリティは共にCPCであってもよい。あるいは、第1の条件付きモビリティはCPAであり、第2の条件付きモビリティはCPCであってもよい。これにより、CU21は、第1の条件付きモビリティのためのターゲットDU22Aによる候補ターゲットセルの準備が、選択された候補ターゲットセルへの第1の条件付きモビリティが完了した後も維持されることを認識できる。
 ステップ1201のメッセージの受信に応答して、CU21は以下のように動作してもよい。ステップ1201のメッセージの受信の後、CU21は、第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が第2の条件付きモビリティのために維持される必要があることを、ターゲットDU22Aとは異なる、第1の条件付きモビリティのターゲットDUに知らせてもよい。CU21は、UE CONTEXT MODIFICATION REQUESTメッセージを介してこの通知を送ってもよい。これにより、他のターゲットDUは、第1の条件付きモビリティのための候補ターゲットセルの準備が、第1の条件付きモビリティが完了した後も維持される必要があることを認識できる。
 さらに又はこれに代えて、ステップ1201のメッセージの受信の後、CU21は、第1の条件付きモビリティのソースセルを提供するソースDUに、ソースセルの設定が第2の条件付きモビリティのために維持される必要があることを知らせてもよい。CU21は、UE CONTEXT MODIFICATION REQUESTメッセージを介してこの通知を送ってもよい。これにより、ソースDUは、第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを認識できる。言い換えると、ソースDUは、第1の条件付きモビリティのソースセルが後続の第2の条件付きモビリティの候補ターゲットセルの1つとされることを認識できる。
<第4の実施形態>
 本実施形態は、selective cell/CG activationをサポートするためのCUとDUの間のシグナリングの詳細を提供する。本実施形態に係る無線通信システムの構成例は、図1及び図2に示された例と同様であってもよい。
 本実施形態のSN2は、図2に示されたCU-DU構成を有してもよい。SN2は、CU21と1又はそれ以上のDUs22を含んでもよい。この場合、SN2は、1つのDU内でのUE3のintra-DU条件付きモビリティをサポートする。同様に、SN2は、DUs間でのUE3のinter-DU条件付きモビリティをサポートする。これらのintra-DU条件付きモビリティ及びinter-DU条件付きモビリティは、CPC又はCPAであってもよい。Inter-DU条件付きモビリティは、inter-SN CPCであってもよい。
 さらに又はこれに代えて、本実施形態のMN1は、図2に示されたCU-DU構成を有してもよい。MN21は、CU21と1又はそれ以上のDUs22を含んでもよい。この場合、MN1は、1つのDU内でのUE3のintra-DU条件付きモビリティをサポートする。同様に、MN1は、DUs間でのUE3のinter-DU条件付きモビリティをサポートする。これらのintra-DU条件付きモビリティ及びinter-DU条件付きモビリティは、CHO、すなわち条件付きintra-MNハンドオーバ(又は条件付きPCell変更)であってもよい。
 図13は、CU21と2つのターゲットDUs22A及び22Bとの間のシグナリングの一例を示している。ステップ1301では、ターゲットDU22Aは、UE3が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示すCU-DU制御メッセージ(e.g., F1APメッセージ)をCU21に送る。当該制御メッセージは、既存のACCESS SUCCESSメッセージと同一であってもよい。
 ステップ1302では、ステップ1301のメッセージの受信の後、CU21は、第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が第2の条件付きモビリティのために維持される必要があることを、ターゲットDU22Aとは異なる、第1の条件付きモビリティのターゲットDU22Bに知らせる。CU21は、UE CONTEXT MODIFICATION REQUESTメッセージを介してこの通知を送ってもよい。これにより、ターゲットDU22Bは、第1の条件付きモビリティのための候補ターゲットセルの準備が、第1の条件付きモビリティが完了した後も維持される必要があることを認識できる。
 さらに、ステップ1301のメッセージの受信の後、CU21は、第1の条件付きモビリティのソースセルを提供するソースDUに、ソースセルの設定が第2の条件付きモビリティのために維持される必要があることを知らせてもよい。CU21は、UE CONTEXT MODIFICATION REQUESTメッセージを介してこの通知を送ってもよい。これにより、ソースDUは、第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを認識できる。言い換えると、ソースDUは、第1の条件付きモビリティのソースセルが後続の第2の条件付きモビリティの候補ターゲットセルの1つとされることを認識できる。
 図13に示されたCU11、MN1、候補SN4、及びUE3の動作は以下のように変形されてもよい。
<第5の実施形態>
 本実施形態は、selective cell/CG activationをサポートするためのCUとDUの間のシグナリングの詳細を提供する。本実施形態に係る無線通信システムの構成例は、図1及び図2に示された例と同様であってもよい。
 本実施形態のSN2は、図2に示されたCU-DU構成を有してもよい。SN2は、CU21と1又はそれ以上のDUs22を含んでもよい。この場合、SN2は、1つのDU内でのUE3のintra-DU条件付きモビリティをサポートする。同様に、SN2は、DUs間でのUE3のinter-DU条件付きモビリティをサポートする。これらのintra-DU条件付きモビリティ及びinter-DU条件付きモビリティは、CPC又はCPAであってもよい。Inter-DU条件付きモビリティは、inter-SN CPCであってもよい。
 さらに又はこれに代えて、本実施形態のMN1は、図2に示されたCU-DU構成を有してもよい。MN21は、CU21と1又はそれ以上のDUs22を含んでもよい。この場合、MN1は、1つのDU内でのUE3のintra-DU条件付きモビリティをサポートする。同様に、MN1は、DUs間でのUE3のinter-DU条件付きモビリティをサポートする。これらのintra-DU条件付きモビリティ及びinter-DU条件付きモビリティは、CHO、すなわち条件付きintra-MNハンドオーバ(又は条件付きPCell変更)であってもよい。
 図14は、CU21と2つのターゲットDUs22A及び22Bとの間のシグナリングの一例を示している。ステップ1401では、ターゲットDU22Aは、UE3が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示すCU-DU制御メッセージ(e.g., F1APメッセージ)をCU21に送る。当該制御メッセージは、既存のACCESS SUCCESSメッセージと同一であってもよい。
 ステップ1402では、ステップ1401のメッセージの受信の後、CU21は、第1の条件付きモビリティのソースセルを提供するソースDU22Sに、ソースセルの設定が第2の条件付きモビリティのために維持される必要があることを知らせる。CU21は、UE CONTEXT MODIFICATION REQUESTメッセージを介してこの通知を送ってもよい。これにより、ソースDU22Sは、第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを認識できる。言い換えると、ソースDU22Sは、第1の条件付きモビリティのソースセルが後続の第2の条件付きモビリティの候補ターゲットセルの1つとされることを認識できる。
<第6の実施形態>
 本実施形態は、L1/L2ベースド・セル間モビリティによる1つのRANノード(e.g., MN1又はSN2)内でのセルグループの選択的なアクティベーションを提供する。本実施形態に係る無線通信システムの構成例は、図1及び図2に示された例と同様であってもよい。
 L1/L2ベースド・セル間モビリティは、レイヤ1(L1)測定に基づくセル間モビリティであってもよい。L1測定は、L1 Synchronization Signal (SS)-RSRP測定、若しくはL1 Channel State Information (CSI)-RSRP測定、又は両方であってもよい。あるいは、L1/L2ベースド・セル間モビリティは、L1シグナリング又はL2シグナリングを用いたセル間モビリティであってもよい。L1シグナリングは、例えば、Physical Uplink Control Channel (PUCCH)上のUplink Control Information (UCI)であってもよい。L2シグナリングは、例えば、Medium Access Control (MAC) Control Element (CE)であってもよい。あるいは、L1/L2ベースド・セル間モビリティは、L1測定に基づき且つL1又はL2シグナリングを用いるセル間モビリティであってもよい。
 UE3のL1(Physical (PHY) layer)又はL2(e.g., MAC layer)は、L1/L2ベースド・セル間モビリティの実行のトリガーがかかると、実行を開始すると、又は(L1/L2観点で)実行を完了すると、UE3のRRCレイヤにL1/L2ベースド・セル間モビリティの実行を通知してもよい。このとき、UE3のL1又はL2は、どの候補セル(e.g., PCell, PSCell)にサービングセルを変更するか(又は切り替えるか)をRRCレイヤに通知してもよい。これに代えて、UE3のL1又はL2は、どのCGセットに変更するか(又は切り替えるか)をRRCレイヤに通知してもよい。UE3のRRCレイヤは、これに応答して、使用するCGセットを変更してもよい(又は切り替えてもよい)。同様に、RANノードのL1又はL2は、UE3がL1/L2ベースド・セル間モビリティを実行すること(又は実行完了したこと)を検出すると、RANノードのL1又はL2は、RANノードのRRCレイヤにそれを通知してもよい。このとき、RANノードのL1又はL2はRRCレイヤに、どの候補セル(e.g. PCell, PSCell)にサービングセルを変更するか(又は切り替えるか)を通知してもよい。これに代えて、RANノードのL1又はL2は、どのCGセットに変更するか(又は切り替えるか)を通知してもよい。
 RANノード(i.e., MN1又はSN2)は、配下の候補セルに対する設定(configuration)と、L1/L2ベースド・セル間モビリティの実行のための情報を、予めUE3に送信してもよい。これらは、まとめてL1/L2ベースド・セル間モビリティの設定情報(e.g., L1/L2 mobility configuration)と呼ばれてもよい。候補ターゲットセルに対する設定は、例えば、(DUによって生成された)セルグループ設定(CellGroupConfig)と、(CUによって生成された)無線ベアラ設定(RadioBearerConfig)を含んでもよい。L1/L2ベースド・セル間モビリティの実行のための情報は、(DU又はCUによって生成された)execution/triggering conditionを含んでもよい。
 RANノード及びUE3は、ある候補セルを候補Special Cell(SpCell)とするときのSpCellとSCell(s)の組み合わせを候補Cell Group(CG)セットと考える。1つの候補CGセットは、少なくとも候補SpCellを含み、オプションで1又はそれ以上のSCellsを含む。候補セル(候補SpCell)は、現在のSCell(つまり、現在のSCGに含まれるSCell)であってもよいし、UE3に提供されていない非サービングセルであってもよい。UE3は、それらの候補SpCellsが互いに異なる複数の候補CGセットを設定される。RANノードがMN1であるなら、候補SpCellsは候補PCellsであり、複数の候補CGセットは複数の候補MCGセットである。一方、RANノードがSN2であるなら、候補SpCellsは候補PSCellsであり、複数の候補CGセットは複数の候補SCGセットである。UE3は、Layer 1/layer 2ベースド・セル間モビリティにより、複数の候補CGセットの間でサービングCGを切り替える。
 図15は、UE3の動作の一例を示している。ステップ1501では、UE3は、候補SpCellが互いに異なる複数の候補CGセットの設定をサービングRANノード(i.e., MN1又はSN2)から受信する。ステップ1502では、Layer 1/layer 2ベースド・セル間モビリティにより1つの候補SpCellを選択し、選択された候補SpCellに対応する候補CGセットの設定を適用する。言い換えると、UE3は、現在のCGセットから、選択された候補SpCellに対応する候補CGセットに切り替える。
 一例では、UE3は、1つの候補セルのexecution/triggering conditionが満たされたことをL1測定に基づいて判定したなら、PSCell変更を開始する。UE3のlower layer (e.g., MACレイヤ又はPhysical (PHY)レイヤ)はUE3のRRCレイヤにPSCell変更を通知し、RRCレイヤはRRC設定を選択された候補セルに対応する設定に変更又は切り替えてもよい。
 UE3(e.g., PHY、MAC、RRC)は、サービングRANノードに、L1/L2ベースド・セル間モビリティの実行を報告してもよい。これに代えて、サービングRANノードは、選択された候補セルへのUE3のランダムアクセスから、UE3によるL1/L2ベースド・セル間モビリティの実行を検出してもよい。サービングRANノードのDUは、UE3によるL1/L2ベースド・セル間モビリティの実行をCUに報告してもよい。DUは、ACCESS SUCCESSメッセージを用いてこれをCUに報告してもよい。サービングRANノードは、UE3からの報告又はサービングRANノードによる検出をもとに、現在のCGセットから、UE3によって選択された候補SpCellに対応する候補CGセットに切り替える。
 図16は、L1/L2ベースド・セル間モビリティの準備及び実行のシグナリングの一例を示している。図16の例では、サービングRANノードはSN2であり、UE3は、SN2により提供される複数の候補SCGセットの間でサービングSCGを切り替える。
 ステップ1601では、SN2は、複数の候補SCGセットをUE3に設定する。具体的には、SN2は、複数の候補SCGセットの設定と、L1/L2ベースド・セル間モビリティの実行のための情報(e.g., execution/triggering condition)をUE3に供給する。SN2は、SN RRC Reconfigurationメッセージを用いてこれらの設定をUE3に送る。SN RRC Reconfigurationメッセージは、SN2とUE3の間の直接SRBを介して、又はMN1を介してUE3に送られる。ステップ1602では、UE3は、SN RRC Reconfiguration CompleteメッセージによりSN2に応答する。
 ステップ1603では、UE3は、1つの候補セル(ここでは候補cell #1)のexecution/triggering conditionが満たされたことをL1測定に基づいて判定したなら、選択された候補PSCell(i.e., Cell #1)へのPSCell変更を開始する。具体的には、UE3は、ソースPSCellからデタッチし、選択された候補PSCell(つまり、その実行条件が満たされた候補PSCell)に対応する格納されたSCG設定を適用し、当該候補PSCell(i.e., Cell #1)に同期する。ステップ1604では、UE3は、当該候補PSCell(i.e., Cell #1)へのランダムアクセスを行ってもよい。
 SCG切り替え後も、UE3は、候補SCGセットのためのexecution/triggering conditionsの評価を継続する。ステップ1605では、UE3は、他の候補セル(ここでは候補cell #2)のexecution/triggering conditionが満たされたことをL1測定に基づいて判定したなら、選択された候補PSCell(i.e., Cell #2)へのPSCell変更を開始する。ステップ1606では、UE3は、当該候補PSCell(i.e., Cell #1)へのランダムアクセスを行ってもよい。
 本実施形態で説明されたUE3及びRANノードの動作によれば、1つのRANノード(e.g., MN又はSN)内でのセルグループの選択的なアクティベーションを、L1/L2ベースド・セル間モビリティによって実現することができる。
 続いて以下では、上述の複数の実施形態に係るRANノード1及び2並びにUE3の構成例について説明する。図15は、上述の実施形態に係るRANノード1の構成例を示すブロック図である。RANノード2の構成も、図17に示された構成と同様であってもよい。図17を参照すると、RANノード1は、Radio Frequencyトランシーバ1701、ネットワークインターフェース1703、プロセッサ1704、及びメモリ1705を含む。RFトランシーバ1701は、UE3を含むUEsと通信するためにアナログRF信号処理を行う。RFトランシーバ1701は、複数のトランシーバを含んでもよい。RFトランシーバ1701は、アンテナアレイ1702及びプロセッサ1704と結合される。RFトランシーバ1701は、変調シンボルデータをプロセッサ1704から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ1702に供給する。また、RFトランシーバ1701は、アンテナアレイ1702によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1704に供給する。RFトランシーバ1701は、ビームフォーミングのためのアナログビームフォーマ回路を含んでもよい。アナログビームフォーマ回路は、例えば複数の移相器及び複数の電力増幅器を含む。
 ネットワークインターフェース1703は、ネットワークノード(e.g. RANノード2及び4、並びにコアネットワークの制御ノード及び転送ノード)と通信するために使用される。ネットワークインターフェース1703は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ1704は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。プロセッサ1704は、複数のプロセッサを含んでもよい。例えば、プロセッサ1704は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g. Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g. Central Processing Unit(CPU)又はMicro Processing Unit(MPU))を含んでもよい。
 例えば、プロセッサ1704によるデジタルベースバンド信号処理は、Service Data Adaptation Protocol(SDAP)レイヤ、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、Medium Access Control(MAC)レイヤ、およびPhysical(PHY)レイヤの信号処理を含んでもよい。また、プロセッサ1704によるコントロールプレーン処理は、Non-Access Stratum(NAS)messages、RRC messages、MAC Control Elements(CE)、及びDownlink Control Information(DCI)の処理を含んでもよい。
 プロセッサ1704は、ビームフォーミングのためのデジタルビームフォーマ・モジュールを含んでもよい。デジタルビームフォーマ・モジュールは、Multiple Input Multiple Output(MIMO)エンコーダ及びプリコーダを含んでもよい。
 メモリ1705は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。メモリ1705は、プロセッサ1704から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1704は、ネットワークインターフェース1703又は図示されていないI/Oインタフェースを介してメモリ1705にアクセスしてもよい。
 メモリ1705は、上述の複数の実施形態で説明されたRANノード1による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)1706を格納してもよい。いくつかの実装において、プロセッサ1704は、当該ソフトウェアモジュール1706をメモリ1705から読み出して実行することで、上述の実施形態で説明されたRANノード1の処理を行うよう構成されてもよい。
 なお、RANノード1がCU(e.g. eNB-CU又はgNB-CU)又はCU-CPである場合、RANノード1は、RFトランシーバ1701(及びアンテナアレイ1702)を含まなくてもよい。
 図18は、UE3の構成例を示すブロック図である。Radio Frequency(RF)トランシーバ1801は、RANノード1、2、4、6、及び7と通信するためにアナログRF信号処理を行う。RFトランシーバ1801は、複数のトランシーバを含んでもよい。RFトランシーバ1801により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ1801は、アンテナアレイ1802及びベースバンドプロセッサ1803と結合される。RFトランシーバ1801は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ1803から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ1802に供給する。また、RFトランシーバ1801は、アンテナアレイ1802によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ1803に供給する。RFトランシーバ1801は、ビームフォーミングのためのアナログビームフォーマ回路を含んでもよい。アナログビームフォーマ回路は、例えば複数の移相器及び複数の電力増幅器を含む。
 ベースバンドプロセッサ1803は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g. 送信電力制御)、レイヤ2(e.g. 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g. アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、ベースバンドプロセッサ1803によるデジタルベースバンド信号処理は、SDAPレイヤ、PDCPレイヤ、RLCレイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ1803によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、MAC CEs、及びDCIsの処理を含んでもよい。
 ベースバンドプロセッサ1803は、ビームフォーミングのためのMIMOエンコーディング及びプリコーディングを行ってもよい。
 ベースバンドプロセッサ1803は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g. DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g. CPU又はMPU)を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ1804と共通化されてもよい。
 アプリケーションプロセッサ1804は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ1804は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ1804は、メモリ1806又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、UE3の各種機能を実現する。
 幾つかの実装において、図18に破線(1805)で示されているように、ベースバンドプロセッサ1803及びアプリケーションプロセッサ1804は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ1803及びアプリケーションプロセッサ1804は、1つのSystem on Chip(SoC)デバイス1805として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ1806は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ1806は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、MROM、EEPROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ1806は、ベースバンドプロセッサ1803、アプリケーションプロセッサ1804、及びSoC1805からアクセス可能な外部メモリデバイスを含んでもよい。メモリ1806は、ベースバンドプロセッサ1803内、アプリケーションプロセッサ1804内、又はSoC1805内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ1806は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ1806は、上述の複数の実施形態で説明されたUE3による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)1807を格納してもよい。幾つかの実装において、ベースバンドプロセッサ1803又はアプリケーションプロセッサ1804は、当該ソフトウェアモジュール1807をメモリ1806から読み出して実行することで、上述の実施形態で図面を用いて説明されたUE3の処理を行うよう構成されてもよい。
 なお、上述の実施形態で説明されたUE3によって行われるコントロールプレーン処理及び動作は、RFトランシーバ1801及びアンテナアレイ1802を除く他の要素、すなわちベースバンドプロセッサ1803及びアプリケーションプロセッサ1804の少なくとも一方とソフトウェアモジュール1807を格納したメモリ1806とによって実現されることができる。
 図17及び図18を用いて説明したように、上述の実施形態に係るRANノード1及び2並びにUE3が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行することができる。プログラムは、コンピュータに読み込まれた場合に、実施形態で説明された1又はそれ以上の機能をコンピュータに行わせるための命令群(又はソフトウェアコード)を含む。プログラムは、非一時的なコンピュータ可読媒体又は実体のある記憶媒体に格納されてもよい。限定ではなく例として、コンピュータ可読媒体又は実体のある記憶媒体は、random-access memory(RAM)、read-only memory(ROM)、フラッシュメモリ、solid-state drive(SSD)又はその他のメモリ技術、CD-ROM、digital versatile disk(DVD)、Blu-ray(登録商標)ディスク又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気ストレージデバイスを含む。プログラムは、一時的なコンピュータ可読媒体又は通信媒体上で送信されてもよい。限定ではなく例として、一時的なコンピュータ可読媒体又は通信媒体は、電気的、光学的、音響的、またはその他の形式の伝搬信号を含む。
 上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 User Equipment(UE)のためのデュアルコネクティビティにおいてSecondary Cell Group(SCG)に関連付けられたSecondary Node(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSN Radio Resource Control(RRC)メッセージを、前記UEに、Master Node(MN)を介して又は前記SNと前記UEとの間の直接シグナリング無線ベアラを介して、送信するよう構成され、
 前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
RANノード。
(付記2)
 前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が前記後続の第2の条件付きPSCell変更のために前記UEにより維持される必要があるか否かを決定するよう構成される、
付記1に記載のRANノード。
(付記3)
 前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更の完了後に、前記少なくとも1つの候補PSCellに関する前記後続の第2の条件付きモビリティのために更新された少なくとも1つの実行条件を包含する第2のSN RRCメッセージを前記UEに送信するよう構成される、
付記1又は2に記載のRANノード。
(付記4)
 前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更のソースPSCellが前記後続の第2の条件付きPSCell変更における候補PSCellの1つとされることを前記UEに示す、
付記1~3のいずれか1項に記載のRANノード。
(付記5)
 前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更の完了後に、前記ソースPSCellに相当する新たな候補PSCellに関する前記後続の第2の条件付きモビリティのための実行条件を包含する第3のSN RRCメッセージを前記UEに送信するよう構成される、
付記4に記載のRANノード。
(付記6)
 User Equipment(UE)のためのデュアルコネクティビティにおいてSecondary Cell Group(SCG)に関連付けられたSecondary Node(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
 第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSN Radio Resource Control(RRC)メッセージを、前記UEに、Master Node(MN)を介して又は前記SNと前記UEとの間の直接シグナリング無線ベアラを介して、送信することを備え、
 前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
方法。
(付記7)
 User Equipment(UE)のためのデュアルコネクティビティにおいてSecondary Cell Group(SCG)に関連付けられたSecondary Node(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSN Radio Resource Control(RRC)メッセージを、前記UEに、Master Node(MN)を介して又は前記SNと前記UEとの間の直接シグナリング無線ベアラを介して、送信することを備え、
 前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
プログラム。
(付記8)
 User Equipment(UE)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、
 第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSecondary Node (SN) Radio Resource Control(RRC)メッセージを、Master Node(MN)を介して又は前記UEとSNとの間の直接シグナリング無線ベアラを介して、受信し、
 前記複数の候補PSCellのうち1つの実行条件が満たされたなら、前記実行条件が満たされた1つの候補PSCellに対応する設定を適用し、
 前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを前記第1のSN RRCメッセージが示すなら、前記少なくとも1つの候補PSCellの設定を前記第2の条件付きPSCell変更で利用するために維持する、
UE。
(付記9)
 前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更の完了後に、前記少なくとも1つの候補PSCellに関する前記後続の第2の条件付きPSCell変更のために更新された少なくとも1つの実行条件を包含する第2のSN RRCメッセージを前記SNから受信するよう構成される、
付記8に記載のUE。
(付記10)
 前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更のソースPSCellを前記後続の第2の条件付きPSCell変更における候補PSCellの1つとして使用するために、前記ソースPSCellの設定を前記第1の条件付きPSCell変更の完了後に維持するよう構成される、
付記8又は9に記載のUE。
(付記11)
 前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更のソースPSCellが前記後続の第2の条件付きPSCell変更における候補PSCellの1つとされることを前記第1のSN RRCメッセージが示すなら、前記ソースPSCellの設定を前記第2の条件付きPSCell変更で利用するために維持するよう構成される、
付記8又は9に記載のUE。
(付記12)
 前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更の完了後に、前記ソースPSCellに相当する新たな候補PSCellに関する前記後続の第2の条件付きPSCell変更のための実行条件を包含する第3のSN RRCメッセージを前記SNから受信するよう構成される、
付記10又は11に記載のUE。
(付記13)
 User Equipment(UE)により行われる方法であって、
 第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSecondary Node (SN) Radio Resource Control(RRC)メッセージを、Master Node(MN)を介して又は前記UEとSNとの間の直接シグナリング無線ベアラを介して、受信すること、
 前記複数の候補PSCellのうち1つの実行条件が満たされたなら、前記実行条件が満たされた1つの候補PSCellに対応する設定を適用すること、及び
 前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを前記第1のSN RRCメッセージが示すなら、前記少なくとも1つの候補PSCellの設定を前記第2の条件付きPSCell変更で利用するために維持すること、
を備える方法。
(付記14)
 User Equipment(UE)のための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、
 第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSecondary Node (SN) Radio Resource Control(RRC)メッセージを、Master Node(MN)を介して又は前記UEとSNとの間の直接シグナリング無線ベアラを介して、受信すること、
 前記複数の候補PSCellのうち1つの実行条件が満たされたなら、前記実行条件が満たされた1つの候補PSCellに対応する設定を適用すること、及び
 前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを前記第1のSN RRCメッセージが示すなら、前記少なくとも1つの候補PSCellの設定を前記第2の条件付きPSCell変更で利用するために維持すること、
を備える、プログラム。
(付記15)
 無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、第1のメッセージをDistributed Unit(DU)に送り、前記第1のメッセージへの応答である第2のメッセージを前記DUから受信するよう構成され、
 前記第1のメッセージは、User Equipment(UE)のための第1の条件付きモビリティの要求を示し、且つ前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
CU。
(付記16)
 前記第2のメッセージは、前記DUにより準備される1又はそれ以上の候補ターゲットセルに前記動作モードが適用されないことを前記DUが判断したか否かを示す、
付記15に記載のCU。
(付記17)
 前記第2のメッセージは、前記DUにより準備される1又はそれ以上の候補ターゲットセルのために前記動作モードを前記DUが準備したか否かを示す、
付記15に記載のCU。
(付記18)
 前記第1のメッセージは、UE CONTEXT MODIFICATION REQUESTメッセージ又はUE CONTEXT SETUP REQUESTメッセージであり、
 前記第2のメッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージ又はUE CONTEXT SETUP RESPONSEメッセージである、
付記15~17のいずれか1項に記載のCU。
(付記19)
 前記第1の条件付きモビリティは、条件付きハンドオーバ、条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更、又は条件付きPSCell追加であり、
 前記後続の第2の条件付きモビリティは、条件付きハンドオーバ又は条件付きPSCell変更である、
付記15~18のいずれか1項に記載のCU。
(付記20)
 無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)により行われる方法であって、
 第1のメッセージをDistributed Unit(DU)に送ること、及び
 前記第1のメッセージへの応答である第2のメッセージを前記DUから受信すること、
を備え、
 前記第1のメッセージは、User Equipment(UE)のための第1の条件付きモビリティの要求を示し、且つ前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティ変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
方法。
(付記21)
 無線アクセスネットワーク(RAN)ノードのDistributed Unit(DU)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、第1のメッセージをCentral Unit(CU)から受信し、前記第1のメッセージへの応答である第2のメッセージを前記CUに送るよう構成され、
 前記第1のメッセージは、User Equipment(UE)のための第1の条件付きモビリティの要求を示し、且つ前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
DU。
(付記22)
 前記第2のメッセージは、前記DUにより準備される1又はそれ以上の候補ターゲットセルに前記動作モードが適用されないことを前記DUが判断したか否かを示す、
付記21に記載のDU。
(付記23)
 前記第2のメッセージは、前記DUにより準備される1又はそれ以上の候補ターゲットセルのために前記動作モードを前記DUが準備したか否かを示す、
付記21に記載のDU。
(付記24)
 前記第1のメッセージは、UE CONTEXT MODIFICATION REQUESTメッセージ又はUE CONTEXT SETUP REQUESTメッセージであり、
 前記第2のメッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージ又はUE CONTEXT SETUP RESPONSEメッセージである、
付記21~23のいずれか1項に記載のDU。
(付記25)
 前記第1の条件付きモビリティは、条件付きハンドオーバ、条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更、又は条件付きPSCell追加であり、
 前記後続の第2の条件付きモビリティは、条件付きハンドオーバ又は条件付きPSCell変更である、
付記21~24のいずれか1項に記載のDU。
(付記26)
 無線アクセスネットワーク(RAN)ノードのDistributed Unit(DU)により行われる方法であって、
 第1のメッセージをCentral Unit(CU)から受信すること、及び
 前記第1のメッセージへの応答である第2のメッセージを前記CUに送ること、
を備え、
 前記第1のメッセージは、User Equipment(UE)のための第1の条件付きモビリティの要求を示し、且つ前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
方法。
(付記27)
 無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信するよう構成され、
 前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す、
CU。
(付記28)
 前記少なくとも1つのプロセッサは、前記第1のメッセージの受信の後、前記第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が前記後続の第2の条件付きモビリティのために維持される必要があることを第2のDUに知らせるよう構成される、
付記27に記載のCU。
(付記29)
 前記少なくとも1つのプロセッサは、前記第1のメッセージの受信の後、前記第1の条件付きモビリティのソースセルを提供するソースDUに、前記ソースセルの設定が前記後続の第2の条件付きモビリティのために維持される必要があることを知らせるよう構成される、
付記27又は28に記載のCU。
(付記30)
 前記第1のメッセージは、ACCESS SUCCESSメッセージである、
付記27~29のいずれか1項に記載のCU。
(付記31)
 無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)により行われる方法であって、
 User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信することを備え、
 前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す、
方法。
(付記32)
 無線アクセスネットワーク(RAN)ノードのDistributed Unit(DU)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージをCentral Unit(CU)に送るよう構成され、
 前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す、
DU。
(付記33)
 前記第1のメッセージは、ACCESS SUCCESSメッセージである、
付記32に記載のDU。
(付記34)
 無線アクセスネットワーク(RAN)ノードのDistributed Unit(DU)により行われる方法であって、
 User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージをCentral Unit(CU)に送ることを備え、
 前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す、
方法。
(付記35)
 無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、
 User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信し、
 前記第1のメッセージの受信後、前記第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持される必要があることを示す第2のメッセージを第2のDUに送信する、
よう構成される、
CU。
(付記36)
 前記少なくとも1つのプロセッサは、前記第1のメッセージの受信の後、前記第1の条件付きモビリティのソースセルの設定が前記後続の第2の条件付きモビリティのために維持される必要があることを知らせる第3のメッセージを、前記ソースセルを提供するソースDUに送信するよう構成される、
付記35に記載のCU。
(付記37)
 無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)により行われる方法であって、
 User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信すること、及び
 前記第1のメッセージの受信後、前記第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持される必要があることを示す第2のメッセージを第2のDUに送信すること、
を備える方法。
(付記38)
 無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、
 User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信し、
 前記第1のメッセージの受信後、前記第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを知らせる第2のメッセージを、前記ソースセルを提供するソースDUに送信するよう構成される、
CU。
(付記39)
 無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)により行われる方法であって、
 User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信すること、及び
 前記第1のメッセージの受信後、前記第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを知らせる第2のメッセージを、前記ソースセルを提供するソースDUに送信すること、
を備える方法。
(付記40)
 User Equipment(UE)であって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、
 候補Special Cell(SpCell)が互いに異なる複数の候補Cell Group(CG)セットの設定を無線アクセスネットワーク(RAN)ノードから受信し、
 Layer 1/layer 2ベースド・セル間モビリティにより1つの候補SpCellを選択し、選択された候補SpCellに対応する候補CGの設定セットを適用する、
UE。
(付記41)
 User Equipment(UE)により行われる方法であって、
 候補Special Cell(SpCell)が互いに異なる複数の候補Cell Group(CG)セットの設定を無線アクセスネットワーク(RAN)ノードから受信すること、及び
 Layer 1/layer 2ベースド・セル間モビリティにより1つの候補SpCellを選択し、選択された候補SpCellに対応する候補CGの設定セットを適用すること、
を備える方法。
 この出願は、2021年12月28日に出願された日本出願特願2021-215151を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 マスターノード(Master Node(MN))
2 ソース・セカンダリノード(Source Secondary Node(S-SN))
3 User Equipment(UE)
1704 プロセッサ
1705 メモリ
1706 モジュール(modules)
1803 ベースバンドプロセッサ
1804 アプリケーションプロセッサ
1806 メモリ
1807 モジュール(modules)

Claims (41)

  1.  User Equipment(UE)のためのデュアルコネクティビティにおいてSecondary Cell Group(SCG)に関連付けられたSecondary Node(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSN Radio Resource Control(RRC)メッセージを、前記UEに、Master Node(MN)を介して又は前記SNと前記UEとの間の直接シグナリング無線ベアラを介して、送信するよう構成され、
     前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
    RANノード。
  2.  前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が前記後続の第2の条件付きPSCell変更のために前記UEにより維持される必要があるか否かを決定するよう構成される、
    請求項1に記載のRANノード。
  3.  前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更の完了後に、前記少なくとも1つの候補PSCellに関する前記後続の第2の条件付きモビリティのために更新された少なくとも1つの実行条件を包含する第2のSN RRCメッセージを前記UEに送信するよう構成される、
    請求項1又は2に記載のRANノード。
  4.  前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更のソースPSCellが前記後続の第2の条件付きPSCell変更における候補PSCellの1つとされることを前記UEに示す、
    請求項1~3のいずれか1項に記載のRANノード。
  5.  前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更の完了後に、前記ソースPSCellに相当する新たな候補PSCellに関する前記後続の第2の条件付きモビリティのための実行条件を包含する第3のSN RRCメッセージを前記UEに送信するよう構成される、
    請求項4に記載のRANノード。
  6.  User Equipment(UE)のためのデュアルコネクティビティにおいてSecondary Cell Group(SCG)に関連付けられたSecondary Node(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードにより行われる方法であって、
     第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSN Radio Resource Control(RRC)メッセージを、前記UEに、Master Node(MN)を介して又は前記SNと前記UEとの間の直接シグナリング無線ベアラを介して、送信することを備え、
     前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
    方法。
  7.  User Equipment(UE)のためのデュアルコネクティビティにおいてSecondary Cell Group(SCG)に関連付けられたSecondary Node(SN)として動作するよう構成された無線アクセスネットワーク(RAN)ノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSN Radio Resource Control(RRC)メッセージを、前記UEに、Master Node(MN)を介して又は前記SNと前記UEとの間の直接シグナリング無線ベアラを介して、送信することを備え、
     前記第1のSN RRCメッセージは、前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
    非一時的なコンピュータ可読媒体。
  8.  User Equipment(UE)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、
     第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSecondary Node (SN) Radio Resource Control(RRC)メッセージを、Master Node(MN)を介して又は前記UEとSNとの間の直接シグナリング無線ベアラを介して、受信し、
     前記複数の候補PSCellのうち1つの実行条件が満たされたなら、前記実行条件が満たされた1つの候補PSCellに対応する設定を適用し、
     前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを前記第1のSN RRCメッセージが示すなら、前記少なくとも1つの候補PSCellの設定を前記第2の条件付きPSCell変更で利用するために維持する、
    UE。
  9.  前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更の完了後に、前記少なくとも1つの候補PSCellに関する前記後続の第2の条件付きPSCell変更のために更新された少なくとも1つの実行条件を包含する第2のSN RRCメッセージを前記SNから受信するよう構成される、
    請求項8に記載のUE。
  10.  前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更のソースPSCellを前記後続の第2の条件付きPSCell変更における候補PSCellの1つとして使用するために、前記ソースPSCellの設定を前記第1の条件付きPSCell変更の完了後に維持するよう構成される、
    請求項8又は9に記載のUE。
  11.  前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更のソースPSCellが前記後続の第2の条件付きPSCell変更における候補PSCellの1つとされることを前記第1のSN RRCメッセージが示すなら、前記ソースPSCellの設定を前記第2の条件付きPSCell変更で利用するために維持するよう構成される、
    請求項8又は9に記載のUE。
  12.  前記少なくとも1つのプロセッサは、前記第1の条件付きPSCell変更の完了後に、前記ソースPSCellに相当する新たな候補PSCellに関する前記後続の第2の条件付きPSCell変更のための実行条件を包含する第3のSN RRCメッセージを前記SNから受信するよう構成される、
    請求項10又は11に記載のUE。
  13.  User Equipment(UE)により行われる方法であって、
     第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSecondary Node (SN) Radio Resource Control(RRC)メッセージを、Master Node(MN)を介して又は前記UEとSNとの間の直接シグナリング無線ベアラを介して、受信すること、
     前記複数の候補PSCellのうち1つの実行条件が満たされたなら、前記実行条件が満たされた1つの候補PSCellに対応する設定を適用すること、及び
     前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを前記第1のSN RRCメッセージが示すなら、前記少なくとも1つの候補PSCellの設定を前記第2の条件付きPSCell変更で利用するために維持すること、
    を備える方法。
  14.  User Equipment(UE)のための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、
     第1の条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更のための複数の候補PSCellsの設定を包含する第1のSecondary Node (SN) Radio Resource Control(RRC)メッセージを、Master Node(MN)を介して又は前記UEとSNとの間の直接シグナリング無線ベアラを介して、受信すること、
     前記複数の候補PSCellのうち1つの実行条件が満たされたなら、前記実行条件が満たされた1つの候補PSCellに対応する設定を適用すること、及び
     前記第1の条件付きPSCell変更で選択されなかった少なくとも1つの候補PSCellの設定が後続の第2の条件付きPSCell変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを前記第1のSN RRCメッセージが示すなら、前記少なくとも1つの候補PSCellの設定を前記第2の条件付きPSCell変更で利用するために維持すること、
    を備える、非一時的なコンピュータ可読媒体。
  15.  無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、第1のメッセージをDistributed Unit(DU)に送り、前記第1のメッセージへの応答である第2のメッセージを前記DUから受信するよう構成され、
     前記第1のメッセージは、User Equipment(UE)のための第1の条件付きモビリティの要求を示し、且つ前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
    CU。
  16.  前記第2のメッセージは、前記DUにより準備される1又はそれ以上の候補ターゲットセルに前記動作モードが適用されないことを前記DUが判断したか否かを示す、
    請求項15に記載のCU。
  17.  前記第2のメッセージは、前記DUにより準備される1又はそれ以上の候補ターゲットセルのために前記動作モードを前記DUが準備したか否かを示す、
    請求項15に記載のCU。
  18.  前記第1のメッセージは、UE CONTEXT MODIFICATION REQUESTメッセージ又はUE CONTEXT SETUP REQUESTメッセージであり、
     前記第2のメッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージ又はUE CONTEXT SETUP RESPONSEメッセージである、
    請求項15~17のいずれか1項に記載のCU。
  19.  前記第1の条件付きモビリティは、条件付きハンドオーバ、条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更、又は条件付きPSCell追加であり、
     前記後続の第2の条件付きモビリティは、条件付きハンドオーバ又は条件付きPSCell変更である、
    請求項15~18のいずれか1項に記載のCU。
  20.  無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)により行われる方法であって、
     第1のメッセージをDistributed Unit(DU)に送ること、及び
     前記第1のメッセージへの応答である第2のメッセージを前記DUから受信すること、
    を備え、
     前記第1のメッセージは、User Equipment(UE)のための第1の条件付きモビリティの要求を示し、且つ前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティ変更のために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
    方法。
  21.  無線アクセスネットワーク(RAN)ノードのDistributed Unit(DU)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、第1のメッセージをCentral Unit(CU)から受信し、前記第1のメッセージへの応答である第2のメッセージを前記CUに送るよう構成され、
     前記第1のメッセージは、User Equipment(UE)のための第1の条件付きモビリティの要求を示し、且つ前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
    DU。
  22.  前記第2のメッセージは、前記DUにより準備される1又はそれ以上の候補ターゲットセルに前記動作モードが適用されないことを前記DUが判断したか否かを示す、
    請求項21に記載のDU。
  23.  前記第2のメッセージは、前記DUにより準備される1又はそれ以上の候補ターゲットセルのために前記動作モードを前記DUが準備したか否かを示す、
    請求項21に記載のDU。
  24.  前記第1のメッセージは、UE CONTEXT MODIFICATION REQUESTメッセージ又はUE CONTEXT SETUP REQUESTメッセージであり、
     前記第2のメッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージ又はUE CONTEXT SETUP RESPONSEメッセージである、
    請求項21~23のいずれか1項に記載のDU。
  25.  前記第1の条件付きモビリティは、条件付きハンドオーバ、条件付きPrimary Secondary Cell Group(SCG)Cell(PSCell)変更、又は条件付きPSCell追加であり、
     前記後続の第2の条件付きモビリティは、条件付きハンドオーバ又は条件付きPSCell変更である、
    請求項21~24のいずれか1項に記載のDU。
  26.  無線アクセスネットワーク(RAN)ノードのDistributed Unit(DU)により行われる方法であって、
     第1のメッセージをCentral Unit(CU)から受信すること、及び
     前記第1のメッセージへの応答である第2のメッセージを前記CUに送ること、
    を備え、
     前記第1のメッセージは、User Equipment(UE)のための第1の条件付きモビリティの要求を示し、且つ前記第1の条件付きモビリティで選択されなかった少なくとも1つの候補ターゲットセルの設定が後続の第2の条件付きモビリティのために前記UEにより再利用される動作モードが適用される、要求される、推奨される、又は利用可能であることを示す、
    方法。
  27.  無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信するよう構成され、
     前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す、
    CU。
  28.  前記少なくとも1つのプロセッサは、前記第1のメッセージの受信の後、前記第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が前記後続の第2の条件付きモビリティのために維持される必要があることを第2のDUに知らせるよう構成される、
    請求項27に記載のCU。
  29.  前記少なくとも1つのプロセッサは、前記第1のメッセージの受信の後、前記第1の条件付きモビリティのソースセルを提供するソースDUに、前記ソースセルの設定が前記後続の第2の条件付きモビリティのために維持される必要があることを知らせるよう構成される、
    請求項27又は28に記載のCU。
  30.  前記第1のメッセージは、ACCESS SUCCESSメッセージである、
    請求項27~29のいずれか1項に記載のCU。
  31.  無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)により行われる方法であって、
     User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信することを備え、
     前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す、
    方法。
  32.  無線アクセスネットワーク(RAN)ノードのDistributed Unit(DU)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージをCentral Unit(CU)に送るよう構成され、
     前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す、
    DU。
  33.  前記第1のメッセージは、ACCESS SUCCESSメッセージである、
    請求項32に記載のDU。
  34.  無線アクセスネットワーク(RAN)ノードのDistributed Unit(DU)により行われる方法であって、
     User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージをCentral Unit(CU)に送ることを備え、
     前記第1のメッセージは、前記第1の条件付きモビリティのために受け入れられた他の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持されることを示す、
    方法。
  35.  無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、
     User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信し、
     前記第1のメッセージの受信後、前記第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持される必要があることを示す第2のメッセージを第2のDUに送信する、
    よう構成される、
    CU。
  36.  前記少なくとも1つのプロセッサは、前記第1のメッセージの受信の後、前記第1の条件付きモビリティのソースセルの設定が前記後続の第2の条件付きモビリティのために維持される必要があることを知らせる第3のメッセージを、前記ソースセルを提供するソースDUに送信するよう構成される、
    請求項35に記載のCU。
  37.  無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)により行われる方法であって、
     User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信すること、及び
     前記第1のメッセージの受信後、前記第1の条件付きモビリティのための1又はそれ以上の候補ターゲットセルの準備が後続の第2の条件付きモビリティのために維持される必要があることを示す第2のメッセージを第2のDUに送信すること、
    を備える方法。
  38.  無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、
     User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信し、
     前記第1のメッセージの受信後、前記第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを知らせる第2のメッセージを、前記ソースセルを提供するソースDUに送信するよう構成される、
    CU。
  39.  無線アクセスネットワーク(RAN)ノードのCentral Unit(CU)により行われる方法であって、
     User Equipment(UE)が第1の条件付きモビリティの間に成功裏にアクセスした候補ターゲットセルを示す第1のメッセージを第1のDistributed Unit(DU)から受信すること、及び
     前記第1のメッセージの受信後、前記第1の条件付きモビリティのソースセルの設定が後続の第2の条件付きモビリティのために維持される必要があることを知らせる第2のメッセージを、前記ソースセルを提供するソースDUに送信すること、
    を備える方法。
  40.  User Equipment(UE)であって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、
     候補Special Cell(SpCell)が互いに異なる複数の候補Cell Group(CG)セットの設定を無線アクセスネットワーク(RAN)ノードから受信し、
     Layer 1/layer 2ベースド・セル間モビリティにより1つの候補SpCellを選択し、選択された候補SpCellに対応する候補CGの設定セットを適用する、
    UE。
  41.  User Equipment(UE)により行われる方法であって、
     候補Special Cell(SpCell)が互いに異なる複数の候補Cell Group(CG)セットの設定を無線アクセスネットワーク(RAN)ノードから受信すること、及び
     Layer 1/layer 2ベースド・セル間モビリティにより1つの候補SpCellを選択し、選択された候補SpCellに対応する候補CGの設定セットを適用すること、
    を備える方法。
PCT/JP2022/040271 2021-12-28 2022-10-27 無線アクセスネットワークノード、User Equipment、及びこれらの方法 WO2023127273A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280092636.6A CN118765523A (zh) 2021-12-28 2022-10-27 无线电接入网节点、用户设备及其方法
JP2023570686A JPWO2023127273A5 (ja) 2022-10-27 無線アクセスネットワークノードにより行われる方法およびUser Equipmentにより行われる方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021215151 2021-12-28
JP2021-215151 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127273A1 true WO2023127273A1 (ja) 2023-07-06

Family

ID=86998637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040271 WO2023127273A1 (ja) 2021-12-28 2022-10-27 無線アクセスネットワークノード、User Equipment、及びこれらの方法

Country Status (2)

Country Link
CN (1) CN118765523A (ja)
WO (1) WO2023127273A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234633A1 (en) * 2020-05-21 2021-11-25 Telefonaktiebolaget Lm Ericsson (Publ) Preserving cell group addition/change configuration on handover

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234633A1 (en) * 2020-05-21 2021-11-25 Telefonaktiebolaget Lm Ericsson (Publ) Preserving cell group addition/change configuration on handover

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Multi-connectivity; Stage 2 (Release 16", 3GPP TS 37.340 V16.7.0, September 2021 (2021-09-01)
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2, (Release 16", 3GPP TS 38.300 V16.7.0, September 2021 (2021-09-01)
CATT: "Conditional SN addition", 3GPP TSG RAN WG2 #105 R2-1900213, 15 February 2019 (2019-02-15), XP051601612 *
CATT: "Introduction of CPA and inter-SN CPC", 3GPP TSG RAN WG2 #116-E R2-2111640, 22 November 2021 (2021-11-22), XP052082148 *
CATT: "Introduction of CPA and inter-SN CPC", R2-2111640, 3GPP TSG-RAN WG2 MEETING #116-E, 1 November 2021 (2021-11-01)
HUAWEI: "(TP for NR_Mob_enh BL CR for TS 38.401): RRCReconfigurationComplete Transfer in Conditional Pscell Change", 3GPP TSG RAN WG3 #107BIS_E R3-201879, 10 April 2020 (2020-04-10), XP051873830 *
MEDIATEK: "Moderator's summary of discussion for [94e-14-R18-MobEnh", RP-213541, 3GPP TSG RAN MEETING #94E, 6 December 2021 (2021-12-06)
MEDIATEK: "New WID on Further NR mobility enhancements", RP-213565, 3GPP TSG RAN MEETING #94E, 6 December 2021 (2021-12-06)

Also Published As

Publication number Publication date
JPWO2023127273A1 (ja) 2023-07-06
CN118765523A (zh) 2024-10-11

Similar Documents

Publication Publication Date Title
US11985559B2 (en) System and methods for phased reconfiguration in wireless systems
US11071025B2 (en) Cell handover with minimum mobility interruption
US20200106591A1 (en) Uplink data transmission method and related device
JP6617770B2 (ja) 無線端末及び無線局並びにこれらの方法
JP2017514367A (ja) ベアラ管理装置、方法及び通信システム
EP3103307B1 (en) Methods, apparatus and computer programs for performing radio bearer mapping in dual connectivity
BRPI0909948B1 (pt) método e aparelho para alteração otimizada de células servidoras duplas
JP2016511956A (ja) ランク指示(ri)ビット数を決定する方法、基地局、及び端末
JP6510069B2 (ja) 複数のサービングセルをサポートするワイヤレス通信システムにおけるキャリアに関する制御情報のマッピング
WO2021161621A1 (ja) Ranノード、無線端末、及びこれらのための方法
CN114365531A (zh) 主节点、辅节点及其方法
US12058580B2 (en) Access control apparatus and user plane apparatus
WO2023127273A1 (ja) 無線アクセスネットワークノード、User Equipment、及びこれらの方法
US11700091B2 (en) Bearer control
WO2023127272A1 (ja) User Equipment、無線アクセスネットワークノード、及びこれらの方法
WO2023127271A1 (ja) 無線アクセスネットワークノード、User Equipment、及びこれらの方法
WO2024014385A1 (ja) 無線アクセスネットワークノード及びその方法
JP7416201B2 (ja) 無線アクセスネットワークノード、User Equipment、及びこれらの方法
WO2023286420A1 (ja) 無線アクセスネットワークノード及びその方法
WO2024210008A1 (ja) 分散ユニット、中央ユニット、ranノード、無線端末、及びこれらの方法
JP2018174597A (ja) ベアラ管理装置、方法及び通信システム
WO2024024460A1 (ja) 中央ユニット、分散ユニット、無線アクセスネットワークノード、ue、及びこれらの方法
WO2024171587A1 (ja) 無線端末、無線アクセスネットワークノード、及びこれらの方法
WO2023286421A1 (ja) 無線アクセスネットワークノード及びその方法
WO2024029263A1 (ja) 無線アクセスネットワークノード及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570686

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022915506

Country of ref document: EP

Effective date: 20240729