WO2023127144A1 - 排ガス浄化装置 - Google Patents

排ガス浄化装置 Download PDF

Info

Publication number
WO2023127144A1
WO2023127144A1 PCT/JP2021/048927 JP2021048927W WO2023127144A1 WO 2023127144 A1 WO2023127144 A1 WO 2023127144A1 JP 2021048927 W JP2021048927 W JP 2021048927W WO 2023127144 A1 WO2023127144 A1 WO 2023127144A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
cleaning liquid
casing
impeller
fluid nozzle
Prior art date
Application number
PCT/JP2021/048927
Other languages
English (en)
French (fr)
Inventor
啓志 今村
秀夫 原口
康弘 佐藤
Original Assignee
カンケンテクノ株式会社
北京康肯▲環▼保▲設▼▲備▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カンケンテクノ株式会社, 北京康肯▲環▼保▲設▼▲備▼有限公司 filed Critical カンケンテクノ株式会社
Priority to PCT/JP2021/048927 priority Critical patent/WO2023127144A1/ja
Priority to TW111106317A priority patent/TW202325385A/zh
Publication of WO2023127144A1 publication Critical patent/WO2023127144A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/42Basic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact

Definitions

  • the present invention relates to an exhaust gas purifier for removing not only fine dust in exhaust gas but also gaseous air pollutants.
  • Patent Document 1 JP 2003-144826 A
  • the prior art is configured as follows. It comprises a casing having an exhaust gas inlet and an exhaust gas outlet, a rotating impeller arranged in the casing, and a nozzle for ejecting washing water into the impeller. Exhaust gas containing dust from the exhaust gas suction port is sucked into the center of the impeller, and cleaning water is jetted out from the nozzle, and the dust contained in the exhaust gas is captured by the fine particles of the cleaning water.
  • impingement plates are continuously arranged around substantially the entire circumference of the impeller in the casing against which fine particles of exhaust gas and washing water exiting the impeller collide.
  • the impingement plate is arranged substantially all around the impeller in the casing against which fine particles of exhaust gas and cleaning water coming out of the impeller collide. collides with the impingement plate and generates turbulence around the entire circumference of the impeller. This turbulent flow promotes the mixing of fine particles of the exhaust gas and the cleaning water, and the generation of fine droplets that scatter when large droplets of the cleaning water collide with the impingement plate. Improves removal rate.
  • the above prior art has the following problems. Although the impingement plate is arranged substantially all around the impeller in the casing, even if such a impingement plate is not provided, fine particles of the exhaust gas and the cleaning water coming out of the impeller collide with the inner wall of the casing, causing the impingement plate to be displaced. However, there is a problem that the dust removal efficiency is not improved as much as expected. In addition, with such conventional technology, although it is possible to remove dust and easily water-soluble components among gaseous air pollutants from exhaust gas, it is difficult to remove poorly water-soluble and water-insoluble substances. There was also the problem that
  • the main object of the present invention is to provide an exhaust gas purifier capable of effectively removing not only fine dust but also many gaseous air pollutants from exhaust gas.
  • the present invention configured an exhaust gas purifier 10 as follows. That is, a casing 12 having an exhaust gas suction port 12a formed on the bottom surface and an exhaust gas discharge port 12b formed on the side surface is fixed to a rotating shaft 18 arranged along the vertical direction inside the casing 12. , an impeller 14 that rotates around the rotary shaft 18 and a two-fluid nozzle 16 that atomizes and sprays a cleaning liquid 20 into the impeller 14 .
  • the exhaust gas E to be treated is sucked into the casing 12 through the exhaust gas inlet 12 a by rotating the impeller 14 , and the cleaning liquid 20 sprayed from the two-fluid nozzle 16 is used to clean the exhaust gas E. After purifying the exhaust gas, it is discharged from the exhaust gas discharge port 12b.
  • the exhaust gas E contains NOx, and the cleaning liquid 20 is hydrogen peroxide water.
  • Another invention of the present invention is a casing 12 having an exhaust gas suction port 12a formed on the bottom surface and an exhaust gas discharge port 12b formed on the side surface, and arranged along the vertical direction inside the casing 12.
  • An impeller 14 that is fixed to a rotating shaft 18 and rotates around the rotating shaft 18 , and a two-fluid nozzle 16 that atomizes and sprays a cleaning liquid 20 into the impeller 14 .
  • the exhaust gas E to be treated is sucked into the casing 12 through the exhaust gas inlet 12 a by rotating the impeller 14 , and the cleaning liquid 20 sprayed from the two-fluid nozzle 16 is used to clean the exhaust gas E. After purifying the exhaust gas, it is discharged from the exhaust gas discharge port 12b.
  • the exhaust gas E contains an acidic gas
  • the cleaning liquid 20 is an alkaline aqueous solution.
  • Still another invention of the present invention is a casing 12 having an exhaust gas suction port 12a drilled on the bottom surface and an exhaust gas discharge port 12b drilled on the side surface, and a casing 12 inside the casing 12 along the vertical direction.
  • An impeller 14 fixed to a rotating shaft 18 arranged and rotating around the rotating shaft 18 and a two-fluid nozzle 16 for finely atomizing and spraying a cleaning liquid 20 into the impeller 14 are provided.
  • the exhaust gas E to be treated is sucked into the casing 12 through the exhaust gas inlet 12 a by rotating the impeller 14 , and the cleaning liquid 20 sprayed from the two-fluid nozzle 16 is used to clean the exhaust gas E. After purifying the exhaust gas, it is discharged from the exhaust gas discharge port 12b.
  • the exhaust gas E contains an alkaline gas, and the cleaning liquid 20 is an acidic aqueous solution.
  • a demister 22 on the side peripheral surface of the impeller 14 .
  • the gas-liquid contact between the exhaust gas E sucked by the impeller 14 and the cleaning liquid 20 can be further promoted, and the efficiency of capturing dust and air pollutants (gases) by the cleaning liquid 20 can be improved.
  • the demister 22 is constantly subjected to centrifugal force. Therefore, it is possible to effectively prevent the demister 22 from clogging due to dust in the exhaust gas E or the like.
  • part of the exhaust gas E discharged to the outside of the casing 12 through the exhaust gas discharge port 12b is returned to the exhaust gas suction port 12a.
  • part of the exhaust gas E can repeatedly pass through the impeller 14, and the removal rate of dust and gaseous air pollutants in the exhaust gas E can be further improved.
  • the present invention preferably adds a unique configuration described in the embodiments described later.
  • an exhaust gas purifier that can effectively remove not only fine dust but also many gaseous air pollutants from exhaust gas.
  • FIG. 1 is a diagram showing an overview of an exhaust gas purifier 10 according to one embodiment of the present invention.
  • the exhaust gas purifier 10 of the present embodiment includes a casing 12 having an exhaust gas inlet 12a and an exhaust gas outlet 12b, and an impeller disposed in the casing 12 and supported by a rotating shaft 18.
  • 14 and a two-fluid nozzle 16 for spraying the cleaning liquid 20 into the impeller 14 are housed in an airtight and robust housing 24 made of metal such as stainless steel.
  • the shape of the housing 24 is not particularly limited, and may be a quadrangular prism shape or a cylindrical shape.
  • the housing 24 is formed in the shape of a quadrangular prism, and an exhaust gas inlet 26a and an exhaust gas outlet 26b are drilled in the top plate 26 forming the ceiling surface of the housing 24 at diagonally spaced positions. be done.
  • An inlet short pipe 28 to which a pipe leading to an exhaust gas source (not shown) is connected is inserted into the exhaust gas introduction port 26a.
  • An outlet double pipe 30 for discharging to the outside of 24 is inserted. Details of the outlet double pipe 30 will be described later.
  • An opening 26c is provided in the center of the top plate 26, and a motor 32 that rotates and drives the impeller 14 with the rotating shaft 18 inserted through the opening 26c is installed in the upper part of the center of the top plate 26.
  • a pipe wall 34 which is a short cylindrical pipe wall 34 and serves as a side peripheral wall of the casing 12 is vertically provided at a central lower portion of the top plate 26 . Therefore, in this embodiment, the central portion of the top plate 26 of the housing 24 is shared as the top plate of the casing 12 .
  • a ring-shaped bottom plate 36 is attached to the lower end of the tube wall 34, and has an opening in the center that serves as an exhaust gas inlet 12a after the impeller 14, which will be described later, is accommodated in the tube wall 34.
  • a pipe wall 34 serving as a side peripheral wall of the casing 12 is connected to the outlet double pipe 30 at a position close to the exhaust gas discharge port 26b so that the exhaust gas E that has passed through the impeller 14 is discharged from the casing 12. is provided with an exhaust gas discharge port 12b.
  • a tubular first tubular body 30a and its upper part are composed of a tubular body having the same diameter as the first tubular body 30a.
  • a second tubular body 30b is inserted into the inside of the tubular body 30a from above to hermetically seal the upper end 40 of the first tubular body 30a.
  • the lower end 42 of the second tubular body 30b is located below the lower end of the exhaust gas discharge port 12b and above the lower end 44 of the first tubular body 30a.
  • part of the exhaust gas E discharged from the exhaust gas discharge port 12b flows (runs up) from the lower end 42 of the second tubular body 30b into the second tubular body 30b, but the remaining part (exhaust gas The remainder of E and the cleaning liquid 20) that has passed through the exhaust gas discharge port 12b flow down the first tubular body 30a under the influence of gravity and are returned from the lower end 44 into the housing 24.
  • how much of the exhaust gas E that has passed through the impeller 14 and is discharged from the exhaust gas discharge port 12b is fed to the second tubular body 30b depends on the capacity of the housing 24 and the impeller. 14, and the length and diameter of the first tubular body 30a and/or the second tubular body 30b.
  • the impeller 14 is provided on a disk-shaped top plate 46 and on the lower surface of the peripheral edge of the top plate 46 . and a ring-shaped bottom plate 50 connecting the lower ends of the blades 48 (see FIG. 2).
  • a shaft hole 46a through which the rotating shaft 18 is inserted is formed in the central portion of the top plate 46.
  • the impeller 14 having the rotating shaft 18 inserted through the shaft hole 46a is shown in FIG. , a fixing member 52 is attached from the tip side of the rotating shaft 18 and fixed to the rotating shaft 18 .
  • a permeable wall member 54 made of stainless steel punching metal or the like is installed over the entire circumference between the outer peripheral edge of the top plate 46 and the outer peripheral edge of the bottom plate 50, and a demister is provided inside the wall member 54. 22 are provided.
  • the demister 22 is a kind of mist separator in which metal wires, resin filaments, etc. are laminated in several layers to increase the contact surface with the fluid while reducing the pressure loss.
  • the type of demister 22 used in the present invention is not particularly limited, and a mesh demister, wire demister, or the like can be used.
  • the two-fluid nozzle 16 is for atomizing and spraying the cleaning liquid 20 into the impeller 14 , and its head portion is arranged near the bottom of the impeller 14 .
  • a head portion of the two-fluid nozzle 16 is connected to a downstream end of a pressurized gas supply pipe 16a that supplies a pressurized gas P such as compressed air and a downstream end of a cleaning liquid supply pipe 16b that supplies the cleaning liquid 20 . Therefore, by using the high-speed flow of the pressurized gas P, the two-fluid nozzle 16 can atomize the cleaning liquid 20 to, for example, an average particle diameter of 10 ⁇ m or less and spray it.
  • the cleaning liquid 20 sprayed from the two-fluid nozzle 16 is selected according to the type of the exhaust gas E to be treated.
  • the exhaust gas E contains NOx such as NO (nitrogen monoxide) and NO 2 (nitrogen dioxide) as gaseous air pollutants
  • NOx such as NO (nitrogen monoxide) and NO 2 (nitrogen dioxide) as gaseous air pollutants
  • hydrogen peroxide water is used as the cleaning liquid 20 .
  • concentration of the hydrogen peroxide solution used as the cleaning liquid 20 is not particularly limited, but is preferably in the range of 35% to 50% in consideration of availability, running costs, and the like.
  • NO is oxidized to NO 2 as shown in the following formula (1).
  • NO 2 reacts with the water content in the hydrogen peroxide solution and part of it becomes NO again, but the rest becomes nitric acid and dissolves in the cleaning liquid 20 and is removed from the exhaust gas E. be.
  • those that become NO again come into gas-liquid contact with the cleaning liquid 20 again to repeat the above process, and are gradually removed from the exhaust gas E. That is, NOx is removed from the exhaust gas E.
  • an alkaline aqueous solution such as a sodium hydroxide aqueous solution is used as the cleaning liquid 20 .
  • an acidic aqueous solution such as dilute sulfuric acid or an aqueous citric acid solution is used as the cleaning liquid 20 .
  • the cleaning liquid 20 sprayed from the two-fluid nozzle 16 is accompanied by air pollutants chemically captured by, for example, dust and various cleaning components in the cleaning liquid 20. It flows down inside the body 24 and becomes stored at the bottom of the housing 24 . Therefore, a drain line 56 and a piping system 58 for adjusting the level of the stored cleaning liquid 20 are attached to the bottom of the housing 24 .
  • the exhaust gas purifier 10 of the present embodiment configured as described above, first, electric power is supplied to the motor 32 to operate it, and the two-fluid nozzle 16 is finer.
  • the washed cleaning liquid 20 is sprayed.
  • the impeller 14 rotates at a high speed (for example, around 3000 to 4000 rpm), thereby generating negative pressure near the exhaust gas inlet 12a of the casing 12 and near the exhaust gas outlet 12b.
  • a positive pressure is generated toward the exhaust gas discharge port 12b, and an airflow within the casing 12 is generated.
  • an intake means such as a fan installed downstream of the exhaust gas discharge port 26b in the exhaust gas flow direction is operated to start introducing the exhaust gas E to be treated into the exhaust gas purification apparatus 10. do.
  • the exhaust gas E introduced into the housing 24 through the inlet short pipe 28 enters the casing 12 from the exhaust gas suction port 12a, which has a negative pressure, and is finely atomized into the cleaning liquid 20. It passes through the impeller 14 while being in gas-liquid contact with , and collides with the pipe wall 34 that is the side peripheral wall of the casing 12 .
  • the demister 22 is arranged on the side peripheral surface of the impeller 14, so that the gas-liquid contact between the exhaust gas E sucked by the impeller 14 and the cleaning liquid 20 is further enhanced. This can be further accelerated, and the efficiency of capturing dust and air pollutants by the cleaning liquid 20 can be significantly improved.
  • the washing liquid 20 collided with the wall surface of the pipe wall 34 (hereinafter also referred to as the “inner wall surface”) and the dust and air pollutants in the exhaust gas E captured by the washing liquid 20, and the above collisions were repeated.
  • the particle size of the particles gradually increases, and as a result, the particles flow down along the inner wall surface due to gravity.
  • Most of the cleaning liquid 20 accumulated on the inner wall surface of the casing 12 and most of the dust and air pollutants captured by the cleaning liquid flow out of the casing 12 (however, inside the housing 24) through the exhaust gas inlet 12a. discharged to
  • the exhaust gas E from which most of the cleaning liquid 20 and dust and air pollutants have been removed is discharged out of the casing 12 from the exhaust gas discharge port 12b.
  • the exhaust gas purifier 10 of the present embodiment since the exhaust gas discharge port 26b is equipped with the outlet double pipe 30, part of the exhaust gas E discharged outside the casing 12 from the exhaust gas discharge port 12b is returned to the exhaust gas suction port 12a. Therefore, part of the exhaust gas E can pass through the impeller 14 again, and the removal rate of dust and air pollutants from the exhaust gas E can be further improved.
  • the exhaust gas E contains NOx and the hydrogen peroxide solution is used as the cleaning liquid 20, the effect of removing NOx from the exhaust gas E becomes even more remarkable.
  • the solid lines represent those that have not passed through the impeller 14, and the dotted lines represent those that have passed through the impeller 14. there is
  • the lower end 42 of the second tubular body 30b of the outlet double pipe 30 is arranged below the lower end of the exhaust gas discharge port 12b and above the lower end 44 of the first tubular body 30a. Therefore, it is possible to reduce the emission of the cleaning liquid 20 and dust particles from inside the housing 24 .
  • the exhaust gas abatement apparatus is configured by combining with a decomposition furnace for thermally decomposing the exhaust gas E.
  • a decomposition furnace for thermally decomposing the exhaust gas E is preferred.
  • Any heat source may be used as the heat source for the cracking furnace as long as it can raise the temperature of the inside of the furnace to the thermal decomposition temperature of the exhaust gas E.
  • an electric heater, a flame burner, a non-transfer A type or transfer type plasma torch or the like can be preferably used.
  • a large amount of NOx may be produced as a by-product.
  • the exhaust gas purifying device 10 of the present embodiment is installed at least in the latter stage (in other words, downstream side) of the cracking furnace, NOx in the exhaust gas E finally discharged into the atmosphere can be reduced.
  • the cleaning liquid 20 is hydrogen peroxide water.
  • the impeller 14 is provided with the blade plate 48 inclined at a constant angle with respect to the radial direction of the top plate 46.
  • the axes of the blades 48 installed on the wheel 14 may be aligned in the radial direction.
  • the suction force of the exhaust gas E generated when the impeller 14 is rotated at high speed is weaker than in the above-described embodiment, when the demister 22 is arranged on the side peripheral surface of the impeller 14, this The residence time and moving distance of the exhaust gas E and the cleaning liquid 20 in the demister 22 can be increased. As a result, the exhaust gas E and the cleaning liquid 20 can sufficiently come into gas-liquid contact within the demister 22, and the efficiency of capturing dust and air pollutants by the cleaning liquid 20 can be improved.
  • the outlet double pipe 30 inserted into the exhaust gas discharge port 26b, the short tubular first tubular body 30a communicating with the exhaust gas discharge port 12b on the side peripheral surface, and the first tubular body 30a and a second tubular body 30b which is inserted into the interior from the upper side of the first tubular body 30a to hermetically seal the upper end 40 of the first tubular body 30a.
  • the double pipe 30 is arranged in a short pipe-shaped first tubular body 30a that communicates with the exhaust gas discharge port 12b on the side peripheral surface, and is disposed inside the first tubular body 30a, and the upper end is directly connected to the exhaust gas discharge port 12b.
  • part of the exhaust gas E discharged from the exhaust gas discharge port 12b immediately runs up the inside of the first tubular body 30a after coming out of the lower end 42 of the second tubular body 30b.
  • the remaining portion (the rest of the exhaust gas E and the cleaning liquid 20 that has passed through the exhaust gas discharge port 12b) is governed by gravity and flows down the first tubular body 30a into the housing 24 from the lower end 44 thereof. will be returned.
  • a fan (not shown) for feeding the exhaust gas E is installed downstream of the exhaust gas outlet 26b of the exhaust gas purification device 10 in the exhaust gas flow direction, but this fan is installed as necessary, and its installation location is not limited to the above-described embodiment, for example, it is installed upstream of the exhaust gas introduction port 26a of the exhaust gas purification device 10 in the exhaust gas flow direction. You may make it
  • Exhaust gas purification device 10: Exhaust gas purification device, 12: Casing, 12a: Exhaust gas inlet, 12b: Exhaust gas outlet, 14: Impeller, 16: Two-fluid nozzle, 18: Rotating shaft, 20: Cleaning liquid, 22: Demister, E: Exhaust gas, P: pressurized gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

本発明は、排ガス中から微細な粉塵のみならず、気体の大気汚染物質の多くをも効果的に除去することができる排ガス浄化装置を提供する。すなわち、本発明の排ガス浄化装置は、底面に排ガス吸入口(12a)が穿設されると共に、側面に排ガス吐出口(12b)が穿設されたケーシング(12)と、そのケーシング(12)内部にて鉛直方向に沿って配置された回転軸(18)に固定され、当該回転軸(18)周りに回転する羽根車(14)と、その羽根車(14)内に洗浄液(20)を微細化して噴霧する2流体ノズル(16)とを備える。前記羽根車(14)を回転させて前記排ガス吸入口(12a)を介して前記ケーシング(12)内に処理対象の排ガス(E)を吸入し、前記2流体ノズル(16)から噴霧させた前記洗浄液(20)で前記排ガス(E)を浄化させた後、前記排ガス吐出口(12b)から吐出させる。そして、前記排ガス(E)はNOxを含むものであり、前記洗浄液(20)は過酸化水素水であることを特徴とする。

Description

排ガス浄化装置
 本発明は、排ガス中の微細な粉塵のみならず気体状の大気汚染物質をも除去するための排ガス浄化装置に関する。
 この種の排ガス浄化装置には、従来では、下記の特許文献1(日本国・特開2003-144826号公報)に記載されたファンスクラバーがある。その従来技術は、次のように構成されている。
 排ガス吸込口及び排ガス吐出口を備えたケーシングと該ケーシング内に配置された回転する羽根車と、該羽根車内に洗浄水を噴出するノズルとを具備する。上記の羽根車の中心部に排ガス吸込口からのダストを含む排ガスを吸込むと共に、ノズルから洗浄水を噴出し、該洗浄水の微粒に排ガス中に含まれるダストを捕獲させて該排ガス中のダストを除去する際に、ケーシング内の羽根車の略全周囲に該羽根車を出る排ガス及び洗浄水の微粒が衝突する衝突板を連続的に配置する。
 上記の従来技術によれば、ケーシング内の羽根車の略全周に該羽根車を出る排ガス及び洗浄水の微粒が衝突する衝突板を配置したので、羽根車を出た排ガス及び洗浄水の微粒は衝突板に衝突し、該羽根車の略全周で乱流を発生させる。そして、この乱流により、排ガスと洗浄水の微粒の混合や、大きな洗浄水の液滴が衝突板に衝突したときに飛び散る微細な液滴の生成を促進させ、排ガス中の微細なダスト等の除去率が向上する。
特開2003-144826号公報
 上記の従来技術は次の問題がある。
 ケーシング内の羽根車の略全周に衝突板を配置しているが、かかる衝突板を設けなくとも、羽根車を出た排ガス及び洗浄水の微粒がケーシングの内壁に衝突することによって該衝突板を配置した際と略同様の効果を得ることができ、ダストの除去効率が期待するほど向上しないという問題があった。
 また、かかる従来技術では、排ガス中からダストや、気体状の大気汚染物質のうち易水溶性成分のものを除去することはできるものの、難水溶性や非水溶性のものを除去するのが困難であるという問題もあった。
 それゆえに、本発明の主たる目的は、排ガス中から微細な粉塵のみならず、気体状の大気汚染物質の多くをも効果的に除去することができる排ガス浄化装置を提供することにある。
 上記目的を達成するため、本発明は、図1~図3に示すように、排ガス浄化装置10を次のように構成した。
 すなわち、底面に排ガス吸入口12aが穿設されると共に、側面に排ガス吐出口12bが穿設されたケーシング12と、そのケーシング12内部にて鉛直方向に沿って配置された回転軸18に固定され、当該回転軸18周りに回転する羽根車14と、その羽根車14内に洗浄液20を微細化して噴霧する2流体ノズル16とを備える。上記の羽根車14を回転させて上記の排ガス吸入口12aを介して上記ケーシング12内に処理対象の排ガスEを吸入し、上記2流体ノズル16から噴霧させた上記の洗浄液20で上記の排ガスEを浄化させた後、上記の排ガス吐出口12bから吐出させる。そして、上記の排ガスEはNOxを含むものであり、上記の洗浄液20は過酸化水素水であることを特徴とする。
 また、本発明の別の発明は、底面に排ガス吸入口12aが穿設されると共に、側面に排ガス吐出口12bが穿設されたケーシング12と、そのケーシング12内部にて鉛直方向に沿って配置された回転軸18に固定され、当該回転軸18周りに回転する羽根車14と、その羽根車14内に洗浄液20を微細化して噴霧する2流体ノズル16とを備える。上記の羽根車14を回転させて上記の排ガス吸入口12aを介して上記ケーシング12内に処理対象の排ガスEを吸入し、上記2流体ノズル16から噴霧させた上記の洗浄液20で上記の排ガスEを浄化させた後、上記の排ガス吐出口12bから吐出させる。そして、上記の排ガスEは酸性ガスを含むものであり、上記の洗浄液20はアルカリ性水溶液であることを特徴とする。
 また、本発明のさらに別の発明は、底面に排ガス吸入口12aが穿設されると共に、側面に排ガス吐出口12bが穿設されたケーシング12と、そのケーシング12内部にて鉛直方向に沿って配置された回転軸18に固定され、当該回転軸18周りに回転する羽根車14と、その羽根車14内に洗浄液20を微細化して噴霧する2流体ノズル16とを備える。上記の羽根車14を回転させて上記の排ガス吸入口12aを介して上記ケーシング12内に処理対象の排ガスEを吸入し、上記2流体ノズル16から噴霧させた上記の洗浄液20で上記の排ガスEを浄化させた後、上記の排ガス吐出口12bから吐出させる。そして、上記の排ガスEはアルカリ性ガスを含むものであり、上記の洗浄液20は酸性水溶液であることを特徴とする。
 本発明においては、前記の羽根車14の側周面にデミスター22を配設するのが好ましい。
 この場合、羽根車14に吸引される排ガスEと洗浄液20との気液接触をより一層促進させることができ、洗浄液20による粉塵および大気汚染物質(気体)の捕捉効率を向上させることができる。
 また、デミスター22を羽根車14の側周面に配設することにより、このデミスター22には常に遠心力が作用することとなる。このため、排ガスE中の粉塵などによって、このデミスター22が目詰まりを起こすのを効果的に予防することができる。
 また、本発明においては、前記の排ガス吐出口12bよりケーシング12の外に排出された排ガスEの一部が再び前記の排ガス吸入口12aへと戻されるようにするのが好ましい。
 この場合、排ガスEの一部は繰り返し羽根車14を通過することができるようになり、排ガスE中の粉塵および気体状の大気汚染物質の除去率をより一層向上させることができる。
 さらに、本発明は、後述する実施形態に記載された特有の構成を付加することが好ましい。
 本発明によれば、排ガス中から微細な粉塵のみならず、気体状の大気汚染物質の多くをも効果的に除去することができる排ガス浄化装置を提供することができる。
本発明の一実施形態の排ガス浄化装置の概要を示す説明図である。 本発明の一実施形態の羽根車における天板の一部を切り欠いた部分切欠き平面図である。 本発明の他の実施形態の排ガス浄化装置の概要を示す説明図である。
 以下、本発明の一実施形態を図1および図2によって説明する。
 図1は、本発明の一実施形態の排ガス浄化装置10の概要を示す図である。この図が示すように、本実施形態の排ガス浄化装置10は、排ガス吸入口12aおよび排ガス吐出口12bを有するケーシング12と、そのケーシング12内に配置されると共に回転軸18に支持された羽根車14と、その羽根車14内に洗浄液20を噴霧する2流体ノズル16とが、ステンレスなどの金属からなる気密かつ堅牢な筐体24内に収容されて構成されている。なお、この筐体24の形状は特に限定されるものではなく、四角柱状でもよいし円柱状でもよい。図示実施形態では、筐体24が四角柱状にて形成されており、その天井面を構成する天板26には、対角線上の互いに離間した位置に排ガス導入口26aおよび排ガス排出口26bが穿設される。そして、排ガス導入口26aには、(図示しないが)排ガス発生源に通じる配管が接続されるインレット短管28が嵌挿されており、排ガス排出口26bには、処理済の排ガスEを筐体24外へと排出するアウトレット二重管30が嵌挿されている。なお、このアウトレット二重管30の詳細については後述する。
 また、天板26の中央部には開口26cが設けられ、その天板26中央の上部には、当該開口26cに回転軸18を挿通した状態で羽根車14を回転駆動させるモーター32が設置される。
 この天板26の中央下部には、短円筒状の管壁34であって、ケーシング12の側周壁となる管壁34が垂設されている。このため、本実施形態では、筐体24の天板26の中央部分がケーシング12の天板として共用されている。また、上記の管壁34の下端部には、管壁34内に後述する羽根車14を収容した後、中央に排ガス吸入口12aとなる開口が設けられたリング状の底板36が取り付けられてケーシング12が完成する。そして、ケーシング12の側周壁となる管壁34の排ガス排出口26bに近接する位置に、上記のアウトレット二重管30に連通し、羽根車14を通過した排ガスEをケーシング12内から吐出させるための排ガス吐出口12bが穿設される。
 ここで、排ガス吐出口12bに連通するアウトレット二重管30について説明すると、このアウトレット二重管30は、排ガス排出口26bに嵌挿されてその側周面にて排ガス吐出口12bと連通する短管状の第1管体30aと、その上部が第1管体30aと同じ口径の管体で構成され、レデューサ38を介してその下部の口径が縮小されると共に、縮径された下部が第1管体30aの上側からその内部に挿入されて第1管体30aの上端40を気密的に密閉する第2管体30bとを備える。そして、第2管体30bの下端42は、排ガス吐出口12bの下端よりも下側であって、第1管体30aの下端44よりも上側の位置に配置される。このため、排ガス吐出口12bから吐出された排ガスEの一部は、第2管体30bの下端42から第2管体30b内へと流入(遡上)して行くが、残りの部分(排ガスEの残りと排ガス吐出口12bを通過した洗浄液20)は、重力に支配されて第1管体30aを流下してその下端44から筐体24内へと戻されるようになる。なお、羽根車14を通過し、排ガス吐出口12bより吐出された排ガスEのうち、どれ位の量を第2管体30b側へと送給させるかについては、筐体24の容量、羽根車14を回転させるモーター32の回転数、第1管体30aおよび/または第2管体30bの長さや口径などを適宜設定することによって調節することができる。
 羽根車14は、円盤状の天板46と、天板46の周縁部の下面に、当該天板46の半径方向に対して一定の角度にて傾斜させると共に該天板46の外周部に所定の間隔で均等配置した羽根板48と、その羽根板48の下端部同士を連結するリング状の底板50とを具備する(図2参照)。
 上記の天板46の中央部には、回転軸18が挿通される軸孔46aが穿設されており、この軸孔46aに回転軸18を挿通させた羽根車14は、図1に示すように、回転軸18の先端側から固定部材52が取り付けられて当該回転軸18に固定される。
 本実施形態の羽根車14では、天板46の外周縁と底板50の外周縁との間の全周に亘ってステンレスパンチングメタルなどからなる通気性壁材54が架設さており、その内側にデミスター22が配設されている。
 ここで、デミスター22とは、例えば金属線や樹脂フィラメントなどを、小さな圧力損失でありながら流体との接触面を増大させるべく幾層にも積層してマット状にしたミストセパレーターの一種である。本発明で使用するデミスター22の種類は特に限定されず、メッシュデミスターやワイヤーデミスター等を用いることができる。
 2流体ノズル16は、羽根車14内に洗浄液20を微細化して噴霧するためのものであり、そのヘッド部分が羽根車14の底部近傍に配設される。この2流体ノズル16のヘッド部分には、圧搾空気などの加圧気体Pを供給する加圧気体供給管16aの下流端と洗浄液20を供給する洗浄液供給管16bの下流端とが接続される。そのため、この2流体ノズル16は、加圧気体Pの高速の流れを利用することによって、洗浄液20を例えば平均粒子径10μm以下に微粒化して噴霧することができる。
 ここで、本実施形態の排ガス浄化装置10では、2流体ノズル16から噴霧する洗浄液20は、処理対象の排ガスEの種類に応じて所定のものが選択される。具体的に、排ガスEが気体状の大気汚染物質としてNO(一酸化窒素)やNO(二酸化窒素)と言ったNOxを含むものである場合には、洗浄液20として過酸化水素水が用いられる。洗浄液20として使用する過酸化水素水の濃度は、特に限定されるものではないが、入手の容易さやランニングコストなどを考慮すると、35%~50%の範囲内であるのが好ましい。そして、このようなNOxを含む排ガスEと過酸化水素水からなり霧状に微細化された洗浄液20とが気液接触すると、下式(1)のようにNOがNOに酸化されると共に、下式(2)のようにNOが過酸化水素水中の水分と反応してその一部は再びNOになるものの、残りは硝酸となって洗浄液20中へと溶け込み排ガスE中から除去される。なお、再びNOになったものは、改めて洗浄液20と気液接触することによって上記のプロセスが繰り返され、排ガスE中から漸次除去されていく。つまり、排ガスE中からNOxが取り除かれていくことになる。
 NO+H→NO+HO …(1)
 3NO+HO→NO+2HNO …(2)
 また、排ガスEが大気汚染物質として硫化水素 (HS)や二酸化炭素 (CO)と言った酸性ガスを含むものである場合には、洗浄液20として水酸化ナトリウム水溶液などのアルカリ性水溶液が用いられる。逆に排ガスEが大気汚染物質としてアンモニアやアミンなどのアルカリ性ガスを含むものである場合には、洗浄液20として希硫酸やクエン酸水溶液などの酸性水溶液が用いられる。これらの場合、排ガスEと霧状に微細化された洗浄液20とが気液接触することによって、気体状の大気汚染物質が中和されて洗浄液20中へと移行し、排ガスE中から除去されるようになる。
 なお、本実施形態の排ガス浄化装置10では、2流体ノズル16より噴霧した洗浄液20の多くが、例えば粉塵や洗浄液20中の各種洗浄成分などによって化学的に捕捉された大気汚染物質を伴って筐体24内を流下し、当該筐体24の底部に貯留されるようになる。このため、筐体24の底部には、ドレン抜きのライン56や貯留する洗浄液20の液面を調整する配管系58などが取り付けられる。
 次に、以上のように構成された本実施形態の排ガス浄化装置10を使用する際には、先ず始めに、モーター32に電力を供給してこれを作動させると共に、2流体ノズル16より微細化した洗浄液20を噴霧させる。そうすると、羽根車14が所定の回転数(例えば、3000~4000rpm前後)で高速回転することによって、ケーシング12の排ガス吸入口12aの近傍に負圧が発生すると共に、排ガス吐出口12bの近傍では該排ガス吐出口12bに向けての陽圧が発生し、ケーシング12内での気流が生じるようになる。
 続いて、図示しないが、排ガス排出口26bよりも排ガス通流方向の下流側に設置されたファンなどの吸気手段を作動させて、処理対象である排ガスEの排ガス浄化装置10への導入を開始する。すると、インレット短管28を介して筐体24内に導入された排ガスEは、負圧となっている排ガス吸入口12aからケーシング12内へと入り、微細化されて霧状になった洗浄液20に気液接触しながら羽根車14を通過し、ケーシング12の側周壁である管壁34に衝突する。
 ここで、本実施形態の排ガス浄化装置10では、羽根車14の側周面にデミスター22が配設されているので、羽根車14に吸引された排ガスEと洗浄液20との気液接触をより一層促進させることができ、洗浄液20による粉塵や大気汚染物質の捕捉効率を著しく向上させることができる。
 続いて、管壁34の壁面(以下、「内壁面」とも言う。)に衝突した洗浄液20と、これに捕捉された排ガスE中の粉塵および大気汚染物質とは、上記の衝突が繰り返されることによってその粒径が次第に大きくなり、その結果、重力によって内壁面を伝って流下するようになる。そして、ケーシング12の内壁面で蓄積された洗浄液20と、これに捕捉された粉塵および大気汚染物質との大半は、当該排ガス吸入口12aを介してケーシング12の外(但し、筐体24内)へと排出される。
 一方、洗浄液20と、粉塵および大気汚染物質との多くが取り除かれた排ガスEは、排ガス吐出口12bからケーシング12の外へと吐出される。
 ここで、本実施形態の排ガス浄化装置10では、排ガス排出口26bに上記のアウトレット二重管30が装備されているので、排ガス吐出口12bよりケーシング12の外に排出された排ガスEの一部が再び前記の排ガス吸入口12aへと戻されるようになっている。このため、排ガスEの一部は再び羽根車14を通過することができるようになっており、排ガスE中からの粉塵や大気汚染物質の除去率をより一層向上させることができる。特に、排ガスEがNOxを含有し、洗浄液20として過酸化水素水を使用している場合には、排ガスE中からのNOx除去効果がより一層顕著なものとなる。
 なお、図1中において、排ガスEの流れを示す矢印に関し、実線で記しているものは羽根車14未通過のものを表し、点線で記しているものは羽根車14通過後のものを表している。
 また、アウトレット二重管30の第2管体30bの下端42を、排ガス吐出口12bの下端よりも下側であって、第1管体30aの下端44よりも上側の位置に配置しているので、筐体24内からの洗浄液20および粉塵等の放出を低減させることができる。尤も、筐体24内からの洗浄液20および粉塵等の放出を更に抑えたい場合には、アウトレット二重管30の第2管体30bの内部にデミスターなどを設置することが望ましい。
 本実施形態の排ガス浄化装置10で排ガス浄化処理を行う排ガスEが、例えば半導体製造工程より排出されるものの場合には、排ガスEを熱分解する分解炉と組み合わせて排ガス除害装置を構成するのが好ましい。上記の分解炉の熱源としては、炉内を排ガスEの熱分解温度にまで昇温させることができるものであれば如何なるものであってもよく、例えば、電熱式ヒーター,火炎式バーナー,非移行型或いは移行型のプラズマトーチなどを好適に用いることができる。また、半導体製造工程より排出される排ガスEを熱分解させて除害すると、多量のNOxが副生される場合が有る。このため、本実施形態の排ガス浄化装置10を少なくとも当該分解炉の後段(換言すれば下流側)に設置すれば、最終的に大気中へと排出する排ガスE中のNOxを削減することができる。勿論、この場合、洗浄液20は過酸化水素水である。
 なお、上述の実施形態では、羽根車14として、天板46の半径方向に対して一定の角度にて傾斜させて羽根板48が設置されたものを示したが、例えば、図示しないが、羽根車14に設置する羽根板48の軸を半径方向に一致させるようにしてもよい。
 この場合、羽根車14を高速回転させた際に生じる排ガスEの吸引力は上述の実施形態に比べて弱くなるものの、羽根車14の側周面にデミスター22を配設した場合には、このデミスター22内における排ガスEおよび洗浄液20の滞留時間および移動距離を長く取ることができる。そうすると、このデミスター22内で排ガスEと洗浄液20とが十分に気液接触することができ、洗浄液20による粉塵および大気汚染物質の捕捉効率を向上させることができる。
 また、上述の実施形態では、排ガス排出口26bに嵌挿されるアウトレット二重管30として、側周面にて排ガス吐出口12bと連通する短管状の第1管体30aと、その第1管体30aの上側からその内部に挿入されて第1管体30aの上端40を気密的に密閉する第2管体30bとで構成されたものを示したが、例えば、図3に示すように、アウトレット二重管30を、側周面にて排ガス吐出口12bと連通する短管状の第1管体30aと、その第1管体30aの内部に配設され、上端が排ガス吐出口12bに直結されると共に、下端42が排ガス吐出口12bの下端よりも下側であって、第1管体30aの下端44よりも上側の位置に配置されたエルボ形状の第2管体30bとで構成するようにしてもよい。
 この場合も、上述の実施形態と同様に、排ガス吐出口12bから吐出された排ガスEの一部は、第2管体30bの下端42から出た後、直ちに第1管体30a内を遡上して行くが、残りの部分(排ガスEの残りと排ガス吐出口12bを通過した洗浄液20)は、重力に支配されて第1管体30aを流下してその下端44から筐体24内へと戻されるようになる。
 さらに、上述の実施形態では、排ガス浄化装置10の排ガス排出口26bよりも排ガス通流方向の下流側に排ガスEを送給するファン(図示せず)を設置する場合を示したが、このファンは必要に応じて設置されるものであって、その設置場所は上述の態様に限定されるものではなく、例えば、排ガス浄化装置10の排ガス導入口26aよりも排ガス通流方向の上流側に設置するようにしてもよい。
 その他に、当業者が想定できる範囲で種々の変更を行えることは勿論である。
 10:排ガス浄化装置,12:ケーシング,12a:排ガス吸入口,12b:排ガス吐出口,14:羽根車,16:2流体ノズル,18:回転軸,20:洗浄液,22:デミスター,E:排ガス,P:加圧気体.

Claims (5)

  1.  底面に排ガス吸入口(12a)が穿設されると共に、側面に排ガス吐出口(12b)が穿設されたケーシング(12)と、そのケーシング(12)内部にて鉛直方向に沿って配置された回転軸(18)に固定され、当該回転軸(18)周りに回転する羽根車(14)と、その羽根車(14)内に洗浄液(20)を微細化して噴霧する2流体ノズル(16)とを備え、上記の羽根車(14)を回転させて上記の排ガス吸入口(12a)を介して上記ケーシング(12)内に処理対象の排ガス(E)を吸入し、上記2流体ノズル(16)から噴霧させた上記の洗浄液(20)で上記の排ガス(E)を浄化させた後、上記の排ガス吐出口(12b)から吐出させる排ガス浄化装置であって、
     上記の排ガス(E)はNOxを含むものであり、
     上記の洗浄液(20)は過酸化水素水である、ことを特徴とする排ガス浄化装置。
  2.  底面に排ガス吸入口(12a)が穿設されると共に、側面に排ガス吐出口(12b)が穿設されたケーシング(12)と、そのケーシング(12)内部にて鉛直方向に沿って配置された回転軸(18)に固定され、当該回転軸(18)周りに回転する羽根車(14)と、その羽根車(14)内に洗浄液(20)を微細化して噴霧する2流体ノズル(16)とを備え、上記の羽根車(14)を回転させて上記の排ガス吸入口(12a)を介して上記ケーシング(12)内に処理対象の排ガス(E)を吸入し、上記2流体ノズル(16)から噴霧させた上記の洗浄液(20)で上記の排ガス(E)を浄化させた後、上記の排ガス吐出口(12b)から吐出させる排ガス浄化装置であって、
     上記の排ガス(E)は酸性ガスを含むものであり、
     上記の洗浄液(20)はアルカリ性水溶液である、ことを特徴とする排ガス浄化装置。
  3.  底面に排ガス吸入口(12a)が穿設されると共に、側面に排ガス吐出口(12b)が穿設されたケーシング(12)と、そのケーシング(12)内部にて鉛直方向に沿って配置された回転軸(18)に固定され、当該回転軸(18)周りに回転する羽根車(14)と、その羽根車(14)内に洗浄液(20)を微細化して噴霧する2流体ノズル(16)とを備え、上記の羽根車(14)を回転させて上記の排ガス吸入口(12a)を介して上記ケーシング(12)内に処理対象の排ガス(E)を吸入し、上記2流体ノズル(16)から噴霧させた上記の洗浄液(20)で上記の排ガス(E)を浄化させた後、上記の排ガス吐出口(12b)から吐出させる排ガス浄化装置であって、
     上記の排ガス(E)はアルカリ性ガスを含むものであり、
     上記の洗浄液(20)は酸性水溶液である、ことを特徴とする排ガス浄化装置。
  4.  請求項1乃至3の何れかの排ガス浄化装置において、
     前記の羽根車(14)の側周面にデミスター(22)が配設されている、ことを特徴とする排ガス浄化装置。
  5.  請求項1乃至4の何れかの排ガス浄化装置において、
     前記の排ガス吐出口(12b)よりケーシング(12)の外に排出された排ガス(E)の一部が再び前記の排ガス吸入口(12a)へと戻される、ことを特徴とする排ガス浄化装置。
PCT/JP2021/048927 2021-12-28 2021-12-28 排ガス浄化装置 WO2023127144A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/048927 WO2023127144A1 (ja) 2021-12-28 2021-12-28 排ガス浄化装置
TW111106317A TW202325385A (zh) 2021-12-28 2022-02-22 廢氣淨化裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048927 WO2023127144A1 (ja) 2021-12-28 2021-12-28 排ガス浄化装置

Publications (1)

Publication Number Publication Date
WO2023127144A1 true WO2023127144A1 (ja) 2023-07-06

Family

ID=86998491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048927 WO2023127144A1 (ja) 2021-12-28 2021-12-28 排ガス浄化装置

Country Status (2)

Country Link
TW (1) TW202325385A (ja)
WO (1) WO2023127144A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146168U (ja) * 1974-10-03 1976-04-05
JPS60222126A (ja) * 1984-04-19 1985-11-06 Seiko Kakoki Kk 排ガス浄化方法ならびにこれに使用する排ガス浄化装置
JPS62210029A (ja) * 1986-03-11 1987-09-16 Seiko Kakoki Kk 排ガス浄化装置
JPH0624724U (ja) * 1993-08-17 1994-04-05 セイコー化工機株式会社 排ガス浄化装置
JP2004322094A (ja) * 2003-04-24 2004-11-18 Kocat Inc 固定源から発生する二酸化窒素可視煤煙低減方法
JP2009112905A (ja) * 2007-11-02 2009-05-28 Seikow Chemical Engineering & Machinery Ltd 排ガス処理装置
JP2013138097A (ja) * 2011-12-28 2013-07-11 Shin Etsu Chem Co Ltd 酸混合液の回収システム、酸混合液の回収方法、および、シリコン材料の洗浄方法
WO2020183537A1 (ja) * 2019-03-08 2020-09-17 カンケンテクノ株式会社 排ガス浄化装置およびこれを用いた排ガス除害装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146168U (ja) * 1974-10-03 1976-04-05
JPS60222126A (ja) * 1984-04-19 1985-11-06 Seiko Kakoki Kk 排ガス浄化方法ならびにこれに使用する排ガス浄化装置
JPS62210029A (ja) * 1986-03-11 1987-09-16 Seiko Kakoki Kk 排ガス浄化装置
JPH0624724U (ja) * 1993-08-17 1994-04-05 セイコー化工機株式会社 排ガス浄化装置
JP2004322094A (ja) * 2003-04-24 2004-11-18 Kocat Inc 固定源から発生する二酸化窒素可視煤煙低減方法
JP2009112905A (ja) * 2007-11-02 2009-05-28 Seikow Chemical Engineering & Machinery Ltd 排ガス処理装置
JP2013138097A (ja) * 2011-12-28 2013-07-11 Shin Etsu Chem Co Ltd 酸混合液の回収システム、酸混合液の回収方法、および、シリコン材料の洗浄方法
WO2020183537A1 (ja) * 2019-03-08 2020-09-17 カンケンテクノ株式会社 排ガス浄化装置およびこれを用いた排ガス除害装置

Also Published As

Publication number Publication date
TW202325385A (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
US11173449B2 (en) Removal of atmospheric pollutants from gas, related apparatuses, processes and uses thereof
TW571051B (en) Scrubber
WO2015005066A1 (ja) 排ガス処理方法および排ガス処理装置
CN110614027A (zh) 一种风冷脱硫脱硝除尘除臭环保设备
CN107206314B (zh) 废气处理方法和废气处理装置
WO2023127144A1 (ja) 排ガス浄化装置
JP6894159B2 (ja) 排ガス浄化装置およびこれを用いた排ガス除害装置
JP2008000728A (ja) 過弗化物の処理方法及び処理装置
JP6885769B2 (ja) 排ガス処理装置及び排ガス処理方法
JP6393473B2 (ja) 気体処理装置および排ガス処理方法
WO2023127166A1 (ja) ガス浄化装置
JP3306329B2 (ja) 噴霧ノズル
JP7182197B2 (ja) 噴霧ノズル及び噴霧方法
CN209188469U (zh) 一种节能烟气脱硫脱硝装置
CN220758689U (zh) 一种烟气尾气脱硝处理装置
CN215138515U (zh) 一种低温烟气脱硝装置
KR102301350B1 (ko) 금속 산 처리시 발생 되는 유독 가스 제거장치 및 그 장치를 이용한 유독 가스 제거 방법
TWI244938B (en) Apparatus for treating waste gas containing liquid droplet or/and solid particle
JP2023142810A (ja) 湿式集塵装置、湿式集塵方法及び粉塵除去装置
JPH07194930A (ja) 排ガスの処理方法及び装置
CN116726680A (zh) 一种烟气脱硝系统
WO2000001465A9 (en) System and method for oxidizing toxic, flammable, and pyrophoric gases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21970024

Country of ref document: EP

Kind code of ref document: A1