WO2023127075A1 - Saddled vehicle - Google Patents

Saddled vehicle Download PDF

Info

Publication number
WO2023127075A1
WO2023127075A1 PCT/JP2021/048737 JP2021048737W WO2023127075A1 WO 2023127075 A1 WO2023127075 A1 WO 2023127075A1 JP 2021048737 W JP2021048737 W JP 2021048737W WO 2023127075 A1 WO2023127075 A1 WO 2023127075A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
vehicle
battery
radiator
engine
Prior art date
Application number
PCT/JP2021/048737
Other languages
French (fr)
Japanese (ja)
Inventor
慶士 高山
正人 中田
慎司 古田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/048737 priority Critical patent/WO2023127075A1/en
Publication of WO2023127075A1 publication Critical patent/WO2023127075A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J41/00Arrangements of radiators, coolant hoses or pipes on cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries

Definitions

  • the present invention relates to a saddle-ride type vehicle.
  • Patent Literature 1 discloses a hybrid motorcycle equipped with a generator-driving engine.
  • the drive motor is arranged in the transmission portion of the existing vehicle, and the drive motor and the rear wheels are connected by a drive chain or the like.
  • Patent Document 2 discloses a control unit including an inverter for controlling electric power supplied from a generator to a drive motor in a hybrid motorcycle. , a radiator for cooling the drive motor and/or the inverter.
  • the radiator is arranged in front of the engine, and the control unit is arranged in the rear of the engine.
  • hybrid saddle-riding vehicles which are equipped with both an engine and electric parts, are smaller than passenger cars, and there is concern that the parts will be densely packed and have thermal effects on each other. Therefore, it is desired to improve the cooling performance by optimizing the layout of each component such as the engine and electric parts.
  • an object of the present invention is to improve the cooling performance of power components in a saddle type vehicle that includes a drive motor that applies drive force to the drive wheels, a control device therefor, and an engine for power generation.
  • the present invention provides a drive motor (M1) that applies a driving force to a drive wheel (4), a second motor (M2) that is provided separately from the drive motor (M1), and the second An internal combustion engine (E) that drives a motor (M2) to generate electricity, a control device (34) that controls the drive motor (M1) and the second motor (M2), the internal combustion engine (E) and the control and a radiator (61, 61') for cooling at least one of the devices (34), wherein the radiator (61, 61') comprises a radiator body (62) and a radiator for blowing air to the radiator body (62).
  • the control device (34) is arranged above the internal combustion engine (E) in the vertical direction of the vehicle, and the control device (34) is positioned at a height overlapping the control device (34) in the vertical direction of the vehicle.
  • a radiator fan (63) is arranged. According to this configuration, it is possible to effectively utilize the space above the internal combustion engine as a space for arranging the motor control device, while reducing the thermal effect of the internal combustion engine on the control device by driving the radiator fan. That is, the cooling performance of the control device can be ensured by driving the radiator fan to blow air into the vicinity of the control device, or extract the air from the periphery of the control device.
  • the radiator fan (63) blows air from the front side of the vehicle to the rear side of the vehicle
  • the radiator (61) may be arranged behind the control device (34).
  • the control device can be effectively cooled by arranging the radiator provided with the radiator fan for blowing air from the front side of the vehicle to the rear side of the vehicle behind the control device. That is, if the radiator is arranged in front of the control device, the air that has absorbed heat in the radiator is directed to the control device. On the other hand, if the radiator is arranged behind the control device, the control device is cooled effectively because the wind before the heat is absorbed by the radiator hits the control device.
  • the present invention may be configured such that the radiator fan (63) is arranged behind the internal combustion engine (E).
  • the internal combustion engine can be effectively cooled by arranging the radiator fan for blowing air from the front side of the vehicle to the rear side of the vehicle behind the internal combustion engine. That is, if the radiator is arranged in front of the internal combustion engine, the air that has absorbed heat in the radiator is directed to the internal combustion engine.
  • the radiator is arranged behind the internal combustion engine, the internal combustion engine can be effectively cooled because the air before the heat is absorbed by the radiator hits the internal combustion engine.
  • a battery (37) for supplying power to the drive motor (M1) is provided, and the battery (37) is arranged at a position avoiding the downstream region (R1) of the radiator fan (63). It's okay. According to this configuration, it is possible to suppress the thermal influence of the exhaust heat of the radiator on the battery.
  • the position that avoids the downstream area of the radiator fan means, for example, a position on the front side of the downstream end of the radiator fan, and even if it is on the rear side of the downstream end of the radiator fan, it is vertically aligned with the radiator fan when viewed from the side. A position where it does not overlap, or a position where it does not overlap with the radiator fan in the left-right direction in plan view can be mentioned.
  • the battery (37) may be arranged below the radiator fan (63). According to this configuration, the space below the radiator fan can be effectively used as a space for arranging the battery. Also, the center of gravity of the motorcycle 1 can be lowered by positioning the battery 37, which is a heavy object, at a low position.
  • the present invention comprises temperature detection means (65, 66) for detecting temperatures of the internal combustion engine (E) and the control device (34). ) detects a temperature equal to or higher than a predetermined value. According to this configuration, by driving the radiator fan according to the temperature of at least one of the internal combustion engine and the control device, for example, even if the temperature of the internal combustion engine is low, when the temperature of the motor control device is high, the control device is actively operated. Since it can be cooled effectively, it is possible to improve the thermal toughness of the electrical component.
  • the present invention includes a transmission mechanism (56) disposed on one side in the vehicle left-right direction of a vehicle body left-right center (CL) for transmitting a driving force to the drive wheels (4), and the drive motor (M1) comprises: It may be arranged to be shifted to one side in the left-right direction of the vehicle with respect to the left-right center (CL) of the vehicle body. According to this configuration, the driving motor and the transmission mechanism are arranged on the same side in the left-right direction of the vehicle, so power can be smoothly transmitted.
  • Displaced to one side in the left-right direction of the vehicle body with respect to the left-right center of the vehicle body means that the entire drive motor is arranged on one side of the left-right center of the vehicle body, and that the left-right center of the drive motor is located closer to the left-right center of the vehicle body. Including being on one side.
  • the present invention comprises a battery (37) that supplies electric power to the drive motor (M1), the battery (37) is arranged across the left and right center (CL) of the vehicle body, and the drive motor (M1) is: It may be configured to be arranged on the side of the battery (37). According to this configuration, since the drive motor is arranged on the side of the battery arranged below the radiator fan, power transmission can be smoothly performed, and the position of the electric parts can be lowered to lower the center of gravity.
  • the present invention may be configured to have an article storage box (22) above the battery (37). With this configuration, the space above the battery can be effectively utilized as an article storage space.
  • a saddle-ride type vehicle that includes a drive motor that applies drive force to the drive wheels, its control device, and an engine for power generation.
  • FIG. 2 is a configuration diagram showing an outline of a drive system of the motorcycle
  • FIG. FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an EV mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a hybrid mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a regeneration mode of the drive system
  • FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an engine drive mode of the drive system
  • It is a block diagram which shows the outline of the control part of the said drive system.
  • Fig. 2 is a plan view showing the outline of the motorcycle
  • FIG. 5 is a left side view showing a modification of the radiator arrangement of the motorcycle
  • It is a left side view showing an outline of a motorcycle in a second embodiment.
  • FIG. 1 shows a motorcycle 1 as an example of a straddle-type vehicle according to the present embodiment.
  • the motorcycle 1 comprises a drive system S including an engine (internal combustion engine) E and two electric motors M1 and M2, and runs by cooperating engine power and motor power.
  • the motorcycle 1 is a hybrid vehicle equipped with a so-called two-motor hybrid system. It should be noted that the present invention may be applied to a one-motor hybrid vehicle or an electric vehicle that does not have an internal combustion engine, as long as it does not depart from the gist of the present invention described below.
  • the motorcycle 1 includes front wheels (steered wheels) 3 that are steered by a steering wheel 2 and rear wheels (driving wheels) 4 that are driven by a drive system S.
  • the motorcycle 1 is a saddle type vehicle in which the rider straddles the vehicle body, and the vehicle body can be swung (banked) in the lateral direction (roll direction) with reference to ground contact points of the front and rear wheels 3 and 4 .
  • the handle 2 may be a left and right integrated bar handle or a left and right separate separate handle, and may not be a bar type handle.
  • the motorcycle 1 includes a vehicle body frame 5 that serves as a main frame of the vehicle body.
  • the body frame 5 includes a head pipe 6, a main frame 7, a pivot frame 8 and a rear frame 9.
  • the vehicle body frame 5 steerably supports a front fork 12 of a front wheel suspension 11 at a head pipe 6 positioned in the center of the front end portion in the left-right direction.
  • the vehicle body frame 5 supports a swing arm 16 of a rear wheel suspension device 15 in a pivot frame 8 positioned in the front-rear intermediate portion so as to be capable of swinging up and down.
  • the vehicle body frame 5 is integrally provided from the head pipe 6 to the rear frame 9 behind the pivot frame 8 by a joining means such as welding.
  • a part of the vehicle body frame 5 (for example, the rear frame 9 and the like) may be detachable by bolting or the like.
  • reference numeral 7a indicates a pair of left and right main frame members provided in the main frame 7
  • reference numeral 8a indicates a pair of left and right pivot frame members provided in the pivot frame 8
  • reference numeral 9a indicates a pair of left and right rear frame members provided in the rear frame 9, respectively.
  • the pair of left and right frame members are separated from each other in the vehicle width direction.
  • the head pipe 6 has a steering axis tilted backward with respect to the vertical direction.
  • the head pipe 6 supports the front wheel 3 and the front wheel suspension device 11 so as to be rotatable about the steering axis.
  • the front wheel suspension system 11 includes a pair of left and right front forks 12 . Upper portions of the left and right front forks 12 are supported by the head pipe 6 via a steering stem. Lower ends of the left and right front forks 12 support the axle 3 a of the front wheel 3 .
  • the left and right front forks 12 are of a telescopic type, respectively, and constitute a front suspension of the motorcycle 1 .
  • the front wheel suspension 11 is not limited to constituting a telescopic front suspension, and may constitute, for example, a link-type front suspension.
  • the pivot frame 8 supports the front end of the swing arm 16 via a pivot shaft (swing shaft) 17 extending in the vehicle width direction.
  • a rear end portion of the swing arm 16 supports an axle 4 a of the rear wheel 4 .
  • a rear cushion is interposed between the front portion of the swing arm 16 and the front-rear middle portion of the body frame 5 (for example, the cross frame near the pivot frame 8).
  • the swing arm 16 and the rear cushion constitute a rear suspension of the motorcycle 1. As shown in FIG.
  • the rear cushion may be interposed between the rear portion of the swing arm 16 and the rear portion of the body frame 5 (for example, the rear frame 9).
  • the entire vehicle body including the vehicle body frame 5 is covered with a vehicle body cover 19.
  • the vehicle body cover 19 is divided into, for example, a front body cover 19a that covers the front part of the vehicle body and a rear body cover 19b that covers the rear part of the vehicle body, with the front-rear center of the vehicle body as a boundary.
  • the rear frame 9 extends rearward and upward of the pivot frame 8 .
  • a seat 21 for seating an occupant is supported on the rear frame 9 .
  • the rear frame 9 supports the seating load of an occupant seated on the seat 21 .
  • the rear frame 9 receives a reaction force when the cushion expands and contracts.
  • the seat 21 integrally includes, for example, a front seating portion on which the driver sits and a rear seating portion on which the rear passenger sits.
  • the periphery of the rear frame 9 is covered with a rear body cover 19b extending from below both sides of the seat 21 to the rear.
  • An article storage box 22, for example, is arranged inside the rear body cover 19b.
  • the seat 21 is attached to, for example, the rear body cover 19b in a detachable or openable manner. By attaching/detaching or opening/closing the seat 21, the upper part of the rear body cover 19b is opened/closed. An occupant can sit on the seat 21 in the closed state in which the seat 21 is attached and the upper portion of the rear body cover 19b is closed. When the seat 21 is removed and the upper portion of the rear body cover 19b is opened, parts and spaces below the seat 21 can be accessed.
  • the seat 21 is lockable in the closed state.
  • the seat 21 may be configured to rotate around a hinge shaft provided at either the front or rear to open and close the upper portion of the rear body cover 19b.
  • a vehicle component 23 having a knee grip portion is supported in front of the seat 21 and above the main frame 7 .
  • the vehicle component parts 23 include, for example, existing vehicle component parts such as a fuel tank and air cleaner for the engine E, a 12V battery for auxiliary equipment, and an article storage section for loading and unloading luggage by the occupant. and PCU 34 may be included.
  • the present invention may be applied to a scooter-type vehicle in which a straddle space is formed in front of the seat 21 without any vehicle components.
  • FIG. 2 is a block diagram showing the configuration of the drive system S.
  • the drive system S includes an engine E, a first motor M1, a second motor M2, a power switching device 31, a PCU 34, and a battery 37.
  • the engine E is, for example, a multi-cylinder engine, and generates rotational driving force for the crankshaft 26 from the reciprocating motion of the piston of each cylinder.
  • the engine E is arranged with the rotation center axis C1 of the crankshaft 26 along the vehicle width direction (horizontal direction).
  • the crankshaft 26 is housed inside a crankcase 27 .
  • a cylinder block 28 protrudes from the crankcase 27, and a piston corresponding to each cylinder is fitted in the cylinder block 28.
  • Each piston is connected to the crankshaft 26 via a connecting rod.
  • the first motor M1 is arranged above and behind the engine E, and the second motor M2 is arranged on the left side of the engine E (see FIG. 8).
  • the first motor M1 and the second motor M2 are each brushless three-phase AC motors.
  • the first motor M1 is a driving motor that generates rotational driving force for driving the rear wheels, and regenerates (generates power) when the vehicle decelerates.
  • the second motor M2 is a power generating motor that receives the driving force of the engine E to generate power, and performs at least one of charging the battery 37 and supplying power to the first motor M1.
  • variable speed driving is performed by, for example, VVVF (variable voltage variable frequency) control.
  • VVVF variable voltage variable frequency
  • the first motor M1 is speed-change controlled to have a continuously variable transmission, but is not limited to this, and may be speed-change controlled to have a stepped transmission.
  • the operation of the first motor M1 may include driving as an assist motor that assists the driving of the engine E.
  • Operation of the first motor M1 may include driving the engine E as a starter motor.
  • the second motor M2 generates electricity by rotating the rotor with the rotational power of the crankshaft 26 while the engine E is running.
  • the operation of the second motor M2 may include driving as an assist motor that assists the driving of the engine E.
  • Operation of the second motor M2 may include driving the engine E as a starter motor.
  • the PCU 34 may separately include a first motor control section that controls the first motor M1 and a second motor control section that controls the second motor M2.
  • the power switching device 31 switches the power transmission path between the engine E, the first motor M1 and the second motor M2. Under the control of the power switching device 31, the engine E, the first motor M1 and the second motor M2 cooperate to drive the rear wheel 4 (make the motorcycle 1 run). Under the control of the power switching device 31, the first motor M1 and the second motor M2 can be driven to generate power.
  • the drive system S and the rear wheels 4 are connected by a chain-type transmission mechanism 56, for example.
  • the PCU (Power Control Unit) 34 is an integrated control unit including a PDU (Power Drive Unit) 34a and an ECU (Electric Control Unit) 34b.
  • the PCU 34 mainly controls the operation (driving and power generation) of the first motor M1 and the second motor M2 based on various sensor information.
  • PCU 34 controls the current and voltage between first motor M1 and second motor M2 and battery 37 .
  • the PCU 34 includes a converter that raises and lowers voltage and an inverter that converts DC current to AC current.
  • the inverter includes a bridge circuit using a plurality of switching elements such as transistors, a smoothing capacitor, and the like, and controls energization to each stator winding of the first motor M1 and the second motor M2.
  • the first motor M ⁇ b>1 and the second motor M ⁇ b>2 switch between power running and power generation according to control by the PCU 34 .
  • the battery 37 obtains a predetermined high voltage (eg, 48V to 192V) by connecting a plurality of unit batteries 37a in series, for example.
  • the battery 37 includes a lithium ion battery as chargeable/dischargeable energy storage.
  • the battery 37 supplies electric power to the first motor M1 and can store electric power regenerated by the first motor M1 and electric power generated by the second motor M2.
  • Electric power from the battery 37 is supplied to the PDU 34a, which is the motor driver, via a contactor or the like that is interlocked with the main switch of the motorcycle 1, for example. Electric power from the battery 37 is converted from direct current to three-phase alternating current by the PDU 34a, and then supplied to the first motor M1 and the second motor M2.
  • the output voltage from the battery 37 is stepped down through the DC-DC converter and used to charge the 12V sub-battery.
  • the sub-battery supplies power to general electrical components such as lamps, meters, locking devices, and control system components such as ECUs. By installing a sub-battery, various electromagnetic locks can be operated even when the battery 37 is removed.
  • the battery 37 can be charged by a charger connected to an external power supply while mounted on the vehicle body, for example.
  • the battery 37 may be detached from the vehicle body and charged by a charger outside the vehicle.
  • the battery 37 has a BMU (Battery Management Unit) that monitors the charge/discharge status, temperature, and so on. Information monitored by the BMU is shared with the ECU 34b when the battery 37 is mounted on the vehicle body.
  • the ECU 34b drives and controls the first motor M1 and the second motor M2 via the PDU 34a based on detection information input from various sensors.
  • FIG. 7 is a block diagram showing the configuration of the control section 41 of the drive system S.
  • the control unit 41 includes a PCU 34, an engine ECU 42, and a clutch ECU 43.
  • PCU 34 controls the operation (driving and power generation) of first motor M1 and second motor M2.
  • the engine ECU 42 controls the start, operation and stop of the engine E by activating engine accessories such as an ignition device and a fuel injection device according to the degree of opening of the accelerator.
  • the engine ECU 42 includes an accelerator opening sensor 46 for detecting the amount of operation of an accelerator operator (for example, an accelerator grip), an engine speed sensor 47 for detecting the engine speed, and a vehicle speed (for example, wheel speed) of the motorcycle 1. Detected information from the vehicle speed sensor 48 and the like is input.
  • the engine ECU 42 operates engine accessories such as an ignition device and a fuel injection device based on various types of input detection information.
  • the clutch ECU 43 is a power switching control section, and operates the power switching device 31 based on various sensor information.
  • the clutch ECU 43 switches which of the engine E, the first motor M1 and the second motor M2 should be connected to the rear wheels 4 so as to be able to transmit power.
  • the clutch ECU 43 is connected to a clutch actuator 32 that connects and disconnects a clutch in the power switching device 31, for example.
  • the engine ECU 42 and the clutch ECU 43 may be provided separately or integrally.
  • the control unit 41 includes, for example, a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E, an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger, and a rotational speed of the engine E.
  • a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E
  • an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger
  • a rotational speed of the engine E Various sensors such as an engine rotation speed sensor 47 that detects the vehicle speed of the motorcycle 1, a vehicle speed sensor 48 that detects the vehicle speed of the motorcycle 1, and a remaining battery capacity sensor 49 that detects the remaining capacity of the battery 37 are connected.
  • the control unit 41 is activated, for example, when the main switch of the motorcycle 1 is turned on, and starts controlling the drive system S.
  • the control unit 41 stores, in memory, a map in which the correlation between the vehicle speed and the output (torque) is set for each accelerator opening, for example.
  • the control unit 41 appropriately causes the engine E, the first motor M1 and the second motor M2 to cooperate based on the output from each sensor, a predetermined map, and the like.
  • the control unit 41 applies torque from the drive system S to the rear wheel 4 to run the motorcycle 1 and enables the battery 37 to be charged.
  • the control unit 41 has a plurality of control modes for cooperating the engine E, the first motor M1 and the second motor M2.
  • the control unit 41 functions as a control mode switching unit that switches between a plurality of control modes. Switching of the control mode is functionally realized by processing executed based on a preset computer program.
  • the plurality of control modes of control unit 41 include EV mode, hybrid mode, regeneration mode, and engine drive mode.
  • EV mode the engine E is stopped, the first motor M1 is driven, and the motorcycle 1 is driven by the driving force of the first motor M1.
  • hybrid mode the second motor M2 is driven by the engine E as a generator, and the motorcycle 1 is driven by the driving force of the first motor M1.
  • the kinetic energy of the motorcycle 1 is used to drive the first motor M1 as a generator when the motorcycle 1 decelerates, and the battery 37 is charged with the electric power generated by the first motor M1.
  • the driving force of the engine E is used to drive the motorcycle 1 .
  • Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
  • the multiple control modes are described in more detail below.
  • an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described.
  • the EV mode is a motor drive mode in which the motorcycle 1 can travel only by the driving force (motor torque) of the first motor M1, for example, when the motorcycle 1 is running at medium to low speeds (especially when cruising).
  • the motorcycle 1 is run with the engine E and the second motor M2 disconnected from the rear wheel 4 .
  • the EV mode it is also possible to drive the engine E and use the driving force of the engine E to generate electricity with the second motor M2 (hybrid mode).
  • the power generated by the second motor M2 is stored in the battery 37, but may be directly supplied to the first motor M1.
  • the hybrid mode is implemented, for example, when the motorcycle 1 starts running until it reaches a specified speed, when traveling uphill, when a sudden acceleration is required, and the like.
  • the hybrid mode is also implemented when the remaining battery capacity is low. Since the motorcycle 1 is smaller than a passenger car and the mounting size (capacity) of the battery 37 is limited, the hybrid mode is more likely to be used than the EV mode.
  • regenerative mode In EV mode and hybrid mode, when the motorcycle 1 decelerates or travels downhill, it shifts to "regenerative mode".
  • the regeneration mode the rotational energy of the rear wheels 4 is input to the first motor M1 to regenerate (generate power), and the generated power is stored in the battery 37 .
  • the connection between the engine E and the rear wheels 4 may be released, and regeneration may be performed efficiently.
  • regenerative braking engine braking
  • the first motor M1 may idle to stop regeneration.
  • the power switching device 31 the engine E and the rear wheels 4 may be connected to generate engine braking.
  • the power switching device 31 connects the engine E and the rear wheels 4 so that power can be transmitted, and the driving force of the engine E drives the motorcycle 1 (engine drive). mode).
  • the driving force of the engine E may be used to drive the second motor M ⁇ b>2 to generate power, which may be stored in the battery 37 .
  • the engine drive mode at least one of the first motor M1 and the second motor M2 may be driven to assist rear wheel drive.
  • the engine E is configured without a transmission behind the crankshaft 26, and the front-to-rear width of the crankcase 27 is narrowed.
  • a cylinder block 28 projects obliquely forward and upward from the front portion of the crankcase 27 .
  • Reference symbol C2 in the drawing indicates an axis (center axis of the cylinder bore, cylinder axis) along the projecting direction of the cylinder block 28 .
  • the cylinder block 28 has the cylinder axis C2 inclined forward with respect to the vertical direction.
  • the forward inclination angle of the cylinder axis C2 with respect to the vertical direction is set to, for example, 45 degrees or more, thereby suppressing the vertical height of the engine E as a whole.
  • the first motor M1 is arranged above and behind the crankcase 27 of the engine E. As shown in FIG. The first motor M1 is arranged such that at least a portion thereof is positioned above the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged with the rotating shaft 151 extending in the left-right direction. The rotation shaft 151 of the first motor M1 is arranged such that at least a portion thereof is positioned above the crankshaft 26 and the pivot shaft 17 in the vertical direction.
  • Reference symbol C3 in the figure indicates the central axis of the rotating shaft 151 of the first motor M1.
  • the first motor M1 is arranged offset to one side (left side) in the vehicle width direction with respect to the left-right center CL of the vehicle body.
  • a battery 37 is arranged inside the first motor M1 in the vehicle width direction.
  • the first motor M1 is arranged above the battery 37 in a side view. Therefore, the first motor M1 may be arranged so as to overlap the battery 37 in plan view in FIG.
  • the first motor M1 may be arranged so as to straddle the left and right center CL of the vehicle body. In this case, it is easy to increase the size of the first motor M1, and it is easy to secure the driving force of the motorcycle 1.
  • an output shaft 55 parallel to the rotating shaft 151 is arranged in front and below the first motor M1.
  • the output shaft 55 is an output portion of the drive system S, and outputs drive force (torque) via the power switching device 31 .
  • the output shaft 55 is arranged in front of the pivot shaft 17 at a height overlapping the pivot shaft 17 in the vertical direction.
  • the output shaft 55 is connected to the rear wheel 4 via a chain-type transmission mechanism 56, for example.
  • a drive sprocket 56a of a transmission mechanism 56 is supported on the right end of the output shaft 55 so as to be integrally rotatable.
  • the second motor M2 is arranged offset to one side (left side) in the vehicle width direction with respect to the left-right center CL of the vehicle body.
  • the second motor M2 is provided on the left side of the crankcase 27. As shown in FIG.
  • the second motor M2 is connected to the left side of the crankshaft 26.
  • the second motor M2 is arranged (coaxially arranged) with the rotation center axis aligned with the crankshaft 26 .
  • the second motor M2 is a so-called ACG (AC Generator) and also functions as a starter motor for starting the engine E.
  • reference numeral 251 indicates the rotating shaft of the second motor M2
  • reference numeral C4 indicates the central axis of the rotating shaft 251 of the second motor M2.
  • a battery 37 as a power source of the drive system S is arranged behind the engine E and below the second motor M2 in a side view.
  • the battery 37 is arranged across the left and right center CL of the vehicle body (see FIG. 8).
  • the battery 37 is arranged at a height overlapping the pivot shaft 17 in the vertical direction.
  • the battery 37 is arranged within the vertical width of the crankcase 27 of the engine E in the vertical direction.
  • the battery 37 and the crankcase 27 of the engine E are arranged to face the lower part of the vehicle body, and contribute to lowering the center of gravity of the motorcycle 1 .
  • the battery 37 is arranged so as to overlap the pivot frame 8 in a side view. At least part of the battery 37 is arranged between the left and right pivot frame members 8a. The battery 37 is supported by the left and right pivot frame members 8a.
  • the second motor M2 is arranged above the battery 37 and outside the battery 37 in the vehicle width direction.
  • the battery 37 is composed of, for example, a plurality of (for example, a pair of upper and lower) unit batteries 37a.
  • Each unit battery 37a has the same configuration.
  • Each unit battery 37a has, for example, a prismatic shape (rectangular parallelepiped shape) that has a rectangular cross section and extends in the longitudinal direction.
  • Each unit battery 37a is arranged with its longitudinal direction directed in the vehicle front-rear direction, and its vertical width is suppressed.
  • Each unit battery 37a is accommodated, for example, in an integrated battery box.
  • the battery 37 generates a predetermined high voltage (48-72V) by connecting a plurality of unit batteries 37a in series.
  • Each unit battery 37a is composed of, for example, a lithium ion battery as a chargeable/dischargeable energy storage.
  • Each unit battery 37a is connected to the PCU 34 via a junction box (distributor) and a contactor (electromagnetic switch).
  • a three-phase cable extends from the PCU 34 and is connected to the first motor M1.
  • the pair of upper and lower unit batteries 37a are arranged so that the whole overlaps with each other when viewed in the vertical direction, but the arrangement is not limited to this.
  • the pair of upper and lower unit batteries 37a may be displaced from each other.
  • each unit battery 37a is arranged with its upper and lower surfaces substantially horizontal, this is not restrictive.
  • each unit battery 37a may be arranged with its upper and lower surfaces inclined when viewed from the side.
  • the second motor M2 is arranged outside the battery 37 in the vehicle width direction, but the arrangement is not limited to this. For example, if the second motor M2 avoids the battery 37 when viewed from the side, the position in the vehicle width direction may be overlapped with the battery 37 .
  • the PCU 34 has a rectangular parallelepiped outer shape and is arranged with one side along the vehicle width direction.
  • the PCU 34 is arranged with its upper and lower surfaces substantially horizontal.
  • the PCU 34 may be arranged with its upper and lower surfaces inclined when viewed from the side.
  • the PCU 34 is arranged above the crankcase 27 of the engine E.
  • the PCU 34 overlaps the crankcase 27 of the engine E in the longitudinal direction.
  • the cylinder block 28 is greatly tilted forward to reduce the height, and the PCU 34 can be easily arranged.
  • the PCU 34 overlaps the second motor M2 in the longitudinal direction and overlaps the first motor M1 in the vertical direction. As a result, the PCU 34 and each of the first motor M1 and the second motor M2 are brought closer to each other, thereby shortening the high-voltage wiring between them.
  • the PCU 34 is arranged across the left and right center CL of the vehicle body (see FIG. 8).
  • the PCU 34 is arranged so as to overlap the main frame 7 in a side view. At least a portion of the PCU 34 is arranged between the left and right main frame members 7a.
  • the PCU 34 is supported by the left and right main frame members 7a.
  • the PCU 34 is arranged inside the front body cover 19a.
  • a wheelhouse H is formed on the lower front side of the front body cover 19a as a space in which the front wheels 3 can be steered and moved up and down.
  • An opening 19a1 facing the inside of the wheel house H is formed in a portion of the front body cover 19a located on the rear side of the wheel house H. As shown in FIG.
  • the radiator 61 includes a flat radiator body 62 with a reduced thickness in the vehicle front-rear direction, and a radiator fan 63 arranged along the rear side of the radiator body 62 .
  • the radiator 61 constitutes an integrated unit by combining a radiator main body 62 and a radiator fan 63 .
  • the radiator 61 generates an airflow directed from the vehicle front side to the vehicle rear side by driving the radiator fan 63 . As this airflow passes through the core of the radiator body 62, heat is exchanged in the radiator 61 to cool the cooling water (radiate heat).
  • the radiator main body 62 has a rectangular shape when viewed in the vehicle front-rear direction, and is arranged with upper and lower sides along the vehicle width direction.
  • the radiator fan 63 is, for example, an axial fan, and acts to draw the air on the front side of the radiator main body 62 to the rear side.
  • the thickness direction of the radiator main body 62 and the axial direction of the radiator fan 63 are parallel to each other. In the example of FIG. 1, the thickness direction of the radiator main body 62 and the axial direction of the radiator fan 63 are inclined upward with respect to the horizontal direction. It can be set as appropriate.
  • Reference numeral R1 in the drawing indicates a downstream area of the radiator fan 63.
  • the downstream region R1 is, for example, a region downstream (rear) of the downstream end (rear end) of the radiator fan 63 and overlaps with the radiator fan 63 at least when viewed from the axial direction of the radiator fan 63 .
  • the PCU 34 is arranged in front of the radiator fan 63 and at least partially overlapped with the radiator fan 63 in the vertical direction of the vehicle. As a result, the PCU 34 is cooled by the airflow generated by the radiator fan 63 .
  • the battery 37 is located below the radiator fan 63 and away from the downstream region R1. Thereby, the thermal influence of the exhaust heat of the radiator 61 on the battery 37 is suppressed. Further, by arranging the battery 37, which is a heavy object, at a low position, the center of gravity of the motorcycle 1 can be lowered.
  • the arrangement of the battery 37 is not limited to being below the radiator fan 63 as long as it avoids the downstream region R1 of the radiator fan 63 .
  • the battery 37 may be arranged above the radiator fan 63 or outside on the left and right sides.
  • the radiator fan 63 operates when the engine temperature (for example, cooling water temperature) reaches or exceeds a predetermined specified value, and also operates when the PCU 34 reaches or exceeds a predetermined specified value. Thereby, for example, when the temperature of the PCU 34 is high even if the temperature of the engine E is low, the PCU 34 can be cooled using the radiator fan 63 .
  • the engine temperature for example, cooling water temperature
  • the engine E and the PCU 34 are provided with temperature sensors 65 and 66, respectively.
  • Radiator fan 63 is driven when temperature sensors 65 and 66 detect a temperature equal to or higher than a predetermined specified value. Information detected by each of the temperature sensors 65 and 66 is input to, for example, the PCU 34 , and the PCU 34 controls driving of the radiator fan 63 .
  • a cooling water temperature sensor or an oil temperature sensor is used as the temperature sensor 65 of the engine E, for example.
  • a conventional thermistor element or the like is used for the temperature sensor 66 of the PCU 34.
  • a separate sensor may be installed for each of the temperature sensors 65 and 66 .
  • Radiator fan 63 is driven and controlled based on temperature information of at least one of engine E and PCU 34 .
  • the opening 19a1 in which the radiator 61 is arranged opens toward the front of the vehicle. Therefore, running wind can be introduced into the body cover 19 through the opening 19a1.
  • the front end of the PCU 34 is located behind the opening 19a1, and the running wind introduced through the opening 19a1 hits the front end of the PCU 34.
  • the PCU 34 is well cooled while the motorcycle 1 is running.
  • the PCU 34 can be cooled even when the motorcycle 1 is stopped.
  • a radiator main body 62 and a radiator fan 63 are arranged behind the PCU 34 . Lower portions of the radiator main body 62 and the radiator fan 63 are positioned behind the engine E. As shown in FIG. When the radiator fan 63 is driven, outside air is sucked into the front body cover 19a through the opening 19a1 of the front body cover 19a, and this outside air flows around the PCU 34 to cool it.
  • a heat radiating part (also a heat generating part) for radiating heat from heat generating components such as transistors in the PDU 34a may be arranged. That is, the heat generated by the PCU 34 can be dissipated favorably by directly hitting the heat radiating portion with the outside air.
  • the heat dissipation part may have a plurality of heat dissipation fins on the flat surface, for example, to further improve heat dissipation.
  • the outside air that has cooled the PCU 34 reaches the radiator 61 arranged behind the PCU 34, passes through the radiator main body 62, and is drawn rearward. This outside air further flows around the first motor M1 arranged behind the radiator 61, and then is exhausted to the outside of the vehicle body cover 19 (rear body cover 19b).
  • the first motor M1 of the series hybrid motorcycle 1 is always driven while the motorcycle is running. Therefore, the PCU 34, which is a motor control unit, needs to be cooled more frequently than the engine E, which may be stopped.
  • the PCU 34 is cooled by the running wind while the motorcycle 1 is running. According to the configuration of the embodiment, the PCU 34 can be cooled with a simple configuration by using the radiator fan 63 for cooling the engine E without separately providing a fan, radiator, or the like for cooling the PCU 34 .
  • radiator fan 63 is not limited to the rearward arrangement of the PCU 34 .
  • radiator fan 63 may be arranged in front of PCU 34 at a height overlapping PCU 34 in the vertical direction of the vehicle.
  • the radiator 61' may be arranged in the opening 19a1 of the front body cover 19a to directly receive the running wind.
  • the radiator body 62 of the radiator 61 arranged in the opening 19a1 has its thickness direction (cooling air passage direction) directed in the vehicle front-rear direction. Therefore, running wind is introduced into the vehicle body cover 19 through the opening 19 a 1 and the radiator 61 .
  • the temperature rise of the engine E is suppressed by driving the radiator fan 63 according to the rise in engine temperature.
  • the outside air that has passed through the radiator body 62 and absorbed heat flows around the PCU 34, and the PCU 34 can be cooled by this airflow.
  • the PCU 34 is cooled by outside air after heat absorption from the radiator 61', whereas in the example of FIG. 1, the PCU 34 is cooled by outside air before heat absorption from the radiator 61'. Therefore, the configuration of FIG. 1 can cool the PCU 34 more efficiently.
  • the radiators 61 and 61' are not limited to those that allow external air to flow in the longitudinal direction of the vehicle, but may be configured to flow external air in the vehicle width direction or the vertical direction.
  • the radiators 61 and 61' are not limited to those that allow external air to flow in the longitudinal direction of the vehicle, but may be configured to flow external air in the vehicle width direction or the vertical direction.
  • the radiator fan 63 by arranging the PCU 34 on a path corresponding to the airflow generated inside the vehicle body cover 19 by driving the radiator fan 63, the effect of cooling the PCU 34 can be obtained.
  • the motorcycle 1 in the above embodiment includes the first driving motor M1 for applying driving force to the rear wheel 4 and the second electric power generating motor M2 provided separately from the first motor M1.
  • an engine E for driving the second motor M2 a PCU 34 for controlling the first motor M1 and the second motor M2, and radiators 61 and 61' for cooling the engine E, 61' includes a radiator body 62 and a radiator fan 63 for blowing air to the radiator body 62.
  • the PCU 34 is arranged above the engine E in the vertical direction of the vehicle, and overlaps the PCU 34 in the vertical direction of the vehicle.
  • the radiator fan 63 is arranged at the height.
  • the radiator fan 63 can be driven to reduce the thermal effect of the engine E on the control device 34 while effectively utilizing the space above the engine E as a space for arranging the control device 34 . That is, the cooling performance of the control device 34 can be ensured by driving the radiator fan 63 to blow air into the vicinity of the control device 34 or extracting air from the periphery of the control device 34 .
  • the radiator fan 63 blows air from the vehicle front side to the vehicle rear side
  • the radiator 61 is arranged behind the PCU 34 .
  • the PCU 34 can be effectively cooled by arranging the radiator 61 having the radiator fan 63 for blowing air from the vehicle front side to the vehicle rear side behind the PCU 34 . That is, if the radiator 61 is arranged in front of the PCU 34 , the air that has absorbed heat in the radiator 61 is directed to the PCU 34 .
  • the radiator 61 is arranged behind the PCU 34, the PCU 34 can be cooled effectively because the PCU 34 is exposed to the wind before the radiator 61 absorbs heat.
  • the radiator fan 63 is arranged behind the engine E.
  • the engine E can be effectively cooled by arranging the radiator fan 63 behind the engine E for blowing air from the front side of the vehicle to the rear side of the vehicle. That is, if the radiator 61 is arranged in front of the engine E, the air that has absorbed heat in the radiator 61 is directed to the engine E. As shown in FIG. On the other hand, if the radiator 61 is arranged behind the engine E, the wind before the heat is absorbed by the radiator 61 hits the engine E, so the engine E can be cooled effectively.
  • the motorcycle 1 further includes a battery 37 that supplies electric power to the first motor M1, and the battery 37 is arranged at a position away from the downstream area R1 of the radiator fan 63. As shown in FIG. According to this configuration, it is possible to suppress the thermal influence of the exhaust heat of the radiator 61 on the battery 37 .
  • the position that avoids the downstream region R1 of the radiator fan 63 is, for example, a position on the front side of the downstream end of the radiator fan 63, and even if it is on the rear side of the downstream end of the radiator fan 63, the radiator fan 63 is positioned in a side view. A position that does not overlap the radiator fan 63 in the vertical direction, or a position that does not overlap the radiator fan 63 in the horizontal direction in plan view.
  • the battery 37 is arranged below the radiator fan 63 .
  • the space below the radiator fan 63 can be effectively used as a space for arranging the battery 37 .
  • the center of gravity of the motorcycle 1 can be lowered by positioning the battery 37, which is a heavy object, at a low position.
  • the motorcycle 1 further includes temperature sensors 65 and 66 for detecting temperatures of the engine E and the PCU 34, and the radiator fan 63 detects that at least one of the temperature sensors 65 and 66 detects a temperature equal to or higher than a predetermined value. Driven if detected.
  • the radiator fan 63 detects that at least one of the temperature sensors 65 and 66 detects a temperature equal to or higher than a predetermined value.
  • a transmission mechanism 56 is arranged on one side in the left-right direction of the vehicle relative to the left-right center CL of the vehicle body, and is provided with a transmission mechanism 56 for transmitting a driving force to the rear wheels 4. It is displaced to one side in the left-right direction of the vehicle with respect to CL. According to this configuration, the first motor M1 and the transmission mechanism 56 are arranged on the same side in the left-right direction of the vehicle, so power can be smoothly transmitted.
  • Displacement to one side in the vehicle left-right direction with respect to the left-right center CL of the vehicle body means that the entire first motor M1 is arranged on one side of the left-right center CL of the vehicle body, and that the first motor M1 is located at the left-right center of the first motor M1. is on one side of the left-right center CL of the vehicle body.
  • FIG. 10 (and FIG. 8) show two radiators 61 and 61' that are arranged differently.
  • the first motor M1 of the second embodiment is arranged behind the crankcase 27 of the engine E.
  • the first motor M1 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction.
  • the first motor M1 is arranged at a position overlapping the pivot frame 8 in a side view.
  • the first motor M1 is arranged with the rotating shaft 151 extending in the left-right direction.
  • the rotating shaft 151 of the first motor M1 is arranged at a height overlapping the crankshaft 26 in the vertical direction.
  • a rotating shaft 151 of the first motor M1 is arranged coaxially with the pivot shaft 17 .
  • the first motor M1 of the second embodiment has the same arrangement as that of the embodiment in plan view shown in FIG. That is, the first motor M1 is arranged on one side (left side) in the vehicle left-right direction of the vehicle body left-right center CL, and is arranged on the outside of the battery 37 in the vehicle width direction. Furthermore, as shown in FIG. 10, the first motor M1 of the second embodiment is displaced downward to a height overlapping the battery 37 in side view. Therefore, the first motor M1 is arranged adjacent to one side (left side) of the battery 37 in the left-right direction of the vehicle.
  • an output shaft 55' coaxial with the rotating shaft 151 is arranged on the left side of the first motor M1.
  • the output shaft 55 ′ is an output portion of the drive system S of the second embodiment, and outputs drive force (torque) via the power switching device 31 .
  • the output shaft 55' is arranged coaxially with the pivot shaft 17, for example.
  • the first motor M1 is arranged toward the rear side, so that the cylinder block 28 of the engine E located in front of the first motor M1 can be laid down more easily. For this reason, it becomes easier to secure a component arrangement space above the engine E.
  • the output shaft 55 ′ is connected to the rear wheel 4 via a chain-type transmission mechanism 56 . Since both the first motor M1 and the transmission mechanism 56 are offset to one side (left side) in the left-right direction of the vehicle, they can be easily connected.
  • An article storage box 22 is arranged above the battery 37 . In the second embodiment, the space above the battery 37 is expanded by moving the first motor M1 downward. Therefore, the article storage box 22 of the second embodiment has a larger capacity than that of the first embodiment.
  • the heat-generating portion of the PCU 34 can be easily exposed to running wind, and the cooling performance of the PCU 34 can be improved.
  • the battery 37 is arranged across the left and right center CL of the vehicle body, and the first motor M ⁇ b>1 is arranged on the side of the battery 37 .
  • the first motor M1 is arranged on the side of the battery 37 arranged below the radiator fan 63, smooth power transmission is achieved and the position of the electric parts is lowered to lower the center of gravity. be able to.
  • the motorcycle 101 is provided with an article storage box 22 above the battery 37 .
  • the space above the battery 37 can be effectively utilized as an article storage space.
  • the present invention is not limited to the above embodiment, and for example, the fan of the radiator 61 for cooling the engine E is used, but the present invention is not limited to this. If first motor M1 and PCU 34 are water cooled, a radiator fan for cooling first motor M1 and PCU 34 may be utilized.
  • Straddle-type vehicles include all vehicles in which the driver straddles the vehicle body, not only motorcycles (including motorized bicycles and scooter-type vehicles), but also three-wheeled vehicles Vehicles with two front wheels and one rear wheel are also included) or vehicles with four wheels (such as a four-wheel buggy) are also included.
  • the straddle-type vehicle includes not only a vehicle such as a motorcycle that turns in a direction in which the vehicle body is banked, but also a vehicle that turns by steering the steered wheels without banking the vehicle body.
  • the present invention is not limited to this, and may be applied to various types of saddle-riding vehicles including two-wheel, three-wheel and four-wheel drive motors. Further, the present invention is not limited to a hybrid vehicle having an internal combustion engine, and may be applied to an electric vehicle that runs only with a drive motor.
  • the configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.

Abstract

This saddled vehicle comprises: a drive motor (M1) for imparting a driving force to a driving wheel (4); a second motor (M2) provided separately from the drive motor (M1); an internal combustion engine (E) for generating electric power by driving the second motor (M2); a control device (34) for controlling the drive motor (M1) and the second motor (M2); and a radiator (61, 61') for cooling the internal combustion engine (E) and/or the control device (34). The radiator (61, 61') is provided with a radiator body (62) and a radiator fan (63) for blowing air to the radiator body (62). The control device (34) is disposed above the internal combustion engine (E) in the vehicular vertical direction, and the radiator fan (63) is disposed at a position overlapping with that of the control device (34) in the vehicular vertical direction.

Description

鞍乗り型車両saddle-riding vehicle
 本発明は、鞍乗り型車両に関する。 The present invention relates to a saddle-ride type vehicle.
 例えば特許文献1には、発電機駆動用エンジンが搭載されたハイブリッド式自動二輪車が開示されている。この自動二輪車では、既存車両の変速機部分に駆動モータを配置し、この駆動モータと後輪とをドライブチェーン等で連結している。
 特許文献1にはモータおよび制御装置の冷却構造についての開示はないが、例えば特許文献2には、ハイブリッド式自動二輪車において、発電機から駆動モータに供給する電力を制御するインバータを含むコントロールユニットと、駆動モータ及び/又はインバータを冷却するラジエータと、を備えることが開示されている。この自動二輪車では、ラジエータはエンジン前方に配置され、コントロールユニットはエンジン後方に配置されている。
For example, Patent Literature 1 discloses a hybrid motorcycle equipped with a generator-driving engine. In this motorcycle, the drive motor is arranged in the transmission portion of the existing vehicle, and the drive motor and the rear wheels are connected by a drive chain or the like.
Although Patent Document 1 does not disclose a cooling structure for a motor and a control device, Patent Document 2, for example, discloses a control unit including an inverter for controlling electric power supplied from a generator to a drive motor in a hybrid motorcycle. , a radiator for cooling the drive motor and/or the inverter. In this motorcycle, the radiator is arranged in front of the engine, and the control unit is arranged in the rear of the engine.
特開2019-173622号公報JP 2019-173622 A 特開2020-175822号公報JP 2020-175822 A
 エンジンおよび電動部品の両方が搭載されるハイブリッド式鞍乗り型車両では、乗用車に比べて小型であることもあり、部品同士が密集して互いに熱影響を与えることが懸念される。このため、エンジンおよび電動部品等の各コンポーネントのレイアウトの最適化による冷却性の向上が要望されている。  Compared to passenger cars, hybrid saddle-riding vehicles, which are equipped with both an engine and electric parts, are smaller than passenger cars, and there is concern that the parts will be densely packed and have thermal effects on each other. Therefore, it is desired to improve the cooling performance by optimizing the layout of each component such as the engine and electric parts.
 そこで本発明は、駆動輪に駆動力を与える駆動モータおよびその制御装置、ならびに発電用のエンジンを備える鞍乗り型車両において、動力部品の冷却性を向上させることを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the cooling performance of power components in a saddle type vehicle that includes a drive motor that applies drive force to the drive wheels, a control device therefor, and an engine for power generation.
 上記課題の解決手段として、本発明は、駆動輪(4)に駆動力を与える駆動モータ(M1)と、前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、前記駆動モータ(M1)および前記第二モータ(M2)を制御する制御装置(34)と、前記内燃機関(E)および前記制御装置(34)の少なくとも一方を冷却するラジエータ(61,61’)と、を備え、前記ラジエータ(61,61’)は、ラジエータ本体(62)と、前記ラジエータ本体(62)に風を流すラジエータファン(63)と、を備え、車両上下方向で前記内燃機関(E)の上方に、前記制御装置(34)が配置され、車両上下方向で前記制御装置(34)と重なる高さに、前記ラジエータファン(63)が配置されている鞍乗り型車両を提供する。
 この構成によれば、内燃機関の上方のスペースをモータ制御装置の配置スペースとして有効活用しながら、内燃機関から制御装置への熱影響は、ラジエータファンの駆動により低減することができる。すなわち、ラジエータファンの駆動により制御装置周辺に風を送り込む、又は制御装置周辺から風を引き抜くことで、制御装置の冷却性を確保することができる。
As means for solving the above problems, the present invention provides a drive motor (M1) that applies a driving force to a drive wheel (4), a second motor (M2) that is provided separately from the drive motor (M1), and the second An internal combustion engine (E) that drives a motor (M2) to generate electricity, a control device (34) that controls the drive motor (M1) and the second motor (M2), the internal combustion engine (E) and the control and a radiator (61, 61') for cooling at least one of the devices (34), wherein the radiator (61, 61') comprises a radiator body (62) and a radiator for blowing air to the radiator body (62). and a fan (63), the control device (34) is arranged above the internal combustion engine (E) in the vertical direction of the vehicle, and the control device (34) is positioned at a height overlapping the control device (34) in the vertical direction of the vehicle. To provide a straddle-type vehicle in which a radiator fan (63) is arranged.
According to this configuration, it is possible to effectively utilize the space above the internal combustion engine as a space for arranging the motor control device, while reducing the thermal effect of the internal combustion engine on the control device by driving the radiator fan. That is, the cooling performance of the control device can be ensured by driving the radiator fan to blow air into the vicinity of the control device, or extract the air from the periphery of the control device.
 本発明は、前記ラジエータファン(63)は、車両前方側から車両後方側へ風を流すものであり、前記ラジエータ(61)は、前記制御装置(34)の後方に配置されている構成でもよい。
 この構成によれば、車両前方側から車両後方側へ風を流すラジエータファンを備えるラジエータを、制御装置の後方に配置することで、制御装置を効果的に冷却することができる。すなわち、ラジエータが制御装置の前方に配置されていると、ラジエータで吸熱した風が制御装置に当てられる。これに対し、ラジエータが制御装置の後方に配置されていると、ラジエータで吸熱する前の風が制御装置に当てられるので、制御装置を効果的に冷却することができる。
In the present invention, the radiator fan (63) blows air from the front side of the vehicle to the rear side of the vehicle, and the radiator (61) may be arranged behind the control device (34). .
According to this configuration, the control device can be effectively cooled by arranging the radiator provided with the radiator fan for blowing air from the front side of the vehicle to the rear side of the vehicle behind the control device. That is, if the radiator is arranged in front of the control device, the air that has absorbed heat in the radiator is directed to the control device. On the other hand, if the radiator is arranged behind the control device, the control device is cooled effectively because the wind before the heat is absorbed by the radiator hits the control device.
 本発明は、前記ラジエータファン(63)は、前記内燃機関(E)の後方に配置されている構成でもよい。
 この構成によれば、車両前方側から車両後方側へ風を流すラジエータファンを内燃機関の後方に配置することで、内燃機関を効果的に冷却することができる。すなわち、ラジエータが内燃機関の前方に配置されていると、ラジエータで吸熱した風が内燃機関に当てられる。これに対し、ラジエータが内燃機関の後方に配置されていると、ラジエータで吸熱する前の風が内燃機関に当てられるので、内燃機関を効果的に冷却することができる。
The present invention may be configured such that the radiator fan (63) is arranged behind the internal combustion engine (E).
According to this configuration, the internal combustion engine can be effectively cooled by arranging the radiator fan for blowing air from the front side of the vehicle to the rear side of the vehicle behind the internal combustion engine. That is, if the radiator is arranged in front of the internal combustion engine, the air that has absorbed heat in the radiator is directed to the internal combustion engine. On the other hand, if the radiator is arranged behind the internal combustion engine, the internal combustion engine can be effectively cooled because the air before the heat is absorbed by the radiator hits the internal combustion engine.
 本発明において、前記駆動モータ(M1)に電力を与えるバッテリ(37)を備え、前記バッテリ(37)は、前記ラジエータファン(63)の下流領域(R1)を避けた位置に配置されている構成でもよい。
 この構成によれば、ラジエータの排熱によるバッテリへの熱影響を抑えることができる。ラジエータファンの下流領域を避けた位置とは、例えばラジエータファンの下流端よりも前方側の位置の他、ラジエータファンの下流端よりも後方側であっても、側面視でラジエータファンと上下方向で重ならない位置か、あるいは平面視でラジエータファンと左右方向で重ならない位置が挙げられる。
In the present invention, a battery (37) for supplying power to the drive motor (M1) is provided, and the battery (37) is arranged at a position avoiding the downstream region (R1) of the radiator fan (63). It's okay.
According to this configuration, it is possible to suppress the thermal influence of the exhaust heat of the radiator on the battery. The position that avoids the downstream area of the radiator fan means, for example, a position on the front side of the downstream end of the radiator fan, and even if it is on the rear side of the downstream end of the radiator fan, it is vertically aligned with the radiator fan when viewed from the side. A position where it does not overlap, or a position where it does not overlap with the radiator fan in the left-right direction in plan view can be mentioned.
 本発明において、前記バッテリ(37)は、前記ラジエータファン(63)の下方に配置されている構成でもよい。
 この構成によれば、ラジエータファンの下方のスペースをバッテリの配置スペースとして有効活用することができる。また、重量物であるバッテリ37を低位置として自動二輪車1の低重心化を図ることができる。
In the present invention, the battery (37) may be arranged below the radiator fan (63).
According to this configuration, the space below the radiator fan can be effectively used as a space for arranging the battery. Also, the center of gravity of the motorcycle 1 can be lowered by positioning the battery 37, which is a heavy object, at a low position.
 本発明は、前記内燃機関(E)および前記制御装置(34)の各温度を検出する温度検出手段(65,66)を備え、前記ラジエータファン(63)は、各温度検出手段(65,66)の少なくとも一方が所定値以上の温度を検出した場合に駆動される構成でもよい。
 この構成によれば、内燃機関および制御装置の少なくとも一方の温度に応じてラジエータファンを駆動させることで、例えば内燃機関の温度が低くても、モータ制御装置の温度が高いときには、制御装置を積極的に冷却できるため、電装部品の熱タフネスを向上させることができる。
The present invention comprises temperature detection means (65, 66) for detecting temperatures of the internal combustion engine (E) and the control device (34). ) detects a temperature equal to or higher than a predetermined value.
According to this configuration, by driving the radiator fan according to the temperature of at least one of the internal combustion engine and the control device, for example, even if the temperature of the internal combustion engine is low, when the temperature of the motor control device is high, the control device is actively operated. Since it can be cooled effectively, it is possible to improve the thermal toughness of the electrical component.
 本発明は、車体左右中央(CL)よりも車両左右方向一側に配置されて、前記駆動輪(4)に駆動力を伝達する伝動機構(56)を備え、前記駆動モータ(M1)は、車体左右中央(CL)に対して車両左右方向一側にずれて配置されている構成でもよい。
 この構成によれば、駆動モータと伝動機構とが車両左右方向で同じ側に配置されるので、動力伝達をスムーズに行うことができる。車体左右中央に対して車両左右方向一側にずれて配置されるとは、駆動モータ全体が車体左右中央よりも一側に配置されることの他、駆動モータの左右中央が車体左右中央よりも一側にあることを含む。
The present invention includes a transmission mechanism (56) disposed on one side in the vehicle left-right direction of a vehicle body left-right center (CL) for transmitting a driving force to the drive wheels (4), and the drive motor (M1) comprises: It may be arranged to be shifted to one side in the left-right direction of the vehicle with respect to the left-right center (CL) of the vehicle body.
According to this configuration, the driving motor and the transmission mechanism are arranged on the same side in the left-right direction of the vehicle, so power can be smoothly transmitted. Displaced to one side in the left-right direction of the vehicle body with respect to the left-right center of the vehicle body means that the entire drive motor is arranged on one side of the left-right center of the vehicle body, and that the left-right center of the drive motor is located closer to the left-right center of the vehicle body. Including being on one side.
 本発明は、前記駆動モータ(M1)に電力を与えるバッテリ(37)を備え、前記バッテリ(37)は、車体左右中央(CL)を左右に跨いで配置され、前記駆動モータ(M1)は、前記バッテリ(37)の側方に配置されている構成でもよい。
 この構成によれば、ラジエータファンの下方に配置されたバッテリの側方に駆動モータを配置するので、動力伝達をスムーズに行うとともに、電動部品の位置を下げて低重心化を図ることができる。
The present invention comprises a battery (37) that supplies electric power to the drive motor (M1), the battery (37) is arranged across the left and right center (CL) of the vehicle body, and the drive motor (M1) is: It may be configured to be arranged on the side of the battery (37).
According to this configuration, since the drive motor is arranged on the side of the battery arranged below the radiator fan, power transmission can be smoothly performed, and the position of the electric parts can be lowered to lower the center of gravity.
 本発明は、前記バッテリ(37)の上方に物品収納ボックス(22)を備えている構成でもよい。
 この構成によれば、バッテリ上方のスペースを物品収納スペースとして有効活用することができる。
The present invention may be configured to have an article storage box (22) above the battery (37).
With this configuration, the space above the battery can be effectively utilized as an article storage space.
 本発明によれば、駆動輪に駆動力を与える駆動モータおよびその制御装置、ならびに発電用のエンジンを備える鞍乗り型車両において、動力部品の冷却性を向上させることができる。 According to the present invention, it is possible to improve the cooling performance of the power components in a saddle-ride type vehicle that includes a drive motor that applies drive force to the drive wheels, its control device, and an engine for power generation.
本発明の第一実施形態における自動二輪車の概略を示す左側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a left view which shows the outline of the two-wheeled motor vehicle in 1st embodiment of this invention. 上記自動二輪車の駆動システムの概略を示す構成図である。2 is a configuration diagram showing an outline of a drive system of the motorcycle; FIG. 上記駆動システムのEVモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an EV mode of the drive system; 上記駆動システムのハイブリッドモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a hybrid mode of the drive system; 上記駆動システムの回生モードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing a regeneration mode of the drive system; 上記駆動システムのエンジンドライブモードを示す図2に相当する構成図である。FIG. 3 is a configuration diagram corresponding to FIG. 2 showing an engine drive mode of the drive system; 上記駆動システムの制御部の概略を示す構成図である。It is a block diagram which shows the outline of the control part of the said drive system. 上記自動二輪車の概略を示す平面図である。Fig. 2 is a plan view showing the outline of the motorcycle; 上記自動二輪車のラジエータ配置の変形例を示す左側面図である。FIG. 5 is a left side view showing a modification of the radiator arrangement of the motorcycle; 第二実施形態における自動二輪車の概略を示す左側面図である。It is a left side view showing an outline of a motorcycle in a second embodiment.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UP、車体左右中央を示す線CLが示されている。本実施形態で用いる「中間」とは、対象の両端間の中央のみならず、対象の両端間の内側の範囲を含む意とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the directions such as front, back, left, and right in the following description are the same as the directions of the vehicle described below unless otherwise specified. An arrow FR indicating the front of the vehicle, an arrow LH indicating the left of the vehicle, an arrow UP indicating the upper side of the vehicle, and a line CL indicating the left-right center of the vehicle are shown at appropriate locations in the drawings used in the following description. The term "intermediate" used in this embodiment is intended to include not only the center between the two ends of the target, but also the inner range between the two ends of the target.
<車両全体>
 図1は、本実施形態の鞍乗り型車両の一例としての自動二輪車1を示す。自動二輪車1は、エンジン(内燃機関)Eおよび二つの電気モータM1,M2を含む駆動システムSを構成し、エンジン動力とモータ動力とを協働させて走行する。自動二輪車1は、いわゆる2モータハイブリッドシステムを搭載したハイブリッド車両である。なお、以下に説明する本発明の要旨を逸脱しない範囲であれば、1モータ式のハイブリッド車両や内燃機関を有さない電動車両に適用してもよい。
<Whole vehicle>
FIG. 1 shows a motorcycle 1 as an example of a straddle-type vehicle according to the present embodiment. The motorcycle 1 comprises a drive system S including an engine (internal combustion engine) E and two electric motors M1 and M2, and runs by cooperating engine power and motor power. The motorcycle 1 is a hybrid vehicle equipped with a so-called two-motor hybrid system. It should be noted that the present invention may be applied to a one-motor hybrid vehicle or an electric vehicle that does not have an internal combustion engine, as long as it does not depart from the gist of the present invention described below.
 自動二輪車1は、ハンドル2によって操舵される前輪(操舵輪)3と、駆動システムSによって駆動される後輪(駆動輪)4と、を備えている。自動二輪車1は、運転者が車体を跨いで乗車する鞍乗り型車両であり、前後輪3,4の接地点を基準に車体を左右方向(ロール方向)に揺動(バンク)可能である。ハンドル2は、左右一体のバーハンドルでも左右別体のセパレートハンドルでもよく、かつバータイプのハンドルでなくてもよい。 The motorcycle 1 includes front wheels (steered wheels) 3 that are steered by a steering wheel 2 and rear wheels (driving wheels) 4 that are driven by a drive system S. The motorcycle 1 is a saddle type vehicle in which the rider straddles the vehicle body, and the vehicle body can be swung (banked) in the lateral direction (roll direction) with reference to ground contact points of the front and rear wheels 3 and 4 . The handle 2 may be a left and right integrated bar handle or a left and right separate separate handle, and may not be a bar type handle.
 自動二輪車1は、車体の主要骨格となる車体フレーム5を備えている。車体フレーム5は、ヘッドパイプ6、メインフレーム7、ピボットフレーム8、リヤフレーム9を備えている。
 車体フレーム5は、前端部の左右中央に位置するヘッドパイプ6において、前輪懸架装置11のフロントフォーク12を転舵可能に支持する。車体フレーム5は、前後中間部に位置するピボットフレーム8において、後輪懸架装置15のスイングアーム16を上下揺動可能に支持する。車体フレーム5は、ヘッドパイプ6からピボットフレーム8よりも後方のリヤフレーム9に渡って、溶接等の結合手段によって一体に設けられている。車体フレーム5は、一部(例えばリヤフレーム9等)をボルト締結等で着脱可能としてもよい。
The motorcycle 1 includes a vehicle body frame 5 that serves as a main frame of the vehicle body. The body frame 5 includes a head pipe 6, a main frame 7, a pivot frame 8 and a rear frame 9.
The vehicle body frame 5 steerably supports a front fork 12 of a front wheel suspension 11 at a head pipe 6 positioned in the center of the front end portion in the left-right direction. The vehicle body frame 5 supports a swing arm 16 of a rear wheel suspension device 15 in a pivot frame 8 positioned in the front-rear intermediate portion so as to be capable of swinging up and down. The vehicle body frame 5 is integrally provided from the head pipe 6 to the rear frame 9 behind the pivot frame 8 by a joining means such as welding. A part of the vehicle body frame 5 (for example, the rear frame 9 and the like) may be detachable by bolting or the like.
 図中符号7aはメインフレーム7が備える左右一対のメインフレーム部材、符号8aはピボットフレーム8が備える左右一対のピボットフレーム部材、符号9aはリヤフレーム9が備える左右一対のリヤフレーム部材をそれぞれ示す。左右一対のフレーム部材は、それぞれ車幅方向で互いに離隔している。 In the figure, reference numeral 7a indicates a pair of left and right main frame members provided in the main frame 7, reference numeral 8a indicates a pair of left and right pivot frame members provided in the pivot frame 8, and reference numeral 9a indicates a pair of left and right rear frame members provided in the rear frame 9, respectively. The pair of left and right frame members are separated from each other in the vehicle width direction.
 ヘッドパイプ6は、鉛直方向に対して後傾したステアリング軸線を有している。ヘッドパイプ6は、前輪3および前輪懸架装置11をステアリング軸線回りに回動可能に支持している。例えば、前輪懸架装置11は、左右一対のフロントフォーク12を備えている。左右フロントフォーク12の上部は、ステアリングステムを介してヘッドパイプ6に支持されている。左右フロントフォーク12の下端部は、前輪3の車軸3aを支持している。左右フロントフォーク12は、それぞれテレスコピック式とされ、自動二輪車1のフロントサスペンションを構成している。前輪懸架装置11は、テレスコピック式のフロントサスペンションを構成するものに限らず、例えばリンク式のフロントサスペンションを構成してもよい。 The head pipe 6 has a steering axis tilted backward with respect to the vertical direction. The head pipe 6 supports the front wheel 3 and the front wheel suspension device 11 so as to be rotatable about the steering axis. For example, the front wheel suspension system 11 includes a pair of left and right front forks 12 . Upper portions of the left and right front forks 12 are supported by the head pipe 6 via a steering stem. Lower ends of the left and right front forks 12 support the axle 3 a of the front wheel 3 . The left and right front forks 12 are of a telescopic type, respectively, and constitute a front suspension of the motorcycle 1 . The front wheel suspension 11 is not limited to constituting a telescopic front suspension, and may constitute, for example, a link-type front suspension.
 ピボットフレーム8は、車幅方向に延びるピボット軸(揺動軸)17を介して、スイングアーム16の前端部を支持している。スイングアーム16の後端部には、後輪4の車軸4aが支持されている。例えば、スイングアーム16の前部と車体フレーム5の前後中間部(例えばピボットフレーム8近傍のクロスフレーム)との間には、リヤクッションが介装されている。スイングアーム16およびリヤクッションは、自動二輪車1のリヤサスペンションを構成している。リヤクッションは、スイングアーム16の後部と車体フレーム5の後部(例えばリヤフレーム9)との間に介装されてもよい。 The pivot frame 8 supports the front end of the swing arm 16 via a pivot shaft (swing shaft) 17 extending in the vehicle width direction. A rear end portion of the swing arm 16 supports an axle 4 a of the rear wheel 4 . For example, a rear cushion is interposed between the front portion of the swing arm 16 and the front-rear middle portion of the body frame 5 (for example, the cross frame near the pivot frame 8). The swing arm 16 and the rear cushion constitute a rear suspension of the motorcycle 1. As shown in FIG. The rear cushion may be interposed between the rear portion of the swing arm 16 and the rear portion of the body frame 5 (for example, the rear frame 9).
 車体フレーム5を含む車体の全体は、車体カバー19で覆われている。車体カバー19は、例えば車体前後中央を境に、車体前部を覆うフロントボディカバー19aと、車体後部を覆うリヤボディカバー19bと、に分けられる。 The entire vehicle body including the vehicle body frame 5 is covered with a vehicle body cover 19. The vehicle body cover 19 is divided into, for example, a front body cover 19a that covers the front part of the vehicle body and a rear body cover 19b that covers the rear part of the vehicle body, with the front-rear center of the vehicle body as a boundary.
 リヤフレーム9は、ピボットフレーム8の後上方へ延びている。リヤフレーム9上には、乗員着座用のシート21が支持されている。リヤフレーム9は、シート21に着座した乗員の着座荷重を支持する。リヤフレーム9は、リヤクッションが連結される場合はクッション伸縮時の反力を受ける。 The rear frame 9 extends rearward and upward of the pivot frame 8 . A seat 21 for seating an occupant is supported on the rear frame 9 . The rear frame 9 supports the seating load of an occupant seated on the seat 21 . When the rear cushion is connected, the rear frame 9 receives a reaction force when the cushion expands and contracts.
 シート21は、例えば運転者が座る前着座部と後部同乗者が座る後着座部とを一体に備えている。リヤフレーム9の周囲は、シート21の両側部の下方から後方に渡るリヤボディカバー19bで覆われている。リヤボディカバー19bの内側には、例えば物品収納ボックス22が配置されている。 The seat 21 integrally includes, for example, a front seating portion on which the driver sits and a rear seating portion on which the rear passenger sits. The periphery of the rear frame 9 is covered with a rear body cover 19b extending from below both sides of the seat 21 to the rear. An article storage box 22, for example, is arranged inside the rear body cover 19b.
 シート21は、例えばリヤボディカバー19b側に着脱可能あるいは開閉可能に取り付けられている。シート21を着脱あるいは開閉することで、リヤボディカバー19bの上部が開閉される。シート21を取り付けてリヤボディカバー19bの上部を閉塞した閉状態において、乗員がシート21に着座可能となる。シート21を取り外してリヤボディカバー19bの上部を開放した開状態において、シート21下方の部品や空間にアクセス可能となる。シート21は、閉状態で施錠可能である。シート21は、例えば前後何れかに設けたヒンジ軸を中心に回動してリヤボディカバー19bの上部を開閉する構成でもよい。 The seat 21 is attached to, for example, the rear body cover 19b in a detachable or openable manner. By attaching/detaching or opening/closing the seat 21, the upper part of the rear body cover 19b is opened/closed. An occupant can sit on the seat 21 in the closed state in which the seat 21 is attached and the upper portion of the rear body cover 19b is closed. When the seat 21 is removed and the upper portion of the rear body cover 19b is opened, parts and spaces below the seat 21 can be accessed. The seat 21 is lockable in the closed state. For example, the seat 21 may be configured to rotate around a hinge shaft provided at either the front or rear to open and close the upper portion of the rear body cover 19b.
 シート21の前方でメインフレーム7の上方には、ニーグリップ部を有する車両構成部品23が支持されている。車両構成部品23は、例えばエンジンE用の燃料タンクやエアクリーナ、補機用の12Vバッテリ、乗員が荷物を出し入れする物品収納部、等の既存の車両構成部品を含む他、駆動システムSのバッテリ37やPCU34を含んでもよい。
 なお、本発明は、シート21の前方に車両構成部品を有さず跨ぎ空間を形成したスクータ型車両に適用してもよい。
A vehicle component 23 having a knee grip portion is supported in front of the seat 21 and above the main frame 7 . The vehicle component parts 23 include, for example, existing vehicle component parts such as a fuel tank and air cleaner for the engine E, a 12V battery for auxiliary equipment, and an article storage section for loading and unloading luggage by the occupant. and PCU 34 may be included.
The present invention may be applied to a scooter-type vehicle in which a straddle space is formed in front of the seat 21 without any vehicle components.
<駆動システム>
 図2は、駆動システムSの構成を示すブロック図である。
 駆動システムSは、エンジンEと、第一モータM1と、第二モータM2と、動力切替装置31と、PCU34と、バッテリ37と、を備えている。
<Drive system>
FIG. 2 is a block diagram showing the configuration of the drive system S. As shown in FIG.
The drive system S includes an engine E, a first motor M1, a second motor M2, a power switching device 31, a PCU 34, and a battery 37.
 エンジンEは、例えば複数気筒エンジンであり、各気筒のピストンの往復動からクランクシャフト26の回転駆動力を生成する。
 図1を併せて参照し、エンジンEは、クランクシャフト26の回転中心軸線C1を車幅方向(左右方向)に沿わせて配置されている。クランクシャフト26は、クランクケース27内に収容されている。クランクケース27からはシリンダブロック28が突出し、シリンダブロック28内には各気筒に対応するピストンが嵌装されている。各ピストンは、コネクティングロッドを介してクランクシャフト26に連結されている。
The engine E is, for example, a multi-cylinder engine, and generates rotational driving force for the crankshaft 26 from the reciprocating motion of the piston of each cylinder.
Referring also to FIG. 1, the engine E is arranged with the rotation center axis C1 of the crankshaft 26 along the vehicle width direction (horizontal direction). The crankshaft 26 is housed inside a crankcase 27 . A cylinder block 28 protrudes from the crankcase 27, and a piston corresponding to each cylinder is fitted in the cylinder block 28. As shown in FIG. Each piston is connected to the crankshaft 26 via a connecting rod.
 本実施形態において、第一モータM1は、エンジンEの上後方に配置され、第二モータM2は、エンジンEの左側部に配置されている(図8参照)。第一モータM1および第二モータM2は、それぞれブラシレスの三相交流モータである。第一モータM1は、後輪駆動用の回転駆動力を発生する駆動用モータであり、車両減速時等には回生(発電)を行う。第二モータM2は、エンジンEの駆動力を受けて発電を行う発電用モータであり、バッテリ37の充電および第一モータM1への電力供給の少なくとも一方を行う。 In this embodiment, the first motor M1 is arranged above and behind the engine E, and the second motor M2 is arranged on the left side of the engine E (see FIG. 8). The first motor M1 and the second motor M2 are each brushless three-phase AC motors. The first motor M1 is a driving motor that generates rotational driving force for driving the rear wheels, and regenerates (generates power) when the vehicle decelerates. The second motor M2 is a power generating motor that receives the driving force of the engine E to generate power, and performs at least one of charging the battery 37 and supplying power to the first motor M1.
 第一モータM1は、後輪4を駆動させて自動二輪車1を走行させるとき、例えばVVVF(variable voltage variable frequency)制御による可変速駆動がなされる。第一モータM1は、無段変速機を有する如く変速制御されるが、これに限らず、有段変速機を有する如く変速制御されてもよい。第一モータM1の作動は、エンジンEの駆動補助を行うアシストモータとしての駆動を含んでもよい。第一モータM1の作動は、エンジンEのスタータモータとしての駆動を含んでもよい。 When the first motor M1 drives the rear wheels 4 and causes the motorcycle 1 to travel, variable speed driving is performed by, for example, VVVF (variable voltage variable frequency) control. The first motor M1 is speed-change controlled to have a continuously variable transmission, but is not limited to this, and may be speed-change controlled to have a stepped transmission. The operation of the first motor M1 may include driving as an assist motor that assists the driving of the engine E. Operation of the first motor M1 may include driving the engine E as a starter motor.
 第一モータM1の駆動時、バッテリ37からの電力は、PCU34に供給され、直流から三相交流に変換されて、第一モータM1に供給される。第一モータM1の発電時、第一モータM1の発電電力は、レギュレータの整流回路等を経て、バッテリ37に蓄電される。 When driving the first motor M1, power from the battery 37 is supplied to the PCU 34, converted from direct current to three-phase alternating current, and supplied to the first motor M1. When the first motor M1 generates power, the power generated by the first motor M1 is stored in the battery 37 through the rectifier circuit of the regulator and the like.
 第二モータM2は、エンジンEの運転中にクランクシャフト26の回転動力でロータを回転させて発電を行う。第二モータM2の作動は、エンジンEの駆動補助を行うアシストモータとしての駆動を含んでもよい。第二モータM2の作動は、エンジンEのスタータモータとしての駆動を含んでもよい。 The second motor M2 generates electricity by rotating the rotor with the rotational power of the crankshaft 26 while the engine E is running. The operation of the second motor M2 may include driving as an assist motor that assists the driving of the engine E. Operation of the second motor M2 may include driving the engine E as a starter motor.
 第二モータM2の駆動時、バッテリ37からの電力は、PCU34に供給され、直流から三相交流に変換されて、第二モータM2に供給される。第二モータM2の発電時、第二モータM2の発電電力は、レギュレータの整流回路等を経て、バッテリ37に蓄電される。
 PCU34は、第一モータM1を制御する第一モータ制御部と、第二モータM2を制御する第二モータ制御部と、を別体に備えてもよい。
When the second motor M2 is driven, power from the battery 37 is supplied to the PCU 34, converted from direct current to three-phase alternating current, and supplied to the second motor M2. When the second motor M2 generates power, the power generated by the second motor M2 is stored in the battery 37 through the rectifier circuit of the regulator and the like.
The PCU 34 may separately include a first motor control section that controls the first motor M1 and a second motor control section that controls the second motor M2.
 動力切替装置31は、エンジンE、第一モータM1および第二モータM2の間の動力伝達経路を切り替える。動力切替装置31の制御により、エンジンE、第一モータM1および第二モータM2が協働して後輪4を駆動させる(自動二輪車1を走行させる)。動力切替装置31の制御により、第一モータM1および第二モータM2が駆動して発電可能である。駆動システムSと後輪4との間は、例えばチェーン式の伝動機構56で連結されている。 The power switching device 31 switches the power transmission path between the engine E, the first motor M1 and the second motor M2. Under the control of the power switching device 31, the engine E, the first motor M1 and the second motor M2 cooperate to drive the rear wheel 4 (make the motorcycle 1 run). Under the control of the power switching device 31, the first motor M1 and the second motor M2 can be driven to generate power. The drive system S and the rear wheels 4 are connected by a chain-type transmission mechanism 56, for example.
 図7を併せて参照し、PCU(Power Control Unit)34は、PDU(Power Drive Unit)34aおよびECU(Electric Control Unit)34bを備えた一体の制御ユニットである。PCU34は、各種センサ情報に基づいて、主に第一モータM1および第二モータM2の作動(駆動および発電)を制御する。PCU34は、第一モータM1および第二モータM2とバッテリ37との間の電流および電圧をコントロールする。 Also referring to FIG. 7, the PCU (Power Control Unit) 34 is an integrated control unit including a PDU (Power Drive Unit) 34a and an ECU (Electric Control Unit) 34b. The PCU 34 mainly controls the operation (driving and power generation) of the first motor M1 and the second motor M2 based on various sensor information. PCU 34 controls the current and voltage between first motor M1 and second motor M2 and battery 37 .
 PCU34は、電圧を昇降させるコンバータと、DC電流をAC電流に変換するインバータと、を備えている。インバータは、トランジスタ等のスイッチング素子を複数用いたブリッジ回路及び平滑コンデンサ等を具備し、第一モータM1および第二モータM2の各ステータ巻線に対する通電を制御する。第一モータM1および第二モータM2は、PCU34による制御に応じて、力行運転と発電とを切り替える。 The PCU 34 includes a converter that raises and lowers voltage and an inverter that converts DC current to AC current. The inverter includes a bridge circuit using a plurality of switching elements such as transistors, a smoothing capacitor, and the like, and controls energization to each stator winding of the first motor M1 and the second motor M2. The first motor M<b>1 and the second motor M<b>2 switch between power running and power generation according to control by the PCU 34 .
 バッテリ37は、例えば複数の単位バッテリ37aを直列に結線して所定の高電圧(例えば48V~192V)を得る。バッテリ37は、充放電が可能なエネルギーストレージとしてリチウムイオンバッテリを備えている。バッテリ37は、第一モータM1に電力を供給するとともに、第一モータM1による回生電力および第二モータM2による発電電力を蓄電可能である。 The battery 37 obtains a predetermined high voltage (eg, 48V to 192V) by connecting a plurality of unit batteries 37a in series, for example. The battery 37 includes a lithium ion battery as chargeable/dischargeable energy storage. The battery 37 supplies electric power to the first motor M1 and can store electric power regenerated by the first motor M1 and electric power generated by the second motor M2.
 バッテリ37からの電力は、例えば自動二輪車1のメインスイッチと連動するコンタクタ等を介して、モータドライバたるPDU34aに供給される。バッテリ37からの電力は、PDU34aにて直流から三相交流に変換された後、第一モータM1および第二モータM2に供給される。 Electric power from the battery 37 is supplied to the PDU 34a, which is the motor driver, via a contactor or the like that is interlocked with the main switch of the motorcycle 1, for example. Electric power from the battery 37 is converted from direct current to three-phase alternating current by the PDU 34a, and then supplied to the first motor M1 and the second motor M2.
 バッテリ37からの出力電圧は、DC-DCコンバータを介して降圧され、12Vのサブバッテリの充電に供される。サブバッテリは、灯火器等の一般電装部品、メーターおよび施錠装置、ならびにECU等の制御系部品に電力を供給する。サブバッテリを搭載することで、バッテリ37を取り外した状態等でも各種電磁ロック等を操作可能である。 The output voltage from the battery 37 is stepped down through the DC-DC converter and used to charge the 12V sub-battery. The sub-battery supplies power to general electrical components such as lamps, meters, locking devices, and control system components such as ECUs. By installing a sub-battery, various electromagnetic locks can be operated even when the battery 37 is removed.
 バッテリ37は、例えば車体に搭載された状態で、外部電源に接続したチャージャーによって充電可能である。バッテリ37は、車体から取り外した状態で、車外の充電器によって充電可能でもよい。 The battery 37 can be charged by a charger connected to an external power supply while mounted on the vehicle body, for example. The battery 37 may be detached from the vehicle body and charged by a charger outside the vehicle.
 バッテリ37は、充放電状況や温度等を監視するBMU(Battery Management Unit)を備えている。BMUが監視した情報は、バッテリ37を車体に搭載した際にECU34bに共有される。ECU34bは、各種センサから入力された検知情報に基づき、PDU34aを介して第一モータM1および第二モータM2を駆動制御する。 The battery 37 has a BMU (Battery Management Unit) that monitors the charge/discharge status, temperature, and so on. Information monitored by the BMU is shared with the ECU 34b when the battery 37 is mounted on the vehicle body. The ECU 34b drives and controls the first motor M1 and the second motor M2 via the PDU 34a based on detection information input from various sensors.
<制御部>
 図7は、駆動システムSの制御部41の構成を示すブロック図である。
 制御部41は、PCU34と、エンジンECU42と、クラッチECU43と、を備えている。
 PCU34は、第一モータM1および第二モータM2の作動(駆動および発電)を制御する。
<Control section>
FIG. 7 is a block diagram showing the configuration of the control section 41 of the drive system S. As shown in FIG.
The control unit 41 includes a PCU 34, an engine ECU 42, and a clutch ECU 43.
PCU 34 controls the operation (driving and power generation) of first motor M1 and second motor M2.
 エンジンECU42は、アクセル開度等に応じて点火装置および燃料噴射装置といったエンジン補機を作動させて、エンジンEの始動、運転および停止を制御する。エンジンECU42には、アクセル操作子(例えばアクセルグリップ)の操作量を検出するアクセル開度センサ46、エンジン回転数を検出するエンジン回転数センサ47、自動二輪車1の車速(例えば車輪速度)を検出する車速センサ48、等の検出情報が入力される。エンジンECU42は、入力された各種の検出情報に基づき、点火装置および燃料噴射装置といったエンジン補機を作動させる。 The engine ECU 42 controls the start, operation and stop of the engine E by activating engine accessories such as an ignition device and a fuel injection device according to the degree of opening of the accelerator. The engine ECU 42 includes an accelerator opening sensor 46 for detecting the amount of operation of an accelerator operator (for example, an accelerator grip), an engine speed sensor 47 for detecting the engine speed, and a vehicle speed (for example, wheel speed) of the motorcycle 1. Detected information from the vehicle speed sensor 48 and the like is input. The engine ECU 42 operates engine accessories such as an ignition device and a fuel injection device based on various types of input detection information.
 クラッチECU43は、動力切替制御部であり、各種センサ情報に基づいて動力切替装置31を作動させる。クラッチECU43は、エンジンE、第一モータM1および第二モータM2の何れを、後輪4と動力伝達可能に連結するかを切り替える。クラッチECU43には、例えば動力切替装置31内のクラッチを断接させるクラッチアクチュエータ32が接続されている。
 エンジンECU42とクラッチECU43とは、互いに別体に設けられても一体に設けられてもよい。
The clutch ECU 43 is a power switching control section, and operates the power switching device 31 based on various sensor information. The clutch ECU 43 switches which of the engine E, the first motor M1 and the second motor M2 should be connected to the rear wheels 4 so as to be able to transmit power. The clutch ECU 43 is connected to a clutch actuator 32 that connects and disconnects a clutch in the power switching device 31, for example.
The engine ECU 42 and the clutch ECU 43 may be provided separately or integrally.
 制御部41には、例えばエンジンEの燃料タンクの残容量を検知する燃料残容量センサ45、乗員のアクセル開度(出力要求量)を検知するアクセル開度センサ46、エンジンEの回転数を検知するエンジン回転数センサ47、自動二輪車1の車速を検知する車速センサ48、バッテリ37の残容量を検知するバッテリ残容量センサ49、等の各種センサが接続されている。 The control unit 41 includes, for example, a remaining fuel capacity sensor 45 for detecting the remaining capacity of the fuel tank of the engine E, an accelerator opening sensor 46 for detecting the accelerator opening (required output amount) of the passenger, and a rotational speed of the engine E. Various sensors such as an engine rotation speed sensor 47 that detects the vehicle speed of the motorcycle 1, a vehicle speed sensor 48 that detects the vehicle speed of the motorcycle 1, and a remaining battery capacity sensor 49 that detects the remaining capacity of the battery 37 are connected.
 制御部41は、例えば自動二輪車1のメインスイッチがオンになると起動し、駆動システムSの制御を開始する。制御部41は、例えばアクセル開度毎に車速と出力(トルク)との相関を設定したマップを、メモリに記憶している。制御部41は、各センサからの出力および予め定められたマップ等に基づいて、エンジンE、第一モータM1および第二モータM2を適宜協働させる。制御部41は、駆動システムSから後輪4にトルクを付与して自動二輪車1を走行させるとともに、バッテリ37を充電可能とする。 The control unit 41 is activated, for example, when the main switch of the motorcycle 1 is turned on, and starts controlling the drive system S. The control unit 41 stores, in memory, a map in which the correlation between the vehicle speed and the output (torque) is set for each accelerator opening, for example. The control unit 41 appropriately causes the engine E, the first motor M1 and the second motor M2 to cooperate based on the output from each sensor, a predetermined map, and the like. The control unit 41 applies torque from the drive system S to the rear wheel 4 to run the motorcycle 1 and enables the battery 37 to be charged.
 制御部41は、エンジンE、第一モータM1および第二モータM2を協働させる複数の制御モードを有している。制御部41は、複数の制御モードを切り替える制御モード切替部として機能する。制御モードの切り替えは、予め設定されたコンピュータプログラムに基づいて実行される処理によって、機能的に実現される。 The control unit 41 has a plurality of control modes for cooperating the engine E, the first motor M1 and the second motor M2. The control unit 41 functions as a control mode switching unit that switches between a plurality of control modes. Switching of the control mode is functionally realized by processing executed based on a preset computer program.
<制御モード>
 制御部41の複数の制御モードは、EVモードと、ハイブリッドモードと、回生モードと、エンジンドライブモードと、を含む。
 図3を参照し、EVモードは、エンジンEを停止して第一モータM1を駆動させ、第一モータM1の駆動力で自動二輪車1を走行させる。
 図4を参照し、ハイブリッドモードは、エンジンEにより第二モータM2を発電機として駆動させつつ、第一モータM1の駆動力で自動二輪車1を走行させる。
<Control mode>
The plurality of control modes of control unit 41 include EV mode, hybrid mode, regeneration mode, and engine drive mode.
Referring to FIG. 3, in the EV mode, the engine E is stopped, the first motor M1 is driven, and the motorcycle 1 is driven by the driving force of the first motor M1.
Referring to FIG. 4, in the hybrid mode, the second motor M2 is driven by the engine E as a generator, and the motorcycle 1 is driven by the driving force of the first motor M1.
 図5を参照し、回生モードは、自動二輪車1の減速時等に自動二輪車1の運動エネルギーによって第一モータM1を発電機として駆動させ、第一モータM1の発電電力でバッテリ37を充電する。
 図6を参照し、エンジンドライブモードは、エンジンEの駆動力で自動二輪車1を走行させる。
 各制御モードは、センサ出力等に応じて自動的に切り替え可能、または乗員の操作によって任意に切り替え可能である。
Referring to FIG. 5, in the regeneration mode, the kinetic energy of the motorcycle 1 is used to drive the first motor M1 as a generator when the motorcycle 1 decelerates, and the battery 37 is charged with the electric power generated by the first motor M1.
Referring to FIG. 6 , in the engine drive mode, the driving force of the engine E is used to drive the motorcycle 1 .
Each control mode can be automatically switched according to sensor output or the like, or can be arbitrarily switched by the operation of the passenger.
 以下、複数の制御モードについてより詳細に説明する。
 まず、エンジンEを停止して第一モータM1の駆動力で車両を走行させるEV(Electric Vehicle)モードについて説明する。EVモードは、例えば自動二輪車1の発進時から中低速の走行時(特にクルーズ走行時)等において、第一モータM1の駆動力(モータトルク)のみによって走行可能なモータドライブモードである。EVモードでは、エンジンEおよび第二モータM2と後輪4との連結を解除した状態で自動二輪車1を走行させる。
The multiple control modes are described in more detail below.
First, an EV (Electric Vehicle) mode in which the engine E is stopped and the vehicle is driven by the driving force of the first motor M1 will be described. The EV mode is a motor drive mode in which the motorcycle 1 can travel only by the driving force (motor torque) of the first motor M1, for example, when the motorcycle 1 is running at medium to low speeds (especially when cruising). In the EV mode, the motorcycle 1 is run with the engine E and the second motor M2 disconnected from the rear wheel 4 .
 EVモードにおいて、エンジンEを駆動し、エンジンEの駆動力によって第二モータM2で発電を行うことも可能である(ハイブリッドモード)。ハイブリッドモードにおいて、第二モータM2の発電電力は、バッテリ37に蓄電されるが、第一モータM1に直接供給されてもよい。 In the EV mode, it is also possible to drive the engine E and use the driving force of the engine E to generate electricity with the second motor M2 (hybrid mode). In the hybrid mode, the power generated by the second motor M2 is stored in the battery 37, but may be directly supplied to the first motor M1.
 ハイブリッドモードは、例えば自動二輪車1の発進時から規定速度に達するまでの間、上り坂走行時、急加速要求時等に実施される。ハイブリッドモードは、バッテリ残容量が少ない場合にも実施される。自動二輪車1は乗用車に比べて小型であり、バッテリ37の搭載サイズ(容量)も制限されるため、EVモードよりもハイブリッドモードとなる機会が多い。 The hybrid mode is implemented, for example, when the motorcycle 1 starts running until it reaches a specified speed, when traveling uphill, when a sudden acceleration is required, and the like. The hybrid mode is also implemented when the remaining battery capacity is low. Since the motorcycle 1 is smaller than a passenger car and the mounting size (capacity) of the battery 37 is limited, the hybrid mode is more likely to be used than the EV mode.
 ハイブリッドモードにおいて、エンジンEおよび第二モータM2の駆動力の少なくとも一部を、駆動システムSの出力部に供給することも可能である。これにより、エンジンEおよび第二モータM2のトルクで後輪駆動をアシストすることが可能である。バッテリ残容量が第一の規定値を下回っている場合は、第二モータM2による駆動アシストを制限してもよい。また、バッテリ残容量がさらに低い第二の規定値を下回る場合は、第一モータM1による駆動を制限してエンジンドライブモードに切り替えてもよい。燃料タンクの残容量が規定値を下回る場合は、第一モータM1および第二モータM2による後輪駆動の割合を増やしてもよい。 It is also possible to supply at least part of the drive power of the engine E and the second motor M2 to the output of the drive system S in the hybrid mode. As a result, it is possible to assist the driving of the rear wheels with the torque of the engine E and the second motor M2. If the remaining battery charge is below the first specified value, the drive assist by the second motor M2 may be restricted. Further, when the remaining battery capacity is lower than a second specified value, the driving by the first motor M1 may be restricted and switched to the engine drive mode. When the remaining capacity of the fuel tank is below a specified value, the proportion of rear wheel drive by the first motor M1 and the second motor M2 may be increased.
 EVモードおよびハイブリッドモードにおいて、自動二輪車1の減速時や下り坂走行時には、「回生モード」に移行する。回生モードでは、後輪4の回転エネルギーを第一モータM1に入力して回生(発電)を行い、この発電電力をバッテリ37に蓄電する。このとき、動力切替装置31の切り替えによって、エンジンEと後輪4との連結を解除し、効率よく回生を行う構成としてもよい。回生モードでは、後輪4に回生ブレーキ(機関ブレーキ)を発生させる。バッテリ37の充電量が規定値以上の場合には、第一モータM1を空転させて回生を停止してもよい。このとき、動力切替装置31の切り替えによって、エンジンEと後輪4とを連結し、エンジンブレーキを発生させてもよい。 In EV mode and hybrid mode, when the motorcycle 1 decelerates or travels downhill, it shifts to "regenerative mode". In the regeneration mode, the rotational energy of the rear wheels 4 is input to the first motor M1 to regenerate (generate power), and the generated power is stored in the battery 37 . At this time, by switching the power switching device 31, the connection between the engine E and the rear wheels 4 may be released, and regeneration may be performed efficiently. In the regenerative mode, regenerative braking (engine braking) is generated on the rear wheels 4 . When the amount of charge in the battery 37 is equal to or greater than a specified value, the first motor M1 may idle to stop regeneration. At this time, by switching the power switching device 31, the engine E and the rear wheels 4 may be connected to generate engine braking.
 高速走行時(特に定速走行時)等では、動力切替装置31においてエンジンEと後輪4との間を動力伝達可能に連結し、エンジンEの駆動力によって自動二輪車1を走行させる(エンジンドライブモード)。エンジンドライブモードにおいて、エンジンEの駆動力によって第二モータM2を駆動して発電を行い、バッテリ37に蓄電してもよい。エンジンドライブモードにおいて、第一モータM1および第二モータM2の少なくとも一方を駆動させ、後輪駆動をアシストしてもよい。 During high-speed running (particularly during constant-speed running), etc., the power switching device 31 connects the engine E and the rear wheels 4 so that power can be transmitted, and the driving force of the engine E drives the motorcycle 1 (engine drive). mode). In the engine drive mode, the driving force of the engine E may be used to drive the second motor M<b>2 to generate power, which may be stored in the battery 37 . In the engine drive mode, at least one of the first motor M1 and the second motor M2 may be driven to assist rear wheel drive.
<エンジン配置>
 図1を参照し、例えば、エンジンEは、クランクシャフト26の後方にトランスミッションを有さない構成であり、クランクケース27の前後幅を狭めている。本実施形態のエンジンEは、クランクケース27の前部から斜め前上方へシリンダブロック28を突出させている。図中符号C2はシリンダブロック28の突出方向に沿う軸線(シリンダボアの中心軸線、シリンダ軸線)を示す。シリンダブロック28は、シリンダ軸線C2を垂直方向に対して前方へ傾斜させている。シリンダ軸線C2の垂直方向に対する前傾角度は、例えば45度以上とされており、エンジンE全体の上下高さを抑えている。
<Engine placement>
Referring to FIG. 1, for example, the engine E is configured without a transmission behind the crankshaft 26, and the front-to-rear width of the crankcase 27 is narrowed. In the engine E of this embodiment, a cylinder block 28 projects obliquely forward and upward from the front portion of the crankcase 27 . Reference symbol C2 in the drawing indicates an axis (center axis of the cylinder bore, cylinder axis) along the projecting direction of the cylinder block 28 . The cylinder block 28 has the cylinder axis C2 inclined forward with respect to the vertical direction. The forward inclination angle of the cylinder axis C2 with respect to the vertical direction is set to, for example, 45 degrees or more, thereby suppressing the vertical height of the engine E as a whole.
<モータ配置>
 図1を参照し、第一モータM1は、エンジンEのクランクケース27の上後方に配置されている。第一モータM1は、上下方向で少なくとも一部がエンジンEのクランクケース27よりも上方に位置するように配置されている。第一モータM1は、回転軸151を左右方向に沿わせて配置されている。第一モータM1の回転軸151は、上下方向で少なくとも一部がクランクシャフト26およびピボット軸17よりも上方に位置するように配置されている。図中符号C3は第一モータM1の回転軸151の中心軸線を示す。
<Motor arrangement>
Referring to FIG. 1, the first motor M1 is arranged above and behind the crankcase 27 of the engine E. As shown in FIG. The first motor M1 is arranged such that at least a portion thereof is positioned above the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged with the rotating shaft 151 extending in the left-right direction. The rotation shaft 151 of the first motor M1 is arranged such that at least a portion thereof is positioned above the crankshaft 26 and the pivot shaft 17 in the vertical direction. Reference symbol C3 in the figure indicates the central axis of the rotating shaft 151 of the first motor M1.
 図8併せて参照し、例えば、第一モータM1は、車体左右中央CLに対して、車幅方向一側(左側)にオフセットして配置されている。第一モータM1よりも車幅方向内側には、バッテリ37が配置されている。第一モータM1は、側面視でバッテリ37よりも上方に配置されている。このため、第一モータM1は、図8の平面視でバッテリ37とラップするように配置されてもよい。さらに、第一モータM1は、車体左右中央CLを左右に跨ぐように配置されてもよい。この場合、第一モータM1を大型化しやすく、自動二輪車1の駆動力を確保しやすい。 Also referring to FIG. 8, for example, the first motor M1 is arranged offset to one side (left side) in the vehicle width direction with respect to the left-right center CL of the vehicle body. A battery 37 is arranged inside the first motor M1 in the vehicle width direction. The first motor M1 is arranged above the battery 37 in a side view. Therefore, the first motor M1 may be arranged so as to overlap the battery 37 in plan view in FIG. Furthermore, the first motor M1 may be arranged so as to straddle the left and right center CL of the vehicle body. In this case, it is easy to increase the size of the first motor M1, and it is easy to secure the driving force of the motorcycle 1.
 図1を参照し、例えば第一モータM1の前下方には、回転軸151と平行な出力軸55が配置されている。出力軸55は、駆動システムSの出力部であり、動力切替装置31を介して駆動力(トルク)が出力される。出力軸55は、ピボット軸17よりも前方で、上下方向でピボット軸17と重なる高さに配置されている。
 出力軸55は、例えばチェーン式の伝動機構56を介して後輪4と連結されている。出力軸55の右端部には、伝動機構56のドライブスプロケット56aが一体回転可能に支持されている。
Referring to FIG. 1, for example, an output shaft 55 parallel to the rotating shaft 151 is arranged in front and below the first motor M1. The output shaft 55 is an output portion of the drive system S, and outputs drive force (torque) via the power switching device 31 . The output shaft 55 is arranged in front of the pivot shaft 17 at a height overlapping the pivot shaft 17 in the vertical direction.
The output shaft 55 is connected to the rear wheel 4 via a chain-type transmission mechanism 56, for example. A drive sprocket 56a of a transmission mechanism 56 is supported on the right end of the output shaft 55 so as to be integrally rotatable.
 図8を参照し、第二モータM2は、車体左右中央CLに対して、車幅方向一側(左側)にオフセットして配置されている。第二モータM2は、クランクケース27の左側部に備えられている。第二モータM2は、クランクシャフト26の左側部に連結されている。第二モータM2は、クランクシャフト26と回転中心軸線を一致させて配置(同軸配置)されている。第二モータM2は、いわゆるACG(AC Generator:交流発電機)であり、エンジンEを始動するスタータモータとしても機能する。図中符号251は第二モータM2の回転軸、符号C4は第二モータM2の回転軸251の中心軸線をそれぞれ示す。 Referring to FIG. 8, the second motor M2 is arranged offset to one side (left side) in the vehicle width direction with respect to the left-right center CL of the vehicle body. The second motor M2 is provided on the left side of the crankcase 27. As shown in FIG. The second motor M2 is connected to the left side of the crankshaft 26. As shown in FIG. The second motor M2 is arranged (coaxially arranged) with the rotation center axis aligned with the crankshaft 26 . The second motor M2 is a so-called ACG (AC Generator) and also functions as a starter motor for starting the engine E. In the figure, reference numeral 251 indicates the rotating shaft of the second motor M2, and reference numeral C4 indicates the central axis of the rotating shaft 251 of the second motor M2.
<バッテリ配置>
 図1を参照し、側面視でエンジンEの後方かつ第二モータM2の下方には、駆動システムSの電源であるバッテリ37が配置されている。バッテリ37は、車体左右中央CLを左右に跨いで配置されている(図8参照)。バッテリ37は、上下方向でピボット軸17と重なる高さに配置されている。バッテリ37は、上下方向でエンジンEのクランクケース27の上下幅内に配置されている。バッテリ37は、エンジンEのクランクケース27とともに車体下方に臨む配置とされ、自動二輪車1の低重心化に寄与している。
<Battery placement>
Referring to FIG. 1, a battery 37 as a power source of the drive system S is arranged behind the engine E and below the second motor M2 in a side view. The battery 37 is arranged across the left and right center CL of the vehicle body (see FIG. 8). The battery 37 is arranged at a height overlapping the pivot shaft 17 in the vertical direction. The battery 37 is arranged within the vertical width of the crankcase 27 of the engine E in the vertical direction. The battery 37 and the crankcase 27 of the engine E are arranged to face the lower part of the vehicle body, and contribute to lowering the center of gravity of the motorcycle 1 .
 バッテリ37は、側面視でピボットフレーム8と重なるように配置されている。バッテリ37は、少なくとも一部が左右ピボットフレーム部材8aの間に配置されている。バッテリ37は、左右ピボットフレーム部材8aに両持ち支持されている。例えば第二モータM2は、バッテリ37よりも上方に配置され、かつバッテリ37よりも車幅方向外側に配置されている。 The battery 37 is arranged so as to overlap the pivot frame 8 in a side view. At least part of the battery 37 is arranged between the left and right pivot frame members 8a. The battery 37 is supported by the left and right pivot frame members 8a. For example, the second motor M2 is arranged above the battery 37 and outside the battery 37 in the vehicle width direction.
 バッテリ37は、例えば複数(例えば上下一対)の単位バッテリ37aで構成されている。各単位バッテリ37aは、互いに同一構成である。各単位バッテリ37aは、例えば断面矩形状をなして長手方向に延びる角柱状(直方体状)をなしている。各単位バッテリ37aは、長手方向を車両前後方向に向けて配置され、上下幅を抑えている。各単位バッテリ37aは、例えば一体のバッテリボックスに収容されている。 The battery 37 is composed of, for example, a plurality of (for example, a pair of upper and lower) unit batteries 37a. Each unit battery 37a has the same configuration. Each unit battery 37a has, for example, a prismatic shape (rectangular parallelepiped shape) that has a rectangular cross section and extends in the longitudinal direction. Each unit battery 37a is arranged with its longitudinal direction directed in the vehicle front-rear direction, and its vertical width is suppressed. Each unit battery 37a is accommodated, for example, in an integrated battery box.
 バッテリ37は、複数の単位バッテリ37aを直列に結線することで、所定の高電圧(48~72V)を発生させている。各単位バッテリ37aは、それぞれ充放電可能なエネルギーストレージとして、例えばリチウムイオンバッテリで構成されている。各単位バッテリ37aは、ジャンクションボックス(分配器)およびコンタクタ(電磁開閉器)を介して、PCU34に接続されている。PCU34からは三相ケーブルが延び、この三相ケーブルが第一モータM1に接続されている。 The battery 37 generates a predetermined high voltage (48-72V) by connecting a plurality of unit batteries 37a in series. Each unit battery 37a is composed of, for example, a lithium ion battery as a chargeable/dischargeable energy storage. Each unit battery 37a is connected to the PCU 34 via a junction box (distributor) and a contactor (electromagnetic switch). A three-phase cable extends from the PCU 34 and is connected to the first motor M1.
 図1、図8の例では、上下一対の単位バッテリ37aは、上下方向から見て互いに全体が重なる配置であるが、これに限らない。例えば、上下一対の単位バッテリ37aは、互いに前後位置をずらしてもよい。また、各単位バッテリ37aは、上下面を略水平にして配置されているが、これに限らない。例えば、各単位バッテリ37aは、上下面を側面視で傾斜させて配置されてもよい。第二モータM2は、バッテリ37よりも車幅方向外側に配置されているが、これに限らない。例えば、第二モータM2は、側面視でバッテリ37を避けていれば、バッテリ37と車幅方向位置をラップさせてもよい。 In the examples of FIGS. 1 and 8, the pair of upper and lower unit batteries 37a are arranged so that the whole overlaps with each other when viewed in the vertical direction, but the arrangement is not limited to this. For example, the pair of upper and lower unit batteries 37a may be displaced from each other. Moreover, although each unit battery 37a is arranged with its upper and lower surfaces substantially horizontal, this is not restrictive. For example, each unit battery 37a may be arranged with its upper and lower surfaces inclined when viewed from the side. The second motor M2 is arranged outside the battery 37 in the vehicle width direction, but the arrangement is not limited to this. For example, if the second motor M2 avoids the battery 37 when viewed from the side, the position in the vehicle width direction may be overlapped with the battery 37 .
<PCU配置>
 図1、図8を参照し、PCU34は、直方体状の外形をなし、一辺の方向を車幅方向に沿わせて配置されている。PCU34は、上下面を略水平にして配置されている。PCU34は、上下面を側面視で傾斜させて配置されてもよい。
<PCU placement>
Referring to FIGS. 1 and 8, the PCU 34 has a rectangular parallelepiped outer shape and is arranged with one side along the vehicle width direction. The PCU 34 is arranged with its upper and lower surfaces substantially horizontal. The PCU 34 may be arranged with its upper and lower surfaces inclined when viewed from the side.
 PCU34は、エンジンEのクランクケース27よりも上方に配置されている。PCU34は、エンジンEのクランクケース27と前後方向位置をラップさせている。エンジンEは、シリンダブロック28を大きく前傾させて高さを抑えており、PCU34を配置しやすくしている。 The PCU 34 is arranged above the crankcase 27 of the engine E. The PCU 34 overlaps the crankcase 27 of the engine E in the longitudinal direction. In the engine E, the cylinder block 28 is greatly tilted forward to reduce the height, and the PCU 34 can be easily arranged.
 PCU34は、第二モータM2と前後方向位置をラップさせるとともに、第一モータM1と上下方向位置をラップさせている。これにより、PCU34と第一モータM1および第二モータM2の各々とが互いに近付き、これらの間の高圧配線の短縮化が図られる。 The PCU 34 overlaps the second motor M2 in the longitudinal direction and overlaps the first motor M1 in the vertical direction. As a result, the PCU 34 and each of the first motor M1 and the second motor M2 are brought closer to each other, thereby shortening the high-voltage wiring between them.
 PCU34は、車体左右中央CLを左右に跨いで配置されている(図8参照)。PCU34は、側面視でメインフレーム7と重なるように配置されている。PCU34は、少なくとも一部が左右メインフレーム部材7aの間に配置されている。PCU34は、左右メインフレーム部材7aに両持ち支持されている。PCU34は、フロントボディカバー19aの内側に配置されている。 The PCU 34 is arranged across the left and right center CL of the vehicle body (see FIG. 8). The PCU 34 is arranged so as to overlap the main frame 7 in a side view. At least a portion of the PCU 34 is arranged between the left and right main frame members 7a. The PCU 34 is supported by the left and right main frame members 7a. The PCU 34 is arranged inside the front body cover 19a.
 フロントボディカバー19aの下部前側には、前輪3が転舵可能かつ上下動可能な空間としてのホイールハウスHが形成されている。フロントボディカバー19aにおけるホイールハウスHの後方側に位置する部位には、ホイールハウスH内に臨む開口19a1が形成されている。 A wheelhouse H is formed on the lower front side of the front body cover 19a as a space in which the front wheels 3 can be steered and moved up and down. An opening 19a1 facing the inside of the wheel house H is formed in a portion of the front body cover 19a located on the rear side of the wheel house H. As shown in FIG.
<ラジエータ>
 図1を参照し、ラジエータ61は、車両前後方向の厚さを抑えた偏平状のラジエータ本体62と、ラジエータ本体62の後面側に沿って配置されたラジエータファン63と、を備えている。
 ラジエータ61は、ラジエータ本体62およびラジエータファン63を組み合わせて一体のユニットを構成している。ラジエータ61は、ラジエータファン63の駆動によって、車両前方側から車両後方側へ向かう気流を発生させる。この気流がラジエータ本体62のコアを通過することで、ラジエータ61における熱交換がなされて冷却水が冷却(放熱)される。
<Radiator>
Referring to FIG. 1, the radiator 61 includes a flat radiator body 62 with a reduced thickness in the vehicle front-rear direction, and a radiator fan 63 arranged along the rear side of the radiator body 62 .
The radiator 61 constitutes an integrated unit by combining a radiator main body 62 and a radiator fan 63 . The radiator 61 generates an airflow directed from the vehicle front side to the vehicle rear side by driving the radiator fan 63 . As this airflow passes through the core of the radiator body 62, heat is exchanged in the radiator 61 to cool the cooling water (radiate heat).
 ラジエータ本体62は、車両前後方向から見て矩形状をなし、上下辺を車幅方向に沿わせて配置されている。ラジエータファン63は、例えば軸流ファンであり、ラジエータ本体62の前方側の空気を後方側へ引き抜くように作用する。ラジエータ本体62の厚さ方向とラジエータファン63の軸方向とは互いに平行である。
 図1の例では、ラジエータ本体62の厚さ方向とラジエータファン63の軸方向とは、水平方向に対して上向きに傾斜しているが、この傾斜の有無および傾斜角度は、周辺部品に応じて適宜設定可能である。
The radiator main body 62 has a rectangular shape when viewed in the vehicle front-rear direction, and is arranged with upper and lower sides along the vehicle width direction. The radiator fan 63 is, for example, an axial fan, and acts to draw the air on the front side of the radiator main body 62 to the rear side. The thickness direction of the radiator main body 62 and the axial direction of the radiator fan 63 are parallel to each other.
In the example of FIG. 1, the thickness direction of the radiator main body 62 and the axial direction of the radiator fan 63 are inclined upward with respect to the horizontal direction. It can be set as appropriate.
 図中符号R1はラジエータファン63の下流領域を示す。下流領域R1とは、例えばラジエータファン63の下流端(後端)よりも下流側(後方側)で、少なくともラジエータファン63の軸方向から見てラジエータファン63と重なる範囲を示す。
 PCU34は、ラジエータファン63よりも前方で、少なくとも一部が車両上下方向でラジエータファン63と重なる高さに配置されている。これにより、ラジエータファン63が発生する気流によってPCU34の冷却が図られる。
Reference numeral R1 in the drawing indicates a downstream area of the radiator fan 63. As shown in FIG. The downstream region R1 is, for example, a region downstream (rear) of the downstream end (rear end) of the radiator fan 63 and overlaps with the radiator fan 63 at least when viewed from the axial direction of the radiator fan 63 .
The PCU 34 is arranged in front of the radiator fan 63 and at least partially overlapped with the radiator fan 63 in the vertical direction of the vehicle. As a result, the PCU 34 is cooled by the airflow generated by the radiator fan 63 .
 一方、バッテリ37は、ラジエータファン63よりも下方で、下流領域R1を避けた位置に配置されている。これにより、ラジエータ61の排熱によるバッテリ37への熱影響が抑えられる。また、重量物であるバッテリ37を低位置に配置することで、自動二輪車1の低重心化が図られる。バッテリ37の配置は、ラジエータファン63の下流領域R1を避けた位置であれば、ラジエータファン63の下方への配置に限らない。例えば、バッテリ37の配置は、ラジエータファン63の上方や左右外側への配置であってもよい。 On the other hand, the battery 37 is located below the radiator fan 63 and away from the downstream region R1. Thereby, the thermal influence of the exhaust heat of the radiator 61 on the battery 37 is suppressed. Further, by arranging the battery 37, which is a heavy object, at a low position, the center of gravity of the motorcycle 1 can be lowered. The arrangement of the battery 37 is not limited to being below the radiator fan 63 as long as it avoids the downstream region R1 of the radiator fan 63 . For example, the battery 37 may be arranged above the radiator fan 63 or outside on the left and right sides.
 ラジエータファン63は、エンジン温度(例えば冷却水温)が予め定めた規定値以上になったときに作動するが、その他、PCU34が予め定めた規定値以上になったときにも作動する。これにより、例えばエンジンEの温度が低くてもPCU34の温度が高い場合には、ラジエータファン63を利用してPCU34を冷却可能である。 The radiator fan 63 operates when the engine temperature (for example, cooling water temperature) reaches or exceeds a predetermined specified value, and also operates when the PCU 34 reaches or exceeds a predetermined specified value. Thereby, for example, when the temperature of the PCU 34 is high even if the temperature of the engine E is low, the PCU 34 can be cooled using the radiator fan 63 .
 エンジンEおよびPCU34には、それぞれ温度センサ65,66が設けられている。ラジエータファン63は、各温度センサ65,66が予め定めた規定値以上の温度を検出したときに駆動される。各温度センサ65,66の検出情報は、例えばPCU34に入力され、PCU34によってラジエータファン63の駆動が制御される。エンジンEの温度センサ65は、例えば冷却水温センサ又は油温センサが用いられる。PCU34の温度センサ66は、例えば従来から付帯しているサーミスタ素子等が用いられる。各温度センサ65,66は、別途のセンサを設置してもよい。ラジエータファン63は、エンジンEおよびPCU34の少なくとも一方の温度情報に基づいて駆動制御される。 The engine E and the PCU 34 are provided with temperature sensors 65 and 66, respectively. Radiator fan 63 is driven when temperature sensors 65 and 66 detect a temperature equal to or higher than a predetermined specified value. Information detected by each of the temperature sensors 65 and 66 is input to, for example, the PCU 34 , and the PCU 34 controls driving of the radiator fan 63 . A cooling water temperature sensor or an oil temperature sensor is used as the temperature sensor 65 of the engine E, for example. For the temperature sensor 66 of the PCU 34, for example, a conventional thermistor element or the like is used. A separate sensor may be installed for each of the temperature sensors 65 and 66 . Radiator fan 63 is driven and controlled based on temperature information of at least one of engine E and PCU 34 .
 図1の構成では、ラジエータ61を配置する開口19a1は車両前方に向けて開口している。したがって、開口19a1を通じて車体カバー19内に走行風を導入可能である。開口19a1の後方にはPCU34の前端部が位置し、開口19a1から導入された走行風はPCU34の前端部に当たる。これにより、自動二輪車1の走行時にはPCU34が良好に冷却される。この構成に加え、ラジエータファン63の前方側(上流側)にPCU34を配置することで、自動二輪車1の停車時等にもPCU34を冷却可能である。 In the configuration of FIG. 1, the opening 19a1 in which the radiator 61 is arranged opens toward the front of the vehicle. Therefore, running wind can be introduced into the body cover 19 through the opening 19a1. The front end of the PCU 34 is located behind the opening 19a1, and the running wind introduced through the opening 19a1 hits the front end of the PCU 34. As shown in FIG. As a result, the PCU 34 is well cooled while the motorcycle 1 is running. In addition to this configuration, by disposing the PCU 34 on the front side (upstream side) of the radiator fan 63, the PCU 34 can be cooled even when the motorcycle 1 is stopped.
 図1の構成では、PCU34の後方にラジエータ本体62およびラジエータファン63が配置されている。ラジエータ本体62およびラジエータファン63の下部は、エンジンEの後方に位置している。ラジエータファン63が駆動すると、フロントボディカバー19aの開口19a1からフロントボディカバー19a内に外気が吸い込まれ、この外気がPCU34の周囲を流れてPCU34を冷却する。 In the configuration of FIG. 1, a radiator main body 62 and a radiator fan 63 are arranged behind the PCU 34 . Lower portions of the radiator main body 62 and the radiator fan 63 are positioned behind the engine E. As shown in FIG. When the radiator fan 63 is driven, outside air is sucked into the front body cover 19a through the opening 19a1 of the front body cover 19a, and this outside air flows around the PCU 34 to cool it.
 例えばPCU34における開口19a1に対向する前端部(外気が直接当たる部位)には、PDU34aにおけるトランジスタ等の発熱部品の熱を放熱する放熱部(発熱部でもある)を配置するとよい。すなわち、放熱部に外気が直接当たることで、PCU34が発する熱を良好に放熱可能である。また、自動二輪車1の走行時には放熱部に走行風が直接当たるので、PCU34が発する熱をより良好に放熱可能である。放熱部は、例えば平面部に複数の放熱フィンを備えることで、さらに放熱性を高めてもよい。 For example, at the front end of the PCU 34 facing the opening 19a1 (the part directly exposed to the outside air), a heat radiating part (also a heat generating part) for radiating heat from heat generating components such as transistors in the PDU 34a may be arranged. That is, the heat generated by the PCU 34 can be dissipated favorably by directly hitting the heat radiating portion with the outside air. In addition, when the motorcycle 1 is running, the running wind directly hits the heat radiating portion, so the heat generated by the PCU 34 can be radiated more favorably. The heat dissipation part may have a plurality of heat dissipation fins on the flat surface, for example, to further improve heat dissipation.
 PCU34を冷却した外気は、PCU34の後方に配置されたラジエータ61に至り、ラジエータ本体62を通過して後方側へ引き抜かれる。この外気は、さらにラジエータ61の後方に配置された第一モータM1の周囲を流れた後、車体カバー19(リヤボディカバー19b)の外部に排気される。 The outside air that has cooled the PCU 34 reaches the radiator 61 arranged behind the PCU 34, passes through the radiator main body 62, and is drawn rearward. This outside air further flows around the first motor M1 arranged behind the radiator 61, and then is exhausted to the outside of the vehicle body cover 19 (rear body cover 19b).
 シリーズハイブリッド式の自動二輪車1の第一モータM1は、走行中は常に駆動している。このため、休止することもあるエンジンEに比べて、モータコントロールユニットであるPCU34は冷却を要する頻度が高い。PCU34は、自動二輪車1の走行中は走行風を受けて冷却されるが、車両停車時等における冷却手段を備えることが望ましい。実施形態の構成によれば、PCU34冷却用のファンやラジエータ等を別途設けることなく、エンジンE冷却用のラジエータファン63を利用することで、簡易な構成でPCU34を冷却可能となる。 The first motor M1 of the series hybrid motorcycle 1 is always driven while the motorcycle is running. Therefore, the PCU 34, which is a motor control unit, needs to be cooled more frequently than the engine E, which may be stopped. The PCU 34 is cooled by the running wind while the motorcycle 1 is running. According to the configuration of the embodiment, the PCU 34 can be cooled with a simple configuration by using the radiator fan 63 for cooling the engine E without separately providing a fan, radiator, or the like for cooling the PCU 34 .
 なお、ラジエータファン63の配置は、PCU34の後方への配置に限らない。
 図9を参照し、ラジエータファン63は、PCU34の前方で、車両上下方向でPCU34と重なる高さに配置してもよい。このとき、ラジエータ61’は、フロントボディカバー19aの開口19a1に配置されて走行風を直接受ける構成でもよい。開口19a1に配置したラジエータ61のラジエータ本体62は、厚さ方向(冷却風通過方向)を車両前後方向に向けている。したがって、開口19a1およびラジエータ61を通じて車体カバー19内に走行風が導入される。
Note that the arrangement of the radiator fan 63 is not limited to the rearward arrangement of the PCU 34 .
Referring to FIG. 9, radiator fan 63 may be arranged in front of PCU 34 at a height overlapping PCU 34 in the vertical direction of the vehicle. At this time, the radiator 61' may be arranged in the opening 19a1 of the front body cover 19a to directly receive the running wind. The radiator body 62 of the radiator 61 arranged in the opening 19a1 has its thickness direction (cooling air passage direction) directed in the vehicle front-rear direction. Therefore, running wind is introduced into the vehicle body cover 19 through the opening 19 a 1 and the radiator 61 .
 車両停車時等には、エンジン温度の上昇に応じてラジエータファン63が駆動することで、エンジンEの温度上昇が抑えられる。ラジエータ本体62を通過して吸熱した外気は、PCU34の周囲を流れ、この気流によってPCU34を冷却可能である。 When the vehicle is stopped, the temperature rise of the engine E is suppressed by driving the radiator fan 63 according to the rise in engine temperature. The outside air that has passed through the radiator body 62 and absorbed heat flows around the PCU 34, and the PCU 34 can be cooled by this airflow.
 図9の例では、ラジエータ61’から吸熱した後の外気でPCU34を冷却するのに対し、図1の例では、ラジエータ61’から吸熱する前の外気でPCU34を冷却する。このため、図1の構成ではPCU34をより効率よく冷却することができる。 In the example of FIG. 9, the PCU 34 is cooled by outside air after heat absorption from the radiator 61', whereas in the example of FIG. 1, the PCU 34 is cooled by outside air before heat absorption from the radiator 61'. Therefore, the configuration of FIG. 1 can cool the PCU 34 more efficiently.
 なお、ラジエータ61,61’は、車両前後方向に外気を流すものに限らず、車幅方向や上下方向に外気を流す構成もあり得る。この場合、ラジエータファン63の駆動によって車体カバー19内に生じる気流の応じた経路上にPCU34を配置することで、PCU34を冷却する効果が得られる。 It should be noted that the radiators 61 and 61' are not limited to those that allow external air to flow in the longitudinal direction of the vehicle, but may be configured to flow external air in the vehicle width direction or the vertical direction. In this case, by arranging the PCU 34 on a path corresponding to the airflow generated inside the vehicle body cover 19 by driving the radiator fan 63, the effect of cooling the PCU 34 can be obtained.
 以上説明したように、上記実施形態における自動二輪車1は、後輪4に駆動力を与える駆動用の第一モータM1と、前記第一モータM1とは別に設けられる発電用の第二モータM2と、前記第二モータM2を駆動させるエンジンEと、前記第一モータM1および前記第二モータM2を制御するPCU34と、前記エンジンEを冷却するラジエータ61,61’と、を備え、前記ラジエータ61,61’は、ラジエータ本体62と、前記ラジエータ本体62に風を流すラジエータファン63と、を備え、車両上下方向で前記エンジンEの上方に、前記PCU34が配置され、車両上下方向で前記PCU34と重なる高さに、前記ラジエータファン63が配置されている。
 この構成によれば、エンジンEの上方のスペースを制御装置34の配置スペースとして有効活用しながら、エンジンEから制御装置34への熱影響は、ラジエータファン63の駆動により低減することができる。すなわち、ラジエータファン63の駆動により制御装置34周辺に風を送り込む、又は制御装置34周辺から風を引き抜くことで、制御装置34の冷却性を確保することができる。
As described above, the motorcycle 1 in the above embodiment includes the first driving motor M1 for applying driving force to the rear wheel 4 and the second electric power generating motor M2 provided separately from the first motor M1. , an engine E for driving the second motor M2, a PCU 34 for controlling the first motor M1 and the second motor M2, and radiators 61 and 61' for cooling the engine E, 61' includes a radiator body 62 and a radiator fan 63 for blowing air to the radiator body 62. The PCU 34 is arranged above the engine E in the vertical direction of the vehicle, and overlaps the PCU 34 in the vertical direction of the vehicle. The radiator fan 63 is arranged at the height.
According to this configuration, the radiator fan 63 can be driven to reduce the thermal effect of the engine E on the control device 34 while effectively utilizing the space above the engine E as a space for arranging the control device 34 . That is, the cooling performance of the control device 34 can be ensured by driving the radiator fan 63 to blow air into the vicinity of the control device 34 or extracting air from the periphery of the control device 34 .
 また、上記自動二輪車1において、前記ラジエータファン63は、車両前方側から車両後方側へ風を流すものであり、前記ラジエータ61は、前記PCU34の後方に配置されている。
 この構成によれば、車両前方側から車両後方側へ風を流すラジエータファン63を備えるラジエータ61を、PCU34の後方に配置することで、PCU34を効果的に冷却することができる。すなわち、ラジエータ61がPCU34の前方に配置されていると、ラジエータ61で吸熱した風がPCU34に当てられる。これに対し、ラジエータ61がPCU34の後方に配置されていると、ラジエータ61で吸熱する前の風がPCU34に当てられるので、PCU34を効果的に冷却することができる。
In the motorcycle 1 , the radiator fan 63 blows air from the vehicle front side to the vehicle rear side, and the radiator 61 is arranged behind the PCU 34 .
According to this configuration, the PCU 34 can be effectively cooled by arranging the radiator 61 having the radiator fan 63 for blowing air from the vehicle front side to the vehicle rear side behind the PCU 34 . That is, if the radiator 61 is arranged in front of the PCU 34 , the air that has absorbed heat in the radiator 61 is directed to the PCU 34 . On the other hand, if the radiator 61 is arranged behind the PCU 34, the PCU 34 can be cooled effectively because the PCU 34 is exposed to the wind before the radiator 61 absorbs heat.
 また、上記自動二輪車1において、前記ラジエータファン63は、前記エンジンEの後方に配置されている。
 この構成によれば、車両前方側から車両後方側へ風を流すラジエータファン63をエンジンEの後方に配置することで、エンジンEを効果的に冷却することができる。すなわち、ラジエータ61がエンジンEの前方に配置されていると、ラジエータ61で吸熱した風がエンジンEに当てられる。これに対し、ラジエータ61がエンジンEの後方に配置されていると、ラジエータ61で吸熱する前の風がエンジンEに当てられるので、エンジンEを効果的に冷却することができる。
Further, in the motorcycle 1, the radiator fan 63 is arranged behind the engine E. As shown in FIG.
According to this configuration, the engine E can be effectively cooled by arranging the radiator fan 63 behind the engine E for blowing air from the front side of the vehicle to the rear side of the vehicle. That is, if the radiator 61 is arranged in front of the engine E, the air that has absorbed heat in the radiator 61 is directed to the engine E. As shown in FIG. On the other hand, if the radiator 61 is arranged behind the engine E, the wind before the heat is absorbed by the radiator 61 hits the engine E, so the engine E can be cooled effectively.
 また、上記自動二輪車1において、前記第一モータM1に電力を与えるバッテリ37を備え、前記バッテリ37は、前記ラジエータファン63の下流領域R1を避けた位置に配置されている。
 この構成によれば、ラジエータ61の排熱によるバッテリ37への熱影響を抑えることができる。ラジエータファン63の下流領域R1を避けた位置とは、例えばラジエータファン63の下流端よりも前方側の位置の他、ラジエータファン63の下流端よりも後方側であっても、側面視でラジエータファン63と上下方向で重ならない位置か、あるいは平面視でラジエータファン63と左右方向で重ならない位置が挙げられる。
The motorcycle 1 further includes a battery 37 that supplies electric power to the first motor M1, and the battery 37 is arranged at a position away from the downstream area R1 of the radiator fan 63. As shown in FIG.
According to this configuration, it is possible to suppress the thermal influence of the exhaust heat of the radiator 61 on the battery 37 . The position that avoids the downstream region R1 of the radiator fan 63 is, for example, a position on the front side of the downstream end of the radiator fan 63, and even if it is on the rear side of the downstream end of the radiator fan 63, the radiator fan 63 is positioned in a side view. A position that does not overlap the radiator fan 63 in the vertical direction, or a position that does not overlap the radiator fan 63 in the horizontal direction in plan view.
 また、上記自動二輪車1において、前記バッテリ37は、前記ラジエータファン63の下方に配置されている。
 この構成によれば、ラジエータファン63の下方のスペースをバッテリ37の配置スペースとして有効活用することができる。また、重量物であるバッテリ37を低位置として自動二輪車1の低重心化を図ることができる。
Further, in the motorcycle 1 , the battery 37 is arranged below the radiator fan 63 .
According to this configuration, the space below the radiator fan 63 can be effectively used as a space for arranging the battery 37 . Also, the center of gravity of the motorcycle 1 can be lowered by positioning the battery 37, which is a heavy object, at a low position.
 また、上記自動二輪車1において、前記エンジンEおよび前記PCU34の各温度を検出する温度センサ65,66を備え、前記ラジエータファン63は、各温度センサ65,66の少なくとも一方が所定値以上の温度を検出した場合に駆動される。
 この構成によれば、エンジンEおよびPCU34の少なくとも一方の温度に応じてラジエータファン63を駆動させることで、例えばエンジンEの温度が低くても、PCU34の温度が高いときには、PCU34を積極的に冷却できるため、電装部品の熱タフネスを向上させることができる。
The motorcycle 1 further includes temperature sensors 65 and 66 for detecting temperatures of the engine E and the PCU 34, and the radiator fan 63 detects that at least one of the temperature sensors 65 and 66 detects a temperature equal to or higher than a predetermined value. Driven if detected.
According to this configuration, by driving the radiator fan 63 according to the temperature of at least one of the engine E and the PCU 34, even if the temperature of the engine E is low, the PCU 34 is actively cooled when the temperature of the PCU 34 is high. Therefore, the heat toughness of the electrical component can be improved.
 また、上記自動二輪車1において、車体左右中央CLよりも車両左右方向一側に配置されて、前記後輪4に駆動力を伝達する伝動機構56を備え、前記第一モータM1は、車体左右中央CLに対して車両左右方向一側にずれて配置されている。
 この構成によれば、第一モータM1と伝動機構56とが車両左右方向で同じ側に配置されるので、動力伝達をスムーズに行うことができる。車体左右中央CLに対して車両左右方向一側にずれて配置されるとは、第一モータM1全体が車体左右中央CLよりも一側に配置されることの他、第一モータM1の左右中央が車体左右中央CLよりも一側にあることを含む。
Further, in the motorcycle 1, a transmission mechanism 56 is arranged on one side in the left-right direction of the vehicle relative to the left-right center CL of the vehicle body, and is provided with a transmission mechanism 56 for transmitting a driving force to the rear wheels 4. It is displaced to one side in the left-right direction of the vehicle with respect to CL.
According to this configuration, the first motor M1 and the transmission mechanism 56 are arranged on the same side in the left-right direction of the vehicle, so power can be smoothly transmitted. Displacement to one side in the vehicle left-right direction with respect to the left-right center CL of the vehicle body means that the entire first motor M1 is arranged on one side of the left-right center CL of the vehicle body, and that the first motor M1 is located at the left-right center of the first motor M1. is on one side of the left-right center CL of the vehicle body.
<第二実施形態>
 次に、本発明の第二実施形態について図10を参照して説明する。
 第二実施形態の自動二輪車101は、上記第一実施形態に対し、特に第一モータM1の配置が異なる。その他の、上記第一実施形態と同一構成には同一符号を付して詳細説明は省略する。なお、図示都合上、図10(および図8)では配置の異なる二つのラジエータ61,61’を図示している。
<Second embodiment>
Next, a second embodiment of the invention will be described with reference to FIG.
The motorcycle 101 of the second embodiment differs from the first embodiment particularly in the arrangement of the first motor M1. Other components identical to those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. For convenience of illustration, FIG. 10 (and FIG. 8) show two radiators 61 and 61' that are arranged differently.
 第二実施形態の第一モータM1は、エンジンEのクランクケース27の後方に配置されている。第一モータM1は、上下方向でエンジンEのクランクケース27と重なる高さに配置されている。第一モータM1は、側面視でピボットフレーム8と重なる位置に配置されている。第一モータM1は、回転軸151を左右方向に沿わせて配置されている。第一モータM1の回転軸151は、上下方向でクランクシャフト26と重なる高さに配置されている。第一モータM1の回転軸151は、ピボット軸17と同軸に配置されている。 The first motor M1 of the second embodiment is arranged behind the crankcase 27 of the engine E. The first motor M1 is arranged at a height overlapping the crankcase 27 of the engine E in the vertical direction. The first motor M1 is arranged at a position overlapping the pivot frame 8 in a side view. The first motor M1 is arranged with the rotating shaft 151 extending in the left-right direction. The rotating shaft 151 of the first motor M1 is arranged at a height overlapping the crankshaft 26 in the vertical direction. A rotating shaft 151 of the first motor M1 is arranged coaxially with the pivot shaft 17 .
 第二実施形態の第一モータM1は、図8に示す平面視では実施形態と同様の配置である。すなわち、第一モータM1は、車体左右中央CLよりも車両左右方向一側(左側)に配置され、かつバッテリ37よりも車幅方向外側に配置されている。
 さらに、第二実施形態の第一モータM1は、図10に示すように、側面視でバッテリ37と重なる高さまで下方に変位している。したがって、第一モータM1は、バッテリ37の車両左右方向一側(左側)に隣接して配置されている。
The first motor M1 of the second embodiment has the same arrangement as that of the embodiment in plan view shown in FIG. That is, the first motor M1 is arranged on one side (left side) in the vehicle left-right direction of the vehicle body left-right center CL, and is arranged on the outside of the battery 37 in the vehicle width direction.
Furthermore, as shown in FIG. 10, the first motor M1 of the second embodiment is displaced downward to a height overlapping the battery 37 in side view. Therefore, the first motor M1 is arranged adjacent to one side (left side) of the battery 37 in the left-right direction of the vehicle.
 例えば、第一モータM1の左側には、回転軸151と同軸の出力軸55’が配置されている。出力軸55’は、第二実施形態の駆動システムSの出力部であり、動力切替装置31を介して駆動力(トルク)が出力される。出力軸55’は、例えばピボット軸17と同軸に配置されている。これにより、第一モータM1が後方寄りに配置されるので、第一モータM1の前方に位置するエンジンEのシリンダブロック28をより寝かしやすくなる。このため、エンジンEの上方に部品配置スペースを確保しやすくなる。 For example, an output shaft 55' coaxial with the rotating shaft 151 is arranged on the left side of the first motor M1. The output shaft 55 ′ is an output portion of the drive system S of the second embodiment, and outputs drive force (torque) via the power switching device 31 . The output shaft 55' is arranged coaxially with the pivot shaft 17, for example. As a result, the first motor M1 is arranged toward the rear side, so that the cylinder block 28 of the engine E located in front of the first motor M1 can be laid down more easily. For this reason, it becomes easier to secure a component arrangement space above the engine E.
 出力軸55’は、チェーン式の伝動機構56を介して後輪4と連結されている。第一モータM1と伝動機構56とがともに車両左右方向一側(左側)にオフセットして配置されることで、これらの連結が容易である。
 バッテリ37の上方には、物品収納ボックス22が配置されている。第二実施形態では、第一モータM1が下方に移動することで、バッテリ37上方のスペースが広がる。このため、第二実施形態の物品収納ボックス22は、第一実施形態よりも容量が拡大されている。
The output shaft 55 ′ is connected to the rear wheel 4 via a chain-type transmission mechanism 56 . Since both the first motor M1 and the transmission mechanism 56 are offset to one side (left side) in the left-right direction of the vehicle, they can be easily connected.
An article storage box 22 is arranged above the battery 37 . In the second embodiment, the space above the battery 37 is expanded by moving the first motor M1 downward. Therefore, the article storage box 22 of the second embodiment has a larger capacity than that of the first embodiment.
 以上説明した第二実施形態の自動二輪車101においても、PCU34の発熱部に走行風が当たりやすくし、PCU34の冷却性を向上させることができる。 Also in the motorcycle 101 of the second embodiment described above, the heat-generating portion of the PCU 34 can be easily exposed to running wind, and the cooling performance of the PCU 34 can be improved.
 また、上記自動二輪車101において、前記バッテリ37は、車体左右中央CLを左右に跨いで配置され、前記第一モータM1は、前記バッテリ37の側方に配置されている。
 この構成によれば、ラジエータファン63の下方に配置されたバッテリ37の側方に第一モータM1を配置するので、動力伝達をスムーズに行うとともに、電動部品の位置を下げて低重心化を図ることができる。
In the motorcycle 101 , the battery 37 is arranged across the left and right center CL of the vehicle body, and the first motor M<b>1 is arranged on the side of the battery 37 .
According to this configuration, since the first motor M1 is arranged on the side of the battery 37 arranged below the radiator fan 63, smooth power transmission is achieved and the position of the electric parts is lowered to lower the center of gravity. be able to.
 また、上記自動二輪車101において、前記バッテリ37の上方に物品収納ボックス22を備えている。
 この構成によれば、バッテリ37上方のスペースを物品収納スペースとして有効活用することができる。
In addition, the motorcycle 101 is provided with an article storage box 22 above the battery 37 .
With this configuration, the space above the battery 37 can be effectively utilized as an article storage space.
 なお、本発明は上記実施形態に限られるものではなく、例えば、エンジンE冷却用のラジエータ61のファンを利用したが、これに限らない。第一モータM1およびPCU34が水冷式であれば、第一モータM1およびPCU34冷却用のラジエータのファンを利用してもよい。
 鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪(四輪バギー等)の車両も含まれる。鞍乗り型車両には、自動二輪車のように車体をバンクさせた方向に旋回する車両のみならず、車体をバンクさせずに操舵輪の転舵によって旋回する車両も含まれる。
The present invention is not limited to the above embodiment, and for example, the fan of the radiator 61 for cooling the engine E is used, but the present invention is not limited to this. If first motor M1 and PCU 34 are water cooled, a radiator fan for cooling first motor M1 and PCU 34 may be utilized.
Straddle-type vehicles include all vehicles in which the driver straddles the vehicle body, not only motorcycles (including motorized bicycles and scooter-type vehicles), but also three-wheeled vehicles Vehicles with two front wheels and one rear wheel are also included) or vehicles with four wheels (such as a four-wheel buggy) are also included. The straddle-type vehicle includes not only a vehicle such as a motorcycle that turns in a direction in which the vehicle body is banked, but also a vehicle that turns by steering the steered wheels without banking the vehicle body.
 上記実施形態では、ハイブリッド式自動二輪車への適用例を示したが、これに限らず、駆動用モータを備える二輪、三輪および四輪の各種の鞍乗り型車両に適用してもよい。また、内燃機関を有するハイブリッド車両に限らず、駆動用モータのみで走行する電動車両に適用してもよい。
 そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
In the above embodiment, an example of application to a hybrid motorcycle has been shown, but the present invention is not limited to this, and may be applied to various types of saddle-riding vehicles including two-wheel, three-wheel and four-wheel drive motors. Further, the present invention is not limited to a hybrid vehicle having an internal combustion engine, and may be applied to an electric vehicle that runs only with a drive motor.
The configuration in the above embodiment is an example of the present invention, and various modifications, such as replacing the constituent elements of the embodiment with known constituent elements, are possible without departing from the gist of the present invention.
1,101 自動二輪車(鞍乗り型車両)
4 後輪(駆動輪)
5 車体フレーム
19a フロントボディカバー(外装部品)
19a1 開口
21 シート
22 物品収納ボックス
34 PCU(制御装置)
37 バッテリ
56 伝動機構
61,61’ ラジエータ
62 ラジエータ本体
63 ラジエータファン
65,66 温度センサ(温度検出手段)
E エンジン(内燃機関)
M1 第一モータ(駆動モータ)
M2 第二モータ
CL 車体左右中央
R1 下流領域
1,101 motorcycles (saddle type vehicles)
4 rear wheels (drive wheels)
5 Body frame 19a Front body cover (exterior part)
19a1 opening 21 seat 22 article storage box 34 PCU (control unit)
37 battery 56 transmission mechanism 61, 61' radiator 62 radiator body 63 radiator fans 65, 66 temperature sensor (temperature detection means)
E engine (internal combustion engine)
M1 first motor (drive motor)
M2 Second motor CL Vehicle body left/right center R1 Downstream area

Claims (9)

  1.  駆動輪(4)に駆動力を与える駆動モータ(M1)と、
     前記駆動モータ(M1)とは別に設けられる第二モータ(M2)と、
     前記第二モータ(M2)を駆動して発電させる内燃機関(E)と、
     前記駆動モータ(M1)および前記第二モータ(M2)を制御する制御装置(34)と、
     前記内燃機関(E)および前記制御装置(34)の少なくとも一方を冷却するラジエータ(61,61’)と、を備え、
     前記ラジエータ(61,61’)は、ラジエータ本体(62)と、前記ラジエータ本体(62)に風を流すラジエータファン(63)と、を備え、
     車両上下方向で前記内燃機関(E)の上方に、前記制御装置(34)が配置され、
     車両上下方向で前記制御装置(34)と重なる高さに、前記ラジエータファン(63)が配置されている鞍乗り型車両。
    a driving motor (M1) for applying driving force to the driving wheels (4);
    a second motor (M2) provided separately from the drive motor (M1);
    an internal combustion engine (E) that drives the second motor (M2) to generate electricity;
    a controller (34) for controlling the drive motor (M1) and the second motor (M2);
    a radiator (61, 61') for cooling at least one of the internal combustion engine (E) and the control device (34);
    The radiator (61, 61') comprises a radiator body (62) and a radiator fan (63) for blowing air to the radiator body (62),
    The control device (34) is arranged above the internal combustion engine (E) in the vertical direction of the vehicle,
    A straddle-type vehicle in which the radiator fan (63) is arranged at a height overlapping with the control device (34) in the vertical direction of the vehicle.
  2.  前記ラジエータファン(63)は、車両前方側から車両後方側へ風を流すものであり、
     前記ラジエータ(61)は、前記制御装置の後方に配置されている請求項1に記載の鞍乗り型車両。
    The radiator fan (63) blows air from the front side of the vehicle to the rear side of the vehicle,
    The straddle-type vehicle according to claim 1, wherein the radiator (61) is arranged behind the control device.
  3.  前記ラジエータファン(63)は、前記内燃機関(E)の後方に配置されている請求項2記載の鞍乗り型車両。 The straddle-type vehicle according to claim 2, wherein the radiator fan (63) is arranged behind the internal combustion engine (E).
  4.  前記駆動モータ(M1)に電力を与えるバッテリ(37)を備え、
     前記バッテリ(37)は、前記ラジエータファン(63)の下流領域(R1)を避けた位置に配置されている請求項2又は3に記載の鞍乗り型車両。
    a battery (37) for powering said drive motor (M1);
    The straddle-type vehicle according to claim 2 or 3, wherein the battery (37) is arranged at a position avoiding the downstream region (R1) of the radiator fan (63).
  5.  前記バッテリ(37)は、前記ラジエータファン(63)の下方に配置されている請求項4に記載の鞍乗り型車両。 The straddle-type vehicle according to claim 4, wherein the battery (37) is arranged below the radiator fan (63).
  6.  前記内燃機関(E)および前記制御装置(34)の各温度を検出する温度検出手段(65,66)を備え、
     前記ラジエータファン(63)は、各温度検出手段(65,66)の少なくとも一方が所定値以上の温度を検出した場合に駆動される請求項1から5の何れか一項に記載の鞍乗り型車両。
    temperature detection means (65, 66) for detecting temperatures of the internal combustion engine (E) and the control device (34);
    The straddle-type according to any one of claims 1 to 5, wherein the radiator fan (63) is driven when at least one of the temperature detection means (65, 66) detects a temperature equal to or higher than a predetermined value. vehicle.
  7.  車体左右中央(CL)よりも車両左右方向一側に配置されて、前記駆動輪(4)に駆動力を伝達する伝動機構(56)を備え、
     前記駆動モータ(M1)は、車体左右中央(CL)に対して車両左右方向一側にずれて配置されている請求項1から6の何れか一項に記載の鞍乗り型車両。
    A transmission mechanism (56) arranged on one side in the vehicle left-right direction of the vehicle body left-right center (CL) for transmitting driving force to the drive wheels (4),
    The saddle-ride type vehicle according to any one of claims 1 to 6, wherein the drive motor (M1) is displaced to one side in the left-right direction of the vehicle with respect to the left-right center (CL) of the vehicle body.
  8.  前記駆動モータ(M1)に電力を与えるバッテリ(37)を備え、
     前記バッテリ(37)は、車体左右中央(CL)を左右に跨いで配置され、
     前記駆動モータ(M1)は、前記バッテリ(37)の側方に配置されている請求項1から7の何れか一項に記載の鞍乗り型車両。
    a battery (37) for powering said drive motor (M1);
    The battery (37) is arranged across the left and right center (CL) of the vehicle body,
    The straddle-type vehicle according to any one of claims 1 to 7, wherein the drive motor (M1) is arranged on the side of the battery (37).
  9.  前記バッテリ(37)の上方に物品収納ボックス(22)を備えている請求項8に記載の鞍乗り型車両。 The straddle-type vehicle according to claim 8, further comprising an article storage box (22) above the battery (37).
PCT/JP2021/048737 2021-12-28 2021-12-28 Saddled vehicle WO2023127075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048737 WO2023127075A1 (en) 2021-12-28 2021-12-28 Saddled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048737 WO2023127075A1 (en) 2021-12-28 2021-12-28 Saddled vehicle

Publications (1)

Publication Number Publication Date
WO2023127075A1 true WO2023127075A1 (en) 2023-07-06

Family

ID=86998375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048737 WO2023127075A1 (en) 2021-12-28 2021-12-28 Saddled vehicle

Country Status (1)

Country Link
WO (1) WO2023127075A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179022A (en) * 1997-09-13 1999-03-23 Honda Motor Co Ltd Main stand mounting structure for motorcycle
JPH1179043A (en) * 1997-09-13 1999-03-23 Honda Motor Co Ltd Motorcycle
JP2005273473A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Radiator fan control device
JP2006273298A (en) * 2005-03-30 2006-10-12 Yamaha Motor Co Ltd Lighting control device and straddle type vehicle provided with lighting control device
JP2009090696A (en) * 2007-10-03 2009-04-30 Yamaha Motor Co Ltd Vehicle
JP2013047063A (en) * 2011-08-29 2013-03-07 Honda Motor Co Ltd Motorcycle
JP2013067252A (en) * 2011-09-21 2013-04-18 Honda Motor Co Ltd Hybrid motorcycle
JP2013136310A (en) * 2011-12-28 2013-07-11 Honda Motor Co Ltd Vehicle body structure of straddle-type electric vehicle
WO2019049462A1 (en) * 2017-09-11 2019-03-14 本田技研工業株式会社 Electric motorcycle
JP2019048553A (en) * 2017-09-11 2019-03-28 川崎重工業株式会社 Saddle-riding type vehicle
JP2020165343A (en) * 2019-03-28 2020-10-08 本田技研工業株式会社 Engine starting device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179022A (en) * 1997-09-13 1999-03-23 Honda Motor Co Ltd Main stand mounting structure for motorcycle
JPH1179043A (en) * 1997-09-13 1999-03-23 Honda Motor Co Ltd Motorcycle
JP2005273473A (en) * 2004-03-23 2005-10-06 Honda Motor Co Ltd Radiator fan control device
JP2006273298A (en) * 2005-03-30 2006-10-12 Yamaha Motor Co Ltd Lighting control device and straddle type vehicle provided with lighting control device
JP2009090696A (en) * 2007-10-03 2009-04-30 Yamaha Motor Co Ltd Vehicle
JP2013047063A (en) * 2011-08-29 2013-03-07 Honda Motor Co Ltd Motorcycle
JP2013067252A (en) * 2011-09-21 2013-04-18 Honda Motor Co Ltd Hybrid motorcycle
JP2013136310A (en) * 2011-12-28 2013-07-11 Honda Motor Co Ltd Vehicle body structure of straddle-type electric vehicle
WO2019049462A1 (en) * 2017-09-11 2019-03-14 本田技研工業株式会社 Electric motorcycle
JP2019048553A (en) * 2017-09-11 2019-03-28 川崎重工業株式会社 Saddle-riding type vehicle
JP2020165343A (en) * 2019-03-28 2020-10-08 本田技研工業株式会社 Engine starting device

Similar Documents

Publication Publication Date Title
US9545968B2 (en) Saddle-type electric vehicle
US9346421B2 (en) Saddle-type electric vehicle
US8833495B2 (en) Saddle-ride type electric vehicle
US20150122570A1 (en) Saddle-type electric vehicle
US20150122563A1 (en) Battery and saddle-type electric vehicle equipped therewith
JP5225956B2 (en) Electric saddle type vehicle
WO2010109969A1 (en) Electric straddled vehicle
US20120255799A1 (en) Electric vehicle with range extender
JP2012144178A (en) Electric vehicle
JP5761009B2 (en) Hybrid vehicle
US9758215B2 (en) Fuel cell two-wheeled vehicle
JP5525998B2 (en) Saddle riding type electric vehicle
WO2019186952A1 (en) Straddle-type electric vehicle
CN111699100A (en) Vehicle with power unit
WO2019202784A1 (en) Straddle-type electric vehicle
WO2023127075A1 (en) Saddled vehicle
JP5492742B2 (en) Cooling duct routing structure for saddle-ride type electric vehicles
JP2012153327A (en) Saddle-ride type vehicle
WO2023127076A1 (en) Saddled vehicle
WO2023127136A1 (en) Saddle-riding vehicle
WO2023127117A1 (en) Saddled vehicle
WO2023162024A1 (en) Saddled vehicle
JP2012096616A (en) Battery temperature adjustment structure of electric vehicle
WO2023127080A1 (en) Saddle-ride vehicle
WO2023127108A1 (en) Saddled vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969957

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)