WO2023127015A1 - 筋力評価装置、筋力評価システム、筋力評価方法、および記録媒体 - Google Patents
筋力評価装置、筋力評価システム、筋力評価方法、および記録媒体 Download PDFInfo
- Publication number
- WO2023127015A1 WO2023127015A1 PCT/JP2021/048564 JP2021048564W WO2023127015A1 WO 2023127015 A1 WO2023127015 A1 WO 2023127015A1 JP 2021048564 W JP2021048564 W JP 2021048564W WO 2023127015 A1 WO2023127015 A1 WO 2023127015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- muscle strength
- muscle
- data
- evaluation
- estimation model
- Prior art date
Links
- 210000003205 muscle Anatomy 0.000 title claims abstract description 797
- 238000011156 evaluation Methods 0.000 title claims abstract description 336
- 230000005021 gait Effects 0.000 claims abstract description 122
- 230000033001 locomotion Effects 0.000 claims abstract description 74
- 230000001133 acceleration Effects 0.000 claims description 97
- 230000003068 static effect Effects 0.000 claims description 46
- 230000005484 gravity Effects 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 24
- 238000012549 training Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 13
- 230000036314 physical performance Effects 0.000 claims description 5
- 238000011056 performance test Methods 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 claims description 3
- 230000003387 muscular Effects 0.000 claims 1
- 210000002683 foot Anatomy 0.000 description 84
- 210000002414 leg Anatomy 0.000 description 62
- 238000010586 diagram Methods 0.000 description 44
- 210000003314 quadriceps muscle Anatomy 0.000 description 35
- 230000037230 mobility Effects 0.000 description 34
- 238000010606 normalization Methods 0.000 description 31
- 238000012360 testing method Methods 0.000 description 30
- 230000000875 corresponding effect Effects 0.000 description 25
- 239000000284 extract Substances 0.000 description 23
- 238000004891 communication Methods 0.000 description 18
- 210000003371 toe Anatomy 0.000 description 14
- 230000010365 information processing Effects 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 210000003141 lower extremity Anatomy 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- 210000003128 head Anatomy 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 6
- 210000002027 skeletal muscle Anatomy 0.000 description 5
- 208000010428 Muscle Weakness Diseases 0.000 description 4
- 206010028372 Muscular weakness Diseases 0.000 description 4
- 230000001447 compensatory effect Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 101100332287 Dictyostelium discoideum dst2 gene Proteins 0.000 description 3
- 206010061159 Foot deformity Diseases 0.000 description 3
- 208000001963 Hallux Valgus Diseases 0.000 description 3
- 101100264226 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) XRN1 gene Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 101150090341 dst1 gene Proteins 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000002303 tibia Anatomy 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000003183 myoelectrical effect Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 210000000109 fascia lata Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000004220 muscle function Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/22—Ergometry; Measuring muscular strength or the force of a muscular blow
Definitions
- the present disclosure relates to a muscle strength evaluation device or the like that evaluates muscle strength using sensor data related to leg movements.
- gait characteristics included in walking patterns.
- characteristics also called gait
- techniques for analyzing gaits based on sensor data measured by sensors mounted on footwear such as shoes have been developed.
- Characteristics of gait events (also called gait events) associated with physical conditions appear in time-series data of sensor data.
- Patent Document 1 discloses a device that detects foot abnormalities based on the walking characteristics of a pedestrian.
- the device of Patent Literature 1 uses data acquired from sensors installed on the footwear to extract characteristic walking feature amounts in the walking of a pedestrian wearing footwear.
- the device of Patent Literature 1 detects an abnormality of a pedestrian walking while wearing footwear, based on the extracted walking feature amount. For example, the device of Patent Literature 1 extracts characteristic regions related to hallux valgus from walking waveform data for one step cycle.
- the device of Patent Literature 1 estimates the state of progression of hallux valgus using the gait feature amount of the extracted feature site.
- a fall can cause various injuries to the elderly. Decreased physical abilities, such as muscle weakness, can be a factor in fall risk. There are individual differences in the causes of muscle weakness. Therefore, individualized measures against muscle weakness are required. If the muscles involved in walking can be evaluated according to the gait, it will be possible to recommend training that reduces the risk of falling according to the individual.
- Patent Document 2 discloses a training support system in which an expert provides individual guidance to users who are training at home.
- the system of Patent Literature 2 associates and stores a user's physical ability test result, user identification information, and time information related to the execution of the test.
- the system of U.S. Pat. No. 6,200,004 evaluates the variation between multiple test results with respect to time information associated with multiple test runs.
- the system of U.S. Patent No. 6,200,000 provides notifications to update training information based on variations between test results.
- Patent Document 1 the progress of hallux valgus is estimated using the gait feature amount of the characteristic part extracted from the data acquired from the sensor installed in the footwear.
- Patent Literature 1 does not disclose estimating the tendency to fall using the walking feature amount of the characteristic region extracted from the data acquired from the sensor installed on the footwear.
- Patent Document 2 it is possible to prescribe training according to the user's decline in physical ability.
- the technique of Patent Literature 2 cannot identify the muscles that are the cause of the decline in physical ability. Therefore, in the method of Patent Document 2, it was not possible to prescribe an appropriate training for strengthening the muscles, which is a factor in the deterioration of physical ability.
- the purpose of the present disclosure is to provide a muscle strength evaluation device or the like that can evaluate muscle strength related to fall risk according to the gait in daily life.
- a muscle strength evaluation device is data for acquiring feature amount data including a feature amount used for estimating muscle strength of an evaluation target muscle related to fall risk, which is extracted from sensor data relating to leg movements of a user.
- an acquisition unit a storage unit that stores an estimation model that outputs a muscle strength index of an evaluation target muscle according to the input of feature amount data, a storage unit that inputs the acquired feature amount data to the estimation model, and outputs from the estimation model
- An evaluation unit that evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength index, and an output unit that outputs information regarding the evaluation result regarding the muscle strength of the evaluation target muscle of the user.
- feature amount data including a feature amount used for estimating muscle strength of an evaluation target muscle related to fall risk, which is extracted from sensor data related to leg movements of a user, is acquired.
- the acquired feature amount data is input to an estimation model that outputs a muscle strength index of the muscle to be evaluated according to the input of the feature amount data, and according to the muscle strength index output from the estimation model, the strength of the user's muscle to be evaluated The muscle strength is evaluated, and information regarding the evaluation result regarding the muscle strength of the evaluation target muscle of the user is output.
- a program includes a process of acquiring feature amount data including a feature amount used for estimating muscle strength of an evaluation target muscle associated with a risk of falling, which is extracted from sensor data relating to leg movements of a user; A process of inputting the acquired feature amount data into an estimation model that outputs a muscle strength index of the evaluation target muscle according to the input of the feature amount data, and a process of inputting the evaluation target muscle of the user according to the muscle strength index output from the estimation model and a process of outputting information on the evaluation result regarding the muscle strength of the user's muscle to be evaluated.
- an object of the present disclosure is to provide a muscle strength evaluation device or the like that can evaluate muscle strength related to fall risk according to the gait in daily life.
- FIG. 1 is a conceptual diagram showing an arrangement example of a gait measuring device according to a first embodiment
- FIG. 2 is a conceptual diagram for explaining an example of the relationship between a local coordinate system and a world coordinate system set in the gait measuring device according to the first embodiment
- FIG. 2 is a conceptual diagram for explaining a human body surface used in explaining the gait measuring device according to the first embodiment
- FIG. 2 is a conceptual diagram for explaining a walking cycle used in explaining the gait measuring device according to the first embodiment
- FIG. 2 is a conceptual diagram for explaining gait parameters used in the explanation of the gait measuring device according to the first embodiment
- 5 is a graph for explaining an example of time-series data of sensor data measured by the gait measuring device according to the first embodiment
- FIG. 4 is a diagram for explaining an example of normalization of walking waveform data extracted from time-series data of sensor data measured by the gait measuring device according to the first embodiment
- FIG. 4 is a conceptual diagram for explaining an example of a walking phase cluster from which feature amounts are extracted by the feature amount data generation device of the gait measuring device according to the first embodiment
- It is a block diagram showing an example of the configuration of a muscle strength evaluation device provided in the muscle strength evaluation system according to the first embodiment.
- FIG. 2 is a conceptual diagram for explaining items related to an evaluation target muscle of the muscle strength evaluation system according to the first embodiment; 4 is a table summarizing feature amounts relating to total muscle strength (grip strength) of the whole body related to muscles to be evaluated in the muscle strength evaluation system according to the first embodiment; 4 is a table summarizing feature values relating to dynamic balance related to muscles to be evaluated in the muscle strength evaluation system according to the first embodiment; 4 is a table summarizing feature amounts relating to leg muscle strength related to muscles to be evaluated in the muscle strength evaluation system according to the first embodiment; 4 is a table summarizing feature values relating to movement ability related to muscles to be evaluated in the muscle strength evaluation system according to the first embodiment; 4 is a table summarizing feature values relating to static balance related to muscles to be evaluated in the muscle strength evaluation system according to the first embodiment; FIG.
- FIG. 2 is a conceptual diagram for explaining an example of an evaluation target muscle by a muscle strength evaluation device included in the muscle strength evaluation system according to the first embodiment
- FIG. 2 is a conceptual diagram showing an example of estimating a muscle strength score (muscle strength index) by a muscle strength evaluation device included in the muscle strength evaluation system according to the first embodiment
- 4 is a flowchart for explaining an example of the operation of the gait measuring device included in the muscle strength evaluation system according to the first embodiment
- 4 is a flowchart for explaining an example of the operation of the muscle strength evaluation device included in the muscle strength evaluation system according to the first embodiment
- 1 is a conceptual diagram for explaining an application example of a muscle strength evaluation system according to a first embodiment
- FIG. 1 is a conceptual diagram for explaining an application example of a muscle strength evaluation system according to a first embodiment
- FIG. 1 is a conceptual diagram for explaining an application example of a muscle strength evaluation system according to a first embodiment
- FIG. 11 is a block diagram showing an example of the configuration of a learning system according to a second embodiment
- FIG. 11 is a block diagram showing an example of the configuration of a learning device included in a learning system according to a second embodiment
- FIG. FIG. 11 is a conceptual diagram for explaining an example of learning by a learning device included in a learning system according to a second embodiment
- 11 is a conceptual diagram for explaining an example of learning by a learning device included in a learning system according to a second embodiment; It is a block diagram which shows an example of a structure of the muscle strength evaluation apparatus which concerns on 3rd Embodiment. It is a block diagram showing an example of hardware constitutions which perform control and processing of each embodiment.
- the muscle strength evaluation system of this embodiment measures sensor data relating to the movement of the user's legs as they walk.
- the muscle strength evaluation system of this embodiment uses the measured sensor data to estimate the user's muscle strength.
- an example of estimating muscle strength according to the relationship between features included in a walking pattern (also called gait) and muscles related to fall risk (also called muscles to be evaluated) will be given.
- the muscle strength of the evaluated muscle can be evaluated based on the variability of the gait parameter.
- muscle strength is estimated based on five related items (also referred to as five items) related to gait. Five items relate to total body muscle strength (grip strength), dynamic balance, leg muscle strength, locomotion, and static balance. These five items have correlations with muscle strength.
- the five items are related to each other to some extent, but can be considered essentially independent.
- an example of estimating muscle strength mainly based on all five items will be given.
- Muscle strength can be estimated based on at least one of five items. Five-item-related muscle weakness is a factor that increases the risk of falls.
- FIG. 1 is a block diagram showing an example of the configuration of a muscle strength evaluation system 1 according to this embodiment.
- a muscle strength evaluation system 1 includes a gait measuring device 10 and a muscle strength evaluation device 13 .
- the gait measuring device 10 and the muscle strength evaluating device 13 are configured as separate hardware will be described.
- the gait measuring device 10 is installed on footwear or the like of a subject (user) whose muscle strength is to be estimated.
- the function of the muscle strength evaluation device 13 is installed in a mobile terminal carried by a subject (user).
- the configurations of the gait measuring device 10 and the muscle strength evaluating device 13 will be individually described below.
- FIG. 2 is a block diagram showing an example of the configuration of the gait measuring device 10. As shown in FIG. The gait measuring device 10 has a sensor 11 and a feature quantity data generator 12 . In this embodiment, an example in which the sensor 11 and the feature amount data generation unit 12 are integrated will be given. The sensor 11 and feature amount data generator 12 may be provided as separate devices.
- the sensor 11 has an acceleration sensor 111 and an angular velocity sensor 112.
- FIG. 2 shows an example in which the sensor 11 includes an acceleration sensor 111 and an angular velocity sensor 112 .
- Sensors 11 may include sensors other than acceleration sensor 111 and angular velocity sensor 112 . Description of sensors other than the acceleration sensor 111 and the angular velocity sensor 112 that may be included in the sensor 11 is omitted.
- the acceleration sensor 111 is a sensor that measures acceleration in three axial directions (also called spatial acceleration).
- the acceleration sensor 111 measures acceleration (also referred to as spatial acceleration) as a physical quantity related to foot movement.
- the acceleration sensor 111 outputs the measured acceleration to the feature quantity data generator 12 .
- the acceleration sensor 111 can be a sensor of a piezoelectric type, a piezoresistive type, a capacitive type, or the like. As long as the sensor used as the acceleration sensor 111 can measure acceleration, the measurement method is not limited.
- the angular velocity sensor 112 is a sensor that measures angular velocities around three axes (also called spatial angular velocities).
- the angular velocity sensor 112 measures angular velocity (also referred to as spatial angular velocity) as a physical quantity relating to foot movement.
- the angular velocity sensor 112 outputs the measured angular velocity to the feature quantity data generator 12 .
- the angular velocity sensor 112 can be a vibration type sensor or a capacitance type sensor. As long as the sensor used as the angular velocity sensor 112 can measure the angular velocity, the measurement method is not limited.
- the sensor 11 is realized, for example, by an inertial measurement device that measures acceleration and angular velocity.
- An example of an inertial measurement device is an IMU (Inertial Measurement Unit).
- the IMU includes an acceleration sensor 111 that measures acceleration along three axes and an angular velocity sensor 112 that measures angular velocity around three axes.
- the sensor 11 may be implemented by an inertial measurement device such as VG (Vertical Gyro) or AHRS (Attitude Heading).
- the sensor 11 may be realized by GPS/INS (Global Positioning System/Inertial Navigation System).
- the sensor 11 may be implemented by a device other than an inertial measurement device as long as it can measure physical quantities related to foot movement.
- FIG. 3 is a conceptual diagram showing an example in which the gait measuring device 10 is arranged inside the shoe 100 of the right foot.
- the gait measuring device 10 is installed at a position corresponding to the back side of the foot arch.
- the gait measuring device 10 is arranged on an insole that is inserted into the shoe 100 .
- the gait measuring device 10 may be arranged on the bottom surface of the shoe 100 .
- the gait measuring device 10 may be embedded in the body of the shoe 100 .
- the gait measuring device 10 may be detachable from the shoe 100 or may not be detachable from the shoe 100 .
- the gait measuring device 10 may be installed at a position other than the back side of the arch as long as it can measure sensor data relating to the movement of the foot. Also, the gait measuring device 10 may be installed on a sock worn by the user or an accessory such as an anklet worn by the user. Also, the gait measuring device 10 may be attached directly to the foot or embedded in the foot. FIG. 3 shows an example in which the gait measuring device 10 is installed on the shoe 100 of the right foot. The gait measuring device 10 may be installed on the shoes 100 of both feet.
- a local coordinate system is set with the gait measuring device 10 (sensor 11) as a reference, including the x-axis in the horizontal direction, the y-axis in the front-back direction, and the z-axis in the vertical direction.
- the x-axis is positive to the left
- the y-axis is positive to the rear
- the z-axis is positive to the top.
- the directions of the axes set in the sensors 11 may be the same for the left and right feet, or may be different for the left and right feet.
- the vertical directions (directions in the Z-axis direction) of the sensors 11 placed in the left and right shoes 100 are the same. .
- the three axes of the local coordinate system set in the sensor data derived from the left leg and the three axes of the local coordinate system set in the sensor data derived from the right leg are the same on the left and right.
- FIG. 4 shows a local coordinate system (x-axis, y-axis, z-axis) set in the gait measuring device 10 (sensor 11) installed on the back side of the foot and a world coordinate system set with respect to the ground.
- FIG. 2 is a conceptual diagram for explaining (X-axis, Y-axis, Z-axis);
- the world coordinate system X-axis, Y-axis, Z-axis
- the user's lateral direction is the X-axis direction (leftward is positive)
- the user's back direction is The Y-axis direction (backward is positive) and the direction of gravity is set to the Z-axis direction (vertically upward is positive).
- FIG. 5 is a conceptual diagram for explaining the plane set for the human body (also called the human body plane).
- a sagittal plane that divides the body left and right a coronal plane that divides the body front and back, and a horizontal plane that divides the body horizontally are defined.
- the world coordinate system and the local coordinate system coincide with each other when the user stands upright with the center line of the foot facing the direction of travel.
- rotation in the sagittal plane with the x-axis as the rotation axis is roll
- rotation in the coronal plane with the y-axis as the rotation axis is pitch
- rotation in the horizontal plane with the z-axis as the rotation axis is yaw.
- the rotation angle in the sagittal plane with the x-axis as the rotation axis is the roll angle
- the rotation angle in the coronal plane with the y-axis as the rotation axis is the pitch angle
- the rotation angle in the horizontal plane with the z-axis as the rotation axis is defined as the yaw angle.
- the feature amount data generation unit 12 (also called a feature amount data generation device) has an acquisition unit 121, a normalization unit 122, an extraction unit 123, a generation unit 125, and a feature amount data output unit 127.
- the feature amount data generator 12 is implemented by a microcomputer or microcontroller that performs overall control and data processing of the gait measuring device 10 .
- the feature data generator 12 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), flash memory, and the like.
- the feature amount data generator 12 controls the acceleration sensor 111 and the angular velocity sensor 112 to measure angular velocity and acceleration.
- the feature amount data generator 12 may be mounted on a mobile terminal (not shown) carried by a subject (user).
- the acquisition unit 121 acquires acceleration in three axial directions from the acceleration sensor 111 . Also, the obtaining unit 121 obtains angular velocities about three axes from the angular velocity sensor 112 . For example, the acquisition unit 121 performs AD conversion (Analog-to-Digital Conversion) on physical quantities (analog data) such as the acquired angular velocity and acceleration. Physical quantities (analog data) measured by acceleration sensor 111 and angular velocity sensor 112 may be converted into digital data by acceleration sensor 111 and angular velocity sensor 112, respectively. The acquisition unit 121 outputs converted digital data (also referred to as sensor data) to the normalization unit 122 . Acquisition unit 121 may be configured to store sensor data in a storage unit (not shown).
- the sensor data includes at least acceleration data converted into digital data and angular velocity data converted into digital data.
- the acceleration data includes acceleration vectors in three axial directions.
- the angular velocity data includes angular velocity vectors around three axes. Acceleration data and angular velocity data are associated with acquisition times of those data. Further, the acquisition unit 121 may apply corrections such as mounting error correction, temperature correction, and linearity correction to the acceleration data and the angular velocity data.
- the normalization unit 122 acquires sensor data from the acquisition unit 121.
- the normalization unit 122 extracts time-series data (also referred to as walking waveform data) for one step cycle from the time-series data of the acceleration in the three-axis direction and the angular velocity around the three axes included in the sensor data.
- the normalization unit 122 normalizes (also referred to as first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percentage). Timings such as 1% and 10% included in the 0-100% walking cycle are also called walking phases.
- the normalization unit 122 normalizes the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40% (also referred to as second normalization). do.
- the stance phase is the period during which at least part of the sole of the foot is in contact with the ground.
- the swing phase is the period during which the sole of the foot is off the ground.
- FIG. 6 is a conceptual diagram for explaining the step cycle based on the right foot.
- the step cycle based on the left foot is also the same as the right foot.
- the horizontal axis of FIG. 6 represents one gait cycle of the right foot starting when the heel of the right foot lands on the ground and ending when the heel of the right foot lands on the ground.
- the horizontal axis in FIG. 6 is first normalized with the stride cycle as 100%.
- the horizontal axis in FIG. 6 is second normalized so that the stance phase is 60% and the swing phase is 40%.
- One walking cycle of one leg is roughly divided into a stance phase in which at least part of the sole of the foot is in contact with the ground, and a swing phase in which the sole of the foot is separated from the ground.
- the stance phase is further subdivided into a load response period T1, a middle stance period T2, a final stance period T3, and an early swing period T4.
- the swing phase is further subdivided into early swing phase T5, middle swing phase T6, and final swing phase T7.
- FIG. 6 is an example, and does not limit the periods constituting the one-step cycle, the names of those periods, and the like.
- P1 represents an event (heel contact) in which the heel of the right foot touches the ground (HC: Heel Contact).
- P2 represents an event (opposite toe off) in which the toe of the left foot leaves the ground while the sole of the right foot is in contact with the ground (OTO: Opposite Toe Off).
- P3 represents an event (heel rise) in which the heel of the right foot is lifted while the sole of the right foot is in contact with the ground (HR: Heel Rise).
- P4 is an event in which the heel of the left foot touches the ground (opposite heel strike) (OHS: Opposite Heel Strike).
- P5 represents an event (toe off) in which the toe of the right foot leaves the ground while the sole of the left foot is in contact with the ground (TO: Toe Off).
- P6 represents an event (foot crossing) in which the left foot and the right foot cross each other with the sole of the left foot in contact with the ground (FA: Foot Adjacent).
- P7 represents an event (tibia vertical) in which the tibia of the right foot becomes almost vertical to the ground while the sole of the left foot is in contact with the ground (TV: Tibia Vertical).
- P8 represents an event (heel contact) in which the heel of the right foot touches the ground (HC: Heel Contact).
- P8 corresponds to the end point of the walking cycle starting from P1 and the starting point of the next walking cycle. Note that FIG. 6 is an example, and does not limit the events that occur during walking and the names of those events.
- FIG. 7 is a conceptual diagram for explaining an example of gait parameters.
- FIG. 7 shows the right foot step length S R , left foot step length S L , stride length T, step distance W, foot angle F, and diversion amount DI.
- FIG. 7 also shows a traveling axis PA which is parallel to the traveling direction axis (Y-axis) and corresponds to a trajectory connecting the middle of the left and right feet.
- the right foot step length S R is the difference in the Y coordinates between the heel of the right foot and the heel of the left foot when the state where the sole of the left foot is grounded to the state where the heel of the right foot is swung in the direction of travel is on the ground. is.
- the left foot step length S L is the difference in Y coordinates between the heel of the left foot and the heel of the right foot when transitioning from a state in which the sole of the right foot is in contact with the ground to a state in which the heel of the left foot is swung in the direction of travel and has landed.
- the stride length T is the sum of the right foot step length S R and the left foot step length S L .
- the step distance W is the distance between the right foot and the left foot. In FIG. 7, the step distance W is the difference between the center line (X coordinate) of the heel of the right foot in contact with the ground and the center line (X coordinate) of the heel of the left foot in contact with the ground.
- the foot angle F is the angle between the center line of the foot and the traveling direction (Y-axis) when the sole of the foot is in contact with the ground.
- the diversion amount DI is the distance between the travel axis PA and the foot at the timing when the central axis of the foot is the farthest from the travel axis PA in the swing phase.
- the diversion amount DI is normalized by height because the length of the lower limbs affects the diversion amount DI.
- FIG. 8 is a diagram for explaining an example of detecting heel contact HC and toe off TO from time-series data (solid line) of traveling direction acceleration (Y-direction acceleration).
- the timing of heel contact HC is the timing of the minimum peak immediately after the maximum peak appearing in the time-series data of traveling direction acceleration (Y-direction acceleration).
- the maximum peak that marks the timing of heel contact HC corresponds to the maximum peak of the walking waveform data for one step cycle.
- the interval between successive heel strikes HC is the stride period.
- the timing of the toe-off TO is the timing of the rise of the maximum peak that appears after the period of the stance phase in which no change appears in the time-series data of the acceleration in the traveling direction (the Y-direction acceleration).
- time-series data (dashed line) of the roll angle (angular velocity around the X-axis).
- the midpoint timing between the timing when the roll angle is minimum and the timing when the roll angle is maximum corresponds to the middle stage of stance.
- parameters also called gait parameters
- walking speed stride length
- circumcision internal rotation/external rotation
- plantarflexion/dorsiflexion etc.
- FIG. 9 is a diagram for explaining an example of walking waveform data normalized by the normalization unit 122.
- the normalization unit 122 detects heel contact HC and toe off TO from the time-series data of traveling direction acceleration (Y-direction acceleration).
- the normalization unit 122 extracts the interval between consecutive heel strikes HC as walking waveform data for one step cycle.
- the normalization unit 122 converts the horizontal axis (time axis) of the walking waveform data for one step cycle into a walking cycle of 0 to 100% by the first normalization.
- the walking waveform data after the first normalization is indicated by a dashed line.
- the timing of the toe take-off TO deviates from 60%.
- the normalization unit 122 normalizes the section from the heel contact HC at 0% in the walking phase to the toe-off TO following the heel contact HC to 0-60%. Further, the normalization unit 122 normalizes the section from the toe-off TO to the heel-contact HC in which the walking phase subsequent to the toe-off TO is 100% to 60 to 100%.
- the gait waveform data for one step cycle is normalized into a section of 0 to 60% of the gait cycle (stance phase) and a section of 60 to 100% of the gait cycle (swing phase).
- the walking waveform data after the second normalization is indicated by a solid line. In the second normalized walking waveform data (solid line), the timing of the toe take-off TO coincides with 60%.
- FIGS. 8 and 9 show an example of extracting/normalizing walking waveform data for one step cycle based on the acceleration in the direction of travel (acceleration in the Y direction).
- the normalization unit 122 extracts/normalizes the walking waveform data for one step cycle in accordance with the walking cycle of the acceleration in the direction of travel (the acceleration in the Y direction).
- the normalization unit 122 may generate time-series data of angles about three axes by integrating time-series data of angular velocities about three axes.
- the normalization unit 122 also extracts/normalizes the walking waveform data for one step cycle in accordance with the walking cycle of the acceleration in the direction of travel (acceleration in the Y direction) for angles around the three axes.
- the normalization unit 122 may extract/normalize walking waveform data for one step cycle based on acceleration/angular velocity other than acceleration in the direction of travel (acceleration in the Y direction) (not shown). For example, the normalization unit 122 may detect heel contact HC and toe off TO from time series data of vertical direction acceleration (Z direction acceleration).
- the timing of the heel contact HC is the timing of a sharp minimum peak appearing in the time-series data of vertical acceleration (Z-direction acceleration). At the timing of the sharp minimum peak, the value of the vertical acceleration (Z-direction acceleration) becomes almost zero.
- the minimum peak that marks the timing of heel contact HC corresponds to the minimum peak of walking waveform data for one step cycle.
- the interval between successive heel strikes HC is the stride period.
- the timing of the toe-off TO is the inflection point during which the time-series data of the vertical acceleration (Z-direction acceleration) gradually increases after the maximum peak immediately after the heel contact HC, and then passes through a section with small fluctuations. It's timing.
- the normalization unit 122 may extract/normalize the walking waveform data for one step cycle based on both the traveling direction acceleration (Y-direction acceleration) and the vertical direction acceleration (Z-direction acceleration).
- the normalization unit 122 extracts/normalizes the walking waveform data for one step cycle based on acceleration, angular velocity, angle, etc. other than the traveling direction acceleration (Y direction acceleration) and vertical direction acceleration (Z direction acceleration). may
- the extraction unit 123 acquires walking waveform data for one step cycle normalized by the normalization unit 122 .
- the extraction unit 123 extracts a feature amount used for estimating muscle strength from the walking waveform data for one step cycle.
- the extraction unit 123 extracts a feature amount for each walking phase cluster from walking phase clusters obtained by integrating temporally continuous walking phases based on preset conditions.
- a walking phase cluster includes at least one walking phase.
- a gait phase cluster also includes a single gait phase. The walking waveform data and the walking phase from which the feature amount used for muscle strength estimation is extracted will be described later.
- FIG. 10 is a conceptual diagram for explaining extraction of feature values for estimating muscle strength from walking waveform data for one step cycle.
- the extraction unit 123 extracts temporally continuous walking phases i to i+m as a walking phase cluster CL (i and m are natural numbers).
- the walking phase cluster CL includes m walking phases (components). That is, the number of walking phases (constituent elements) constituting the walking phase cluster CL (also referred to as the number of constituent elements) is m.
- FIG. 10 shows an example in which the walking phase is an integer value, the walking phase may be subdivided to the decimal point.
- the number of constituent elements of the walking phase cluster CL is a number corresponding to the number of data points in the section of the walking phase cluster.
- the extraction unit 123 extracts feature amounts from each of the walking phases i to i+m.
- the extracting unit 123 extracts feature quantities from the single walking phase j (j is a natural number).
- the generation unit 125 applies the feature quantity constitutive formula to the feature quantity (first feature quantity) extracted from each of the walking phases that make up the walking phase cluster, and generates the feature quantity (second feature quantity) of the walking phase cluster.
- the feature quantity constitutive formula is a calculation formula set in advance to generate the feature quantity of the walking phase cluster.
- the feature quantity configuration formula is a calculation formula regarding the four arithmetic operations.
- the second feature amount calculated using the feature amount construction formula is the integral average value, arithmetic average value, inclination, variation, etc. of the first feature amount in each walking phase included in the walking phase cluster.
- the generation unit 125 applies a calculation formula for calculating the slope and variation of the first feature amount extracted from each of the walking phases forming the walking phase cluster as the feature amount configuration formula. For example, if the walking phase cluster is composed of a single walking phase, the inclination and the variation cannot be calculated, so a feature value constitutive formula that calculates an integral average value or an arithmetic average value may be used.
- the feature amount data output unit 127 outputs feature amount data for each walking phase cluster generated by the generation unit 125 .
- the feature amount data output unit 127 outputs the feature amount data of the generated walking phase cluster to the muscle strength evaluation device 13 that uses the feature amount data.
- FIG. 11 is a block diagram showing an example of the configuration of the muscle strength evaluation device 13. As shown in FIG. The muscle strength evaluation device 13 has a data acquisition unit 131 , a storage unit 132 , a physical ability estimation unit 133 , a muscle strength evaluation unit 134 and an output unit 135 . Physical ability estimation unit 133 and muscle strength evaluation unit 134 constitute evaluation unit 130 .
- the data acquisition unit 131 acquires feature amount data from the gait measurement device 10 .
- Data acquisition section 131 outputs the received feature amount data to physical ability estimation section 133 .
- the data acquisition unit 131 may receive the feature amount data from the gait measurement device 10 via a cable such as a cable, or may receive the feature amount data from the gait measurement device 10 via wireless communication. .
- the data acquisition unit 131 receives feature data from the gait measuring device 10 via a wireless communication function (not shown) conforming to standards such as Bluetooth (registered trademark) and WiFi (registered trademark). Configured.
- the communication function of the data acquisition unit 131 may conform to standards other than Bluetooth (registered trademark) and WiFi (registered trademark).
- the storage unit 132 stores an estimation model for estimating the muscle strength of the evaluation target muscle using the feature amount data extracted from the walking waveform data.
- the storage unit 132 stores an estimation model for estimating the muscle strength of the evaluation target muscle that has been learned for a plurality of subjects.
- the storage unit 132 stores an estimation model that outputs a muscle strength index (also referred to as a muscle strength score) of an evaluation target muscle in response to input of feature amount data extracted from walking waveform data.
- FIG. 12 is a conceptual diagram for explaining five related items (also referred to as five items) related to the muscle strength of the muscles to be evaluated.
- Five items of total muscle strength (grip strength), dynamic balance, leg muscle strength, locomotion ability, and static balance are related to the muscle strength of the muscles to be evaluated. Details of the five items of overall muscle strength (grip strength), dynamic balance, leg muscle strength, locomotion ability, and static balance, which are related to the muscle strength of the muscles to be evaluated, will be described later.
- the storage unit 132 stores an estimation model that outputs a muscle strength index (muscle strength score) of the muscles in response to the input of feature amount data common to the estimation of muscle strength of the evaluation target muscles.
- the storage unit 132 stores an estimation model (also referred to as a physical ability estimation model) that outputs scores for each of the five items in response to input of feature amount data used for estimating scores for each of the five items. do.
- the storage unit 132 stores an estimation model (also referred to as a muscle strength estimation model) that outputs a muscle strength index (muscle strength score) of an evaluation target muscle in response to an input score of five items.
- the estimation model may be stored in the storage unit 132 at the time of shipment of the product from the factory, or at the time of calibration before the user uses the muscle strength evaluation system 1, or the like.
- an estimation model stored in a storage device such as an external server may be used.
- the estimated model may be used via an interface (not shown) connected to the storage device.
- the physical ability estimation unit 133 acquires feature amount data from the data acquisition unit 131 .
- the physical ability estimation unit 133 estimates the physical ability of the user using the acquired feature amount data.
- the physical ability estimation unit 133 inputs feature amount data to the physical ability estimation model stored in the storage unit 132 .
- the physical ability estimation unit 133 estimates the user's physical ability using a physical ability index (score) corresponding to the physical ability output from the physical ability estimation model. For example, the physical ability estimating unit 133 estimates the user's physical ability using the score of each of the five items in response to the input of feature amount data used to estimate the score of each of the five items.
- Score physical ability index
- the physical ability estimation unit 133 outputs the estimation result using the physical ability index (score) output from the physical ability estimation model to the muscle strength evaluation unit 134 .
- the physical ability estimation unit 133 outputs the physical ability index (score) output from the physical ability estimation model according to the input of the feature amount data to the muscle strength evaluation unit 134 .
- the muscle strength evaluation unit 134 acquires from the physical ability estimation unit 133 an estimation result of the physical ability estimated by the physical ability estimation unit 133 using the feature amount data.
- the muscle strength evaluation unit 134 estimates the muscle strength of the evaluation target muscle using the obtained estimation result. For example, the muscle strength evaluation unit 134 acquires a physical ability index (score) output from the physical ability estimation model according to the input of the feature amount data.
- the muscle strength evaluation unit 134 inputs the physical ability index (score) to the muscle strength estimation model stored in the storage unit 132 .
- the muscle strength evaluation unit 134 evaluates the muscle strength of the evaluation target muscle of the user using the muscle strength index (score) of the evaluation target muscle output from the muscle strength estimation model. For example, the muscle strength evaluation unit 134 outputs the muscle strength index (score) of the evaluation target muscle output from the muscle strength estimation model to the output unit 135 in response to the score input for each of the five items.
- the physical ability estimation unit 133 and muscle strength evaluation unit 134 may use an estimation model stored in an external storage device built in the cloud, server, or the like. In that case, the physical ability estimation unit 133 and the muscle strength evaluation unit 134 are configured to use the physical ability estimation model via an interface (not shown) connected to the storage device.
- the output unit 135 outputs the muscle strength evaluation result of the evaluation target muscle by the muscle strength evaluation unit 134 .
- the output unit 135 causes the screen of the subject's (user's) portable terminal to display the evaluation result regarding the muscle strength of the evaluation target muscle.
- the output unit 135 outputs the evaluation result to an external system or the like that uses the evaluation result.
- the use of the evaluation results output from the muscle strength evaluation device 13 is not particularly limited.
- the muscle strength evaluation device 13 is connected to an external system built on a cloud or server via a mobile terminal (not shown) carried by the subject (user).
- a mobile terminal (not shown) is a portable communication device.
- the mobile terminal is a mobile communication device having a communication function such as a smart phone, a smart watch, or a mobile phone.
- the muscle strength evaluation device 13 is connected to the mobile terminal via a wire such as a cable.
- the muscle strength evaluation device 13 is connected to a mobile terminal via wireless communication.
- the muscle strength evaluation device 13 is connected to a mobile terminal via a wireless communication function (not shown) conforming to standards such as Bluetooth (registered trademark) and WiFi (registered trademark).
- the communication function of the muscle strength evaluation device 13 may conform to standards other than Bluetooth (registered trademark) and WiFi (registered trademark).
- the muscle strength evaluation result of the muscle to be evaluated may be used by an application installed in the mobile terminal. In that case, the mobile terminal executes processing using the evaluation result by application software or the like installed in the mobile terminal.
- each of the five items of overall muscle strength (grip strength), dynamic balance, leg muscle strength, locomotion ability, and static balance related to the muscles to be evaluated shown in FIG. 12 will be individually explained.
- the feature quantity used for estimating the muscle strength of the muscle to be evaluated will be explained. Muscle strength is estimated using features common to the five items.
- ⁇ Related item 1> Related item 1 relates to total muscle strength of the whole body. There is a correlation between total muscle strength and grip strength. Grip strength is also correlated with knee extension strength.
- One index of total muscle strength for Related Item 1 is grip strength.
- an estimate of grip strength is an indicator of total muscle strength.
- a score corresponding to the estimated value of grip strength (also referred to as total muscle strength score) is an index of total muscle strength.
- the total muscle strength score is a value obtained by converting grip strength, which is an index of total muscle strength, into points based on a preset standard.
- Grip strength is affected by attributes such as gender, age, and height. Therefore, the total muscle strength score may be scored on the basis of each attribute. In particular, grip strength is influenced by gender. Therefore, the total muscle strength score may be scored according to different criteria depending on gender. Note that the index of total muscle strength is not limited to grip strength as long as total muscle strength can be scored.
- Fig. 13 is a correspondence table summarizing the feature values used for estimating the total muscle strength (grip strength) of the whole body.
- the correspondence table in FIG. 13 associates the number of the feature quantity, the walking waveform data from which the feature quantity is extracted, the walking phase (%) from which the walking phase cluster is extracted, and the related muscles.
- the walking phase in which the feature quantity used for estimating grip strength is extracted differs according to gender. For men, there is a correlation between quadriceps activity and grip strength. Therefore, the feature amounts AM1 to AM4 extracted from the walking phase in which the feature of quadriceps femoris muscle activity appears are used for estimating the male's grip strength.
- the feature values AF1 to AF3 extracted from the walking phase in which the activity characteristics of the vastus lateralis, vastus intermedius, and vastus medialis appear are used for estimating the grip strength of a woman.
- the feature amount AM1 is extracted from the walking phase 3% section of the walking waveform data Ay related to the time-series data of the traveling direction acceleration (Y-direction acceleration).
- the walking phase 3% is included in the load response period T1.
- the feature amount AM1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis of the quadriceps femoris.
- the feature amount AM2 is extracted from the walking phase 59% to 62% section of the walking waveform data Ay regarding the time-series data of the traveling direction acceleration (Y-direction acceleration).
- the walking phase 59-62% is included in the early swing phase T4.
- the feature amount AM2 mainly includes features related to the movement of the rectus femoris muscle among the quadriceps femoris muscles.
- the feature amount AM3 is extracted from the walking phase 59% to 62% section of the walking waveform data Az related to the vertical acceleration (Z-direction acceleration) time-series data.
- the walking phase 59-62% is included in the early swing phase T4.
- the feature amount AM3 mainly includes features relating to the movement of the rectus femoris muscle among the quadriceps femoris muscles.
- the feature amount AM4 is the ratio of the period from the heel contact to the toe-off of the opposite foot (DST1) in the period in which both feet are in contact with the ground at the same time (DST: Double Support Time).
- DST1 is the ratio of the period from heel contact to opposite toe-off in the step cycle.
- the feature amount AM4 mainly includes features caused by the quadriceps femoris.
- the feature amount AF1 is extracted from the walking phase 13% section of the walking waveform data Ax related to the time-series data of lateral acceleration (X-direction acceleration).
- the walking phase 13% is included in the middle stance T2.
- the feature amount AF1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis of the quadriceps.
- the feature amount AF2 is extracted from the walking phase 7 to 10% section of the walking waveform data Gy regarding the time-series data of the angular velocity (pitch angular velocity) in the coronal plane (around the Y axis).
- the walking phase 7-10% is included in the load response period T1.
- the feature amount AF2 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis.
- the feature quantity AF3 is the ratio of the period from the heel contact of the opposite foot to the toe-off (DST2) in the period in which both feet are in contact with the ground at the same time (DST: Double Support Time).
- DST2 is the ratio of the period from opposite foot heel contact to toe off in the step cycle.
- the sum of DST1 and DST2 corresponds to the period during which both feet are in contact with the ground at the same time in the step cycle.
- the feature amount AF3 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis.
- Dynamic balance can be assessed by performance on the Functional Reach Test (FRT).
- FRT Functional Reach Test
- the distance between the fingertips also referred to as the functional reach distance
- FR distance Functional reach distance
- Related item 2 may be evaluated outside of FRT performed with both hands. For example, Relevant Item 2 may be assessed by performance on one-handed FRT and other variations of FRT.
- the index of dynamic balance for related item 2 is the FR distance.
- the FR distance estimate is a measure of dynamic balance.
- a score according to the estimated FR distance (also called a dynamic balance score) is an index of dynamic balance.
- the dynamic balance score is a value obtained by scoring the FR distance, which is an index of dynamic balance, based on a preset standard. Dynamic balance is affected by attributes such as height. As such, the dynamic balance score may be scored on an attribute-by-attribute basis. Note that the dynamic balance index is not limited to the FR distance as long as the dynamic balance can be scored.
- FIG. 14 is a correspondence table summarizing the feature values used for estimating the dynamic balance.
- the correspondence table in FIG. 14 associates the number of the feature quantity, the walking waveform data from which the feature quantity is extracted, the walking phase (%) from which the walking phase cluster is extracted, and the related muscles.
- the FR distance is correlated with the activity of the gluteus maxims, iliac muscle, hamstrings (long head of biceps femoris), tibialis anterior, etc., and the magnitude of compensatory movements that turn the toes outward. . Therefore, feature amounts B1 to B5 extracted from walking phases in which these features appear are used for estimating the FR distance.
- the feature amount B1 is extracted from the walking phase 75-79% section of the walking waveform data Ay regarding the time-series data of the traveling direction acceleration (Y-direction acceleration).
- the gait phase 75-79% is included in mid-swing T6.
- the feature amount B1 mainly includes features related to the movement of the tibialis anterior muscle and the short head of the biceps femoris muscle.
- the feature amount B2 is extracted from the walking phase 62% section of the walking waveform data Az related to the vertical acceleration (Z-direction acceleration) time-series data. 62% of the walking phase is included in the swing initial stage T5.
- the feature amount B2 mainly includes features related to the movement of the iliac muscle.
- the feature quantity B3 is extracted from the walking phase 7-8% section of the walking waveform data Gy regarding the time-series data of the angular velocity in the coronal plane (around the Y axis).
- the walking phase 7-8% is included in the load response period T1.
- the feature amount B3 mainly includes features related to the movement of the gluteus maxims.
- the feature amount B4 is extracted from the walking phase 57% to 58% section of the walking waveform data Ez regarding the time-series data of the angle (attitude angle) in the horizontal plane (around the Z axis).
- the walking phase 57-58% is included in the early swing phase T4.
- the feature quantity B4 mainly includes features related to compensatory actions. Compensatory movements are movements that acquire stability by changing the angle of the foot in order to compensate for the decline in balance ability and muscle function associated with aging.
- the feature value B5 is the average value of the foot angles in the horizontal plane during the swing phase.
- the feature amount B5 is the average value in the swing phase of the walking waveform data Ez.
- the feature amount B5 is the integral value of the walking waveform data Gz regarding the time-series data of the angular velocity in the horizontal plane (around the Z-axis).
- the feature quantity B5 mainly includes features related to compensatory actions.
- ⁇ Related item 3> Related item 3 relates to leg muscle strength.
- Lower extremity muscle strength can be evaluated by the results of the chair rise test.
- the results of a 5-time chair stand-up test in which standing and sitting on a chair are repeated 5 times are evaluated.
- the 5-time chair rise test is also called SS-5 (Sit to Stand-5) test.
- the performance of the 5-time chair stand-up test is evaluated by the time taken to stand up and sit down on a chair 5 times (also referred to as standing-sitting time).
- Standing and sitting time is the performance value of the SS-5 test. The shorter the standing and sitting time, the better the performance on the SS-5 test. It may be evaluated by the performance of the 30-Second Chair Standing (CS-30) test, which measures the number of times a chair stands up and sits down in 30 seconds.
- CS-30 30-Second Chair Standing
- the indicator of lower extremity muscle strength related to Related Item 3 is standing and sitting time. For example, an estimate of the time to stand and sit five times is an indicator of leg muscle strength. For example, a score corresponding to the estimated standing-sitting time (also referred to as leg muscle strength score) is an indicator of leg muscle strength.
- the leg muscle strength score is a value obtained by converting the standing-sitting time, which is an index of leg muscle strength, into points based on a preset standard. Leg muscle strength is affected by attributes such as age. Therefore, the lower extremity muscle strength score may be scored on the basis of each attribute. Note that the index of leg muscle strength is not limited to standing-sitting time as long as leg muscle strength can be scored.
- Fig. 15 is a correspondence table summarizing the feature values used for estimating the muscle strength of the lower extremities.
- the correspondence table in FIG. 15 associates the number of the feature quantity, the walking waveform data from which the feature quantity is extracted, the walking phase (%) from which the walking phase cluster is extracted, and the related muscles.
- Standing and sitting time correlates with quadriceps, hamstrings, tibialis anterior, and gastrocnemius muscles. Therefore, feature amounts C1 to C4 extracted from walking phases in which these features appear are used for estimation of standing-sitting time.
- the feature value C1 is extracted from the walking phase 42% to 54% section of the walking waveform data Gx related to the angular velocity time-series data in the sagittal plane (around the X axis).
- the walking phase 42% to 54% is a section from the stance final phase T3 to the swing phase early phase T4.
- the feature amount C1 mainly includes features relating to the movement of the gastrocnemius muscle.
- the feature value C2 is extracted from the walking phase 99% to 100% section of the walking waveform data Gy regarding the time series data of the angular velocity in the coronal plane (around the Y axis).
- the gait phase 99-100% is the final stage of terminal swing T7.
- the feature amount C2 mainly includes features related to the movement of the quadriceps femoris muscle, hamstrings, and tibialis anterior muscle.
- the feature value C3 is extracted from the walking phase 10% to 12% section of the walking waveform data Gy regarding the time-series data of the angular velocity in the coronal plane (around the Y axis).
- the gait phase 10-12% is the beginning of mid-stance T2.
- the feature amount C3 mainly includes features related to the movement of the quadriceps, hamstrings, and gastrocnemius.
- the feature value C4 is extracted from the walking phase 99% section of the walking waveform data Ez regarding the time series data of the angle (attitude angle) in the horizontal plane (around the Z axis). 99% of the walking phase is the final stage of the terminal swing stage T7.
- the feature amount C4 mainly includes features related to the movement of the quadriceps femoris muscle, hamstrings, and tibialis anterior muscle.
- Mobility ability can be evaluated by the score of a TUG (Time Up and Go) test.
- TUG test results are evaluated by the time taken to get up from the chair, walk to a landmark 3 m (meters) ahead, turn around, and sit back on the chair (also called TUG required time).
- the TUG required time is the result value of the TUG test.
- the shorter the TUG duration the better the TUG test performance.
- Related item 4 may be evaluated by the performance of a test related to mobility ability other than the TUG test.
- the index of mobility ability for related item 4 is the TUG required time.
- an estimate of TUG duration is an indicator of mobility.
- a score (also referred to as mobility score) corresponding to the estimated TUG duration is an indicator of mobility.
- the mobility score is a value obtained by converting the TUG required time, which is an index of mobility, into points based on a preset standard. Mobility is affected by attributes such as age. Therefore, the mobility score may be scored on the basis of each attribute. Note that the indicator of mobility is not limited to the TUG required time as long as the mobility can be scored.
- FIG. 16 is a correspondence table summarizing the feature values used for estimating mobility.
- the correspondence table in FIG. 16 associates the number of the feature quantity, the walking waveform data from which the feature quantity is extracted, the walking phase (%) from which the walking phase cluster is extracted, and the related muscles.
- TUG required time is correlated with quadriceps, gluteus maxims, and tibialis anterior. Therefore, feature amounts D1 to D6 extracted from walking phases in which these features appear are used for estimating the TUG required time.
- the tensor fascia lata muscle is characterized during the gait phase 0-45% and 85-100%.
- the gluteus maxims characteristic appears in the gait phase 0-25%.
- the tibialis anterior muscle feature is present in the gait phase 0-10%, 57-100%.
- the feature value D1 is extracted from the walking phase 64-65% section of the walking waveform data Ax related to the time-series data of lateral acceleration (X-direction acceleration). Walking phase 64-65% is included in swing initial T5.
- the feature amount D1 mainly includes features related to the movement of the quadriceps femoris during standing and sitting motions.
- the feature value D2 is extracted from the walking phase 57% to 58% section of the walking waveform data Gx related to the angular velocity time series data in the sagittal plane (around the X axis).
- the walking phase 57-58% is included in the early swing phase T4.
- the feature amount D2 mainly includes features related to the movement of the quadriceps muscle associated with the kicking speed of the leg.
- the feature value D3 is extracted from the walking phase 19% to 20% section of the walking waveform data Gy regarding the time-series data of the angular velocity in the coronal plane (around the Y axis). Walking phase 19-20% is included in mid-stance T2.
- the feature amount D3 mainly includes features related to the movement of the gluteus maxims muscle during direction change.
- the feature value D4 is extracted from the walking phase 12% to 13% section of the walking waveform data Ez related to the angular velocity time-series data in the horizontal plane (around the Z axis). Walking phase 12-13% is the beginning of mid-stance T2.
- the feature amount D4 mainly includes features related to the movement of the gluteus medius muscle during direction change.
- the feature value D5 is extracted from the walking phase 74% to 75% section of the walking waveform data Ez related to the angular velocity time-series data in the horizontal plane (around the Z axis). Gait phase 74-75% is the beginning of mid-swing T6.
- the feature amount D5 mainly includes features related to the movement of the tibialis anterior muscle during standing, sitting, and turning.
- the feature value D6 is extracted from the walking phase 76% to 80% section of the walking waveform data Ey regarding the time series data of the angle (posture angle) in the coronal plane (around the Y axis).
- the gait phase 76-80% is included in mid-swing T6.
- the feature amount D6 mainly includes features related to the movement of the tibialis anterior muscle during standing, sitting, and turning.
- Static balance can be assessed by the performance of the single leg standing test.
- the performance of the one-legged standing test is evaluated based on the time required to keep one leg raised from the ground by 5 cm (centimeter) with eyes closed (also referred to as one-legged standing time).
- Standing time on one leg is a static balance performance metric. The greater the time spent standing on one leg, the better the static balance performance.
- Related item 5 may be evaluated by performance other than the one-leg standing test with eyes closed. For example, related item 5 may be evaluated by a single-legged standing test with eyes open (one-legged standing test with eyes open) or other variations of the single-legged standing test.
- the index of static balance for related item 5 is the standing time on one leg.
- an estimate of single leg standing time is an indicator of static balance.
- a score corresponding to the estimated single-leg standing time (also referred to as a static balance score) is an index of static balance.
- the static balance score is a value obtained by converting the standing time on one leg, which is an index of static balance, into points based on a preset standard. Static balance is affected by attributes such as age and height. As such, the static balance score may be scored on an attribute-by-attribute basis.
- the index of static balance is not limited to one-leg standing time as long as static balance can be scored.
- FIG. 17 is a correspondence table summarizing the feature values used for estimating the static balance.
- the correspondence table in FIG. 17 associates the number of the feature quantity, the walking waveform data from which the feature quantity is extracted, the walking phase (%) from which the walking phase cluster is extracted, and the related muscles.
- the single leg standing time is correlated with the gluteus maxims, adductor longus, sartorius, and adductor abductor muscle groups. Therefore, the feature amounts E1 to E7 extracted from the walking phases in which these features appear are used for estimating the one-leg standing time.
- the feature quantity E1 is extracted from the walking phase 13-19% section of the walking waveform data Ax related to the time-series data of lateral acceleration (X-direction acceleration). Walking phase 13-19% is included in mid-stance T2.
- the feature quantity E1 mainly includes features related to the movement of the gluteus maxims.
- the feature quantity E2 is extracted from the walking phase 95% section of the walking waveform data Az related to the vertical acceleration (Z-direction acceleration) time-series data. 95% of the walking phase is the final stage of the terminal swing stage T7.
- the feature amount E2 mainly includes features related to the movement of the gluteus medius.
- the feature quantity E3 is extracted from the walking phase 64-65% section of the walking waveform data Gy regarding the time series data of the angular velocity in the coronal plane (around the Y axis).
- the gait phase 64-65% is included in swing early T5.
- the feature quantity E3 mainly includes features related to the movements of the adductor longus and sartorius muscles.
- the feature quantity E4 is extracted from the walking phase 11-16% section of the walking waveform data Gz related to the angular velocity time-series data in the horizontal plane (around the Z axis). Walking phases 11-16% are included in mid-stance T2.
- the feature quantity E4 mainly includes features related to the movement of the gluteus maxims.
- the feature quantity E5 is extracted from the walking phase 57-58% section of the walking waveform data Gz related to the angular velocity time-series data in the horizontal plane (around the Z axis).
- the gait phase 57-58% is included in the pre-swing T4.
- the feature quantity E5 mainly includes features related to the movements of the adductor longus and sartorius muscles.
- the feature quantity E6 is extracted from the walking phase 100% section of the walking waveform data Ez regarding the time series data of the angle (attitude angle) in the horizontal plane (around the Z axis).
- the 100% walking phase corresponds to the timing of heel contact at which the swing terminal period T7 is switched to the load response period T1.
- the feature amount of the walking waveform data Ez in the walking phase 100% corresponds to the foot angle when the sole is in contact with the ground.
- the feature quantity E6 mainly includes features relating to the movement of the gluteus maxims.
- the feature value E7 is the distance (division amount) between the movement axis and the foot at the timing when the central axis of the foot is the farthest from the movement axis in the swing phase.
- the feature amount E7 is the amount of division normalized by the height of the subject.
- the feature amount E7 mainly includes features related to the movement of the adductor/abductor muscle group.
- Fig. 18 is a diagram summarizing an example of the relationship between five items related to fall risk and muscles.
- a solid line connects five items related to fall risk and muscles. Note that the solid line shown in FIG. 18 indicates a representative relationship. It does not mean that there is no correlation between the item with no solid line and muscle.
- FIG. 18 includes a group of muscles rather than a single muscle.
- the muscles listed in FIG. 18 are an example of evaluation target muscles related to fall risk.
- the muscles listed in FIG. 18 are not all of the muscles evaluated.
- the muscle strength evaluation unit 134 evaluates muscle activities related to five items of indices (scores) related to the risk of falling according to the relationship between the indices (scores).
- the quadriceps, tibialis anterior, and gluteus maxims are related to multiple items.
- the quadriceps are associated with total muscle strength, leg strength, and locomotion.
- the tibialis anterior muscle is associated with dynamic balance, leg strength, and locomotion.
- the gluteus maxims is involved in dynamic balance, locomotion, and static balance.
- the muscle strength evaluation unit 134 evaluates that the muscle strength of the quadriceps femoris muscle is reduced. For example, if the scores for dynamic balance, leg muscle strength, and locomotion ability are smaller than the reference values, the muscle strength evaluation unit 134 evaluates that the muscle strength of the tibialis anterior muscle is reduced. For example, if the scores for dynamic balance, mobility, and static balance are smaller than the reference values, the muscle strength evaluation unit 134 evaluates that the muscle strength of the gluteus maxims muscle is reduced.
- the iliac muscle, short head of biceps femoris, hamstrings, gastrocnemius, adductor abductor muscle group, adductor longus, and sartorius are associated with single items.
- the iliac muscle and the short head of the biceps femoris are involved in dynamic balance.
- Hamstrings and gastrocnemius are related to lower extremity muscle strength.
- the adductor abductor muscle group, adductor longus, and sartorius are involved in static balance.
- the muscle strength evaluation unit 134 evaluates that the muscle strength of the iliac muscle and the short head of the biceps femoris muscle is reduced. For example, if the leg muscle strength score is smaller than the reference value, the muscle strength evaluation unit 134 evaluates that the muscle strength of the hamstrings and gastrocnemius muscle is reduced. For example, if the static balance score is smaller than the reference value, the muscle strength evaluation unit 134 evaluates that the muscle strengths of the adductor-abductor muscle group, the adductor longus muscle, and the sartorius muscle are reduced.
- Fall risk can be assessed according to a five-item score related to fall risk.
- the fall risk R can be calculated using Equation 1 below.
- SA is the total body strength score.
- SB is the dynamic balance score.
- SC is the lower extremity strength score.
- SD is the mobility score.
- SE is the static balance score.
- the total body strength score S1, dynamic balance score S2, leg strength score S3, mobility score S4, and static balance score S5 can be estimated using estimation models corresponding to each score.
- a to E are normalized specific gravity coefficients.
- the specific gravity coefficients A to E are set in advance according to known knowledge.
- the specific gravity factors A through E can be determined according to the motion in the physical performance test corresponding to each specific gravity factor.
- the specific gravity coefficients A to E can be determined according to the ratio of the myoelectric signal strength of the muscle to be evaluated in the physical ability test corresponding to each specific gravity coefficient.
- electromyographic sensors are attached to predetermined measurement sites of muscles to be evaluated, and a test is performed on five items related to fall risk. By performing such a test, the specific gravity coefficients A to E can be set according to the ratio of the myoelectric signal strength of the muscle to be evaluated.
- the weighting coefficients A to E are determined by weighting the signal strength of the walking waveform data related to the walking cycle.
- the five-item scores related to fall risk are estimated from gait signals, the amount of activity of each muscle in the same walking cycle is calculated as a ratio and divided into coefficients.
- the activity of the quadriceps muscle is related to the total muscle strength of the whole body.
- MA1 is the specific gravity of the quadriceps femoris in the total muscle strength score S1 of the whole body.
- Dynamic balance involves the tibialis anterior, gluteus medius, iliac, and short head of the biceps femoris.
- MB2 be the specific gravity of the tibialis anterior muscle in the dynamic balance score S2.
- MB3 be the specific gravity of the gluteus medius in the dynamic balance score S2.
- MB4 be the specific gravity of the iliac muscle in the dynamic balance score S2.
- MB5 be the specific gravity of the short head of the biceps femoris in the dynamic balance score S2.
- the quadriceps, tibialis anterior, hamstrings, and gastrocnemius are related to leg muscle strength.
- MC1 be the specific gravity of the quadriceps femoris muscle in the leg muscle strength score S3.
- MC2 be the specific gravity of the tibialis anterior muscle in the leg muscle strength score S3.
- MC6 be the specific gravity of the hamstrings in the leg muscle strength score S3.
- the specific gravity of the gastrocnemius muscle in the leg muscle strength score S3 is defined as MC7.
- the quadriceps, tibialis anterior, and gluteus maxims are related to mobility.
- MD1 is the specific gravity of the quadriceps femoris muscle in the mobility score S4.
- the specific gravity of the tibialis anterior muscle in the mobility score S4 is defined as MD2.
- the specific gravity of the gluteus maxims muscle in the mobility score S4 is defined as MD3.
- the adductor, adductor longus, and sartorius muscles are involved in static balance.
- the specific gravity of the adductor abductor muscle in the static balance score S5 is defined as MD8.
- the specific gravity of the adductor longus muscle in the static balance score S5 is defined as MD9.
- the specific gravity of the sartorius muscle in the static balance score S5 is defined as MD10.
- the muscle strength evaluation unit 134 uses the product of the specific gravity of the evaluation target muscle, the specific gravity coefficient of the evaluation target muscle, and the physical ability score related to the evaluation target muscle with respect to the physical ability related to the evaluation target muscle, Calculate the muscle strength score of the evaluated muscle. Examples of muscle strength score calculation by the muscle strength evaluation unit 134 are listed below.
- the quadriceps muscle strength score MS1 is calculated using Equation 2 below.
- MS1 MA1 ⁇ A ⁇ SA+MC1 ⁇ C ⁇ SC+MD1 ⁇ D ⁇ SD (2)
- the tibialis anterior muscle strength score MS2 is calculated using Equation 3 below.
- MS2 MB2 ⁇ B ⁇ SB+MC2 ⁇ C ⁇ SC+MD2 ⁇ D ⁇ SD (3)
- the gluteus maxims muscle strength score MS3 is calculated using Equation 4 below.
- MS3 MB3 ⁇ B ⁇ SB+MC3 ⁇ C ⁇ SC+MD4 ⁇ D ⁇ SD (4)
- the iliac muscle strength score MS4 is calculated using Equation 5 below.
- MS4 MB4 ⁇ B ⁇ SB (5)
- the short head biceps femoris strength score MS5 is calculated using Equation 6 below.
- MS5 MB5 ⁇ B ⁇ SB (6)
- the hamstring strength score MS6 is calculated using Equation 7 below.
- MS6 MC6 ⁇ C ⁇ SC (7)
- the gastrocnemius muscle strength score MS7 is calculated using Equation 8 below.
- MS7 MC7 ⁇ C ⁇ SC (8)
- the muscle strength score MS8 for the adductor and abductor muscle group is calculated using Equation 9 below.
- MS8 ME8 ⁇ E ⁇ SE (9)
- the adductor longus muscle strength score MS9 is calculated using Equation 10 below.
- MS9 ME9 ⁇ E ⁇ SE (10)
- the sartorius muscle strength score MS10 is calculated using Equation 11 below.
- Formulas 2 to 11 above are a group of calculation formulas for calculating the strength of the evaluation target muscle related to fall risk.
- the group of formulas 2 to 11 above is an example of a muscle strength estimation model for evaluating the muscle strength of each muscle according to the input of the five-item scores related to fall risk.
- the muscle strength evaluation unit 134 estimates the muscle strength of the evaluation target muscle using Equations 2 to 11 above.
- the group of calculation formulas 2 to 11 above is an example, and does not limit the muscle force estimation model for estimating the muscle force of the muscles to be evaluated.
- the muscles for which the muscle strength is estimated are not limited to the above ten.
- the muscle strength estimation model should be capable of estimating the muscle strength of any one of the evaluation target muscles according to the input of the score of at least one of the five items related to fall risk.
- FIG. 19 is a conceptual diagram showing an example of an estimation model 120 that estimates the muscle strength of the evaluation target muscle using the feature amount extracted from the walking waveform data.
- FIG. 19 shows an example of n evaluation target muscles (n is a natural number).
- Estimation model 120 includes physical ability estimation model 150 and muscle strength estimation model 156 .
- the feature values extracted from the walking waveform data are input to a physical ability estimation model 150 that estimates scores of five items related to fall risk.
- Physical ability estimation model 150 includes estimation model 151 , estimation model 152 , muscle strength estimation model 156 , estimation model 154 , and estimation model 155 .
- the physical ability estimation model 150 outputs scores S1 to S5 of five items related to fall risk according to the input of the feature amount extracted from the walking waveform data.
- the five-item scores S 1 to S 5 output from the physical ability estimation model 150 are input to the muscle strength estimation model 156 .
- the muscle strength estimation model 156 outputs muscle strength scores MS1 to MSn relating to the muscle strength of the muscle to be evaluated in accordance with the five-item scores S1 to S5.
- the estimation model 151 generates a score (total muscle strength score S1) is output.
- the estimation model 151 may be different models for men and women.
- the estimation result of the estimation model 151 is not limited as long as the estimation result regarding the index of the total muscle strength is output according to the input of the feature amount data for estimating the total muscle strength.
- the estimation model 151 may be a model that estimates dynamic balance using attribute data such as age and height as explanatory variables in addition to the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
- the storage unit 132 stores an estimation model 151 that estimates the total muscle strength score S1 using a multiple regression prediction method.
- the storage unit 132 stores parameters for estimating the total muscle strength score S1 using Equation 12 below.
- SA m(am1 ⁇ AM1+am2 ⁇ AM2+am3 ⁇ AM3+am4 ⁇ AM4+am0)+f(af1 ⁇ AF1+af2 ⁇ AF2+af3 ⁇ AF3+af0) (12)
- AM1, AM2, AM3, and AM4 are feature quantities for each walking phase cluster used for estimating the male total muscle strength score S1 shown in the correspondence table of FIG.
- am1, am2, am3, and am4 are coefficients (weights) by which AM1, AM2, AM3, and AM4 are multiplied.
- am0 is a constant term.
- AF1, AF2, and AF3 are feature quantities for each walking phase cluster used for estimating the female total muscle strength score S1 shown in the correspondence table of FIG.
- af1, af2, and af3 are coefficients (weights) by which AF1, AF2, and AF3 are multiplied.
- af0 is a constant term.
- m and f are flags corresponding to gender. If the user is male, m is 1 and f is 0. When the user is female, m is 0 and f is 1.
- the storage unit 132 stores am0, am1, am2, am3, am4, af0, af1, af2, and af3.
- the estimation model 152 outputs a score related to dynamic balance (dynamic balance score S2) according to the input of feature amounts B1 to B5 extracted from sensor data measured as the user walks.
- the estimation result of the estimation model 152 is not limited as long as the estimation result relating to the index of dynamic balance is output according to the input of the feature amount data for estimating the dynamic balance.
- the estimation model 152 may be a model that estimates dynamic balance using attribute data such as height as explanatory variables in addition to the feature quantities B1 to B5.
- the storage unit 132 stores an estimation model for estimating the dynamic balance score S2 using a multiple regression prediction method.
- the storage unit 132 stores parameters for estimating the dynamic balance score S2 using Equation 13 below.
- SB b1 ⁇ B1+b2 ⁇ B2+b3 ⁇ B3+b4 ⁇ B4+b5 ⁇ B5+b0 (13)
- B1, B2, B3, B4, and B5 are feature quantities for each walking phase cluster used for estimating dynamic balance shown in the correspondence table of FIG. b1, b2, b3, b4, and b5 are coefficients (weights) by which B1, B2, B3, B4, and B5 are multiplied.
- b0 is a constant term.
- the storage unit 132 stores b0, b1, b2, b3, b4, and b5.
- the muscle strength estimation model 156 outputs a score related to lower limb muscle strength (lower limb muscle strength score S3) according to the input of feature amounts C1 to C4 extracted from sensor data measured as the user walks.
- the estimation result of the muscle strength estimation model 156 is not limited as long as the estimation result regarding the index of the leg muscle strength is output according to the input of the feature amount data for estimating the leg muscle strength.
- the muscle strength estimation model 156 may be a model that estimates dynamic balance using attribute data such as age as explanatory variables in addition to the feature quantities C1 to C4.
- the storage unit 132 stores an estimation model for estimating the leg muscle strength score S3 using the multiple regression prediction method.
- the storage unit 132 stores parameters for estimating the leg muscle strength score S3 using Equation 14 below.
- SC c1 ⁇ C1+c2 ⁇ C2+c3 ⁇ C3+c4 ⁇ C4+c0 (14)
- C1, C2, C3, and C4 are feature amounts for each walking phase cluster used for estimating the leg muscle strength shown in the correspondence table of FIG.
- c1, c2, c3, and c4 are coefficients (weights) by which C1, C2, C3, and C4 are multiplied.
- c0 is a constant term.
- the storage unit 132 stores c0, c1, c2, c3, and c4.
- the estimation model 154 outputs a score related to mobility (mobility ability score S4) in accordance with the input of feature amounts D1 to D6 extracted from sensor data measured as the user walks.
- the estimation result of the estimation model 154 is not limited as long as the estimation result regarding the index of the mobility ability is output according to the input of the feature amount data for estimating the mobility ability.
- the estimation model 154 may be a model that estimates mobility using attribute data such as age as explanatory variables in addition to the feature quantities D1 to D6.
- the storage unit 132 stores an estimation model for estimating the mobility score S4 using a multiple regression prediction method.
- the storage unit 132 stores parameters for estimating the mobility score S4 using Equation 15 below.
- SD d1 ⁇ D1+d2 ⁇ D2+d3 ⁇ D3+d4 ⁇ D4+d5 ⁇ D5+d6 ⁇ D6+d0
- D1, D2, D3, D4, D5, and D6 are feature quantities for each walking phase cluster used for estimating mobility ability shown in the correspondence table of FIG. d1, d2, d3, d4, d5, and d6 are coefficients (weights) by which D1, D2, D3, D4, D5, and D6 are multiplied.
- d0 is a constant term.
- the storage unit 132 stores d0, d1, d2, d3, d4, d5, and d6.
- the estimation model 155 outputs a score related to static balance (static balance score S5) according to the input of feature amounts E1 to E7 extracted from sensor data measured as the user walks.
- the estimation result of the estimation model 155 is not limited as long as the estimation result related to the index of static balance is output according to the input of the feature amount data for estimating the static balance.
- the estimation model 155 may be a model that estimates static balance using attribute data such as age and height as explanatory variables in addition to the feature quantities E1 to E7.
- the storage unit 132 stores an estimation model for estimating static balance using a multiple regression prediction method.
- the storage unit 132 stores parameters for estimating the static balance using Equation 16 below.
- Single leg standing time e1 x E1 + e2 x E2 + e3 x E3 + e4 x E4 + e5 x E5 + e6 x E6 + e7 x E7 + e0 (16)
- E1, E2, E3, E4, E5, E6, and E7 are feature quantities for each walking phase cluster used for estimating static balance shown in the correspondence table of FIG.
- e1, e2, e3, e4, e5, e6, and e7 are coefficients (weights) by which E1, E2, E3, E4, E5, E6, and E7 are multiplied.
- e0 is a constant term.
- the storage unit 132 stores e0, e1, e2, e3, e4, e5, e6, and e7.
- the muscle strength estimation model 156 outputs muscle strength scores MS1 to MSn of muscles related to falls in accordance with the score input from the physical ability estimation model 150 . That is, the muscle strength estimation model 156 outputs muscle strength scores MS1 to MSn in response to the input of scores of five items related to falling.
- the muscle strength estimation model 156 is configured by the group of calculation formulas of formulas 2 to 11 above. At least one of the scores output from the estimation model 151 , the estimation model 152 , the muscle strength estimation model 156 , the estimation model 154 , and the estimation model 155 is input to the muscle strength estimation model 156 .
- the muscle strength estimation model 156 may be a model that estimates muscle strength using attribute data as explanatory variables in addition to the scores output from the estimation model 152 .
- the gait measuring device 10 and the muscle strength evaluation device 13 included in the muscle strength evaluation system 1 will be individually described below.
- the operation of the feature amount data generation unit 12 included in the gait measuring device 10 will be described.
- FIG. 20 is a flow chart for explaining the operation of the feature amount data generator 12 included in the gait measuring device 10 .
- the feature amount data generation unit 12 will be described as an operator.
- the feature amount data generation unit 12 acquires time-series data of sensor data related to foot movement (step S101).
- the feature amount data generation unit 12 extracts walking waveform data for one step cycle from the time-series data of the sensor data (step S102).
- the feature amount data generator 12 detects heel contact and toe off from the time-series data of the sensor data.
- the feature amount data generator 12 extracts the time-series data of the interval between successive heel strikes as walking waveform data for one step cycle.
- the feature amount data generation unit 12 normalizes the extracted walking waveform data for one step cycle (step S103).
- the feature amount data generator 12 normalizes the walking waveform data for one step cycle to a walking cycle of 0 to 100% (first normalization). Further, the feature amount data generator 12 normalizes the ratio of the stance phase and the swing phase of the walking waveform data for the first normalized step cycle to 60:40 (second normalization).
- the feature amount data generation unit 12 extracts feature amounts from the walking phases used for estimating the five items related to the risk of falling with respect to the normalized walking waveform (step S104). For example, the feature amount data generation unit 12 extracts feature amounts input to an estimation model (first estimation model) constructed in advance.
- an estimation model first estimation model
- the feature quantity data generation unit 12 uses the extracted feature quantity to generate a feature quantity for each walking phase cluster (step S105).
- the feature amount data generation unit 12 integrates the feature amounts for each walking phase cluster to generate feature amount data for the one step cycle (step S106).
- the feature amount data generation unit 12 outputs the generated feature amount data to the muscle strength evaluation device 13 (step S107).
- FIG. 21 is a flowchart for explaining the operation of the muscle strength evaluation device 13. As shown in FIG. In the description along the flow chart of FIG. 21, the muscle strength evaluation device 13 will be described as the subject of action.
- the muscle strength evaluation device 13 first acquires feature amount data used for estimating scores of five items related to fall risk (step S111).
- the muscle strength evaluation device 13 inputs the acquired feature amount data to the physical ability estimation model 150 (step S112).
- the feature values input to the physical ability estimation model 150 are input to estimation models 151 to 155 for estimating scores for each of the five items related to fall risk.
- the physical ability estimation model 150 outputs at least one score out of five items related to fall risk.
- the muscle strength evaluation device 13 inputs the score related to the five items output from the physical ability estimation model 150 to the muscle strength estimation model 156 (step S113). According to the input score, the muscle strength estimation model 156 outputs a muscle strength score of at least one of the evaluation target muscles related to fall risk.
- the muscle strength evaluation device 13 evaluates the muscle strength of the evaluation target muscle according to the output from the muscle strength estimation model 156 (step S114).
- the muscle strength estimation model 156 evaluates the muscle strength of the evaluation target muscle according to the score output from the muscle strength estimation model 156 .
- the muscle strength evaluation device 13 outputs information according to the evaluation result regarding the muscle strength of the evaluation target muscle (step S115).
- the evaluation result is output to a terminal device (not shown) carried by the user.
- the evaluation results are output to a system that performs processing using muscle strength.
- FIGS. 22 to 24 are conceptual diagrams showing an example of displaying the evaluation results by the muscle strength evaluation device 13 on the screen of the portable terminal 160 carried by the user walking wearing the shoes 100 on which the gait measurement device 10 is arranged. be.
- FIGS. 22 to 24 are examples of displaying on the screen of the mobile terminal 160 information corresponding to muscle strength evaluation results using feature amount data corresponding to sensor data measured while the user is walking.
- FIG. 22 is an example of information displayed on the screen of the mobile terminal 160 according to the muscle strength evaluation results.
- the evaluation result “Muscle 4 has significantly decreased strength” is displayed on the screen of mobile terminal 160 .
- a graph relating to the muscle strength score of the muscle targeted for evaluation is displayed on the screen of the mobile terminal 160 .
- the score is represented by a bar graph for each muscle to be evaluated.
- the graph of FIG. 22 shows the upper limit threshold U and the lower limit threshold L.
- the upper threshold U indicates the target value of the muscle strength score. A muscle whose strength score is above the upper threshold U has sufficient strength.
- the lower limit threshold value L indicates an evaluation reference value for fall risk.
- Muscles with strength scores below the lower threshold L may contribute to fall risk.
- the strength score of muscle 4 is below the lower limit threshold L.
- the user who has confirmed the muscle strength evaluation result displayed on the display unit of the mobile terminal 160 can confirm the muscle strength evaluation result and the graph to recognize the state of his/her own muscle strength.
- muscle 4 has a low score.
- a user who has checked the graph displayed on the display unit of the mobile terminal 160 can recognize that the muscle strength of his/her muscles 4 is low. Information about muscle strength evaluation results may be provided to someone other than the user.
- the information about the muscle strength evaluation results may be output to a terminal device (not shown) used by a trainer who manages the physical condition of the user or a family member of the user.
- information about muscle strength evaluation results may be recorded in a database (not shown) constructed for purposes such as health management.
- FIG. 23 is another example of information displayed on the screen of the mobile terminal 160 according to the muscle strength evaluation results.
- the evaluation result “Muscle 4 has significantly decreased strength” is displayed on the screen of mobile terminal 160 .
- the recommendation information according to the evaluation result of "Training Z is recommended. Please see the following video.” be done.
- On the screen of the mobile terminal 160 a moving image related to training leading to an increase in muscle strength of the muscles 4 that are significantly weakened is displayed. After confirming the information displayed on the display unit of the mobile terminal 160, the user can practice training that leads to an increase in muscle strength of the muscles 4 by exercising with reference to the training Z video in accordance with the recommended information.
- FIG. 24 is yet another example in which information corresponding to muscle strength evaluation results is displayed on the screen of the mobile terminal 160 .
- the evaluation result “Muscle 4 has significantly decreased strength” is displayed on the screen of mobile terminal 160 .
- the recommendation information corresponding to the evaluation result of "Train according to the training menu below.” The screen of the mobile terminal 160 displays a training menu leading to an increase in the muscle strength of the muscles 4 that are significantly weakened. After confirming the information displayed on the display unit of the mobile terminal 160, the user can practice training that leads to an increase in muscle strength of the muscles 4 by exercising with reference to the training menu according to the recommended information.
- the muscle strength evaluation system of this embodiment includes a gait measuring device and a muscle strength evaluation device.
- a gait measuring device includes a sensor and a feature amount data generator.
- the sensor has an acceleration sensor and an angular velocity sensor.
- the sensor measures spatial acceleration using an acceleration sensor.
- the sensor measures the spatial angular velocity using an angular velocity sensor.
- the sensor uses the measured spatial acceleration and spatial angular velocity to generate sensor data regarding foot movement.
- the sensor outputs the generated sensor data to the feature data generator.
- the feature amount data generation unit acquires time-series data of sensor data related to foot movements.
- the feature amount data generation unit extracts walking waveform data for one step cycle from the time-series data of the sensor data.
- the feature amount data generator normalizes the extracted walking waveform data.
- the feature amount data generation unit extracts feature amounts used for estimating muscle strength of the evaluation target muscle from the normalized walking waveform data.
- the feature amount data generation unit generates feature amount data including the extracted feature amount.
- the feature amount data generation unit outputs the generated feature amount data to the muscle strength evaluation device.
- a muscle strength evaluation device includes a data acquisition unit, a storage unit, an evaluation unit, and an output unit.
- the data acquisition unit acquires feature amount data including the feature amount used for estimating muscle strength of the evaluation target muscle related to fall risk, which is extracted from the sensor data relating to the movement of the user's leg.
- the storage unit stores an estimation model that outputs a muscle strength index of an evaluation target muscle according to the input of the feature amount data.
- the evaluation unit inputs the acquired feature amount data to the estimation model, and evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength index output from the estimation model.
- the output unit outputs information about an evaluation result regarding muscle strength of the evaluation target muscle of the user.
- the muscle strength evaluation system of this embodiment evaluates the muscle strength of the user's evaluation target muscles using feature amounts extracted from sensor data relating to the movement of the user's legs. Therefore, according to the present embodiment, it is possible to evaluate the muscle strength of the muscles related to the risk of falling according to the gait in daily life without using an instrument for evaluating muscle strength.
- the storage unit stores a physical ability estimation model and a muscle strength estimation model.
- the physical ability estimation model outputs a physical ability score according to the input of the feature quantity used for estimating the physical ability score related to the risk of falling.
- a muscle strength estimation model outputs a muscle strength score of an evaluation target muscle according to an input of a physical ability score.
- the data acquisition unit acquires a feature amount used for estimating a physical ability score, which is extracted from walking waveform data generated using time-series data of sensor data.
- the evaluation unit inputs the acquired feature amount to the physical ability estimation model.
- the evaluation unit inputs the physical ability score output from the estimation model to the muscle strength estimation model.
- the evaluation unit evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength score output from the muscle strength estimation model.
- the muscle strength of the evaluation target muscle of the user can be evaluated using the estimation model including the physical ability estimation model and the muscle strength estimation model.
- the storage unit stores a physical ability estimation model and a muscle strength estimation model.
- the physical ability estimation model is generated by learning using supervised data in which the feature values used for estimating the physical ability scores of a plurality of subjects are explanatory variables and the physical ability scores of the plurality of subjects are objective variables.
- the muscle strength estimation model is generated by learning using supervised data in which the physical ability scores of multiple subjects are used as explanatory variables and the muscle strength scores of the evaluation target muscles of multiple subjects are used as objective variables.
- the evaluation unit inputs the feature amount used for estimating the physical ability score obtained for the user into the physical ability estimation model.
- the evaluation unit inputs the physical ability score output from the estimation model to the muscle strength estimation model.
- the evaluation unit evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength score output from the muscle strength estimation model. According to this aspect, it is possible to evaluate the muscle strength of the evaluation target muscle of the user using an estimation model that has learned teacher data regarding a plurality of subjects.
- the storage unit stores an estimation model learned using explanatory variables including attribute data of a plurality of subjects.
- the evaluation unit inputs the feature amount and attribute data regarding the user to the estimation model, and estimates the user's muscle strength according to the user's muscle strength index output from the estimation model.
- the muscle strength is estimated including the attribute data that affects the muscle strength of the evaluation target muscle. Therefore, according to this aspect, the muscle strength of the evaluation target muscle of the user can be evaluated with higher accuracy according to the attribute of the user.
- the storage unit stores a physical ability estimation model and a muscle strength estimation model.
- the physical ability estimation model uses supervised data in which the feature values used to estimate the physical ability score of physical ability related to fall risk are used as explanatory variables for multiple subjects, and the physical ability score for multiple subjects is used as the objective variable. generated by learning Physical ability related to fall risk is at least one of five items: total muscle strength of the whole body, dynamic balance, muscle strength of lower extremities, mobility, and static balance.
- the muscle strength estimation model uses the physical ability score of at least one of the five items of physical ability for multiple subjects as an explanatory variable, and the muscle strength score of the muscle to be evaluated for multiple subjects as an objective variable.
- the data acquisition unit acquires the feature amount used for estimating the physical ability score extracted from the walking waveform data.
- the evaluation unit inputs the feature values obtained for the user into the physical ability estimation model.
- the evaluation unit inputs the physical ability score output from the physical ability estimation model to the muscle strength estimation model.
- the evaluation unit evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength score output from the muscle strength estimation model. According to this aspect, the muscle strength of the user's evaluation target muscle can be evaluated according to the physical ability related to the fall risk.
- the storage unit stores the specific gravity of the evaluation target muscle related to the five items of physical ability and the specific gravity coefficient of the evaluation target muscle determined in advance by the five items of the physical ability test.
- the evaluation unit calculates the specific weight of the muscle to be evaluated in the physical ability related to the muscle to be evaluated, the weight coefficient of the muscle to be evaluated in the physical ability related to the muscle to be evaluated, and the physical ability score related to the physical ability related to the muscle to be evaluated.
- the product of is used to calculate the muscle strength score for the assessed muscle.
- the evaluation unit evaluates the muscle strength of the evaluation target muscle according to the calculated muscle strength score of the evaluation target muscle.
- the muscle strength of the evaluation target muscle can be estimated using the specific gravity of the evaluation target muscle and the specific gravity coefficient in the physical ability related to the evaluation target muscle.
- the muscle strength evaluation device is implemented in a terminal device having a user-visible screen.
- the muscle strength evaluation device causes the screen of the terminal device to display information about the muscle strength of the muscle to be evaluated estimated according to the sensor data.
- the muscle strength evaluation device displays, on the screen of the terminal device, recommendation information corresponding to the muscle strength of the evaluation target muscle estimated according to the feature quantity extracted from the sensor data.
- the muscle strength evaluation device displays, on the screen of the terminal device, a video about training for strengthening the evaluation target muscle as recommendation information corresponding to muscle strength estimated according to the feature amount extracted from the sensor data.
- the muscle strength evaluation device displays on the screen of the terminal device a training menu for training the muscle to be evaluated as recommendation information corresponding to muscle strength estimated according to the feature amount extracted from the sensor data.
- the information on the muscle strength of the muscle to be evaluated estimated according to the feature amount extracted from the sensor data is displayed on a screen that can be visually recognized by the user, so that the user can obtain information corresponding to his or her own muscle strength. can be confirmed.
- the learning system of the present embodiment generates an estimation model for estimating muscle strength in accordance with input of feature amounts by learning using feature amount data extracted from sensor data measured by a gait measuring device.
- FIG. 25 is a block diagram showing an example of the configuration of the learning system 2 according to this embodiment.
- the learning system 2 includes a gait measuring device 20 and a learning device 25 .
- the gait measuring device 20 and the learning device 25 may be wired or wirelessly connected.
- the gait measuring device 20 and the learning device 25 may be configured as a single device.
- the learning system 2 may be configured with only the learning device 25 excluding the gait measuring device 20 from the configuration of the learning system 2 .
- one gait measuring device 20 may be arranged for each of the left and right feet (two in total).
- the learning device 25 may be configured to perform learning using feature amount data generated by the gait measuring device 20 in advance and stored in a database without being connected to the gait measuring device 20. good.
- the gait measuring device 20 is installed on at least one of the left and right feet.
- the gait measuring device 20 has the same configuration as the gait measuring device 10 of the first embodiment.
- Gait measuring device 20 includes an acceleration sensor and an angular velocity sensor.
- the gait measuring device 20 converts the measured physical quantity into digital data (also called sensor data).
- the gait measuring device 20 generates normalized gait waveform data for one step cycle from time-series data of sensor data.
- the gait measuring device 20 generates feature amount data used for estimating muscle strength of evaluation target muscles related to fall risk. For example, the gait measuring device 20 generates feature amount data used for estimating scores for five items: total muscle strength of the whole body, dynamic balance, muscle strength of lower limbs, mobility, and static balance.
- the gait measuring device 20 transmits the generated feature amount data to the learning device 25 .
- the gait measuring device 20 may be configured to transmit feature amount data to a database (not shown) accessed by the learning device 25 .
- the feature amount data accumulated in the database is used for learning by the learning device 25 .
- the learning device 25 receives from the gait measuring device 20 the feature amount data extracted from the walking waveform data of a plurality of subjects. When using feature amount data accumulated in a database (not shown), the learning device 25 receives the feature amount data from the database. The learning device 25 performs learning using the received feature amount data. For example, the learning device 25 learns teacher data using feature data for estimating five-item scores related to the risk of falling as explanatory variables and five-item scores corresponding to the feature data as objective variables. . For example, the learning device 25 learns teacher data that uses at least one of five scores related to fall risk as an explanatory variable and a muscle strength score of an evaluation target muscle as an objective variable.
- the learning algorithm executed by the learning device 25 is not particularly limited.
- the learning device 25 generates an estimated model trained using teacher data regarding a plurality of subjects.
- the learning device 25 stores the generated estimation model.
- the estimation model learned by the learning device 25 may be stored in a storage device external to the learning device 25 .
- FIG. 26 is a block diagram showing an example of the detailed configuration of the learning device 25. As shown in FIG. The learning device 25 has a receiving section 251 , a learning section 253 and a storage section 255 .
- the receiving unit 251 receives feature amount data from the gait measuring device 20 .
- the receiving unit 251 outputs the received feature amount data to the learning unit 253 .
- the receiving unit 251 may receive the feature amount data from the gait measurement device 20 via a cable such as a cable, or may receive the feature amount data from the gait measurement device 20 via wireless communication.
- the receiving unit 251 is configured to receive feature amount data from the gait measuring device 20 via a wireless communication function (not shown) conforming to standards such as Bluetooth (registered trademark) and WiFi (registered trademark). be done.
- the communication function of the receiving unit 251 may conform to standards other than Bluetooth (registered trademark) and WiFi (registered trademark).
- the learning unit 253 acquires feature amount data from the receiving unit 251 .
- the learning unit 253 performs learning using the acquired feature amount data.
- the learning unit 253 generates a physical ability estimation model that outputs five-item scores related to the risk of falling according to input of the feature amount data by learning using the feature amount data.
- the learning unit 253 uses the feature amount data extracted from the sensor data measured according to the movement of the subject's leg as explanatory variables, and the score of five items related to the risk of falling as objective variables. Learn as data.
- the learning unit 253 generates a muscle strength estimation model that outputs the muscle strength score of the evaluation target muscle according to the input of the scores of the five items related to the fall risk through learning using the scores of the five items.
- the learning unit 253 learns teacher data in which at least one of the scores of the five items is used as an explanatory variable and the muscle strength score of the muscle to be evaluated is used as an objective variable. For example, the learning unit 253 generates an estimation model according to attribute data. The learning unit 253 causes the storage unit 255 to store the estimated models learned for a plurality of subjects.
- the learning unit 253 performs learning using a linear regression algorithm.
- the learning unit 253 performs learning using a Support Vector Machine (SVM) algorithm.
- the learning unit 253 performs learning using a Gaussian Process Regression (GPR) algorithm.
- the learning unit 253 performs learning using a random forest (RF) algorithm.
- the learning unit 253 may perform unsupervised learning for classifying the subjects who generated the feature amount data according to the feature amount data.
- a learning algorithm executed by the learning unit 253 is not particularly limited.
- the learning unit 253 may perform learning using the walking waveform data for one step cycle as an explanatory variable. For example, the learning unit 253 performs supervised learning using walking waveform data of accelerations in three-axis directions, angular velocities around three axes, and angles (posture angles) around three axes as explanatory variables, and correct values of muscle strength indices as objective variables. to run. For example, if the walking phase is set in increments of 1% in the walking cycle from 0% to 100%, the learning unit 253 learns using 909 explanatory variables.
- FIG. 27 is a conceptual diagram for explaining learning for generating a physical ability estimation model for estimating physical ability scores related to fall risk.
- FIG. 27 is a conceptual diagram showing an example of learning by the learning unit 253 using, as teacher data, a data set of feature amounts that are explanatory variables and scores that are objective variables corresponding to the feature amounts.
- a data set of the feature values AM1 to AM4 and the male total muscle strength score S1 is used as teacher data for learning the model for estimating the male total muscle strength score S1.
- a data set of the feature values AF1 to AF3 and the female total muscle strength score S1 is used as teacher data for learning the model for estimating the female total muscle strength score S1.
- a data set of the feature values B1 to B5 and the dynamic balance score S2 is used as teacher data for learning the model for estimating the dynamic balance score S2.
- a data set of the feature values C1 to C4 and the leg muscle strength score S3 is used as teacher data for learning the model for estimating the leg muscle strength score S3.
- a data set of the feature values D1 to D6 and the mobility score S4 is used as teacher data for learning the model for estimating the mobility score S4.
- a data set of the feature values E1 to E7 and the static balance score S5 is used as teacher data for learning the model for estimating the static balance score S5.
- the learning unit 253 learns data about a plurality of subjects, and generates a physical ability estimation model that outputs a physical ability score of five items related to fall risk according to the input of feature values extracted from sensor data. do.
- a plurality of estimation models included in the physical ability estimation model may be generated individually, or a plurality of estimation models may be generated collectively.
- FIG. 28 is a conceptual diagram for explaining learning for generating a muscle strength estimation model.
- FIG. 28 is a conceptual diagram showing an example of learning by the learning unit 253 using a data set of five-item scores, which are explanatory variables, and muscle strength scores, which are objective variables, as teacher data (n is a natural number).
- the overall muscle strength score S1, the dynamic balance score S2, the leg muscle strength score S3, the mobility score S4, and the static balance score S5 are used as explanatory variables, and the muscle strength scores MS1 to MSn are used as objective variables.
- the learning unit 253 learns data about a plurality of subjects, and generates a muscle strength estimation model that outputs a muscle strength score (muscle strength index) according to the input of feature amounts extracted from sensor data.
- the storage unit 255 stores an estimation model that is learned for a plurality of subjects and used for estimating the muscle strength of the evaluation target muscle.
- the estimation model stored in the storage unit 255 is used for muscle strength estimation by the muscle strength evaluation device 13 of the first embodiment.
- the learning system of this embodiment includes a gait measuring device and a learning device.
- a gait measuring device acquires time-series data of sensor data relating to leg movements.
- the gait measuring device extracts walking waveform data for one step cycle from time-series data of sensor data, and normalizes the extracted walking waveform data.
- the gait measuring device extracts, from the normalized walking waveform data, a feature amount used for evaluation of the evaluation target muscle of the user from a walking phase cluster composed of at least one temporally continuous walking phase.
- the gait measuring device generates feature amount data including the extracted feature amount.
- the gait measuring device outputs the generated feature amount data to the learning device.
- the learning device has a receiving unit, a learning unit, and a storage unit.
- the receiving unit acquires feature amount data generated by the gait measuring device.
- the learning unit performs learning using the feature amount data.
- the learning unit generates an estimation model that outputs muscle strength of an evaluation target muscle according to an input of a feature amount of a walking phase cluster extracted from time-series data of sensor data measured as the user walks.
- the estimation model generated by the learning unit is stored in the storage unit.
- the learning system of this embodiment uses the feature amount data measured by the gait measuring device to generate an estimation model. Therefore, according to this aspect, it is possible to generate an estimation model that makes it possible to evaluate the muscle strength of the muscles related to the risk of falling according to the gait in daily life without using a device for evaluating muscle strength. .
- the gait measuring device measures at least one of the five items of total body muscle strength, dynamic balance, leg muscle strength, locomotion ability, and static balance from the normalized walking waveform data. Extract features related to .
- the learning unit uses a feature amount related to at least one of the five items as an explanatory variable, and the learning using teacher data in which the score of the five items corresponding to the feature amount used as the explanatory variable is the objective variable.
- Generate a model physical capacity estimation model.
- the learning unit generates a muscle strength estimation model that outputs a muscle strength score of the muscle to be evaluated in accordance with an input score for at least one of the five items.
- a physical ability estimation model capable of estimating a score related to the five items according to the input of the feature amount related to the five items.
- a muscle strength estimation model that enables evaluation of the muscle strength of the evaluation target muscle in accordance with the input of scores related to the five items.
- the muscle strength evaluation device of this embodiment has a simplified configuration of the muscle strength evaluation device included in the muscle strength evaluation system of the first embodiment.
- FIG. 29 is a block diagram showing an example of the configuration of the muscle strength evaluation device 33 according to this embodiment.
- the muscle strength evaluation device 33 includes a data acquisition section 331 , a storage section 332 , an evaluation section 333 and an output section 335 .
- the data acquisition unit 331 acquires feature amount data including the feature amount used for estimating the strength of the evaluation target muscle related to the risk of falling, which is extracted from the sensor data relating to the movement of the user's legs.
- the storage unit 332 stores an estimation model that outputs a muscle strength index of an evaluation target muscle according to the input of feature amount data.
- the evaluation unit 333 inputs the acquired feature amount data to the estimation model, and evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength index output from the estimation model.
- the output unit 335 outputs information about the evaluation results regarding the muscle strength of the user's evaluation target muscle.
- the muscle strength of the evaluation target muscles of the user is evaluated using feature amounts extracted from sensor data relating to the movement of the user's legs. Therefore, according to the present embodiment, it is possible to evaluate the muscle strength of the muscles related to the risk of falling according to the gait in daily life without using an instrument for evaluating muscle strength.
- the information processing device 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input/output interface 95, and a communication interface 96.
- the interface is abbreviated as I/F (Interface).
- Processor 91 , main storage device 92 , auxiliary storage device 93 , input/output interface 95 , and communication interface 96 are connected to each other via bus 98 so as to enable data communication.
- the processor 91 , the main storage device 92 , the auxiliary storage device 93 and the input/output interface 95 are connected to a network such as the Internet or an intranet via a communication interface 96 .
- the processor 91 loads the program stored in the auxiliary storage device 93 or the like into the main storage device 92 .
- the processor 91 executes programs developed in the main memory device 92 .
- a configuration using a software program installed in the information processing device 90 may be used.
- the processor 91 executes control and processing according to each embodiment.
- the main storage device 92 has an area in which programs are expanded.
- a program stored in the auxiliary storage device 93 or the like is developed in the main storage device 92 by the processor 91 .
- the main memory device 92 is realized by a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, as the main storage device 92, a non-volatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured/added.
- the auxiliary storage device 93 stores various data such as programs.
- the auxiliary storage device 93 is implemented by a local disk such as a hard disk or flash memory. It should be noted that it is possible to store various data in the main storage device 92 and omit the auxiliary storage device 93 .
- the input/output interface 95 is an interface for connecting the information processing device 90 and peripheral devices based on standards and specifications.
- a communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on standards and specifications.
- the input/output interface 95 and the communication interface 96 may be shared as an interface for connecting with external devices.
- Input devices such as a keyboard, mouse, and touch panel may be connected to the information processing device 90 as necessary. These input devices are used to enter information and settings.
- a touch panel is used as an input device, the display screen of the display device may also serve as an interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input/output interface 95 .
- the information processing device 90 may be equipped with a display device for displaying information.
- the information processing device 90 is preferably provided with a display control device (not shown) for controlling the display of the display device.
- the display device may be connected to the information processing device 90 via the input/output interface 95 .
- the information processing device 90 may be equipped with a drive device. Between the processor 91 and a recording medium (program recording medium), the drive device mediates reading of data and programs from the recording medium, writing of processing results of the information processing device 90 to the recording medium, and the like.
- the drive device may be connected to the information processing device 90 via the input/output interface 95 .
- the above is an example of the hardware configuration for enabling control and processing according to each embodiment of the present invention.
- the hardware configuration of FIG. 30 is an example of a hardware configuration for executing control and processing according to each embodiment, and does not limit the scope of the present invention.
- the scope of the present invention also includes a program that causes a computer to execute control and processing according to each embodiment.
- the scope of the present invention also includes a program recording medium on which the program according to each embodiment is recorded.
- the recording medium can be implemented as an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
- the recording medium may be implemented by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card.
- the recording medium may be realized by a magnetic recording medium such as a flexible disk, or other recording medium.
- each embodiment may be combined arbitrarily. Also, the components of each embodiment may be realized by software or by circuits.
- (Appendix 1) a data acquisition unit that acquires feature amount data including feature amounts used for estimating muscle strength of evaluation target muscles related to fall risk, which are extracted from sensor data related to user's leg movements; a storage unit that stores an estimation model that outputs a muscle strength index of the evaluation target muscle according to the input of the feature amount data; an evaluation unit that inputs the acquired feature amount data into the estimation model and evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength index output from the estimation model;
- a muscle strength evaluation device comprising: an output unit configured to output information regarding an evaluation result regarding muscle strength of the evaluation target muscle of the user.
- the storage unit a physical ability estimation model that outputs the physical ability score according to the input of the feature value used to estimate the physical ability score related to the risk of falling; storing a muscle strength estimation model that outputs a muscle strength score of the evaluation target muscle according to the input of the physical ability score;
- the data acquisition unit Acquiring a feature amount used for estimating the physical ability score extracted from walking waveform data generated using the time series data of the sensor data;
- the evaluation unit Inputting the acquired feature quantity into the physical ability estimation model, inputting the physical ability score output from the estimation model into the muscle strength estimation model;
- the muscle strength evaluation device according to appendix 1, which evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength score output from the muscle strength estimation model.
- the storage unit The physical ability estimation model generated by learning using teacher data in which the feature values used for estimating the physical ability scores of the plurality of subjects are explanatory variables, and the physical ability scores of the plurality of subjects are objective variables. and, and storing the muscle strength estimation model generated by learning using teacher data with respect to the plurality of subjects, with the physical ability score as an explanatory variable and with the muscle strength score of the evaluation target muscle with respect to the plurality of subjects as an objective variable.
- the evaluation unit inputting the feature amount used for estimating the physical ability score obtained for the user into the physical ability estimation model; inputting the physical ability score output from the estimation model into the muscle strength estimation model;
- the muscle strength evaluation device according to appendix 2, which evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength score output from the muscle strength estimation model.
- the storage unit storing the estimated model learned using explanatory variables including attribute data of the plurality of subjects;
- the evaluation unit The feature amount and the attribute data relating to the user are input to the estimation model, and the muscle strength of the evaluation target muscle of the user is evaluated according to the muscle strength index of the user output from the estimation model. muscle strength evaluation device.
- the storage unit Features used for estimating the physical ability score of at least one of the five physical abilities of total body muscle strength, dynamic balance, leg muscle strength, locomotion ability, and static balance for the plurality of subjects the physical ability estimation model generated by learning using teacher data with the quantity as an explanatory variable and the physical ability score regarding at least one of the five items of the plurality of subjects as an objective variable; With respect to the plurality of subjects, teacher data in which the physical ability score regarding at least one of the five items of physical ability is used as an explanatory variable, and the muscle strength score of the muscle to be evaluated regarding the plurality of subjects is used as an objective variable.
- the data acquisition unit Acquiring a feature amount used for estimating the physical ability score extracted from the walking waveform data,
- the evaluation unit inputting the feature value obtained for the user into the physical ability estimation model; inputting the physical ability score output from the physical ability estimation model into the muscle strength estimation model; 5.
- the muscle strength evaluation device according to appendix 3 or 4, which evaluates the muscle strength of the evaluation target muscle of the user according to the muscle strength score output from the muscle strength estimation model.
- the storage unit storing the specific gravity of the muscle to be evaluated related to the five items of physical performance and the specific gravity coefficient of the muscle to be evaluated predetermined by the five physical performance tests;
- the evaluation unit Specific weight of the muscle to be evaluated in physical ability related to the muscle to be evaluated, weighting coefficient of the muscle to be evaluated in physical ability related to the muscle to be evaluated, and physical ability related to physical ability related to the muscle to be evaluated calculating the strength score for the assessed muscle using the product with the score;
- the muscle strength evaluation device according to appendix 5, which evaluates the muscle strength of the evaluation target muscle according to the calculated muscle strength score of the evaluation target muscle.
- a muscle strength evaluation device according to any one of Appendices 1 to 6; It is installed in the user's footwear to be evaluated for muscle strength, measures spatial acceleration and spatial angular velocity, generates sensor data related to foot movement using the measured spatial acceleration and spatial angular velocity, and outputs the generated sensor data.
- a sensor to output and gait waveform data for one step cycle are extracted from the time-series data of the sensor data, the extracted gait waveform data is normalized, and the muscle strength of the muscle to be evaluated is obtained from the normalized gait waveform data.
- a muscle strength assessment system comprising: (Appendix 8) The muscle strength evaluation device implemented in a terminal device having a screen viewable by the user, 8. The muscle strength evaluation system according to appendix 7, wherein the muscle strength evaluation system according to appendix 7 displays on the screen of the terminal device information about the muscle strength of the evaluation target muscle evaluated according to the feature amount extracted from the sensor data. (Appendix 9) The muscle strength evaluation device 8.
- the muscle strength evaluation system according to appendix 8 wherein recommendation information corresponding to the muscle strength of the evaluation target muscle evaluated according to the feature amount extracted from the sensor data is displayed on the screen of the terminal device.
- the muscle strength evaluation device Supplementary note for displaying on the screen of the terminal device a video related to training for training the evaluation target muscle as the recommendation information corresponding to the muscle strength of the evaluation target muscle evaluated according to the feature amount extracted from the sensor data.
- the muscle strength evaluation system according to 9. (Appendix 11) The muscle strength evaluation device A training menu for training a body part related to the muscle strength of the evaluation target muscle is displayed on the screen of the terminal device as the recommendation information corresponding to the muscle strength of the evaluation target muscle evaluated in accordance with the feature amount extracted from the sensor data. 11.
- the muscle strength evaluation system according to appendix 9 or 10 displayed on.
- Appendix 12 the computer Obtaining feature amount data including feature amounts used for estimating muscle strength of evaluation target muscles related to fall risk extracted from sensor data related to user's leg movements, inputting the acquired feature amount data into an estimation model that outputs a muscle strength index of the evaluation target muscle according to the input of the feature amount data; evaluating the muscle strength of the evaluation target muscle of the user according to the muscle strength index output from the estimation model; A muscle strength evaluation method for outputting information related to evaluation results regarding the muscle strength of the evaluation target muscle of the user.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physiology (AREA)
- Dentistry (AREA)
- Physical Education & Sports Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
日常生活における歩容に応じて、転倒リスクに関連する筋肉の筋力を評価するために、ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得するデータ取得部と、特徴量データの入力に応じて、評価対象筋肉の筋力指標を出力する推定モデルを記憶する記憶部と、取得された特徴量データを推定モデルに入力し、推定モデルから出力された筋力指標に応じて、ユーザの評価対象筋肉の筋力を評価する評価部と、ユーザの評価対象筋肉の筋力に関する評価結果に関する情報を出力する出力部と、を備える筋力評価装置とする。
Description
本開示は、足の動きに関するセンサデータを用いて、筋力を評価する筋力評価装置等に関する。
ヘルスケアへの関心の高まりに伴って、歩行パターンに含まれる特徴(歩容とも呼ぶ)に応じた情報を提供するサービスに、注目が集まっている。例えば、靴等の履物に実装されたセンサによって計測されるセンサデータに基づいて、歩容を解析する技術が開発されている。センサデータの時系列データには、身体状態と関連する歩容事象(歩行イベントとも呼ぶ)の特徴が現れる。
特許文献1には、歩行者の歩行の特徴に基づいて足の異常を検出する装置について開示されている。特許文献1の装置は、履物に設置されたセンサから取得されたデータを用いて、履物を履いた歩行者の歩行において特徴的な歩行特徴量を抽出する。特許文献1の装置は、抽出された歩行特徴量に基づいて、履物を履いて歩行する歩行者の異常を検出する。例えば、特許文献1の装置は、一歩行周期分の歩行波形データから、外反母趾に関する特徴部位を抽出する。特許文献1の装置は、抽出された特徴部位の歩行特徴量を用いて、外反母趾の進行状態を推定する。
転倒は、高齢者に対して、様々な傷害を与える可能性がある。筋力低下などの身体能力の低下は、転倒リスクの要因になりうる。筋力低下の要因には、個人差がある。そのため、個人に合わせた筋力低下に対する対策が必要とされる。歩容に応じて歩行に関連する筋肉を評価できれば、転倒リスクの低下につながるトレーニングを、個人に応じて薦めることができる。
特許文献2には、自宅でトレーニングを実施しているユーザに対して、専門家が個別指導を行うトレーニング支援システムについて開示されている。特許文献2のシステムは、ユーザの身体能力の試験結果、ユーザ識別情報、および試験実施に係る時間情報を対応付けて、記憶する。特許文献2のシステムは、複数の試験実施に係る時間情報に関して、複数の試験結果間における変動を評価する。特許文献2のシステムは、試験結果間における変動に基づいて、トレーニング情報を更新すべき旨の通知を行う。
特許文献1の手法では、履物に設置されたセンサから取得されたデータから抽出された特徴部位の歩行特徴量を用いて、外反母趾の進行状態を推定する。特許文献1には、履物に設置されたセンサから取得されたデータから抽出された特徴部位の歩行特徴量を用いて、易転倒性を推定することは開示されていない。
特許文献2の手法によれば、ユーザの身体能力の低下に応じたトレーニングを処方できる。しかしながら、特許文献2の手法では、身体能力の低下の要因である筋肉を特定できない。そのため、特許文献2の手法では、身体能力の低下の要因である筋肉を鍛えるための適切なトレーニングを処方できなかった。
本開示の目的は、日常生活における歩容に応じて、転倒リスクに関連する筋肉の筋力を評価できる筋力評価装置等を提供することにある。
本開示の一態様の筋力評価装置は、ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得するデータ取得部と、特徴量データの入力に応じて、評価対象筋肉の筋力指標を出力する推定モデルを記憶する記憶部と、取得された特徴量データを推定モデルに入力し、推定モデルから出力された筋力指標に応じて、ユーザの評価対象筋肉の筋力を評価する評価部と、ユーザの評価対象筋肉の筋力に関する評価結果に関する情報を出力する出力部と、を備える。
本開示の一態様の筋力評価方法においては、ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得し、取得された特徴量データを、特徴量データの入力に応じて評価対象筋肉の筋力指標を出力する推定モデルに入力し、推定モデルから出力された筋力指標に応じて、ユーザの評価対象筋肉の筋力を評価し、ユーザの評価対象筋肉の筋力に関する評価結果に関する情報を出力する。
本開示の一態様のプログラムは、ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得する処理と、取得された特徴量データを、特徴量データの入力に応じて評価対象筋肉の筋力指標を出力する推定モデルに入力する処理と、推定モデルから出力された筋力指標に応じて、ユーザの評価対象筋肉の筋力を評価する処理と、ユーザの評価対象筋肉の筋力に関する評価結果に関する情報を出力する処理と、をコンピュータに実行させる。
本開示によれば、本開示の目的は、日常生活における歩容に応じて、転倒リスクに関連する筋肉の筋力を評価できる筋力評価装置等を提供することが可能になる。
以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。
(第1の実施形態)
まず、第1の実施形態に係る筋力評価システムについて図面を参照しながら説明する。本実施形態の筋力評価システムは、ユーザの歩行に応じた足の動きに関するセンサデータを計測する。本実施形態の筋力評価システムは、計測されたセンサデータを用いて、そのユーザの筋力を推定する。
まず、第1の実施形態に係る筋力評価システムについて図面を参照しながら説明する。本実施形態の筋力評価システムは、ユーザの歩行に応じた足の動きに関するセンサデータを計測する。本実施形態の筋力評価システムは、計測されたセンサデータを用いて、そのユーザの筋力を推定する。
本実施形態では、歩行パターンに含まれる特徴(歩容とも呼ぶ)と、転倒リスクに関連する筋肉(評価対象筋肉とも呼ぶ)との関連性に応じて、筋力を推定する例を挙げる。評価対象筋肉の筋力は、歩容パラメータの変動性に基づいて評価できる。本実施形態では、歩容に関連する五つの関連項目(五項目とも呼ぶ)に基づいて、筋力を推定する。五項目は、全身の総合筋力(握力)、動的バランス、下肢筋力、移動能力、および静的バランスに関する。これらの五項目は、筋力との相関を有する。五項目は、互いにある程度の関連性があるが、基本的に独立しているとみなすことができる。本実施形態においては、主に、五項目の全てに基づいて筋力を推定する例を挙げる。筋力は、五項目のうち少なくとも一つに基づいて、推定できる。五項目に関連する筋力の低下は、転倒リスクを高める要因となる。
(構成)
図1は、本実施形態に係る筋力評価システム1の構成の一例を示すブロック図である。筋力評価システム1は、歩容計測装置10と筋力評価装置13を備える。本実施形態においては、歩容計測装置10と筋力評価装置13が別々のハードウェアに構成される例について説明する。例えば、歩容計測装置10は、筋力の推定対象である被験者(ユーザ)の履物等に設置される。例えば、筋力評価装置13の機能は、被験者(ユーザ)の携帯する携帯端末にインストールされる。以下においては、歩容計測装置10および筋力評価装置13の構成について、個別に説明する。
図1は、本実施形態に係る筋力評価システム1の構成の一例を示すブロック図である。筋力評価システム1は、歩容計測装置10と筋力評価装置13を備える。本実施形態においては、歩容計測装置10と筋力評価装置13が別々のハードウェアに構成される例について説明する。例えば、歩容計測装置10は、筋力の推定対象である被験者(ユーザ)の履物等に設置される。例えば、筋力評価装置13の機能は、被験者(ユーザ)の携帯する携帯端末にインストールされる。以下においては、歩容計測装置10および筋力評価装置13の構成について、個別に説明する。
〔歩容計測装置〕
図2は、歩容計測装置10の構成の一例を示すブロック図である。歩容計測装置10は、センサ11と特徴量データ生成部12を有する。本実施形態においては、センサ11と特徴量データ生成部12が一体化された例を挙げる。センサ11と特徴量データ生成部12は、別々の装置として提供されてもよい。
図2は、歩容計測装置10の構成の一例を示すブロック図である。歩容計測装置10は、センサ11と特徴量データ生成部12を有する。本実施形態においては、センサ11と特徴量データ生成部12が一体化された例を挙げる。センサ11と特徴量データ生成部12は、別々の装置として提供されてもよい。
図2のように、センサ11は、加速度センサ111と角速度センサ112を有する。図2には、加速度センサ111と角速度センサ112が、センサ11に含まれる例を挙げる。センサ11には、加速度センサ111および角速度センサ112以外のセンサが含まれてもよい。センサ11に含まれうる加速度センサ111および角速度センサ112以外のセンサについては、説明を省略する。
加速度センサ111は、3軸方向の加速度(空間加速度とも呼ぶ)を計測するセンサである。加速度センサ111は、足の動きに関する物理量として、加速度(空間加速度とも呼ぶ)を計測する。加速度センサ111は、計測した加速度を特徴量データ生成部12に出力する。例えば、加速度センサ111には、圧電型や、ピエゾ抵抗型、静電容量型等の方式のセンサを用いることができる。加速度センサ111として用いられるセンサは、加速度を計測できれば、その計測方式に限定を加えない。
角速度センサ112は、3軸周りの角速度(空間角速度とも呼ぶ)を計測するセンサである。角速度センサ112は、足の動きに関する物理量として、角速度(空間角速度とも呼ぶ)を計測する。角速度センサ112は、計測した角速度を特徴量データ生成部12に出力する。例えば、角速度センサ112には、振動型や静電容量型等の方式のセンサを用いることができる。角速度センサ112として用いられるセンサは、角速度を計測できれば、その計測方式に限定を加えない。
センサ11は、例えば、加速度や角速度を計測する慣性計測装置によって実現される。慣性計測装置の一例として、IMU(Inertial Measurement Unit)が挙げられる。IMUは、3軸方向の加速度を計測する加速度センサ111と、3軸周りの角速度を計測する角速度センサ112を含む。センサ11は、VG(Vertical Gyro)やAHRS(Attitude Heading)などの慣性計測装置によって実現されてもよい。また、センサ11は、GPS/INS(Global Positioning System/Inertial Navigation System)によって実現されてもよい。センサ11は、足の動きに関する物理量を計測できれば、慣性計測装置以外の装置によって実現されてもよい。
図3は、右足の靴100の中に、歩容計測装置10が配置される一例を示す概念図である。図3の例では、足弓の裏側に当たる位置に、歩容計測装置10が設置される。例えば、歩容計測装置10は、靴100の中に挿入されるインソールに配置される。例えば、歩容計測装置10は、靴100の底面に配置されてもよい。例えば、歩容計測装置10は、靴100の本体に埋設されてもよい。歩容計測装置10は、靴100から着脱できてもよいし、靴100から着脱できなくてもよい。歩容計測装置10は、足の動きに関するセンサデータを計測できさえすれば、足弓の裏側ではない位置に設置されてもよい。また、歩容計測装置10は、ユーザが履いている靴下や、ユーザが装着しているアンクレット等の装飾品に設置されてもよい。また、歩容計測装置10は、足に直に貼り付けられたり、足に埋め込まれたりしてもよい。図3には、右足の靴100に歩容計測装置10が設置される例を示す。歩容計測装置10は、両足の靴100に設置されてもよい。
図3の例では、歩容計測装置10(センサ11)を基準として、左右方向のx軸、前後方向のy軸、上下方向のz軸を含むローカル座標系が設定される。x軸は左方を正とし、y軸は後方を正とし、z軸は上方を正とする。センサ11に設定される軸の向きは、左右の足で同じでもよく、左右の足で異なっていてもよい。例えば、同じスペックで生産されたセンサ11が左右の靴100の中に配置される場合、左右の靴100に配置されるセンサ11の上下の向き(Z軸方向の向き)は、同じ向きである。その場合、左足に由来するセンサデータに設定されるローカル座標系の3軸と、右足に由来するセンサデータに設定されるローカル座標系の3軸とは、左右で同じにある。
図4は、足弓の裏側に設置された歩容計測装置10(センサ11)に設定されるローカル座標系(x軸、y軸、z軸)と、地面に対して設定される世界座標系(X軸、Y軸、Z軸)について説明するための概念図である。世界座標系(X軸、Y軸、Z軸)では、進行方向に正対した状態のユーザが直立した状態で、ユーザの横方向がX軸方向(左向きが正)、ユーザの背面の方向がY軸方向(後ろ向きが正)、重力方向がZ軸方向(鉛直上向きが正)に設定される。なお、図4の例は、ローカル座標系(x軸、y軸、z軸)と世界座標系(X軸、Y軸、Z軸)の関係を概念的に示すものであり、ユーザの歩行に応じて変動するローカル座標系と世界座標系の関係を正確に示すものではない。
図5は、人体に対して設定される面(人体面とも呼ぶ)について説明するための概念図である。本実施形態では、身体を左右に分ける矢状面、身体を前後に分ける冠状面、身体を水平に分ける水平面が定義される。なお、図5のように、足の中心線を進行方向に向けて直立した状態では、世界座標系とローカル座標系が一致する。本実施形態においては、x軸を回転軸とする矢状面内の回転をロール、y軸を回転軸とする冠状面内の回転をピッチ、z軸を回転軸とする水平面内の回転をヨーと定義する。また、x軸を回転軸とする矢状面内の回転角をロール角、y軸を回転軸とする冠状面内の回転角をピッチ角、z軸を回転軸とする水平面内の回転角をヨー角と定義する。
図2のように、特徴量データ生成部12(特徴量データ生成装置とも呼ぶ)は、取得部121、正規化部122、抽出部123、生成部125、および特徴量データ出力部127を有する。例えば、特徴量データ生成部12は、歩容計測装置10の全体制御やデータ処理を行うマイクロコンピュータまたはマイクロコントローラによって実現される。例えば、特徴量データ生成部12は、CPU(Central Processing Unit)やRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等を有する。特徴量データ生成部12は、加速度センサ111および角速度センサ112を制御して、角速度や加速度を計測する。例えば、特徴量データ生成部12は、被験者(ユーザ)の携帯する携帯端末(図示しない)の側に実装されてもよい。
取得部121は、加速度センサ111から、3軸方向の加速度を取得する。また、取得部121は、角速度センサ112から、3軸周りの角速度を取得する。例えば、取得部121は、取得された角速度および加速度等の物理量(アナログデータ)をAD変換(Analog-to-Digital Conversion)する。なお、加速度センサ111および角速度センサ112によって計測された物理量(アナログデータ)は、加速度センサ111および角速度センサ112の各々においてデジタルデータに変換されてもよい。取得部121は、変換後のデジタルデータ(センサデータとも呼ぶ)を正規化部122に出力する。取得部121は、図示しない記憶部に、センサデータを記憶させるように構成されてもよい。センサデータには、デジタルデータに変換された加速度データと、デジタルデータに変換された角速度データとが少なくとも含まれる。加速度データは、3軸方向の加速度ベクトルを含む。角速度データは、3軸周りの角速度ベクトルを含む。加速度データおよび角速度データには、それらのデータの取得時間が紐付けられる。また、取得部121は、加速度データおよび角速度データに対して、実装誤差や温度補正、直線性補正などの補正を加えてもよい。
正規化部122は、取得部121からセンサデータを取得する。正規化部122は、センサデータに含まれる3軸方向の加速度および3軸周りの角速度の時系列データから、一歩行周期分の時系列データ(歩行波形データとも呼ぶ)を抽出する。正規化部122は、抽出された一歩行周期分の歩行波形データの時間を、0~100%(パーセント)の歩行周期に正規化(第1正規化とも呼ぶ)する。0~100%の歩行周期に含まれる1%や10%などのタイミングを、歩行フェーズとも呼ぶ。また、正規化部122は、第1正規化された一歩行周期分の歩行波形データに関して、立脚相が60%、遊脚相が40%になるように正規化(第2正規化とも呼ぶ)する。立脚相は、足の裏側の少なくとも一部が地面に接している期間である。遊脚相は、足の裏側が地面から離れている期間である。歩行波形データを第2正規化すれば、特徴量が抽出される歩行フェーズのずれが、外乱の影響でぶれることを抑制できる。
図6は、右足を基準とする一歩行周期について説明するための概念図である。左足を基準とする一歩行周期も、右足と同様である。図6の横軸は、右足の踵が地面に着地した時点を起点とし、次に右足の踵が地面に着地した時点を終点とする右足の一歩行周期である。図6の横軸は、一歩行周期を100%として第1正規化されている。また、図6の横軸は、立脚相が60%、遊脚相が40%になるように第2正規化されている。片足の一歩行周期は、足の裏側の少なくとも一部が地面に接している立脚相と、足の裏側が地面から離れている遊脚相とに大別される。立脚相は、さらに、荷重応答期T1、立脚中期T2、立脚終期T3、遊脚前期T4に細分される。遊脚相は、さらに、遊脚初期T5、遊脚中期T6、遊脚終期T7に細分される。なお、図6は一例であって、一歩行周期を構成する期間や、それらの期間の名称等を限定するものではない。
図6のように、歩行においては、複数の事象(歩行イベントとも呼ぶ)が発生する。P1は、右足の踵が接地する事象(踵接地)を表す(HC:Heel Contact)。P2は、右足の足裏が接地した状態で、左足の爪先が地面から離れる事象(反対足爪先離地)を表す(OTO:Opposite Toe Off)。P3は、右足の足裏が接地した状態で、右足の踵が持ち上がる事象(踵持ち上がり)を表す(HR:Heel Rise)。P4は、左足の踵が接地した事象(反対足踵接地)である(OHS:Opposite Heel Strike)。P5は、左足の足裏が接地した状態で、右足の爪先が地面から離れる事象(爪先離地)を表す(TO:Toe Off)。P6は、左足の足裏が接地した状態で、左足と右足が交差する事象(足交差)を表す(FA:Foot Adjacent)。P7は、左足の足裏が接地した状態で、右足の脛骨が地面に対してほぼ垂直になる事象(脛骨垂直)を表す(TV:Tibia Vertical)。P8は、右足の踵が接地する事象(踵接地)を表す(HC:Heel Contact)。P8は、P1から始まる歩行周期の終点に相当するとともに、次の歩行周期の起点に相当する。なお、図6は一例であって、歩行において発生する事象や、それらの事象の名称を限定するものではない。
図7は、歩容パラメータの一例について説明するための概念図である。図7には、右足ステップ長SR、左足ステップ長SL、ストライド長T、歩隔W、足角F、および分回し量DIを図示する。また、図7には、進行方向の軸(Y軸)に平行であり、左右の足の中間を結ぶ軌跡に相当する進行軸PAを図示する。右足ステップ長SRは、左足の足裏が接地した状態から、進行方向に振り出された右足の踵が着地した状態に遷移した際の、右足の踵と左足の踵とのY座標の差である。左足ステップ長SLは、右足の足裏が接地した状態から、進行方向に振り出された左足の踵が着地した状態に遷移した際の、左足の踵と右足の踵とのY座標の差である。ストライド長Tは、右足ステップ長SRと左足ステップ長SLの和である。歩隔Wは、右足と左足の間隔である。図7において、歩隔Wは、接地した状態における右足の踵の中心線(X座標)と、接地した状態における左足の踵の中心線(X座標)との差である。足角Fは、足裏面が接地した状態において、足の中心線と進行方向(Y軸)が成す角度である。本実施形態においては、立脚相において、足が接地している状態の足角を評価する。分回し量DIは、遊脚相において足の中心軸が進行軸PAから最も離れたタイミングにおける、進行軸PAと足の距離である。本実施形態において、分回し量DIは、下肢の長さが影響するので、身長で正規化される。
図8は、進行方向加速度(Y方向加速度)の時系列データ(実線)から、踵接地HCや爪先離地TOを検出する一例について説明するための図である。踵接地HCのタイミングは、進行方向加速度(Y方向加速度)の時系列データに表れる極大ピークの直後の極小ピークのタイミングである。踵接地HCのタイミングの目印になる極大ピークは、一歩行周期分の歩行波形データの最大ピークに相当する。連続する踵接地HCの間の区間が、一歩行周期である。爪先離地TOのタイミングは、進行方向加速度(Y方向加速度)の時系列データに変動が表れない立脚相の期間の後に表れる極大ピークの立ち上がりのタイミングである。図8には、ロール角(X軸周り角速度)の時系列データ(破線)も示す。ロール角が最小のタイミングと、ロール角が最大のタイミングとの中点のタイミングが、立脚中期に相当する。例えば、歩行速度や、歩幅、分回し、内旋/外旋、底屈/背屈などのパラメータ(歩容パラメータとも呼ぶ)は、立脚中期を基準として求めることができる。
図9は、正規化部122によって正規化された歩行波形データの一例について説明するための図である。正規化部122は、進行方向加速度(Y方向加速度)の時系列データから、踵接地HCと爪先離地TOを検出する。正規化部122は、連続する踵接地HCの間の区間を、一歩行周期分の歩行波形データとして抽出する。正規化部122は、第1正規化によって、一歩行周期分の歩行波形データの横軸(時間軸)を、0~100%の歩行周期に変換する。図9には、第1正規化後の歩行波形データを破線で示す。第1正規化後の歩行波形データ(破線)では、爪先離地TOのタイミングが60%からずれている。
図9の例において、正規化部122は、歩行フェーズが0%の踵接地HCから、その踵接地HCに後続する爪先離地TOまでの区間を0~60%に正規化する。また、正規化部122は、爪先離地TOから、爪先離地TOに後続する歩行フェーズが100%の踵接地HCまでの区間を60~100%に正規化する。その結果、一歩行周期分の歩行波形データは、歩行周期が0~60%の区間(立脚相)と、歩行周期が60~100%の区間(遊脚相)とに正規化される。図9には、第2正規化後の歩行波形データを実線で示す。第2正規化後の歩行波形データ(実線)では、爪先離地TOのタイミングが60%に一致する。
図8~図9には、進行方向加速度(Y方向加速度)に基づいて、一歩行周期分の歩行波形データを抽出/正規化する例を示した。進行方向加速度(Y方向加速度)以外の加速度/角速度に関して、正規化部122は、進行方向加速度(Y方向加速度)の歩行周期に合わせて、一歩行周期分の歩行波形データを抽出/正規化する。また、正規化部122は、3軸周りの角速度の時系列データを積分することで、3軸周りの角度の時系列データを生成してもよい。その場合、正規化部122は、3軸周りの角度に関しても、進行方向加速度(Y方向加速度)の歩行周期に合わせて、一歩行周期分の歩行波形データを抽出/正規化する。
正規化部122は、進行方向加速度(Y方向加速度)以外の加速度/角速度に基づいて、一歩行周期分の歩行波形データを抽出/正規化してもよい(図面は省略)。例えば、正規化部122は、垂直方向加速度(Z方向加速度)の時系列データから、踵接地HCや爪先離地TOを検出してもよい。踵接地HCのタイミングは、垂直方向加速度(Z方向加速度)の時系列データに表れる急峻な極小ピークのタイミングである。急峻な極小ピークのタイミングにおいては、垂直方向加速度(Z方向加速度)の値がほぼ0になる。踵接地HCのタイミングの目印になる極小ピークは、一歩行周期分の歩行波形データの最小ピークに相当する。連続する踵接地HCの間の区間が、一歩行周期である。爪先離地TOのタイミングは、垂直方向加速度(Z方向加速度)の時系列データが、踵接地HCの直後の極大ピークの後に変動の小さい区間を経た後に、なだらかに増大する途中の変曲点のタイミングである。また、正規化部122は、進行方向加速度(Y方向加速度)および垂直方向加速度(Z方向加速度)の両方に基づいて、一歩行周期分の歩行波形データを抽出/正規化してもよい。また、正規化部122は、進行方向加速度(Y方向加速度)および垂直方向加速度(Z方向加速度)以外の加速度や角速度、角度等に基づいて、一歩行周期分の歩行波形データを抽出/正規化してもよい。
抽出部123は、正規化部122によって正規化された一歩行周期分の歩行波形データを取得する。抽出部123は、一歩行周期分の歩行波形データから、筋力の推定に用いられる特徴量を抽出する。抽出部123は、予め設定された条件に基づいて、時間的に連続する歩行フェーズを統合した歩行フェーズクラスターから、歩行フェーズクラスターごとの特徴量を抽出する。歩行フェーズクラスターは、少なくとも一つの歩行フェーズを含む。歩行フェーズクラスターには、単一の歩行フェーズも含まれる。筋力の推定に用いられる特徴量が抽出される歩行波形データや歩行フェーズについては、後述する。
図10は、一歩行周期分の歩行波形データから、筋力を推定するための特徴量を抽出することについて説明するための概念図である。例えば、抽出部123は、時間的に連続する歩行フェーズi~i+mを、歩行フェーズクラスターCLとして抽出する(i、mは自然数)。歩行フェーズクラスターCLは、m個の歩行フェーズ(構成要素)を含む。すなわち、歩行フェーズクラスターCLを構成する歩行フェーズ(構成要素)の数(構成要素数とも呼ぶ)は、mである。図10には、歩行フェーズが整数値の例を挙げるが、歩行フェーズは小数点以下まで細分化されてもよい。歩行フェーズが小数点以下まで細分化される場合、歩行フェーズクラスターCLの構成要素数は、歩行フェーズクラスターの区間のデータ点数に応じた数になる。抽出部123は、歩行フェーズi~i+mの各々から特徴量を抽出する。歩行フェーズクラスターCLが単一の歩行フェーズjによって構成される場合、抽出部123は、その単一の歩行フェーズjから特徴量を抽出する(jは自然数)。
生成部125は、歩行フェーズクラスターを構成する歩行フェーズの各々から抽出された特徴量(第1特徴量)に特徴量構成式を適用して、歩行フェーズクラスターの特徴量(第2特徴量)を生成する。特徴量構成式は、歩行フェーズクラスターの特徴量を生成するために、予め設定された計算式である。例えば、特徴量構成式は、四則演算に関する計算式である。例えば、特徴量構成式を用いて算出される第2特徴量は、歩行フェーズクラスターに含まれる各歩行フェーズにおける第1特徴量の積分平均値や算術平均値、傾斜、ばらつきなどである。例えば、生成部125は、歩行フェーズクラスターを構成する歩行フェーズの各々から抽出された第1特徴量の傾斜やばらつきを算出する計算式を、特徴量構成式として適用する。例えば、歩行フェーズクラスターが単独の歩行フェーズで構成される場合は、傾斜やばらつきを算出できないため、積分平均値や算術平均値などを計算する特徴量構成式を用いればよい。
特徴量データ出力部127は、生成部125によって生成された歩行フェーズクラスターごとの特徴量データを出力する。特徴量データ出力部127は、生成された歩行フェーズクラスターの特徴量データを、その特徴量データを用いる筋力評価装置13に出力する。
〔筋力評価装置〕
図11は、筋力評価装置13の構成の一例を示すブロック図である。筋力評価装置13は、データ取得部131、記憶部132、身体能力推定部133、筋力評価部134、および出力部135を有する。身体能力推定部133および筋力評価部134は、評価部130を構成する。
図11は、筋力評価装置13の構成の一例を示すブロック図である。筋力評価装置13は、データ取得部131、記憶部132、身体能力推定部133、筋力評価部134、および出力部135を有する。身体能力推定部133および筋力評価部134は、評価部130を構成する。
データ取得部131は、歩容計測装置10から特徴量データを取得する。データ取得部131は、受信された特徴量データを身体能力推定部133に出力する。データ取得部131は、ケーブルなどの有線を介して特徴量データを歩容計測装置10から受信してもよいし、無線通信を介して特徴量データを歩容計測装置10から受信してもよい。例えば、データ取得部131は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、特徴量データを歩容計測装置10から受信するように構成される。なお、データ取得部131の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。
記憶部132は、歩行波形データから抽出された特徴量データを用いて、評価対象筋肉の筋力を推定する推定モデルを記憶する。記憶部132は、複数の被験者に関して学習された、評価対象筋肉の筋力を推定する推定モデルを記憶する。例えば、記憶部132は、歩行波形データから抽出された特徴量データの入力に応じて、評価対象筋肉の筋力指標(筋力スコアとも呼ぶ)を出力する推定モデルを記憶する。
図12は、評価対象筋肉の筋力に関連する五つの関連項目(五項目とも呼ぶ)について説明するための概念図である。評価対象筋肉の筋力には、全身の総合筋力(握力)、動的バランス、下肢筋力、移動能力、および静的バランスの五項目が関連する。評価対象筋肉の筋力に関連する、全身の総合筋力(握力)、動的バランス、下肢筋力、移動能力、および静的バランスの五項目の詳細については、後述する。
例えば、記憶部132は、評価対象筋肉の筋力の推定に共通する特徴量データの入力に応じて、それらの筋肉の筋力指標(筋力スコア)を出力する推定モデルを記憶する。例えば、記憶部132は、五項目の各々のスコアを推定するために用いられる特徴量データの入力に応じて、五項目の各々のスコアを出力する推定モデル(身体能力推定モデルとも呼ぶ)を記憶する。例えば、記憶部132は、五項目のスコアの入力に応じて、評価対象筋肉の筋力指標(筋力スコア)を出力する推定モデル(筋力推定モデルとも呼ぶ)を記憶する。
推定モデルは、製品の工場出荷時や、筋力評価システム1をユーザが使用する前のキャリブレーション時等のタイミングで、記憶部132に記憶させておけばよい。例えば、外部のサーバ等の記憶装置に保存された推定モデルを用いるように構成してもよい。その場合、その記憶装置と接続されたインターフェース(図示しない)を介して、推定モデルを用いるように構成すればよい。
身体能力推定部133は、データ取得部131から特徴量データを取得する。身体能力推定部133は、取得された特徴量データを用いて、ユーザの身体能力を推定する。身体能力推定部133は、記憶部132に記憶された身体能力推定モデルに特徴量データを入力する。身体能力推定部133は、身体能力推定モデルから出力される身体能力に応じた身体能力指標(スコア)を用いて、ユーザの身体能力を推定する。例えば、身体能力推定部133は、五項目の各々のスコアを推定するために用いられる特徴量データの入力に応じて、五項目の各々のスコアを用いて、ユーザの身体能力を推定する。身体能力推定部133は、身体能力推定モデルから出力された身体能力指標(スコア)を用いた推定結果を、筋力評価部134に出力する。例えば、身体能力推定部133は、特徴量データの入力に応じて身体能力推定モデルから出力された身体能力指標(スコア)を、筋力評価部134に出力する。
筋力評価部134は、特徴量データを用いて身体能力推定部133によって推定された身体能力の推定結果を、身体能力推定部133から取得する。筋力評価部134は、取得された推定結果を用いて、評価対象筋肉の筋力を推定する。例えば、筋力評価部134は、特徴量データの入力に応じて身体能力推定モデルから出力された身体能力指標(スコア)を取得する。筋力評価部134は、記憶部132に記憶された筋力推定モデルに身体能力指標(スコア)を入力する。筋力評価部134は、筋力推定モデルから出力される評価対象筋肉の筋力指標(スコア)を用いて、ユーザの評価対象筋肉の筋力を評価する。例えば、筋力評価部134は、五項目の各々のスコアの入力に応じて、筋力推定モデルから出力された評価対象筋肉の筋力指標(スコア)を、出力部135に出力する。
身体能力推定部133および筋力評価部134は、クラウドやサーバ等に構築された外部の記憶装置に保存された推定モデルを用いてもよい。その場合、身体能力推定部133および筋力評価部134は、その記憶装置と接続されたインターフェース(図示しない)を介して、身体能力推定モデルを用いるように構成される。
出力部135は、筋力評価部134による評価対象筋肉の筋力の評価結果を出力する。例えば、出力部135は、被験者(ユーザ)の携帯端末の画面に、評価対象筋肉の筋力に関する評価結果を表示させる。例えば、出力部135は、評価結果を使用する外部システム等に対して、その評価結果を出力する。筋力評価装置13から出力された評価結果の使用に関しては、特に限定を加えない。
例えば、筋力評価装置13は、被験者(ユーザ)が携帯する携帯端末(図示しない)を介して、クラウドやサーバに構築された外部システム等に接続される。携帯端末(図示しない)は、携帯可能な通信機器である。例えば、携帯端末は、スマートフォンや、スマートウォッチ、携帯電話等の通信機能を有する携帯型の通信機器である。例えば、筋力評価装置13は、ケーブルなどの有線を介して、携帯端末に接続される。例えば、筋力評価装置13は、無線通信を介して、携帯端末に接続される。例えば、筋力評価装置13は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、携帯端末に接続される。なお、筋力評価装置13の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。評価対象筋肉の筋力の評価結果は、携帯端末にインストールされたアプリケーションによって使用されてもよい。その場合、携帯端末は、その携帯端末にインストールされたアプリケーションソフトウェア等によって、評価結果を用いた処理を実行する。
次に、図12に示した評価対象筋肉に関連する、全身の総合筋力(握力)、動的バランス、下肢筋力、移動能力、および静的バランスの五項目の各々について、個別に説明する。五項目の各々について説明した後に、評価対象筋肉の筋力の推定に用いられる特徴量について説明する。筋力は、五項目に共通する特徴量を用いて、推定される。
<関連項目1>
関連項目1は、全身の総合筋力に関する。総合筋力と握力との間には、相関関係がある。また、握力は、膝伸展力との間にも相関関係がある。関連項目1に関する総合筋力の指標の一つは、握力である。例えば、握力の推定値が、総合筋力の指標である。例えば、握力の推定値に応じたスコア(総合筋力スコアとも呼ぶ)が、総合筋力の指標である。総合筋力スコアは、総合筋力の指標である握力を、予め設定された基準で点数化した値である。握力は、性別や年齢、身長などの属性の影響を受ける。そのため、総合筋力スコアは、属性ごとの基準で点数化されてもよい。特に、握力は、性別の影響を受ける。そのため、総合筋力スコアは、性別に応じて異なる基準で点数化されてもよい。なお、総合筋力の指標は、総合筋力をスコア化できれば、握力に限定されない。
関連項目1は、全身の総合筋力に関する。総合筋力と握力との間には、相関関係がある。また、握力は、膝伸展力との間にも相関関係がある。関連項目1に関する総合筋力の指標の一つは、握力である。例えば、握力の推定値が、総合筋力の指標である。例えば、握力の推定値に応じたスコア(総合筋力スコアとも呼ぶ)が、総合筋力の指標である。総合筋力スコアは、総合筋力の指標である握力を、予め設定された基準で点数化した値である。握力は、性別や年齢、身長などの属性の影響を受ける。そのため、総合筋力スコアは、属性ごとの基準で点数化されてもよい。特に、握力は、性別の影響を受ける。そのため、総合筋力スコアは、性別に応じて異なる基準で点数化されてもよい。なお、総合筋力の指標は、総合筋力をスコア化できれば、握力に限定されない。
図13は、全身の総合筋力(握力)の推定に用いられる特徴量をまとめた対応表である。図13の対応表は、特徴量の番号、特徴量が抽出される歩行波形データ、歩行フェーズクラスターが抽出される歩行フェーズ(%)、および関連筋肉を対応付ける。握力の推定に用いられる特徴量が抽出される歩行フェーズは、性別によって異なる。男性の場合、大腿四頭筋の活動と握力との間に相関がある。そのため、男性の握力の推定には、大腿四頭筋の活動の特徴が表れる歩行フェーズから抽出される特徴量AM1~AM4が用いられる。女性の場合、大腿四頭筋の外側広筋、中間広筋、および内側広筋の活動と握力との間に相関がある。そのため、女性の握力の推定には、外側広筋、中間広筋、および内側広筋の活動の特徴が表れる歩行フェーズから抽出される特徴量AF1~AF3が用いられる。
特徴量AM1は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データAyの歩行フェーズ3%の区間から抽出される。歩行フェーズ3%は、荷重応答期T1に含まれる。特徴量AM1には、主に、大腿四頭筋のうち外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。
特徴量AM2は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データAyの歩行フェーズ59~62%の区間から抽出される。歩行フェーズ59~62%は、遊脚前期T4に含まれる。特徴量AM2には、主に、大腿四頭筋のうち大腿直筋の動きに関する特徴が含まれる。
特徴量AM3は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データAzの歩行フェーズ59~62%の区間から抽出される。歩行フェーズ59~62%は、遊脚前期T4に含まれる。特徴量AM3には、主に、大腿四頭筋のうち大腿直筋の動きに関する特徴が含まれる。
特徴量AM4は、両足が地面に同時に接地している期間のうち、踵接地から反対足爪先離地までの期間の割合(DST1)である(DST:Double Support Time)。DST1は、一歩行周期における、踵接地から反対足爪先離地までの期間の割合である。特徴量AM4には、主に、大腿四頭筋に起因する特徴が含まれる。
特徴量AF1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データAxの歩行フェーズ13%の区間から抽出される。歩行フェーズ13%は、立脚中期T2に含まれる。特徴量AF1には、主に、大腿四頭筋のうち外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。
特徴量AF2は、冠状面内(Y軸周り)の角速度(ピッチ角速度)の時系列データに関する歩行波形データGyの歩行フェーズ7~10%の区間から抽出される。歩行フェーズ7~10%は、荷重応答期T1に含まれる。特徴量AF2には、主に、外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。
特徴量AF3は、両足が地面に同時に接地している期間のうち、反対足踵接地から爪先離地までの期間の割合(DST2)である(DST:Double Support Time)。DST2は、一歩行周期における、反対足踵接地から爪先離地までの期間の割合である。DST1とDST2の和が、一歩行周期において、両足が地面に同時に接地している期間に相当する。特徴量AF3には、主に、外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。
<関連項目2>
関連項目2は、動的バランスに関する。動的バランスは、ファンクショナル・リーチ・テスト(FRT:Functional Reach Test)の成績によって評価できる。本実施形態では、両手を水平面に対して90度挙上して立位した状態から、可能な限り前方へ上肢を移動させた状態における指先間の距離(ファンクショナル・リーチ距離とも呼ぶ)で、FRTの成績を評価する。ファンクショナル・リーチ距離(以下、FR距離と呼ぶ)は、FRTの成績値である。FR距離が大きいほど、FRTの成績が高い。関連項目2は、両手で行われるFRT以外で評価されてもよい。例えば、関連項目2は、片手で行われるFRTや、その他のFRTのバリエーションに関する成績で評価されてもよい。
関連項目2は、動的バランスに関する。動的バランスは、ファンクショナル・リーチ・テスト(FRT:Functional Reach Test)の成績によって評価できる。本実施形態では、両手を水平面に対して90度挙上して立位した状態から、可能な限り前方へ上肢を移動させた状態における指先間の距離(ファンクショナル・リーチ距離とも呼ぶ)で、FRTの成績を評価する。ファンクショナル・リーチ距離(以下、FR距離と呼ぶ)は、FRTの成績値である。FR距離が大きいほど、FRTの成績が高い。関連項目2は、両手で行われるFRT以外で評価されてもよい。例えば、関連項目2は、片手で行われるFRTや、その他のFRTのバリエーションに関する成績で評価されてもよい。
関連項目2に関する動的バランスの指標は、FR距離である。例えば、FR距離の推定値が、動的バランスの指標である。例えば、FR距離の推定値に応じたスコア(動的バランススコアとも呼ぶ)が、動的バランスの指標である。動的バランススコアは、動的バランスの指標であるFR距離を、予め設定された基準で点数化した値である。動的バランスは、身長などの属性の影響を受ける。そのため、動的バランススコアは、属性ごとの基準で点数化されてもよい。なお、動的バランスの指標は、動的バランスをスコア化できれば、FR距離に限定されない。
図14は、動的バランスの推定に用いられる特徴量をまとめた対応表である。図14の対応表は、特徴量の番号、特徴量が抽出される歩行波形データ、歩行フェーズクラスターが抽出される歩行フェーズ(%)、および関連筋肉を対応付ける。FR距離は、中殿筋や腸骨筋、ハムストリングス(大腿二頭筋長頭)、前脛骨筋等の活動、および足先の向きを外側にする代償動作の大きさとの間に相関がある。そのため、FR距離の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量B1~B5が用いられる。
特徴量B1は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データAyの歩行フェーズ75-79%の区間から抽出される。歩行フェーズ75-79%は、遊脚中期T6に含まれる。特徴量B1には、主に、前脛骨筋や大腿二頭筋短頭の動きに関する特徴が含まれる。
特徴量B2は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データAzの歩行フェーズ62%の区間から抽出される。歩行フェーズ62%は、遊脚初期T5に含まれる。特徴量B2には、主に、腸骨筋の動きに関する特徴が含まれる。
特徴量B3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データGyの歩行フェーズ7~8%の区間から抽出される。歩行フェーズ7~8%は、荷重応答期T1に含まれる。特徴量B3には、主に、中殿筋の動きに関する特徴が含まれる。
特徴量B4は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データEzの歩行フェーズ57~58%の区間から抽出される。歩行フェーズ57~58%は、遊脚前期T4に含まれる。特徴量B4には、主に、代償動作に関する特徴が含まれる。代償動作は、加齢に伴うバランス能力や筋機能の低下を補うために、足角を変化させて安定性を獲得する動作である。
特徴量B5は、遊脚相における水平面内における足角の平均値である。例えば、特徴量B5は、歩行波形データEzの遊脚相における平均値である。言い換えると、特徴量B5は、水平面内(Z軸周り)の角速度の時系列データに関する歩行波形データGzの積分値である。特徴量B5には、主に、代償動作に関する特徴が含まれる。
<関連項目3>
関連項目3は、下肢筋力に関する。下肢筋力は、椅子立ち上がりテストの成績によって評価できる。本実施形態では、椅子の立ち座りを5回繰り返す5回椅子立ち上がりテストの成績を評価する。5回椅子立ち上がりテストのことを、SS-5(Sit to Stand-5)テストとも呼ぶ。5回椅子立ち上がりテストの成績は、椅子の立ち座りを5回繰り返す時間(立ち座り時間とも呼ぶ)で評価する。立ち座り時間は、SS-5テストの成績値である。立ち座り時間が短いほど、SS-5テストの成績が高い。30秒間における椅子の立ち座り動作回数を計測する30秒椅子立ち上がり(CS-30)テストの成績で評価されてもよい。
関連項目3は、下肢筋力に関する。下肢筋力は、椅子立ち上がりテストの成績によって評価できる。本実施形態では、椅子の立ち座りを5回繰り返す5回椅子立ち上がりテストの成績を評価する。5回椅子立ち上がりテストのことを、SS-5(Sit to Stand-5)テストとも呼ぶ。5回椅子立ち上がりテストの成績は、椅子の立ち座りを5回繰り返す時間(立ち座り時間とも呼ぶ)で評価する。立ち座り時間は、SS-5テストの成績値である。立ち座り時間が短いほど、SS-5テストの成績が高い。30秒間における椅子の立ち座り動作回数を計測する30秒椅子立ち上がり(CS-30)テストの成績で評価されてもよい。
関連項目3に関する下肢筋力の指標は、立ち座り時間である。例えば、5回立ち座り時間の推定値が、下肢筋力の指標である。例えば、立ち座り時間の推定値に応じたスコア(下肢筋力スコアとも呼ぶ)が、下肢筋力の指標である。下肢筋力スコアは、下肢筋力の指標である立ち座り時間を、予め設定された基準で点数化した値である。下肢筋力は、年齢などの属性の影響を受ける。そのため、下肢筋力スコアは、属性ごとの基準で点数化されてもよい。なお、下肢筋力の指標は、下肢筋力をスコア化できれば、立ち座り時間に限定されない。
図15は、下肢筋力の推定に用いられる特徴量をまとめた対応表である。図15の対応表は、特徴量の番号、特徴量が抽出される歩行波形データ、歩行フェーズクラスターが抽出される歩行フェーズ(%)、および関連筋肉を対応付ける。立ち座り時間は、大腿四頭筋や、ハムストリングス、前脛骨筋、腓腹筋との間に相関がある。そのため、立ち座り時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量C1~C4が用いられる。
特徴量C1は、矢状面内(X軸周り)における角速度の時系列データに関する歩行波形データGxの歩行フェーズ42~54%の区間から抽出される。歩行フェーズ42~54%は、立脚終期T3から遊脚前期T4にかけた区間である。特徴量C1には、主に、腓腹筋の動きに関する特徴が含まれる。
特徴量C2は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データGyの歩行フェーズ99~100%の区間から抽出される。歩行フェーズ99~100%は、遊脚終期T7の終盤である。特徴量C2には、主に、大腿四頭筋やハムストリングス、前脛骨筋の動きに関する特徴が含まれる。
特徴量C3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データGyの歩行フェーズ10~12%の区間から抽出される。歩行フェーズ10~12%は、立脚中期T2の序盤である。特徴量C3には、主に、大腿四頭筋やハムストリングス、腓腹筋の動きに関する特徴が含まれる。
特徴量C4は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データEzの歩行フェーズ99%の区間から抽出される。歩行フェーズ99%は、遊脚終期T7の終盤である。特徴量C4には、主に、大腿四頭筋やハムストリングス、前脛骨筋の動きに関する特徴が含まれる。
<関連項目4>
関連項目4は、移動能力に関する。移動能力は、TUG(Time Up and Go)テストの成績によって評価できる。本実施形態では、椅子から立ち上がり、3m(メートル)先の目印まで歩いて方向転換し、再び椅子に座るまでの時間(TUG所要時間とも呼ぶ)で、TUGテストの成績を評価する。TUG所要時間は、TUGテストの成績値である。TUG所要時間が短いほど、TUGテストの成績が高い。関連項目4は、TUGテスト以外の移動能力に関するテストの成績で評価されてもよい。
関連項目4は、移動能力に関する。移動能力は、TUG(Time Up and Go)テストの成績によって評価できる。本実施形態では、椅子から立ち上がり、3m(メートル)先の目印まで歩いて方向転換し、再び椅子に座るまでの時間(TUG所要時間とも呼ぶ)で、TUGテストの成績を評価する。TUG所要時間は、TUGテストの成績値である。TUG所要時間が短いほど、TUGテストの成績が高い。関連項目4は、TUGテスト以外の移動能力に関するテストの成績で評価されてもよい。
関連項目4に関する移動能力の指標は、TUG所要時間である。例えば、TUG所要時間の推定値が、移動能力の指標である。例えば、TUG所要時間の推定値に応じたスコア(移動能力スコアとも呼ぶ)が、移動能力の指標である。移動能力スコアは、移動能力の指標であるTUG所要時間を、予め設定された基準で点数化した値である。移動能力は、年齢などの属性の影響を受ける。そのため、移動能力スコアは、属性ごとの基準で点数化されてもよい。なお、移動能力の指標は、移動能力をスコア化できれば、TUG所要時間に限定されない。
図16は、移動能力の推定に用いられる特徴量をまとめた対応表である。図16の対応表は、特徴量の番号、特徴量が抽出される歩行波形データ、歩行フェーズクラスターが抽出される歩行フェーズ(%)、および関連筋肉を対応付ける。TUG所要時間は、大腿四頭筋や、中殿筋、前脛骨筋との間に相関がある。そのため、TUG所要時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量D1~D6が用いられる。大腿筋膜張筋の特徴は、歩行フェーズ0~45%、85~100%に表れる。中殿筋の特徴は、歩行フェーズ0~25%に表れる。前脛骨筋の特徴は、歩行フェーズ0~10%、57~100%に表れる。
特徴量D1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データAxの歩行フェーズ64~65%の区間から抽出される。歩行フェーズ64~65%は、遊脚初期T5に含まれる。特徴量D1には、主に、立ち座り動作における大腿四頭筋の動きに関する特徴が含まれる。
特徴量D2は、矢状面内(X軸周り)における角速度の時系列データに関する歩行波形データGxの歩行フェーズ57~58%の区間から抽出される。歩行フェーズ57~58%は、遊脚前期T4に含まれる。特徴量D2には、主に、足の蹴り出し速度に関連する大腿四頭筋の動きに関する特徴が含まれる。
特徴量D3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データGyの歩行フェーズ19~20%の区間から抽出される。歩行フェーズ19~20%は、立脚中期T2に含まれる。特徴量D3には、主に、方向転換における中殿筋の動きに関する特徴が含まれる。
特徴量D4は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データEzの歩行フェーズ12~13%の区間から抽出される。歩行フェーズ12~13%は、立脚中期T2の序盤である。特徴量D4には、主に、方向転換における中殿筋の動きに関する特徴が含まれる。
特徴量D5は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データEzの歩行フェーズ74~75%の区間から抽出される。歩行フェーズ74~75%は、遊脚中期T6の序盤である。特徴量D5には、主に、立ち座りおよび方向転換における前脛骨筋の動きに関する特徴が含まれる。
特徴量D6は、冠状面内(Y軸周り)における角度(姿勢角)の時系列データに関する歩行波形データEyの歩行フェーズ76~80%の区間から抽出される。歩行フェーズ76~80%は、遊脚中期T6に含まれる。特徴量D6には、主に、立ち座りおよび方向転換における前脛骨筋の動きに関する特徴が含まれる。
<関連項目5>
関連項目5は、静的バランスに関する。静的バランスは、片脚立位テストの成績によって評価できる。本実施形態では、目を閉じて、片脚を地面から5cm(センチメートル)挙上した状態を維持した時間(片脚立位時間とも呼ぶ)で、片脚立位テストの成績を評価する。片脚立位時間は、静的バランスの成績値である。片脚立位時間が大きいほど、静的バランスの成績が高い。関連項目5は、閉眼片脚立位テスト以外の成績で評価されてもよい。例えば、関連項目5は、目を開けた状態での片脚立位テスト(開眼片脚立位テスト)や、その他の片脚立位テストのバリエーションで評価されてもよい。
関連項目5は、静的バランスに関する。静的バランスは、片脚立位テストの成績によって評価できる。本実施形態では、目を閉じて、片脚を地面から5cm(センチメートル)挙上した状態を維持した時間(片脚立位時間とも呼ぶ)で、片脚立位テストの成績を評価する。片脚立位時間は、静的バランスの成績値である。片脚立位時間が大きいほど、静的バランスの成績が高い。関連項目5は、閉眼片脚立位テスト以外の成績で評価されてもよい。例えば、関連項目5は、目を開けた状態での片脚立位テスト(開眼片脚立位テスト)や、その他の片脚立位テストのバリエーションで評価されてもよい。
関連項目5に関する静的バランスの指標は、片脚立位時間である。例えば、片脚立位時間の推定値が、静的バランスの指標である。例えば、片脚立位時間の推定値に応じたスコア(静的バランススコアとも呼ぶ)が、静的バランスの指標である。静的バランススコアは、静的バランスの指標である片脚立位時間を、予め設定された基準で点数化した値である。静的バランスは、年齢や身長などの属性の影響を受ける。そのため、静的バランススコアは、属性ごとの基準で点数化されてもよい。なお、静的バランスの指標は、静的バランスをスコア化できれば、片脚立位時間に限定されない。
図17は、静的バランスの推定に用いられる特徴量をまとめた対応表である。図17の対応表は、特徴量の番号、特徴量が抽出される歩行波形データ、歩行フェーズクラスターが抽出される歩行フェーズ(%)、および関連筋肉を対応付ける。片脚立位時間は、中殿筋や長内転筋、縫工筋、内外転筋肉群との間に相関がある。そのため、片脚立位時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量E1~E7が用いられる。
特徴量E1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データAxの歩行フェーズ13-19%の区間から抽出される。歩行フェーズ13-19%は、立脚中期T2に含まれる。特徴量E1には、主に、中殿筋の動きに関する特徴が含まれる。
特徴量E2は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データAzの歩行フェーズ95%の区間から抽出される。歩行フェーズ95%は、遊脚終期T7の終盤である。特徴量E2には、主に、中殿筋の動きに関する特徴が含まれる。
特徴量E3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データGyの歩行フェーズ64-65%の区間から抽出される。歩行フェーズ64-65%は、遊脚初期T5に含まれる。特徴量E3には、主に、長内転筋および縫工筋の動きに関する特徴が含まれる。
特徴量E4は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データGzの歩行フェーズ11-16%の区間から抽出される。歩行フェーズ11-16%は、立脚中期T2に含まれる。特徴量E4には、主に、中殿筋の動きに関する特徴が含まれる。
特徴量E5は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データGzの歩行フェーズ57-58%の区間から抽出される。歩行フェーズ57-58%は、遊脚前期T4に含まれる。特徴量E5には、主に、長内転筋および縫工筋の動きに関する特徴が含まれる。
特徴量E6は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データEzの歩行フェーズ100%の区間から抽出される。歩行フェーズ100%は、遊脚終期T7から荷重応答期T1に切り替わる踵接地のタイミングに相当する。歩行フェーズ100%における歩行波形データEzの特徴量は、足裏が接地した状態における足角に相当する。特徴量E6には、主に、中殿筋の動きに関する特徴が含まれる。
特徴量E7は、遊脚相において足の中心軸が進行軸から最も離れたタイミングにおける、進行軸と足の距離(分回し量)である。特徴量E7は、被験者の身長で規格化された分回し量である。特徴量E7には、主に、内外転筋肉群の動きに関する特徴が含まれる。
図18は、転倒リスクに関連する五項目と筋肉との関係の一例をまとめた図である。図18には、転倒リスクに関連する五項目と筋肉との間を実線で結ぶ。なお、図18に示す実線は、代表的な関係を示す。実線が引かれていない項目と筋肉との間に、相関がないことを示すわけではない。また、図18には、単独の筋肉ではなく、いくつかの筋肉の総称を含む。図18に挙げた筋肉は、転倒リスクに関連する評価対象筋肉の一例である。図18に挙げた筋肉は、評価対象筋肉の全てではない。筋力評価部134は、転倒リスクに関連する五項目の指標(スコア)の関係性に応じて、それらの五項目に関連する筋肉の活動を評価する。
大腿四頭筋、前脛骨筋、および中殿筋は、複数の項目に関連する。大腿四頭筋は、総合筋力、下肢筋力、および移動能力に関連する。前脛骨筋は、動的バランス、下肢筋力、および移動能力に関連する。中殿筋は、動的バランス、移動能力、および静的バランスに関連する。
例えば、総合筋力、下肢筋力、および移動能力のスコアが基準値よりも小さければ、筋力評価部134は、大腿四頭筋の筋力が低下していると評価する。例えば、動的バランス、下肢筋力、および移動能力のスコアが基準値よりも小さければ、筋力評価部134は、前脛骨筋の筋力が低下していると評価する。例えば、動的バランス、移動能力、および静的バランスのスコアが基準値よりも小さければ、筋力評価部134は、中殿筋の筋力が低下していると評価する。
腸骨筋、大腿二頭筋短頭、ハムストリングス、腓腹筋、内外転筋肉群、長内転筋、および縫工筋は、単独の項目に関連する。腸骨筋および大腿二頭筋短頭は、動的バランスに関連する。ハムストリングスおよび腓腹筋は、下肢筋力に関連する。内外転筋肉群、長内転筋、および縫工筋は、静的バランスに関連する。
例えば、動的バランスのスコアが基準値よりも小さければ、筋力評価部134は、腸骨筋および大腿二頭筋短頭の筋力が低下していると評価する。例えば、下肢筋力のスコアが基準値よりも小さければ、筋力評価部134は、ハムストリングスおよび腓腹筋の筋力が低下していると評価する。例えば、静的バランスのスコアが基準値よりも小さければ、筋力評価部134は、内外転筋肉群、長内転筋、および縫工筋の筋力が低下していると評価する。
転倒リスクは、転倒リスクに関連する五項目のスコアに応じて、評価できる。例えば、転倒リスクRは、下記の式1を用いて計算できる。
R=A×SA+B×SB+C×SC+D×SD+E×SE・・・(1)
上記の式1において、SAは、全身の総合筋力スコアである。SBは、動的バランススコアである。SCは、下肢筋力スコアである。SDは、移動能力スコアである。SEは、静的バランススコアである。全身の総合筋力スコアS1、動的バランススコアS2、下肢筋力スコアS3、移動能力スコアS4、および静的バランススコアS5は、それぞれのスコアに対応する推定モデルを用いて、推定できる。
R=A×SA+B×SB+C×SC+D×SD+E×SE・・・(1)
上記の式1において、SAは、全身の総合筋力スコアである。SBは、動的バランススコアである。SCは、下肢筋力スコアである。SDは、移動能力スコアである。SEは、静的バランススコアである。全身の総合筋力スコアS1、動的バランススコアS2、下肢筋力スコアS3、移動能力スコアS4、および静的バランススコアS5は、それぞれのスコアに対応する推定モデルを用いて、推定できる。
上記の式1において、A~Eは、正規化された比重係数である。比重係数A~Eは、既知の知見に応じて、予め設定される。例えば、比重係数A~Eは、それぞれの比重係数に対応する身体能力のテストにおける動作に応じて、決定できる。例えば、比重係数A~Eは、それぞれの比重係数に対応する身体能力のテストにおける、評価対象筋肉の筋電信号強度の比率に応じて、決定できる。例えば、複数の被験者に関して、予め設定された評価対象筋肉の測定部位に筋電センサを取り付け、転倒リスクに関連する五項目に関するテストを行っておく。そのようにテストすれば、評価対象筋肉の筋電信号強度の比率に応じて、比重係数A~Eを設定できる。
例えば、比重係数A~Eは、歩行周期と関連する歩行波形データの信号強度の比重で決定される。転倒リスクに関連する五項目のスコアは、歩容信号から推定する場合、同じ歩行周期に各筋肉の活動量は比率で計算し、係数に分配する。
全身の総合筋力には、大腿四頭筋の活動が関連する。全身の総合筋力スコアS1における大腿四頭筋の比重を、MA1とする。
動的バランスには、前脛骨筋、中殿筋、腸骨筋、および大腿二頭筋短頭が関連する。動的バランススコアS2における前脛骨筋の比重を、MB2とする。動的バランススコアS2における中殿筋の比重を、MB3とする。動的バランススコアS2における腸骨筋の比重を、MB4とする。動的バランススコアS2における大腿二頭筋短頭の比重を、MB5とする。
下肢筋力には、大腿四頭筋、前脛骨筋、ハムストリングス、および腓腹筋が関連する。下肢筋力スコアS3における大腿四頭筋の比重を、MC1とする。下肢筋力スコアS3における前脛骨筋の比重を、MC2とする。下肢筋力スコアS3におけるハムストリングスの比重を、MC6とする。下肢筋力スコアS3における腓腹筋の比重を、MC7とする。
移動能力には、大腿四頭筋、前脛骨筋、および中殿筋が関連する。移動能力スコアS4における大腿四頭筋の比重を、MD1とする。移動能力スコアS4における前脛骨筋の比重を、MD2とする。移動能力スコアS4における中殿筋の比重を、MD3とする。
静的バランスには、内外転筋、長内転筋、および縫工筋が関連する。静的バランススコアS5における内外転筋の比重を、MD8とする。静的バランススコアS5における長内転筋の比重を、MD9とする。静的バランススコアS5における縫工筋の比重を、MD10とする。
筋力評価部134は、評価対象筋肉に関連する身体能力に関して、評価対象筋肉の比重と、評価対象筋肉の比重係数と、評価対象筋肉に関連する身体能力に関する身体能力スコアとの積を用いて、評価対象筋肉の筋力スコアを計算する。以下に、筋力評価部134による筋力スコアの計算例を列挙する。
大腿四頭筋の筋力スコアMS1は、下記の式2を用いて計算される。
MS1=MA1×A×SA+MC1×C×SC+MD1×D×SD・・・(2)
前脛骨筋の筋力スコアMS2は、下記の式3を用いて計算される。
MS2=MB2×B×SB+MC2×C×SC+MD2×D×SD・・・(3)
中殿筋の筋力スコアMS3は、下記の式4を用いて計算される。
MS3=MB3×B×SB+MC3×C×SC+MD4×D×SD・・・(4)
腸骨筋の筋力スコアMS4は、下記の式5を用いて計算される。
MS4=MB4×B×SB・・・(5)
大腿二頭筋短頭の筋力スコアMS5は、下記の式6を用いて計算される。
MS5=MB5×B×SB・・・(6)
ハムストリングスの筋力スコアMS6は、下記の式7を用いて計算される。
MS6=MC6×C×SC・・・(7)
腓腹筋の筋力スコアMS7は、下記の式8を用いて計算される。
MS7=MC7×C×SC・・・(8)
内外転筋肉群の筋力スコアMS8は、下記の式9を用いて計算される。
MS8=ME8×E×SE・・・(9)
長内転筋の筋力スコアMS9は、下記の式10を用いて計算される。
MS9=ME9×E×SE・・・(10)
縫工筋の筋力スコアMS10は、下記の式11を用いて計算される。
MS10=ME10×E×SE・・・(11)
上記の式2~11は、転倒リスクに関連する評価対象筋肉の筋力を算出するための計算式群である。上記の式2~11の計算式群は、転倒リスクに関連する五項目のスコアの入力に応じて、各筋肉の筋力を評価するための筋力推定モデルの一例である。例えば、筋力評価部134は、上記の式2~11を用いて、評価対象筋肉の筋力を推定する。上記の式2~11の計算式群は、一例であって、評価対象筋肉の筋力を推定するための筋力推定モデルを限定するものではない。また、筋力が推定される筋肉は、上述の10個に限定されない。筋力推定モデルは、転倒リスクに関連する五項目のうち少なくともいずれかのスコアの入力に応じて、評価対象筋肉のいずれかの筋力を推定できればよい。
MS1=MA1×A×SA+MC1×C×SC+MD1×D×SD・・・(2)
前脛骨筋の筋力スコアMS2は、下記の式3を用いて計算される。
MS2=MB2×B×SB+MC2×C×SC+MD2×D×SD・・・(3)
中殿筋の筋力スコアMS3は、下記の式4を用いて計算される。
MS3=MB3×B×SB+MC3×C×SC+MD4×D×SD・・・(4)
腸骨筋の筋力スコアMS4は、下記の式5を用いて計算される。
MS4=MB4×B×SB・・・(5)
大腿二頭筋短頭の筋力スコアMS5は、下記の式6を用いて計算される。
MS5=MB5×B×SB・・・(6)
ハムストリングスの筋力スコアMS6は、下記の式7を用いて計算される。
MS6=MC6×C×SC・・・(7)
腓腹筋の筋力スコアMS7は、下記の式8を用いて計算される。
MS7=MC7×C×SC・・・(8)
内外転筋肉群の筋力スコアMS8は、下記の式9を用いて計算される。
MS8=ME8×E×SE・・・(9)
長内転筋の筋力スコアMS9は、下記の式10を用いて計算される。
MS9=ME9×E×SE・・・(10)
縫工筋の筋力スコアMS10は、下記の式11を用いて計算される。
MS10=ME10×E×SE・・・(11)
上記の式2~11は、転倒リスクに関連する評価対象筋肉の筋力を算出するための計算式群である。上記の式2~11の計算式群は、転倒リスクに関連する五項目のスコアの入力に応じて、各筋肉の筋力を評価するための筋力推定モデルの一例である。例えば、筋力評価部134は、上記の式2~11を用いて、評価対象筋肉の筋力を推定する。上記の式2~11の計算式群は、一例であって、評価対象筋肉の筋力を推定するための筋力推定モデルを限定するものではない。また、筋力が推定される筋肉は、上述の10個に限定されない。筋力推定モデルは、転倒リスクに関連する五項目のうち少なくともいずれかのスコアの入力に応じて、評価対象筋肉のいずれかの筋力を推定できればよい。
図19は、歩行波形データから抽出された特徴量を用いて、評価対象筋肉の筋力を推定する推定モデル120の一例を示す概念図である。図19には、評価対象筋肉がn個の例を挙げる(nは自然数)。推定モデル120は、身体能力推定モデル150と筋力推定モデル156を含む。歩行波形データから抽出された特徴量は、転倒リスクに関連する五項目のスコアを推定する身体能力推定モデル150に入力される。身体能力推定モデル150は、推定モデル151、推定モデル152、筋力推定モデル156、推定モデル154、および推定モデル155を含む。歩行波形データから抽出された特徴量の入力に応じて、身体能力推定モデル150は、転倒リスクに関連する五項目のスコアS1~S5を出力する。身体能力推定モデル150から出力された五項目のスコアS1~S5は、筋力推定モデル156に入力される。五項目のスコアS1~S5の入力に応じて、筋力推定モデル156は、評価対象筋肉の筋力に関する筋力スコアMS1~MSnを出力する。
推定モデル151は、ユーザの歩行に伴って計測されたセンサデータから抽出される特徴量AM1~AM4または特徴量AF1~AF3の入力に応じて、全身の総合筋力(握力)に関するスコア(総合筋力スコアS1)を出力する。例えば、推定モデル151は、男性用と女性用とで、異なるモデルであってもよい。総合筋力を推定するための特徴量データの入力に応じて、総合筋力の指標に関する推定結果が出力されれば、推定モデル151の推定結果には限定を加えない。例えば、推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3に加えて、年齢や身長などの属性データを説明変数として、動的バランスを推定するモデルであってもよい。
例えば、記憶部132には、重回帰予測法を用いて、総合筋力スコアS1を推定する推定モデル151が記憶される。例えば、記憶部132には、以下の式12を用いて、総合筋力スコアS1を推定するためのパラメータが記憶される。
SA=m(am1×AM1+am2×AM2+am3×AM3+am4×AM4+am0)+f(af1×AF1+af2×AF2+af3×AF3+af0)・・・(12)
上記の式12において、AM1、AM2、AM3、AM4は、図13の対応表に示した男性の総合筋力スコアS1の推定に用いられる歩行フェーズクラスターごとの特徴量である。am1、am2、am3、am4は、AM1、AM2、AM3、AM4に掛け合わされる係数(重み)である。am0は、定数項である。AF1、AF2、AF3は、図13の対応表に示した女性の総合筋力スコアS1の推定に用いられる歩行フェーズクラスターごとの特徴量である。af1、af2、af3は、AF1、AF2、AF3に掛け合わされる係数(重み)である。af0は、定数項である。mとfは、性別に応じたフラグである。ユーザが男性の場合、mが1、fが0である。ユーザが女性の場合、mが0、fが1である。例えば、記憶部132には、am0、am1、am2、am3、am4、af0、af1、af2、af3を記憶させておく。
SA=m(am1×AM1+am2×AM2+am3×AM3+am4×AM4+am0)+f(af1×AF1+af2×AF2+af3×AF3+af0)・・・(12)
上記の式12において、AM1、AM2、AM3、AM4は、図13の対応表に示した男性の総合筋力スコアS1の推定に用いられる歩行フェーズクラスターごとの特徴量である。am1、am2、am3、am4は、AM1、AM2、AM3、AM4に掛け合わされる係数(重み)である。am0は、定数項である。AF1、AF2、AF3は、図13の対応表に示した女性の総合筋力スコアS1の推定に用いられる歩行フェーズクラスターごとの特徴量である。af1、af2、af3は、AF1、AF2、AF3に掛け合わされる係数(重み)である。af0は、定数項である。mとfは、性別に応じたフラグである。ユーザが男性の場合、mが1、fが0である。ユーザが女性の場合、mが0、fが1である。例えば、記憶部132には、am0、am1、am2、am3、am4、af0、af1、af2、af3を記憶させておく。
推定モデル152は、ユーザの歩行に伴って計測されたセンサデータから抽出される特徴量B1~B5の入力に応じて、動的バランスに関するスコア(動的バランススコアS2)を出力する。動的バランスを推定するための特徴量データの入力に応じて、動的バランスの指標に関する推定結果が出力されれば、推定モデル152の推定結果には限定を加えない。例えば、推定モデル152は、特徴量B1~B5に加えて、身長などの属性データを説明変数として、動的バランスを推定するモデルであってもよい。
例えば、記憶部132には、重回帰予測法を用いて、動的バランススコアS2を推定する推定モデルが記憶される。例えば、記憶部132には、以下の式13を用いて、動的バランススコアS2を推定するためのパラメータが記憶される。
SB=b1×B1+b2×B2+b3×B3+b4×B4+b5×B5+b0・・・(13)
上記の式13において、B1、B2、B3、B4、B5は、図14の対応表に示した動的バランスの推定に用いられる歩行フェーズクラスターごとの特徴量である。b1、b2、b3、b4、b5は、B1、B2、B3、B4、B5に掛け合わされる係数(重み)である。b0は、定数項である。例えば、記憶部132には、b0、b1、b2、b3、b4、b5を記憶させておく。
SB=b1×B1+b2×B2+b3×B3+b4×B4+b5×B5+b0・・・(13)
上記の式13において、B1、B2、B3、B4、B5は、図14の対応表に示した動的バランスの推定に用いられる歩行フェーズクラスターごとの特徴量である。b1、b2、b3、b4、b5は、B1、B2、B3、B4、B5に掛け合わされる係数(重み)である。b0は、定数項である。例えば、記憶部132には、b0、b1、b2、b3、b4、b5を記憶させておく。
筋力推定モデル156は、ユーザの歩行に伴って計測されたセンサデータから抽出される特徴量C1~C4の入力に応じて、下肢筋力に関するスコア(下肢筋力スコアS3)を出力する。下肢筋力を推定するための特徴量データの入力に応じて、下肢筋力の指標に関する推定結果が出力されれば、筋力推定モデル156の推定結果には限定を加えない。例えば、筋力推定モデル156は、特徴量C1~C4に加えて、年齢などの属性データを説明変数として、動的バランスを推定するモデルであってもよい。
例えば、記憶部132には、重回帰予測法を用いて、下肢筋力スコアS3を推定する推定モデルが記憶される。例えば、記憶部132には、以下の式14を用いて、下肢筋力スコアS3を推定するためのパラメータが記憶される。
SC=c1×C1+c2×C2+c3×C3+c4×C4+c0・・・(14)
上記の式14において、C1、C2、C3、C4は、図15の対応表に示した下肢筋力の推定に用いられる歩行フェーズクラスターごとの特徴量である。c1、c2、c3、c4は、C1、C2、C3、C4に掛け合わされる係数(重み)である。c0は、定数項である。例えば、記憶部132には、c0、c1、c2、c3、c4を記憶させておく。
SC=c1×C1+c2×C2+c3×C3+c4×C4+c0・・・(14)
上記の式14において、C1、C2、C3、C4は、図15の対応表に示した下肢筋力の推定に用いられる歩行フェーズクラスターごとの特徴量である。c1、c2、c3、c4は、C1、C2、C3、C4に掛け合わされる係数(重み)である。c0は、定数項である。例えば、記憶部132には、c0、c1、c2、c3、c4を記憶させておく。
推定モデル154は、ユーザの歩行に伴って計測されたセンサデータから抽出される特徴量D1~D6の入力に応じて、移動能力に関するスコア(移動能力スコアS4)を出力する。移動能力を推定するための特徴量データの入力に応じて、移動能力の指標に関する推定結果が出力されれば、推定モデル154の推定結果には限定を加えない。例えば、推定モデル154は、特徴量D1~D6に加えて、年齢などの属性データを説明変数として、移動能力を推定するモデルであってもよい。
例えば、記憶部132には、重回帰予測法を用いて、移動能力スコアS4を推定する推定モデルが記憶される。例えば、記憶部132には、以下の式15を用いて、移動能力スコアS4を推定するためのパラメータが記憶される。
SD=d1×D1+d2×D2+d3×D3+d4×D4+d5×D5+d6×D6+d0・・・(15)
上記の式15において、D1、D2、D3、D4、D5、D6は、図16の対応表に示した移動能力の推定に用いられる歩行フェーズクラスターごとの特徴量である。d1、d2、d3、d4、d5、d6は、D1、D2、D3、D4、D5、D6に掛け合わされる係数(重み)である。d0は、定数項である。例えば、記憶部132には、d0、d1、d2、d3、d4、d5、d6を記憶させておく。
SD=d1×D1+d2×D2+d3×D3+d4×D4+d5×D5+d6×D6+d0・・・(15)
上記の式15において、D1、D2、D3、D4、D5、D6は、図16の対応表に示した移動能力の推定に用いられる歩行フェーズクラスターごとの特徴量である。d1、d2、d3、d4、d5、d6は、D1、D2、D3、D4、D5、D6に掛け合わされる係数(重み)である。d0は、定数項である。例えば、記憶部132には、d0、d1、d2、d3、d4、d5、d6を記憶させておく。
推定モデル155は、ユーザの歩行に伴って計測されたセンサデータから抽出される特徴量E1~E7の入力に応じて、静的バランスに関するスコア(静的バランススコアS5)を出力する。静的バランスを推定するための特徴量データの入力に応じて、静的バランスの指標に関する推定結果が出力されれば、推定モデル155の推定結果には限定を加えない。例えば、推定モデル155は、特徴量E1~E7に加えて、年齢や身長などの属性データを説明変数として、静的バランスを推定するモデルであってもよい。
例えば、記憶部132には、重回帰予測法を用いて、静的バランスを推定する推定モデルが記憶される。例えば、記憶部132には、以下の式16を用いて、静的バランスを推定するためのパラメータが記憶される。
片脚立位時間=e1×E1+e2×E2+e3×E3+e4×E4+e5×E5+e6×E6+e7×E7+e0・・・(16)
上記の式16において、E1、E2、E3、E4、E5、E6、E7は、図17の対応表に示した静的バランスの推定に用いられる歩行フェーズクラスターごとの特徴量である。e1、e2、e3、e4、e5、e6、e7は、E1、E2、E3、E4、E5、E6、E7に掛け合わされる係数(重み)である。e0は、定数項である。例えば、記憶部132には、e0、e1、e2、e3、e4、e5、e6、e7を記憶させておく。
片脚立位時間=e1×E1+e2×E2+e3×E3+e4×E4+e5×E5+e6×E6+e7×E7+e0・・・(16)
上記の式16において、E1、E2、E3、E4、E5、E6、E7は、図17の対応表に示した静的バランスの推定に用いられる歩行フェーズクラスターごとの特徴量である。e1、e2、e3、e4、e5、e6、e7は、E1、E2、E3、E4、E5、E6、E7に掛け合わされる係数(重み)である。e0は、定数項である。例えば、記憶部132には、e0、e1、e2、e3、e4、e5、e6、e7を記憶させておく。
筋力推定モデル156は、身体能力推定モデル150から出力されるスコアの入力に応じて、転倒に関連する筋肉の筋力スコアMS1~MSnを出力する。すなわち、筋力推定モデル156は、転倒に関連する五項目のスコアの入力に応じて、筋力スコアMS1~MSnを出力する。例えば、筋力推定モデル156は、上記の式2~式11の計算式群によって構成される。筋力推定モデル156には、推定モデル151、推定モデル152、筋力推定モデル156、推定モデル154、推定モデル155から出力されるスコアのうち少なくとも一つが入力される。すなわち、筋力推定モデル156には、推定モデル151、推定モデル152、筋力推定モデル156、推定モデル154、推定モデル155から出力されるスコアのうち少なくとも一つが入力されればよい。筋力推定モデル156に入力されるスコアの数が多いほど、筋力を高精度で推定できる。推定モデル152から出力されるスコアの入力に応じて、筋力に関する推定結果が出力されれば、筋力推定モデル156の推定結果には限定を加えない。例えば、筋力推定モデル156は、推定モデル152から出力されるスコアに加えて、属性データを説明変数として、筋力を推定するモデルであってもよい。
(動作)
次に、筋力評価システム1の動作について図面を参照しながら説明する。以下においては、筋力評価システム1に含まれる歩容計測装置10および筋力評価装置13について、個別に説明する。歩容計測装置10に関しては、歩容計測装置10に含まれる特徴量データ生成部12の動作について説明する。
次に、筋力評価システム1の動作について図面を参照しながら説明する。以下においては、筋力評価システム1に含まれる歩容計測装置10および筋力評価装置13について、個別に説明する。歩容計測装置10に関しては、歩容計測装置10に含まれる特徴量データ生成部12の動作について説明する。
〔歩容計測装置〕
図20は、歩容計測装置10に含まれる特徴量データ生成部12の動作について説明するためのフローチャートである。図20のフローチャートに沿った説明においては、特徴量データ生成部12を動作主体として説明する。
図20は、歩容計測装置10に含まれる特徴量データ生成部12の動作について説明するためのフローチャートである。図20のフローチャートに沿った説明においては、特徴量データ生成部12を動作主体として説明する。
図20において、まず、特徴量データ生成部12は、足の動きに関するセンサデータの時系列データを取得する(ステップS101)。
次に、特徴量データ生成部12は、センサデータの時系列データから一歩行周期分の歩行波形データを抽出する(ステップS102)。特徴量データ生成部12は、センサデータの時系列データから踵接地および爪先離地を検出する。特徴量データ生成部12は、連続する踵接地間の区間の時系列データを、一歩行周期分の歩行波形データとして抽出する。
次に、特徴量データ生成部12は、抽出された一歩行周期分の歩行波形データを正規化する(ステップS103)。特徴量データ生成部12は、一歩行周期分の歩行波形データを0~100%の歩行周期に正規化する(第1正規化)。さらに、特徴量データ生成部12は、第1正規化された一歩行周期分の歩行波形データの立脚相と遊脚相の比を60:40に正規化する(第2正規化)。
次に、特徴量データ生成部12は、正規化された歩行波形に関して、転倒リスクに関連する五項目の推定に用いられる歩行フェーズから特徴量を抽出する(ステップS104)。例えば、特徴量データ生成部12は、予め構築された推定モデル(第1推定モデル)に入力される特徴量を抽出する。
次に、特徴量データ生成部12は、抽出された特徴量を用いて、歩行フェーズクラスターごとの特徴量を生成する(ステップS105)。
次に、特徴量データ生成部12は、歩行フェーズクラスターごとの特徴量を統合して、一歩行周期分の特徴量データを生成する(ステップS106)。
次に、特徴量データ生成部12は、生成された特徴量データを筋力評価装置13に出力する(ステップS107)。
〔筋力評価装置〕
図21は、筋力評価装置13の動作について説明するためのフローチャートである。図21のフローチャートに沿った説明においては、筋力評価装置13を動作主体として説明する。
図21は、筋力評価装置13の動作について説明するためのフローチャートである。図21のフローチャートに沿った説明においては、筋力評価装置13を動作主体として説明する。
図21において、まず、筋力評価装置13は、転倒リスクに関連する五項目のスコアの推定に用いられる特徴量データを取得する(ステップS111)。
次に、筋力評価装置13は、取得した特徴量データを身体能力推定モデル150に入力する(ステップS112)。身体能力推定モデル150に入力された特徴量は、転倒リスクに関連する五項目の各々のスコアを推定する推定モデル151~155に入力される。入力された特徴量に応じて、身体能力推定モデル150は、転倒リスクに関連する五項目のうち少なくとも一つのスコアを出力する。
次に、筋力評価装置13は、身体能力推定モデル150から出力された五項目に関連するスコアを、筋力推定モデル156に入力する(ステップS113)。入力されたスコアに応じて、筋力推定モデル156は、転倒リスクに関連する評価対象筋肉のうち少なくとも一つの筋力スコアを出力する。
次に、筋力推定モデル156からの出力に応じて、筋力評価装置13は、評価対象筋肉の筋力を評価する(ステップS114)。例えば、筋力推定モデル156は、筋力推定モデル156から出力されるスコアの値に応じて、評価対象筋肉の筋力を評価する。
次に、筋力評価装置13は、評価対象筋肉の筋力に関する評価結果に応じた情報を出力する(ステップS115)。例えば、評価結果は、ユーザの携帯する端末装置(図示しない)に出力される。例えば、評価結果は、筋力を用いた処理を実行するシステムに出力される。
(適用例)
次に、本実施形態に係る適用例について図面を参照しながら説明する。以下の適用例においては、靴に配置された歩容計測装置10によって計測された特徴量データを用いて、転倒リスクに関連する評価対象筋肉の筋力を評価する例を示す。例えば、筋力評価装置13の機能は、ユーザが携帯する携帯端末にインストールされる。
次に、本実施形態に係る適用例について図面を参照しながら説明する。以下の適用例においては、靴に配置された歩容計測装置10によって計測された特徴量データを用いて、転倒リスクに関連する評価対象筋肉の筋力を評価する例を示す。例えば、筋力評価装置13の機能は、ユーザが携帯する携帯端末にインストールされる。
図22~図24は、歩容計測装置10が配置された靴100を履いて歩行するユーザの携帯する携帯端末160の画面に、筋力評価装置13による評価結果を表示させる一例を示す概念図である。図22~図24は、ユーザの歩行中に計測されたセンサデータに応じた特徴量データを用いた筋力の評価結果に応じた情報を、携帯端末160の画面に表示させる例である。
図22は、筋力の評価結果に応じた情報が、携帯端末160の画面に表示される一例である。図22の例の場合、「筋肉4の筋力が著しく低下しています。」という評価結果が、携帯端末160の画面に表示される。また、図22の例では、評価対象筋肉の筋力スコアに関するグラフが、携帯端末160の画面に表示される。図22のグラフには、評価対象筋肉ごとに、スコアを棒グラフで表す。図22のグラフには、上限閾値Uと下限閾値Lを示す。上限閾値Uは、筋力スコアの目標値を示す。筋力スコアが上限閾値Uを上回る筋肉は、十分な筋力がある。下限閾値Lは、転倒リスクの評価基準値を示す。筋力スコアが下限閾値Lを下回る筋肉は、転倒リスクの要因となりうる。図22の例の場合、筋肉4の筋力スコアが、下限閾値Lを下回っている。携帯端末160の表示部に表示された筋力に関する評価結果を確認したユーザは、筋力に関する評価結果やグラフを確認して、自身の筋力の状態を認識できる。図22の例の場合、筋肉4のスコアが低い。携帯端末160の表示部に表示されたグラフを確認したユーザは、自身の筋肉4の筋力が低いことを認識できる。筋力の評価結果に関する情報は、ユーザ以外に提供されてもよい。例えば、筋力の評価結果に関する情報は、ユーザの体調管理を行うトレーナーや、ユーザの家族などの使用する端末装置(図示しない)に出力されてもよい。例えば、筋力の評価結果に関する情報は、健康管理等の目的で構築されたデータベース(図示しない)に記録されてもよい。
図23は、筋力の評価結果に応じた情報が、携帯端末160の画面に表示される別の一例である。図23の例の場合、「筋肉4の筋力が著しく低下しています。」という評価結果が、携帯端末160の画面に表示される。また、図23の例では、筋力の評価結果に応じて、「トレーニングZを推奨します。下記の動画をご覧ください。」という評価結果に応じた推薦情報が、携帯端末160の表示部に表示される。携帯端末160の画面には、著しく低下している筋肉4の筋力の増大につながるトレーニングに関する動画が表示される。携帯端末160の表示部に表示された情報を確認したユーザは、推薦情報に応じて、トレーニングZの動画を参照して運動することによって、筋肉4の筋力の増大につながるトレーニングを実践できる。
図24は、筋力の評価結果に応じた情報が、携帯端末160の画面に表示されるさらに別の一例である。図24の例の場合、「筋肉4の筋力が著しく低下しています。」という評価結果が、携帯端末160の画面に表示される。また、図24の例では、筋力の評価結果に応じて、「下記のトレーニングメニューに従って、トレーニングしてください。」という評価結果に応じた推薦情報が、携帯端末160の表示部に表示される。携帯端末160の画面には、著しく低下している筋肉4の筋力の増大につながるトレーニングメニューが表示される。携帯端末160の表示部に表示された情報を確認したユーザは、推薦情報に応じて、トレーニングメニューを参照して運動することによって、筋肉4の筋力の増大につながるトレーニングを実践できる。
以上のように、本実施形態の筋力評価システムは、歩容計測装置および筋力評価装置を備える。歩容計測装置は、センサと特徴量データ生成部を備える。センサは、加速度センサと角速度センサを有する。センサは、加速度センサを用いて、空間加速度を計測する。センサは、角速度センサを用いて、空間角速度を計測する。センサは、計測した空間加速度および空間角速度を用いて、足の動きに関するセンサデータを生成する。センサは、生成したセンサデータを特徴量データ生成部に出力する。特徴量データ生成部は、足の動きに関するセンサデータの時系列データを取得する。特徴量データ生成部は、センサデータの時系列データから一歩行周期分の歩行波形データを抽出する。特徴量データ生成部は、抽出された歩行波形データを正規化する。特徴量データ生成部は、正規化された歩行波形データから、評価対象筋肉の筋力の推定に用いられる特徴量を抽出する。特徴量データ生成部は、抽出された特徴量を含む特徴量データを生成する。特徴量データ生成部は、生成された特徴量データを筋力評価装置に出力する。
筋力評価装置は、データ取得部、記憶部、評価部、および出力部を備える。データ取得部は、ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得する。記憶部は、特徴量データの入力に応じて、評価対象筋肉の筋力指標を出力する推定モデルを記憶する。評価部は、取得された特徴量データを推定モデルに入力し、推定モデルから出力された筋力指標に応じて、ユーザの評価対象筋肉の筋力を評価する。出力部は、ユーザの評価対象筋肉の筋力に関する評価結果に関する情報を出力する。
本実施形態の筋力評価システムは、ユーザの足の動きに関するセンサデータから抽出された特徴量を用いて、ユーザの評価対象筋肉の筋力を評価する。そのため、本実施形態によれば、筋力を評価するための器具を用いずに、日常生活における歩容に応じて、転倒リスクに関連する筋肉の筋力を評価できる。
本実施形態の一態様において、記憶部は、身体能力推定モデルと筋力推定モデルを記憶する。身体能力推定モデルは、転倒リスクに関連する身体能力スコアの推定に用いられる特徴量の入力に応じて、身体能力スコアを出力する。筋力推定モデルは、身体能力スコアの入力に応じて、評価対象筋肉の筋力スコアを出力する。データ取得部は、センサデータの時系列データを用いて生成された歩行波形データから抽出された、身体能力スコアの推定に用いられる特徴量を取得する。評価部は、取得された特徴量を身体能力推定モデルに入力する。評価部は、推定モデルから出力された身体能力スコアを筋力推定モデルに入力する。評価部は、筋力推定モデルから出力された筋力スコアに応じて、ユーザの評価対象筋肉の筋力を評価する。本態様によれば、身体能力推定モデルと筋力推定モデルを含む推定モデルを用いて、ユーザの評価対象筋肉の筋力を評価できる。
本実施形態の一態様において、記憶部は、身体能力推定モデルと筋力推定モデルを記憶する。身体能力推定モデルは、複数の被験者に関して、身体能力スコアの推定に用いられる特徴量を説明変数とし、複数の被験者に関する身体能力スコアを目的変数とする教師データを用いた学習によって生成される。筋力推定モデルは、複数の被験者に関して、身体能力スコアを説明変数とし、複数の被験者に関する評価対象筋肉の筋力スコアを目的変数とする教師データを用いた学習によって生成される。評価部は、ユーザに関して取得された、身体能力スコアの推定に用いられる特徴量を身体能力推定モデルに入力する。評価部は、推定モデルから出力された身体能力スコアを筋力推定モデルに入力する。評価部は、筋力推定モデルから出力された筋力スコアに応じて、ユーザの評価対象筋肉の筋力を評価する。本態様によれば、複数の被験者に関する教師データを学習させた推定モデルを用いて、ユーザの評価対象筋肉の筋力を評価できる。
本実施形態の一態様において、記憶部は、複数の被験者の属性データを含めた説明変数を用いて学習された推定モデルを記憶する。評価部は、ユーザに関する特徴量および属性データを推定モデルに入力し、推定モデルから出力されたユーザの筋力指標に応じて、ユーザの筋力を推定する。本態様では、評価対象筋肉の筋力に影響を与える属性データを含めて、筋力を推定する。そのため、本態様によれば、ユーザの属性に応じて、ユーザの評価対象筋肉の筋力をより高精度に評価できる。
本実施形態の一態様において、記憶部は、身体能力推定モデルと筋力推定モデルを記憶する。身体能力推定モデルは、複数の被験者に関して、転倒リスクに関連する身体能力の身体能力スコアの推定に用いられる特徴量を説明変数とし、複数の被験者に関する身体能力スコアを目的変数とする教師データを用いた学習によって生成される。転倒リスクに関連する身体能力は、全身の総合筋力、動的バランス、下肢筋力、移動能力、および静的バランスの五項目のうち少なくともいずれかである。筋力推定モデルは、複数の被験者に関して、五項目の身体能力のうち少なくともいずれかの身体能力に関する身体能力スコアを説明変数とし、複数の被験者に関する評価対象筋肉の筋力スコアを目的変数とする教師データを用いた学習によって生成される。データ取得部は、歩行波形データから抽出された、身体能力スコアの推定に用いられる特徴量を取得する。評価部は、ユーザに関して取得された特徴量を身体能力推定モデルに入力する。評価部は、身体能力推定モデルから出力された身体能力スコアを筋力推定モデルに入力する。評価部は、筋力推定モデルから出力された筋力スコアに応じて、ユーザの評価対象筋肉の筋力を評価する。本態様によれば、転倒リスクに関連する身体能力に応じて、ユーザの評価対象筋肉の筋力を評価できる。
本実施形態の一態様において、記憶部は、五項目の身体能力に関連する評価対象筋肉の比重と、五項目の身体能力のテストによって予め決定された評価対象筋肉の比重係数とを記憶する。評価部は、評価対象筋肉に関連する身体能力における評価対象筋肉の比重と、評価対象筋肉に関連する身体能力における評価対象筋肉の比重係数と、評価対象筋肉に関連する身体能力に関する身体能力スコアとの積を用いて、評価対象筋肉の筋力スコアを計算する。評価部は、算出された評価対象筋肉の筋力スコアに応じて、評価対象筋肉の筋力を評価する。本態様によれば、評価対象筋肉に関連する身体能力における評価対象筋肉の比重と比重係数とを用いて、評価対象筋肉の筋力を推定できる。
本実施形態の一態様において、筋力評価装置は、ユーザによって視認可能な画面を有する端末装置に実装される。例えば、筋力評価装置は、センサデータに応じて推定された評価対象筋肉の筋力に関する情報を、端末装置の画面に表示させる。例えば、筋力評価装置は、センサデータから抽出される特徴量に応じて推定された評価対象筋肉の筋力に応じた推薦情報を、端末装置の画面に表示させる。例えば、筋力評価装置は、センサデータから抽出される特徴量に応じて推定された筋力に応じた推薦情報として、評価対象筋肉を鍛えるためのトレーニングに関する動画を端末装置の画面に表示させる。例えば、筋力評価装置は、センサデータから抽出される特徴量に応じて推定された筋力に応じた推薦情報として、評価対象筋肉を鍛えるためのトレーニングメニューを端末装置の画面に表示させる。本態様によれば、センサデータから抽出される特徴量に応じて推定された評価対象筋肉の筋力に関する情報を、ユーザによって視認可能な画面に表示させることによって、ユーザが自身の筋力に応じた情報を確認できる。
(第2の実施形態)
次に、第2の実施形態に係る学習システムについて図面を参照しながら説明する。本実施形態の学習システムは、歩容計測装置によって計測されたセンサデータから抽出された特徴量データを用いた学習によって、特徴量の入力に応じて筋力を推定するための推定モデルを生成する。
次に、第2の実施形態に係る学習システムについて図面を参照しながら説明する。本実施形態の学習システムは、歩容計測装置によって計測されたセンサデータから抽出された特徴量データを用いた学習によって、特徴量の入力に応じて筋力を推定するための推定モデルを生成する。
(構成)
図25は、本実施形態に係る学習システム2の構成の一例を示すブロック図である。学習システム2は、歩容計測装置20および学習装置25を備える。歩容計測装置20と学習装置25は、有線で接続されてもよいし、無線で接続されてもよい。歩容計測装置20と学習装置25は、単一の装置で構成されてもよい。また、学習システム2の構成から歩容計測装置20を除き、学習装置25だけで学習システム2が構成されてもよい。図25には歩容計測装置20を一つしか図示していないが、左右両足に歩容計測装置20が一つずつ(計二つ)配置されてもよい。また、学習装置25は、歩容計測装置20に接続されず、予め歩容計測装置20によって生成されてデータベースに格納されていた特徴量データを用いて、学習を実行するように構成されてもよい。
図25は、本実施形態に係る学習システム2の構成の一例を示すブロック図である。学習システム2は、歩容計測装置20および学習装置25を備える。歩容計測装置20と学習装置25は、有線で接続されてもよいし、無線で接続されてもよい。歩容計測装置20と学習装置25は、単一の装置で構成されてもよい。また、学習システム2の構成から歩容計測装置20を除き、学習装置25だけで学習システム2が構成されてもよい。図25には歩容計測装置20を一つしか図示していないが、左右両足に歩容計測装置20が一つずつ(計二つ)配置されてもよい。また、学習装置25は、歩容計測装置20に接続されず、予め歩容計測装置20によって生成されてデータベースに格納されていた特徴量データを用いて、学習を実行するように構成されてもよい。
歩容計測装置20は、左右の足のうち少なくとも一方に設置される。歩容計測装置20は、第1の実施形態の歩容計測装置10と同様の構成である。歩容計測装置20は、加速度センサおよび角速度センサを含む。歩容計測装置20は、計測された物理量をデジタルデータ(センサデータとも呼ぶ)に変換する。歩容計測装置20は、センサデータの時系列データから、正規化された一歩行周期分の歩行波形データを生成する。歩容計測装置20は、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量データを生成する。例えば、歩容計測装置20は、全身の総合筋力、動的バランス、下肢筋力、移動能力、および静的バランスの五項目に関するスコアの推定に用いられる特徴量データを生成する。歩容計測装置20は、生成された特徴量データを学習装置25に送信する。なお、歩容計測装置20は、学習装置25によってアクセスされるデータベース(図示しない)に、特徴量データを送信するように構成されてもよい。データベースに蓄積された特徴量データは、学習装置25の学習に用いられる。
学習装置25は、複数の被験者の歩行波形データから抽出された特徴量データを、歩容計測装置20から受信する。データベース(図示しない)に蓄積された特徴量データを用いる場合、学習装置25は、データベースから特徴量データを受信する。学習装置25は、受信した特徴量データを用いた学習を実行する。例えば、学習装置25は、転倒リスクに関連する五項目のスコアを推定するための特徴量データを説明変数とし、その特徴量データに応じた五項目のスコアを目的変数とする教師データを学習する。例えば、学習装置25は、転倒リスクに関連する五項目のスコアのうち少なくともいずれかを説明変数とし、評価対象筋肉の筋力スコアを目的変数とする教師データを学習する。学習装置25が実行する学習のアルゴリズムには、特に限定を加えない。学習装置25は、複数の被験者に関する教師データを用いて学習された推定モデルを生成する。学習装置25は、生成された推定モデルを記憶する。学習装置25によって学習された推定モデルは、学習装置25の外部の記憶装置に格納されてもよい。
〔学習装置〕
次に、学習装置25の詳細について図面を参照しながら説明する。図26は、学習装置25の詳細構成の一例を示すブロック図である。学習装置25は、受信部251、学習部253、および記憶部255を有する。
次に、学習装置25の詳細について図面を参照しながら説明する。図26は、学習装置25の詳細構成の一例を示すブロック図である。学習装置25は、受信部251、学習部253、および記憶部255を有する。
受信部251は、歩容計測装置20から特徴量データを受信する。受信部251は、受信された特徴量データを学習部253に出力する。受信部251は、ケーブルなどの有線を介して特徴量データを歩容計測装置20から受信してもよいし、無線通信を介して特徴量データを歩容計測装置20から受信してもよい。例えば、受信部251は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、特徴量データを歩容計測装置20から受信するように構成される。なお、受信部251の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。
学習部253は、受信部251から特徴量データを取得する。学習部253は、取得された特徴量データを用いて学習を実行する。学習部253は、特徴量データを用いた学習によって、特徴量データの入力に応じて、転倒リスクに関連する五項目のスコアを出力する身体能力推定モデルを生成する。例えば、学習部253は、被験者の足の動きに応じて計測されたセンサデータから抽出された特徴量データを説明変数とし、転倒リスクに関連する五項目のスコアを目的変数とするデータセットを教師データとして学習する。また、学習部253は、転倒リスクに関連する五項目のスコアを用いた学習によって、五項目のスコアの入力に応じて、評価対象筋肉の筋力スコアを出力する筋力推定モデルを生成する。例えば、学習部253は、五項目のスコアのうち少なくともいずれかを説明変数とし、評価対象筋肉の筋力スコアを目的変数とする教師データを学習する。例えば、学習部253は、属性データに応じた推定モデルを生成する。学習部253は、複数の被験者に関して学習された推定モデルを記憶部255に記憶させる。
例えば、学習部253は、線形回帰のアルゴリズムを用いた学習を実行する。例えば、学習部253は、サポートベクターマシン(SVM:Support Vector Machine)のアルゴリズムを用いた学習を実行する。例えば、学習部253は、ガウス過程回帰(GPR:Gaussian Process Regression)のアルゴリズムを用いた学習を実行する。例えば、学習部253は、ランダムフォレスト(RF:Random Forest)のアルゴリズムを用いた学習を実行する。例えば、学習部253は、特徴量データに応じて、その特徴量データの生成元の被験者を分類する教師なし学習を実行してもよい。学習部253が実行する学習のアルゴリズムには、特に限定を加えない。
学習部253は、一歩行周期分の歩行波形データを説明変数として、学習を実行してもよい。例えば、学習部253は、3軸方向の加速度、3軸周りの角速度、3軸周りの角度(姿勢角)の歩行波形データを説明変数とし、筋力指標の正解値を目的変数とした教師あり学習を実行する。例えば、0~100%の歩行周期において歩行フェーズが1%刻みで設定されている場合、学習部253は、909個の説明変数を用いて学習する。
図27は、転倒リスクに関連する身体能力のスコアを推定する身体能力推定モデルを生成するための学習について説明するための概念図である。図27は、説明変数である特徴量と、それらの特徴量に対応する目的変数であるスコアとのデータセットを教師データとして、学習部253に学習させる一例を示す概念図である。男性の総合筋力スコアS1を推定するモデルの学習には、特徴量AM1~AM4と、男性の総合筋力スコアS1とのデータセットが教師データとして用いられる。女性の総合筋力スコアS1を推定するモデルの学習には、特徴量AF1~AF3と、女性の総合筋力スコアS1とのデータセットが教師データとして用いられる。動的バランススコアS2を推定するモデルの学習には、特徴量B1~B5と、動的バランススコアS2とのデータセットが教師データとして用いられる。下肢筋力スコアS3を推定するモデルの学習には、特徴量C1~C4と、下肢筋力スコアS3とのデータセットが教師データとして用いられる。移動能力スコアS4を推定するモデルの学習には、特徴量D1~D6と、移動能力スコアS4とのデータセットが教師データとして用いられる。静的バランススコアS5を推定するモデルの学習には、特徴量E1~E7と、静的バランススコアS5とのデータセットが教師データとして用いられる。例えば、学習部253は、複数の被験者に関するデータを学習し、センサデータから抽出された特徴量の入力に応じて、転倒リスクに関連する五項目の身体能力スコアを出力する身体能力推定モデルを生成する。身体能力推定モデルを生成するための学習においては、身体能力推定モデルに含まれる複数の推定モデルを個別に生成させてもよいし、複数の推定モデルを一括で生成させてもよい。
図28は、筋力推定モデルを生成するための学習について説明するための概念図である。図28は、説明変数である五項目のスコアと、目的変数である筋力スコアとのデータセットを教師データとして、学習部253に学習させる一例を示す概念図である(nは自然数)。図28の例では、全身の総合筋力スコアS1、動的バランススコアS2、下肢筋力スコアS3、移動能力スコアS4、および静的バランススコアS5を説明変数とし、筋力スコアMS1~MSnを目的変数とする教師データを用いる。例えば、学習部253は、複数の被験者に関するデータを学習し、センサデータから抽出された特徴量の入力に応じて、筋力スコア(筋力指標)を出力する筋力推定モデルを生成する。
記憶部255は、複数の被験者に関して学習された、評価対象筋肉の筋力の推定に用いられる推定モデルを記憶する。記憶部255に記憶された推定モデルは、第1の実施形態の筋力評価装置13による筋力の推定に用いられる。
以上のように、本実施形態の学習システムは、歩容計測装置および学習装置を備える。歩容計測装置は、足の動きに関するセンサデータの時系列データを取得する。歩容計測装置は、センサデータの時系列データから一歩行周期分の歩行波形データを抽出し、抽出された歩行波形データを正規化する。歩容計測装置は、正規化された歩行波形データから、ユーザの評価対象筋肉の評価に用いられる特徴量を、時間的に連続する少なくとも一つの歩行フェーズによって構成される歩行フェーズクラスターから抽出する。歩容計測装置は、抽出された特徴量を含む特徴量データを生成する。歩容計測装置は、生成された特徴量データを学習装置に出力する。
学習装置は、受信部、学習部、および記憶部を有する。受信部は、歩容計測装置によって生成された特徴量データを取得する。学習部は、特徴量データを用いて学習を実行する。学習部は、ユーザの歩行に伴って計測されるセンサデータの時系列データから抽出される歩行フェーズクラスターの特徴量の入力に応じて、評価対象筋肉の筋力を出力する推定モデルを生成する。学習部によって生成された推定モデルは、記憶部に保存される。
本実施形態の学習システムは、歩容計測装置によって計測された特徴量データを用いて、推定モデルを生成する。そのため、本態様によれば、筋力を評価するための器具を用いずに、日常生活における歩容に応じて、転倒リスクに関連する筋肉の筋力を評価することを可能とする推定モデルを生成できる。
本実施形態の一態様において、歩容計測装置は、正規化された歩行波形データから、全身の総合筋力、動的バランス、下肢筋力、移動能力、および静的バランスの五項目のうち少なくとも一つに関する特徴量を抽出する。例えば、学習部は、五項目のうち少なくとも一つに関する特徴量を説明変数とし、説明変数として用いられた特徴量に対応する五項目のスコアを目的変数とする教師データを用いた学習によって、推定モデル(身体能力推定モデル)を生成する。学習部は、五項目のうち少なくとも一つに関するスコアの入力に応じて、評価対象筋肉の筋力スコアを出力する筋力推定モデルを生成する。本態様によれば、五項目に関連する特徴量の入力に応じて、五項目に関連するスコアを推定することを可能とする身体能力推定モデルを生成できる。また、本態様によれば、五項目に関連するスコアの入力に応じて、評価対象筋肉の筋力を評価することを可能とする筋力推定モデルを生成できる。
(第3の実施形態)
次に、第3の実施形態に係る筋力評価装置について図面を参照しながら説明する。本実施形態の筋力評価装置は、第1の実施形態の筋力評価システムに含まれる筋力評価装置を簡略化した構成である。
次に、第3の実施形態に係る筋力評価装置について図面を参照しながら説明する。本実施形態の筋力評価装置は、第1の実施形態の筋力評価システムに含まれる筋力評価装置を簡略化した構成である。
図29は、本実施形態に係る筋力評価装置33の構成の一例を示すブロック図である。筋力評価装置33は、データ取得部331、記憶部332、評価部333、および出力部335を備える。
データ取得部331は、ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得する。記憶部332は、特徴量データの入力に応じて、評価対象筋肉の筋力指標を出力する推定モデルを記憶する。評価部333は、取得された特徴量データを推定モデルに入力し、推定モデルから出力された筋力指標に応じて、ユーザの評価対象筋肉の筋力を評価する。出力部335は、ユーザの評価対象筋肉の筋力に関する評価結果に関する情報を出力する。
以上のように、本実施形態では、ユーザの足の動きに関するセンサデータから抽出された特徴量を用いて、ユーザの評価対象筋肉の筋力を評価する。そのため、本実施形態によれば、筋力を評価するための器具を用いずに、日常生活における歩容に応じて、転倒リスクに関連する筋肉の筋力を評価できる。
(ハードウェア)
ここで、本開示の各実施形態に係る制御や処理を実行するハードウェア構成について、図30の情報処理装置90を一例として挙げて説明する。なお、図30の情報処理装置90は、各実施形態の制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。
ここで、本開示の各実施形態に係る制御や処理を実行するハードウェア構成について、図30の情報処理装置90を一例として挙げて説明する。なお、図30の情報処理装置90は、各実施形態の制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。
図30のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図30においては、インターフェースをI/F(Interface)と略記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して、互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93、および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。
プロセッサ91は、補助記憶装置93等に格納されたプログラムを、主記憶装置92に展開する。プロセッサ91は、主記憶装置92に展開されたプログラムを実行する。本実施形態においては、情報処理装置90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、各実施形態に係る制御や処理を実行する。
主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92には、プロセッサ91によって、補助記憶装置93等に格納されたプログラムが展開される。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリによって実現される。また、主記憶装置92として、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリが構成/追加されてもよい。
補助記憶装置93は、プログラムなどの種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって実現される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。
入出力インターフェース95は、規格や仕様に基づいて、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。
情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器が接続されてもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成としてもよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。
また、情報処理装置90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
また、情報処理装置90には、ドライブ装置が備え付けられてもよい。ドライブ装置は、プロセッサ91と記録媒体(プログラム記録媒体)との間で、記録媒体からのデータやプログラムの読み込み、情報処理装置90の処理結果の記録媒体への書き込みなどを仲介する。ドライブ装置は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
以上が、本発明の各実施形態に係る制御や処理を可能とするためのハードウェア構成の一例である。なお、図30のハードウェア構成は、各実施形態に係る制御や処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、各実施形態に係る制御や処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。さらに、各実施形態に係るプログラムを記録したプログラム記録媒体も本発明の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体によって実現されてもよい。また、記録媒体は、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現されてもよい。プロセッサが実行するプログラムが記録媒体に記録されている場合、その記録媒体はプログラム記録媒体に相当する。
各実施形態の構成要素は、任意に組み合わせてもよい。また、各実施形態の構成要素は、ソフトウェアによって実現されてもよいし、回路によって実現されてもよい。
以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得するデータ取得部と、
前記特徴量データの入力に応じて、前記評価対象筋肉の筋力指標を出力する推定モデルを記憶する記憶部と、
取得された前記特徴量データを前記推定モデルに入力し、前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する評価部と、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する出力部と、を備える筋力評価装置。
(付記2)
前記記憶部は、
転倒リスクに関連する身体能力スコアの推定に用いられる特徴量の入力に応じて、前記身体能力スコアを出力する身体能力推定モデルと、
前記身体能力スコアの入力に応じて、前記評価対象筋肉の筋力スコアを出力する筋力推定モデルとを記憶し、
前記データ取得部は、
前記センサデータの時系列データを用いて生成された歩行波形データから抽出された、前記身体能力スコアの推定に用いられる特徴量を取得し、
前記評価部は、
取得された特徴量を前記身体能力推定モデルに入力し、
前記推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する付記1に記載の筋力評価装置。
(付記3)
前記記憶部は、
複数の被験者に関して、前記身体能力スコアの推定に用いられる特徴量を説明変数とし、複数の前記被験者に関する前記身体能力スコアを目的変数とする教師データを用いた学習によって生成された前記身体能力推定モデルと、
複数の前記被験者に関して、前記身体能力スコアを説明変数とし、複数の前記被験者に関する前記評価対象筋肉の前記筋力スコアを目的変数とする教師データを用いた学習によって生成された前記筋力推定モデルとを記憶し、
前記評価部は、
前記ユーザに関して取得された、前記身体能力スコアの推定に用いられる特徴量を前記身体能力推定モデルに入力し、
前記推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する付記2に記載の筋力評価装置。
(付記4)
前記記憶部は、
複数の前記被験者の属性データを含めた説明変数を用いて学習された前記推定モデルを記憶し、
前記評価部は、
前記ユーザに関する特徴量および前記属性データを前記推定モデルに入力し、前記推定モデルから出力された前記ユーザの前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する付記3に記載の筋力評価装置。
(付記5)
前記記憶部は、
複数の前記被験者に関して、全身の総合筋力、動的バランス、下肢筋力、移動能力、および静的バランスの五項目の身体能力のうち少なくともいずれかの身体能力に関する前記身体能力スコアの推定に用いられる特徴量を説明変数とし、複数の前記被験者に関する前記五項目のうち少なくともいずれかの身体能力に関する前記身体能力スコアを目的変数とする教師データを用いた学習によって生成された前記身体能力推定モデルと、
複数の前記被験者に関して、前記五項目の身体能力のうち少なくともいずれかの身体能力に関する前記身体能力スコアを説明変数とし、複数の前記被験者に関する前記評価対象筋肉の前記筋力スコアを目的変数とする教師データを用いた学習によって生成された前記筋力推定モデルとを記憶し、
前記データ取得部は、
前記歩行波形データから抽出された、前記身体能力スコアの推定に用いられる特徴量を取得し、
前記評価部は、
前記ユーザに関して取得された特徴量を前記身体能力推定モデルに入力し、
前記身体能力推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する付記3または4に記載の筋力評価装置。
(付記6)
前記記憶部は、
前記五項目の身体能力に関連する前記評価対象筋肉の比重と、前記五項目の身体能力のテストによって予め決定された前記評価対象筋肉の比重係数とを記憶し、
前記評価部は、
前記評価対象筋肉に関連する身体能力における前記評価対象筋肉の比重と、前記評価対象筋肉に関連する身体能力における前記評価対象筋肉の比重係数と、前記評価対象筋肉に関連する身体能力に関する前記身体能力スコアとの積を用いて、前記評価対象筋肉の前記筋力スコアを計算し、
算出された前記評価対象筋肉の前記筋力スコアに応じて、前記評価対象筋肉の筋力を評価する付記5に記載の筋力評価装置。
(付記7)
付記1乃至6のいずれか一つに記載の筋力評価装置と、
筋力の評価対象であるユーザの履物に設置され、空間加速度および空間角速度を計測し、計測した前記空間加速度および前記空間角速度を用いて足の動きに関するセンサデータを生成し、生成した前記センサデータを出力するセンサと、前記センサデータの時系列データから一歩行周期分の歩行波形データを抽出し、抽出された前記歩行波形データを正規化し、正規化された前記歩行波形データから評価対象筋肉の筋力の推定に用いられる特徴量を抽出し、抽出された特徴量を含む特徴量データを生成し、生成された前記特徴量データを前記筋力評価装置に出力する特徴量データ生成部と有する歩容計測装置と、を備える筋力評価システム。
(付記8)
前記筋力評価装置は、
前記ユーザによって視認可能な画面を有する端末装置に実装され、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に関する情報を、前記端末装置の画面に表示させる付記7に記載の筋力評価システム。
(付記9)
前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた推薦情報を、前記端末装置の画面に表示させる付記8に記載の筋力評価システム。
(付記10)
前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた前記推薦情報として、前記評価対象筋肉を鍛えるためのトレーニングに関する動画を前記端末装置の画面に表示させる付記9に記載の筋力評価システム。
(付記11)
前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた前記推薦情報として、前記評価対象筋肉の筋力に関する身体部位を鍛えるためのトレーニングメニューを前記端末装置の画面に表示させる付記9または10に記載の筋力評価システム。
(付記12)
コンピュータが、
ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得し、
取得された前記特徴量データを、前記特徴量データの入力に応じて前記評価対象筋肉の筋力指標を出力する推定モデルに入力し、
前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価し、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する筋力評価方法。
(付記13)
ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得する処理と、
取得された前記特徴量データを、前記特徴量データの入力に応じて前記評価対象筋肉の筋力指標を出力する推定モデルに入力する処理と、
前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する処理と、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する処理と、をコンピュータに実行させるプログラム。
(付記1)
ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得するデータ取得部と、
前記特徴量データの入力に応じて、前記評価対象筋肉の筋力指標を出力する推定モデルを記憶する記憶部と、
取得された前記特徴量データを前記推定モデルに入力し、前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する評価部と、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する出力部と、を備える筋力評価装置。
(付記2)
前記記憶部は、
転倒リスクに関連する身体能力スコアの推定に用いられる特徴量の入力に応じて、前記身体能力スコアを出力する身体能力推定モデルと、
前記身体能力スコアの入力に応じて、前記評価対象筋肉の筋力スコアを出力する筋力推定モデルとを記憶し、
前記データ取得部は、
前記センサデータの時系列データを用いて生成された歩行波形データから抽出された、前記身体能力スコアの推定に用いられる特徴量を取得し、
前記評価部は、
取得された特徴量を前記身体能力推定モデルに入力し、
前記推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する付記1に記載の筋力評価装置。
(付記3)
前記記憶部は、
複数の被験者に関して、前記身体能力スコアの推定に用いられる特徴量を説明変数とし、複数の前記被験者に関する前記身体能力スコアを目的変数とする教師データを用いた学習によって生成された前記身体能力推定モデルと、
複数の前記被験者に関して、前記身体能力スコアを説明変数とし、複数の前記被験者に関する前記評価対象筋肉の前記筋力スコアを目的変数とする教師データを用いた学習によって生成された前記筋力推定モデルとを記憶し、
前記評価部は、
前記ユーザに関して取得された、前記身体能力スコアの推定に用いられる特徴量を前記身体能力推定モデルに入力し、
前記推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する付記2に記載の筋力評価装置。
(付記4)
前記記憶部は、
複数の前記被験者の属性データを含めた説明変数を用いて学習された前記推定モデルを記憶し、
前記評価部は、
前記ユーザに関する特徴量および前記属性データを前記推定モデルに入力し、前記推定モデルから出力された前記ユーザの前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する付記3に記載の筋力評価装置。
(付記5)
前記記憶部は、
複数の前記被験者に関して、全身の総合筋力、動的バランス、下肢筋力、移動能力、および静的バランスの五項目の身体能力のうち少なくともいずれかの身体能力に関する前記身体能力スコアの推定に用いられる特徴量を説明変数とし、複数の前記被験者に関する前記五項目のうち少なくともいずれかの身体能力に関する前記身体能力スコアを目的変数とする教師データを用いた学習によって生成された前記身体能力推定モデルと、
複数の前記被験者に関して、前記五項目の身体能力のうち少なくともいずれかの身体能力に関する前記身体能力スコアを説明変数とし、複数の前記被験者に関する前記評価対象筋肉の前記筋力スコアを目的変数とする教師データを用いた学習によって生成された前記筋力推定モデルとを記憶し、
前記データ取得部は、
前記歩行波形データから抽出された、前記身体能力スコアの推定に用いられる特徴量を取得し、
前記評価部は、
前記ユーザに関して取得された特徴量を前記身体能力推定モデルに入力し、
前記身体能力推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する付記3または4に記載の筋力評価装置。
(付記6)
前記記憶部は、
前記五項目の身体能力に関連する前記評価対象筋肉の比重と、前記五項目の身体能力のテストによって予め決定された前記評価対象筋肉の比重係数とを記憶し、
前記評価部は、
前記評価対象筋肉に関連する身体能力における前記評価対象筋肉の比重と、前記評価対象筋肉に関連する身体能力における前記評価対象筋肉の比重係数と、前記評価対象筋肉に関連する身体能力に関する前記身体能力スコアとの積を用いて、前記評価対象筋肉の前記筋力スコアを計算し、
算出された前記評価対象筋肉の前記筋力スコアに応じて、前記評価対象筋肉の筋力を評価する付記5に記載の筋力評価装置。
(付記7)
付記1乃至6のいずれか一つに記載の筋力評価装置と、
筋力の評価対象であるユーザの履物に設置され、空間加速度および空間角速度を計測し、計測した前記空間加速度および前記空間角速度を用いて足の動きに関するセンサデータを生成し、生成した前記センサデータを出力するセンサと、前記センサデータの時系列データから一歩行周期分の歩行波形データを抽出し、抽出された前記歩行波形データを正規化し、正規化された前記歩行波形データから評価対象筋肉の筋力の推定に用いられる特徴量を抽出し、抽出された特徴量を含む特徴量データを生成し、生成された前記特徴量データを前記筋力評価装置に出力する特徴量データ生成部と有する歩容計測装置と、を備える筋力評価システム。
(付記8)
前記筋力評価装置は、
前記ユーザによって視認可能な画面を有する端末装置に実装され、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に関する情報を、前記端末装置の画面に表示させる付記7に記載の筋力評価システム。
(付記9)
前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた推薦情報を、前記端末装置の画面に表示させる付記8に記載の筋力評価システム。
(付記10)
前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた前記推薦情報として、前記評価対象筋肉を鍛えるためのトレーニングに関する動画を前記端末装置の画面に表示させる付記9に記載の筋力評価システム。
(付記11)
前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた前記推薦情報として、前記評価対象筋肉の筋力に関する身体部位を鍛えるためのトレーニングメニューを前記端末装置の画面に表示させる付記9または10に記載の筋力評価システム。
(付記12)
コンピュータが、
ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得し、
取得された前記特徴量データを、前記特徴量データの入力に応じて前記評価対象筋肉の筋力指標を出力する推定モデルに入力し、
前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価し、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する筋力評価方法。
(付記13)
ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得する処理と、
取得された前記特徴量データを、前記特徴量データの入力に応じて前記評価対象筋肉の筋力指標を出力する推定モデルに入力する処理と、
前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する処理と、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する処理と、をコンピュータに実行させるプログラム。
1 筋力評価システム
2 学習システム
10、20 歩容計測装置
11 センサ
12 特徴量データ生成部
13 筋力評価装置
25 学習装置
111 加速度センサ
112 角速度センサ
121 取得部
122 正規化部
123 抽出部
125 生成部
127 特徴量データ出力部
130、333 評価部
131、331 データ取得部
132、332 記憶部
133 身体能力推定部
134 筋力評価部
135、335 出力部
251 受信部
253 学習部
255 記憶部
2 学習システム
10、20 歩容計測装置
11 センサ
12 特徴量データ生成部
13 筋力評価装置
25 学習装置
111 加速度センサ
112 角速度センサ
121 取得部
122 正規化部
123 抽出部
125 生成部
127 特徴量データ出力部
130、333 評価部
131、331 データ取得部
132、332 記憶部
133 身体能力推定部
134 筋力評価部
135、335 出力部
251 受信部
253 学習部
255 記憶部
Claims (13)
- ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得するデータ取得手段と、
前記特徴量データの入力に応じて、前記評価対象筋肉の筋力指標を出力する推定モデルを記憶する記憶手段と、
取得された前記特徴量データを前記推定モデルに入力し、前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する評価手段と、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する出力手段と、を備える筋力評価装置。 - 前記記憶手段は、
転倒リスクに関連する身体能力スコアの推定に用いられる特徴量の入力に応じて前記身体能力スコアを出力する身体能力推定モデルと、前記身体能力スコアの入力に応じて前記評価対象筋肉の筋力スコアを出力する筋力推定モデルとを記憶し、
前記データ取得手段は、
前記センサデータの時系列データを用いて生成された歩行波形データから抽出された、前記身体能力スコアの推定に用いられる特徴量を取得し、
前記評価手段は、
取得された特徴量を前記身体能力推定モデルに入力し、
前記推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する請求項1に記載の筋力評価装置。 - 前記記憶手段は、
複数の被験者に関して、前記身体能力スコアの推定に用いられる特徴量を説明変数とし、複数の前記被験者に関する前記身体能力スコアを目的変数とする教師データを用いた学習によって生成された前記身体能力推定モデルと、
複数の前記被験者に関して、前記身体能力スコアを説明変数とし、複数の前記被験者に関する前記評価対象筋肉の前記筋力スコアを目的変数とする教師データを用いた学習によって生成された前記筋力推定モデルとを記憶し、
前記評価手段は、
前記ユーザに関して取得された、前記身体能力スコアの推定に用いられる特徴量を前記身体能力推定モデルに入力し、
前記推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する請求項2に記載の筋力評価装置。 - 前記記憶手段は、
複数の前記被験者の属性データを含めた説明変数を用いて学習された前記推定モデルを記憶し、
前記評価手段は、
前記ユーザに関する特徴量および前記属性データを前記推定モデルに入力し、前記推定モデルから出力された前記ユーザの前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する請求項3に記載の筋力評価装置。 - 前記記憶手段は、
複数の前記被験者に関して、全身の総合筋力、動的バランス、下肢筋力、移動能力、および静的バランスの五項目の身体能力のうち少なくともいずれかの身体能力に関する前記身体能力スコアの推定に用いられる特徴量を説明変数とし、複数の前記被験者に関する前記五項目のうち少なくともいずれかの身体能力に関する前記身体能力スコアを目的変数とする教師データを用いた学習によって生成された前記身体能力推定モデルと、
複数の前記被験者に関して、前記五項目の身体能力のうち少なくともいずれかの身体能力に関する前記身体能力スコアを説明変数とし、複数の前記被験者に関する前記評価対象筋肉の前記筋力スコアを目的変数とする教師データを用いた学習によって生成された前記筋力推定モデルとを記憶し、
前記データ取得手段は、
前記歩行波形データから抽出された、前記身体能力スコアの推定に用いられる特徴量を取得し、
前記評価手段は、
前記ユーザに関して取得された特徴量を前記身体能力推定モデルに入力し、
前記身体能力推定モデルから出力された前記身体能力スコアを前記筋力推定モデルに入力し、
前記筋力推定モデルから出力された前記筋力スコアに応じて、前記ユーザの前記評価対象筋肉の筋力を評価する請求項3または4に記載の筋力評価装置。 - 前記記憶手段は、
前記五項目の身体能力に関連する前記評価対象筋肉の比重と、前記五項目の身体能力のテストによって予め決定された前記評価対象筋肉の比重係数とを記憶し、
前記評価手段は、
前記評価対象筋肉に関連する身体能力における前記評価対象筋肉の比重と、前記評価対象筋肉に関連する身体能力における前記評価対象筋肉の比重係数と、前記評価対象筋肉に関連する身体能力に関する前記身体能力スコアとの積を用いて、前記評価対象筋肉の前記筋力スコアを計算し、
算出された前記評価対象筋肉の前記筋力スコアに応じて、前記評価対象筋肉の筋力を評価する請求項5に記載の筋力評価装置。 - 請求項1乃至6のいずれか一つに記載の筋力評価装置と、
筋力の評価対象であるユーザの履物に設置され、空間加速度および空間角速度を計測し、計測した前記空間加速度および前記空間角速度を用いて足の動きに関するセンサデータを生成し、生成した前記センサデータを出力するセンサと、前記センサデータの時系列データから一歩行周期分の歩行波形データを抽出し、抽出された前記歩行波形データを正規化し、正規化された前記歩行波形データから評価対象筋肉の筋力の推定に用いられる特徴量を抽出し、抽出された特徴量を含む特徴量データを生成し、生成された前記特徴量データを前記筋力評価装置に出力する特徴量データ生成手段と有する歩容計測装置と、を備える筋力評価システム。 - 前記筋力評価装置は、
前記ユーザによって視認可能な画面を有する端末装置に実装され、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に関する情報を、前記端末装置の画面に表示させる請求項7に記載の筋力評価システム。 - 前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた推薦情報を、前記端末装置の画面に表示させる請求項8に記載の筋力評価システム。 - 前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた前記推薦情報として、前記評価対象筋肉を鍛えるためのトレーニングに関する動画を前記端末装置の画面に表示させる請求項9に記載の筋力評価システム。 - 前記筋力評価装置は、
前記センサデータから抽出される特徴量に応じて評価された前記評価対象筋肉の筋力に応じた前記推薦情報として、前記評価対象筋肉を鍛えるためのトレーニングメニューを前記端末装置の画面に表示させる請求項9または10に記載の筋力評価システム。 - コンピュータが、
ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得し、
取得された前記特徴量データを、前記特徴量データの入力に応じて前記評価対象筋肉の筋力指標を出力する推定モデルに入力し、
前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価し、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する筋力評価方法。 - ユーザの足の動きに関するセンサデータから抽出された、転倒リスクに関連する評価対象筋肉の筋力の推定に用いられる特徴量を含む特徴量データを取得する処理と、
取得された前記特徴量データを、前記特徴量データの入力に応じて前記評価対象筋肉の筋力指標を出力する推定モデルに入力する処理と、
前記推定モデルから出力された前記筋力指標に応じて、前記ユーザの前記評価対象筋肉の筋力を評価する処理と、
前記ユーザの前記評価対象筋肉の筋力に関する評価結果に関する情報を出力する処理と、をコンピュータに実行させるプログラムを記録させた非一過性の記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/048564 WO2023127015A1 (ja) | 2021-12-27 | 2021-12-27 | 筋力評価装置、筋力評価システム、筋力評価方法、および記録媒体 |
JP2023570512A JPWO2023127015A5 (ja) | 2021-12-27 | 筋力評価装置、筋力評価システム、筋力評価方法、およびプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/048564 WO2023127015A1 (ja) | 2021-12-27 | 2021-12-27 | 筋力評価装置、筋力評価システム、筋力評価方法、および記録媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023127015A1 true WO2023127015A1 (ja) | 2023-07-06 |
Family
ID=86998312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048564 WO2023127015A1 (ja) | 2021-12-27 | 2021-12-27 | 筋力評価装置、筋力評価システム、筋力評価方法、および記録媒体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023127015A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007125368A (ja) * | 2005-09-26 | 2007-05-24 | Aisin Seiki Co Ltd | 歩行解析装置及び歩行解析方法 |
JP2014028129A (ja) * | 2012-07-02 | 2014-02-13 | Kiyoshi Kita | 下肢筋力評価装置およびその制御方法 |
WO2021140658A1 (ja) * | 2020-01-10 | 2021-07-15 | 日本電気株式会社 | 異常検出装置、判定システム、異常検出方法、およびプログラム記録媒体 |
-
2021
- 2021-12-27 WO PCT/JP2021/048564 patent/WO2023127015A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007125368A (ja) * | 2005-09-26 | 2007-05-24 | Aisin Seiki Co Ltd | 歩行解析装置及び歩行解析方法 |
JP2014028129A (ja) * | 2012-07-02 | 2014-02-13 | Kiyoshi Kita | 下肢筋力評価装置およびその制御方法 |
WO2021140658A1 (ja) * | 2020-01-10 | 2021-07-15 | 日本電気株式会社 | 異常検出装置、判定システム、異常検出方法、およびプログラム記録媒体 |
Non-Patent Citations (1)
Title |
---|
SHIOTANI MAHO, HIYAMA TAKAHIRO, SATO YOSHIKUNI, OZAWA JUN, KOBAYASHI YOSHIYUKI: "Estimation of lower limb strength for each gender from daily gait movement", THE 34TH ANNUAL CONFERENCE OF THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, 1 January 2020 (2020-01-01), pages 1 - 4, XP093074868, DOI: 10.11517/pjsai.JSAI2020.0_1C5GS1303 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023127015A1 (ja) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7327516B2 (ja) | 異常検出装置、判定システム、異常検出方法、およびプログラム | |
WO2023127015A1 (ja) | 筋力評価装置、筋力評価システム、筋力評価方法、および記録媒体 | |
JP7218820B2 (ja) | 推定装置、推定システム、推定方法、およびプログラム | |
WO2023127010A1 (ja) | 移動能力推定装置、移動能力推定システム、移動能力推定方法、および記録媒体 | |
WO2023127009A1 (ja) | 下肢筋力推定装置、下肢筋力推定システム、下肢筋力推定方法、および記録媒体 | |
WO2023127014A1 (ja) | 易転倒性推定装置、易転倒性推定システム、易転倒性推定方法、および記録媒体 | |
WO2023127008A1 (ja) | 動的バランス推定装置、動的バランス推定システム、動的バランス推定方法、および記録媒体 | |
WO2023127013A1 (ja) | 静的バランス推定装置、静的バランス推定システム、静的バランス推定方法、および記録媒体 | |
WO2023127007A1 (ja) | 筋力指標推定装置、筋力指標推定システム、筋力指標推定方法、および記録媒体 | |
US20240138710A1 (en) | Waist swinging estimation device, estimation system, waist swinging estimation method, and recording medium | |
US20240138757A1 (en) | Pelvic inclination estimation device, estimation system, pelvic inclination estimation method, and recording medium | |
US20240138713A1 (en) | Harmonic index estimation device, estimation system, harmonic index estimation method, and recording medium | |
WO2022201338A1 (ja) | 特徴量生成装置、歩容計測システム、特徴量生成方法、および記録媒体 | |
WO2022208838A1 (ja) | 生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体 | |
WO2022219905A1 (ja) | 計測装置、計測システム、計測方法、および記録媒体 | |
US20240257975A1 (en) | Estimation device, estimation system, estimation method, and recording medium | |
WO2022038664A1 (ja) | 計算装置、歩容計測システム、計算方法、およびプログラム記録媒体 | |
JP2024101908A (ja) | 推定装置、推定システム、推定方法、およびプログラム | |
US20240164705A1 (en) | Index value estimation device, estimation system, index value estimation method, and recording medium | |
WO2022070416A1 (ja) | 推定装置、推定方法、およびプログラム記録媒体 | |
WO2023105740A1 (ja) | 特徴量データ生成装置、歩容計測装置、身体状態推定システム、特徴量データ生成方法、および記録媒体 | |
US20240115164A1 (en) | Detection device, detection method, and program recording medium | |
JP2023174049A (ja) | フレイル推定装置、推定システム、フレイル推定方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21969899 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023570512 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |