WO2022208838A1 - 生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体 - Google Patents

生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体 Download PDF

Info

Publication number
WO2022208838A1
WO2022208838A1 PCT/JP2021/014124 JP2021014124W WO2022208838A1 WO 2022208838 A1 WO2022208838 A1 WO 2022208838A1 JP 2021014124 W JP2021014124 W JP 2021014124W WO 2022208838 A1 WO2022208838 A1 WO 2022208838A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
facility
information processing
daily
value
Prior art date
Application number
PCT/JP2021/014124
Other languages
English (en)
French (fr)
Inventor
謙一郎 福司
シンイ オウ
晨暉 黄
史行 二瓶
謙太郎 中原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023510109A priority Critical patent/JPWO2022208838A5/ja
Priority to US18/284,324 priority patent/US20240161921A1/en
Priority to PCT/JP2021/014124 priority patent/WO2022208838A1/ja
Publication of WO2022208838A1 publication Critical patent/WO2022208838A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training

Definitions

  • the present disclosure relates to a biological information processing device and the like that processes sensor data measured while walking.
  • Non-Patent Document 1 discloses the influence of stride length on sole pressure and joint moment.
  • Non-Patent Document 2 discloses the independent effects of walking speed and stride length on stability and fall risk.
  • motor functions such as knee joint load and walking stability can be evaluated by verifying measurement data such as stride length and walking speed.
  • Patent Document 1 discloses a biometric data management system that mutually calibrates biometric data measured at a hospital or at home.
  • the system of Patent Literature 1 includes a first biometric device and a second biometric device that measure biometric data of a subject.
  • a first biometric device is used in a hospital.
  • the second biometric device is used in an environment such as a home that is different from the first biometric device.
  • the system of Patent Literature 1 preliminarily stores the error between the subject's biological data measured by the first biometric device and the subject's biological data measured by the second biometric device as a calibration value.
  • the system of Patent Literature 1 calibrates biological data of a subject with calibration values.
  • biometric data measured in different environments such as hospitals and homes are calibrated with pre-stored calibration values.
  • the biometric data is calibrated with a constant calibration value, so the biometric data cannot be accurately calibrated unless the difference between the environments is clarified in advance.
  • motor functions such as walking, the body cannot be kept stationary.
  • An object of the present disclosure is to provide a biological information processing apparatus and the like capable of correcting differences in biological data for evaluating motor function measured in different environments.
  • a biological information processing apparatus calculates daily measurement values of common measurement items that are common to facility measurement data measured at a facility, from daily measurement data measured using sensor data related to user's leg movements. and a correcting unit for correcting facility measured values of common measurement items stored in advance based on the extracted daily measured values of common measurement items.
  • a computer determines common measurement items common to facility measurement data measured in a facility, from daily measurement data measured using sensor data related to user's leg movements. A daily measured value is extracted, and the facility measured value of the common measured item stored in advance is corrected based on the extracted daily measured value of the common measured item.
  • a program is a process of extracting daily measured values of common measurement items that are common to facility measurement data measured at a facility, from daily measurement data measured using sensor data related to user's leg movements. and a process of correcting the facility measured values of the common measurement items stored in advance based on the extracted daily measured values of the common measurement items.
  • a biological information processing device or the like capable of correcting differences in biological data for evaluating motor function measured in different environments.
  • FIG. 1 is a block diagram showing an example of the configuration of an information processing system according to a first embodiment
  • FIG. FIG. 2 is a conceptual diagram showing an arrangement example of measuring devices in the information processing system according to the first embodiment
  • FIG. 3 is a conceptual diagram for explaining a coordinate system set in the measuring device of the information processing system according to the first embodiment
  • FIG. 2 is a conceptual diagram for explaining a human body surface used in explaining the information processing system according to the first embodiment
  • FIG. 2 is a conceptual diagram for explaining a walking cycle used in explaining the information processing system according to the first embodiment
  • FIG. 4 is a conceptual diagram for explaining an example of daily measurement items of the information processing system according to the first embodiment
  • FIG. 7 is a conceptual diagram for explaining another example of daily measurement items of the information processing system according to the first embodiment;
  • FIG. 7 is a conceptual diagram for explaining still another example of daily measurement items of the information processing system according to the first embodiment;
  • It is a block diagram showing an example of composition of a measuring device of an information processing system concerning a 1st embodiment.
  • 1 is a block diagram showing an example of a configuration of a biological information processing device of an information processing system according to a first embodiment;
  • FIG. It is a figure which shows an example of the daily measurement data measured by the biological information processing apparatus of the information processing system which concerns on 1st Embodiment.
  • It is an example of facility measurement values of common measurement items stored in the biological information processing device of the information processing system according to the first embodiment.
  • FIG. 5 is an example of frequency distribution of daily measured values of stride length measured by the biological information processing device of the information processing system according to the first embodiment. It is an example of the frequency distribution of daily measured values of walking speed measured by the biological information processing device of the information processing system according to the first embodiment. It is an example of correction values of measured values of common measurement items calculated by the biological information processing device of the information processing system according to the first embodiment.
  • 4 is a flowchart for explaining an example of the operation of the biological information processing device of the information processing system according to the first embodiment; It is a block diagram which shows an example of a structure of the information processing system which concerns on 2nd Embodiment. FIG.
  • FIG. 11 is a block diagram showing an example of the configuration of a biological information processing device of the information processing system according to the second embodiment; It is an example of facility measurement values of common measurement items and facility measurement items stored in the biological information processing device of the information processing system according to the second embodiment. It is an example of the correction value of the facility measurement value of the facility measurement item calculated by the biological information processing device of the information processing system according to the first embodiment.
  • 9 is a flowchart for explaining an example of the operation of the biological information processing device of the information processing system according to the second embodiment;
  • FIG. 10 is a conceptual diagram for explaining application example 1 of the information processing system according to the second embodiment;
  • FIG. 10 is a conceptual diagram for explaining application example 1 of the information processing system according to the second embodiment;
  • FIG. 10 is a conceptual diagram for explaining application example 1 of the information processing system according to the second embodiment;
  • FIG. 10 is a conceptual diagram for explaining application example 1 of the information processing system according to the second embodiment;
  • FIG. 12 is a conceptual diagram for explaining application example 2 of the information processing system according to the second embodiment;
  • FIG. 11 is a block diagram showing an example of the configuration of a biological information processing apparatus according to a third embodiment;
  • FIG. It is a block diagram showing an example of hardware constitutions which perform control and processing of each embodiment.
  • the information processing system of the present embodiment measures daily measurement data (also referred to as daily measurement data) using sensor data acquired by sensors installed on the user's feet.
  • the information processing system of the present embodiment extracts measurement items (also referred to as common measurement items) common to measurement data (also referred to as facility measurement data) measured in facilities such as sports gyms and hospitals from the measured daily measurement data. Extract.
  • Daily measurement data has a large amount of data, but is shallow data with a limited amount of information.
  • the facility measurement data is deep data with a small amount of data but a large amount of information.
  • the information processing system of this embodiment corrects facility measurement data based on daily measurement data with a large amount of data.
  • FIG. 1 is a block diagram showing an example of the configuration of an information processing system 10 of this embodiment.
  • the information processing system 10 includes a measuring device 11 and a biological information processing device 15 .
  • the measuring device 11 and the biological information processing device 15 may be connected by wire or wirelessly.
  • the measuring device 11 and the biological information processing device 15 may be configured as a single device.
  • the information processing system 10 may be configured with only the biological information processing device 15 excluding the measurement device 11 from the configuration of the information processing system 10 .
  • the measuring device 11 is installed on the foot.
  • the measuring device 11 measures acceleration (also referred to as spatial acceleration) and angular velocity (also referred to as spatial angular velocity) as physical quantities relating to the movement of the user's feet wearing footwear such as shoes.
  • the physical quantities related to the movement of the foot measured by the measuring device 11 include not only acceleration and angular velocity, but also velocity, angle, and position (trajectory) calculated by integrating acceleration and angular velocity.
  • the measuring device 11 converts the measured physical quantity into digital data (also called sensor data).
  • the measuring device 11 transmits the converted sensor data to the biological information processing device 15 .
  • Sensor data such as acceleration and angular velocity generated by the measuring device 11 are also called walking parameters.
  • walking parameters include velocity, angle, trajectory, etc. calculated by integrating acceleration and angular velocity.
  • the walking parameters include the angle of the sole of the foot (also called the plantar angle) with respect to the ground.
  • the measuring device 11 is implemented by an inertial measuring device including, for example, an acceleration sensor and an angular velocity sensor.
  • An example of an inertial measurement device is an IMU (Inertial Measurement Unit).
  • the IMU includes a triaxial acceleration sensor and a triaxial angular velocity sensor.
  • the measuring device 11 may include sensors other than the acceleration sensor and the angular velocity sensor.
  • Other examples of inertial measurement devices include VG (Vertical Gyro), AHRS (Attitude Heading), and GPS/INS (Global Positioning System/Inertial Navigation System).
  • FIG. 2 is a conceptual diagram showing an example of installing the measuring device 11 inside the shoe 100.
  • the measuring device 11 is installed at a position on the back side of the arch of the foot.
  • the measuring device 11 is installed on an insole inserted into the shoe 100 .
  • the measuring device 11 is installed on the bottom surface of the shoe 100 .
  • the measuring device 11 is embedded in the main body of the shoe 100 .
  • the measurement device 11 may be removable from the shoe 100 or may not be removable from the shoe 100 .
  • the measuring device 11 may be installed at a position other than the back side of the arch as long as it can acquire sensor data regarding the movement of the foot.
  • the measuring device 11 may be installed on a sock worn by the user or an accessory such as an anklet worn by the user. Moreover, the measuring device 11 may be attached directly to the foot or embedded in the foot.
  • FIG. 2 shows an example in which measuring devices 11 are installed on shoes 100 of both feet. The measuring device 11 may be installed on at least one leg. By installing the measurement devices 11 on the shoes 100 of both feet, evaluation can be performed based on the sensor data measured by the measurement devices 11 installed on the left and right feet.
  • FIG. 3 is for explaining a local coordinate system (x-axis, y-axis, z-axis) set in the measuring device 11 and a world coordinate system (X-axis, Y-axis, Z-axis) set with respect to the ground. It is a conceptual diagram of.
  • the world coordinate system (X-axis, Y-axis, Z-axis)
  • the lateral direction of the user is the X-axis direction (right direction is positive)
  • the front direction of the user (moving direction) is the Y-axis direction ( Forward is positive)
  • the direction of gravity is set to be the Z-axis direction (vertically upward is positive).
  • a local coordinate system consisting of x-direction, y-direction, and z-direction with reference to the measuring device 11 is set.
  • the biological information processing device 15 receives sensor data from the measuring device 11 .
  • the biological information processing device 15 measures daily measurement data using the received sensor data.
  • the daily measurement data includes stride length, walking speed, maximum dorsiflexion angle, maximum plantarflexion angle, foot lift height, circling amount, and foot angle.
  • the biological information processing device 15 extracts daily measurement data values (also called daily measurement values) of common measurement items that are common to the facility measurement data from the measured daily measurement data.
  • Common measurement items are set in advance according to the motor function to be evaluated. For example, stride length and walking speed are set as common measurement items.
  • the biological information processing device 15 extracts daily measured values of stride length and walking speed, which are common measurement items.
  • Daily measurement data other than stride length and walking speed may be set as common measurement items.
  • the biological information processing device 15 calculates correction values for the extracted common measurement items.
  • the biological information processing apparatus 15 may store daily measurement values of common measurement items extracted from daily measurement data measured based on sensor data, and facility measurement data values of common measurement items stored in advance (facility measurement values ) is calculated as a correction value.
  • the biological information processing apparatus 15 calculates, as a correction value, the deviation between the representative value in the distribution of the daily measurement values of the common measurement items extracted from the daily measurement data and the previously stored facility measurement values of the common measurement items. .
  • the biological information processing device 15 outputs correction values for common measurement items.
  • the biological information processing device 15 outputs correction values for facility measurement values of common measurement items.
  • the biological information processing device 15 outputs the correction value to a terminal device (not shown) that can be viewed at the facility where the facility measurement data was measured.
  • the correction value output to the terminal device is displayed on the screen of that terminal device.
  • a person who checks the correction value displayed on the screen of the terminal device can recognize the difference between the facility measurement data and the daily measurement data.
  • the biological information processing device 15 may be configured to output correction values of common measurement items to a display device (not shown) or an external system.
  • FIG. 4 is a conceptual diagram for explaining the plane set for the human body (also called the human body plane).
  • a sagittal plane that divides the body left and right a coronal plane that divides the body front and back, and a horizontal plane that divides the body horizontally are defined.
  • the world coordinate system and the local coordinate system match in the upright state as shown in FIG.
  • rotation in the sagittal plane with the x-axis as the rotation axis is roll
  • rotation in the coronal plane with the y-axis as the rotation axis is pitch
  • rotation in the horizontal plane with the z-axis as the rotation axis is yaw.
  • the rotation angle in the sagittal plane with the x-axis as the rotation axis is the roll angle
  • the rotation angle in the coronal plane with the y-axis as the rotation axis is the pitch angle
  • the rotation angle in the horizontal plane with the z-axis as the rotation axis is defined as the yaw angle.
  • clockwise rotation in the sagittal plane is defined as positive
  • counterclockwise rotation in the sagittal plane is defined as negative.
  • FIG. 5 is a conceptual diagram for explaining the step cycle based on the right foot.
  • the step cycle based on the left foot is also the same as the right foot.
  • the horizontal axis of FIG. 5 is a walking cycle normalized by taking one walking cycle of the right foot as 100%, starting from when the heel of the right foot touches the ground and ending when the heel of the right foot touches the ground. is.
  • One walking cycle of one leg is roughly divided into a stance phase in which at least part of the sole of the foot is in contact with the ground, and a swing phase in which the sole of the foot is separated from the ground.
  • the stance phase is further subdivided into early stance T1, middle stance T2, final stance T3, and early swing T4.
  • the swing phase is further subdivided into early swing phase T5, middle swing phase T6, and final swing phase T7.
  • FIG. 5 is an example, and does not limit the periods constituting the one-step cycle, the names of those periods, and the like.
  • FIG. 5(a) represents an event (heel strike) in which the heel of the right foot touches the ground (HS: Heel Strike).
  • FIG. 5(b) represents an event in which the toe of the left foot leaves the ground while the sole of the right foot is in contact with the ground (OTO: Opposite Toe Off).
  • FIG. 5(c) represents an event (heel rise) in which the heel of the right foot is lifted while the sole of the right foot is in contact with the ground (HR: Heel Rise).
  • (d) of FIG. 5 is an event in which the heel of the left foot touches the ground (opposite heel strike) (OHS: Opposite Heel Strike).
  • FIG. 5(a) represents an event (heel strike) in which the heel of the right foot touches the ground (HS: Heel Strike).
  • FIG. 5(b) represents an event in which the toe of the left foot leaves the ground while the sole of the right foot is in contact with the ground (OTO: Opposite To
  • FIG. 5(e) represents an event (toe off) in which the toe of the right foot leaves the ground while the sole of the left foot is in contact with the ground (TO: Toe Off).
  • (f) of FIG. 5 represents an event (Foot Adjacent) in which the left foot and the right foot cross each other while the sole of the left foot is in contact with the ground (FA: Foot Adjacent).
  • (g) of FIG. 5 represents an event (tibia vertical) in which the tibia of the right foot becomes almost vertical to the ground while the sole of the left foot is in contact with the ground (TV: Tibia Vertical).
  • (h) of FIG. 5 represents an event (heel strike) in which the heel of the right foot touches the ground (HS: Heel Strike).
  • (h) in FIG. 5 corresponds to the end point of the walking cycle starting from (a) in FIG. 5 and also to the starting point of the next walking cycle. It should be noted that FIG. 5 is an example, and does not limit the events that occur accompany
  • FIG. 6 is a conceptual diagram for explaining walking parameters calculated by the biological information processing apparatus 15. As shown in FIG. FIG. 6 shows right foot step length S R , left foot step length S L , stride length T, shunt amount C, and foot angle F.
  • the right foot step length S R is the difference between the Y coordinates of the right and left heels when the left foot sole is in contact with the ground and the right heel is swung in the direction of travel and is on the ground. be.
  • the left foot step length S L is the difference between the Y coordinates of the heel of the left foot and the heel of the right foot when transitioning from a state in which the sole of the right foot is on the ground to a state in which the heel of the left foot is swung in the direction of travel and is on the ground.
  • the stride length T is the sum of the right foot step length S R and the left foot step length S L .
  • the shunt amount C is the degree of shunt of the foot in the horizontal plane (in the XY plane).
  • the position of the measuring device 11 when the sole of one foot is on the ground is connected to the position of the measuring device 11 when the sole of the foot swung in the direction of travel transitions to the state of being on the ground.
  • the amount of shunt C is defined as the transition from the state where the sole of one foot touches the ground to the state where the sole of the foot swung out in the direction of movement touches the ground again. is the distance between the measuring device 11 and the traveling axis at the timing farthest from .
  • the foot angle F is the angle between the center line of the foot and the axis of travel (Y-axis) when the sole of the foot is in contact with the ground.
  • FIG. 7 is a conceptual diagram for explaining the plantar angle.
  • the plantar angle is the angle of the plantar to the ground (XY plane).
  • the plantar angle is defined as negative when the toes point up (dorsiflexion) and positive when the toes point down (plantar flexion).
  • the angle at which the absolute value of the plantar angle in the dorsiflexion state is maximized in one walking cycle is called the maximum dorsiflexion angle.
  • the angle at which the absolute value of the plantar angle in the plantar flexion state is maximized in one walking cycle is called the maximum plantar flexion angle.
  • the biological information processing device 15 calculates the plantar angle using the acceleration in the X-axis direction and the acceleration in the Y-axis direction. For example, the biological information processing device 15 calculates the plantar angle around each of the X-, Y-, and Z-axes by integrating the values of the angular velocities around those axes. Acceleration and angular velocity data contain high and low frequency noise that varies in various directions. Therefore, a low-pass filter and a high-pass filter are applied to the acceleration data and the angular velocity data to remove high frequency components and low frequency components. If the high frequency component and the low frequency component are removed, the accuracy of the sensor data, which is prone to noise, can be improved. The accuracy of the sensor data can also be improved by applying a complementary filter to each of the acceleration data and the angular velocity data and taking a weighted average. Note that the measuring device 11 may be configured to measure the plantar angle.
  • FIG. 8 is a conceptual diagram for explaining the leg lift height.
  • the foot lift height is the height of the sole with respect to the ground.
  • FIG. 8 shows a transition from a position where the sole touches the ground (broken line) to a position where the sole is raised to the ground at a maximum height (solid line) in a single step cycle.
  • the leg lift height H corresponds to the position of the measuring device 11 in the Z direction. That is, the foot lift height H substantially matches the height in the Z direction of the sole of the user's foot when walking while wearing the shoe 100 .
  • the leg lift height H can be calculated by second-order integration of the acceleration in the Z direction.
  • the measuring device 11 is installed at an initial height d inside the shoe 100 .
  • the height of the sole in the Z direction changes by Hd.
  • the height of the sole of the shoe 100 also corresponds to Hd.
  • Hd In the evaluation of motor function based on the height of the leg raised, it may be preferable to use Hd as the height of the raised leg.
  • FIG. 9 is a block diagram showing an example of the detailed configuration of the measuring device 11. As shown in FIG.
  • the measuring device 11 has an acceleration sensor 111 , an angular velocity sensor 112 , a control section 113 and a transmission section 115 .
  • the measuring device 11 also includes a power supply (not shown).
  • the acceleration sensor 111 is a sensor that measures acceleration in three axial directions (also called spatial acceleration).
  • the acceleration sensor 111 outputs the measured acceleration to the controller 113 .
  • the acceleration sensor 111 can be a sensor of a piezoelectric type, a piezoresistive type, a capacitive type, or the like. It should be noted that the sensor used for the acceleration sensor 111 is not limited in its measurement method as long as it can measure acceleration.
  • the angular velocity sensor 112 is a sensor that measures angular velocities around three axes (also called spatial angular velocities).
  • the angular velocity sensor 112 outputs the measured angular velocity to the controller 113 .
  • the angular velocity sensor 112 can be a vibration type sensor or a capacitance type sensor. It should be noted that the sensor used for the angular velocity sensor 112 is not limited in its measurement method as long as it can measure the angular velocity.
  • the control unit 113 acquires acceleration in three axial directions from the acceleration sensor 111 .
  • the control unit 113 acquires angular velocities about three axes from the angular velocity sensor 112 .
  • the control unit 113 converts the acquired acceleration and angular velocity into digital data.
  • the control unit 113 outputs converted digital data (also called sensor data) to the transmission unit 115 .
  • the sensor data includes at least acceleration data converted from analog data into digital data and angular velocity data converted from analog data into digital data.
  • the acceleration data converted into digital data includes acceleration vectors in three axial directions.
  • the angular velocity data converted into digital data includes angular velocity vectors in three axial directions. Acceleration data and angular velocity data are associated with acquisition times of those data.
  • control unit 113 may be configured to output sensor data obtained by adding corrections such as mounting error, temperature correction, linearity correction, etc. to the acquired acceleration data and angular velocity data. Also, the control unit 113 may be configured to measure the angle data about the three axes and the plantar angle using the acquired acceleration data and angular velocity data.
  • control unit 113 is a microcomputer or microcontroller that controls and processes the measuring device 11 .
  • the control unit 113 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), flash memory, and the like.
  • Control unit 113 controls acceleration sensor 111 and angular velocity sensor 112 to measure angular velocity and acceleration.
  • the control unit 113 performs AD conversion (Analog-to-Digital Conversion) on physical quantities (analog data) such as measured angular velocity and acceleration, and stores the converted digital data in a flash memory.
  • Physical quantities (analog data) measured by acceleration sensor 111 and angular velocity sensor 112 may be converted into digital data by acceleration sensor 111 and angular velocity sensor 112, respectively.
  • Digital data stored in the flash memory is output to the transmission unit 115 at a predetermined timing.
  • the transmission unit 115 acquires sensor data from the control unit 113.
  • the transmission unit 115 transmits the acquired sensor data to the biological information processing device 15 .
  • the transmitter 115 may transmit the sensor data to the biological information processing device 15 via a cable such as a cable, or may transmit the sensor data to the biological information processing device 15 via wireless communication.
  • the transmission unit 115 is configured to transmit sensor data to the biological information processing device 15 via a wireless communication function (not shown) conforming to standards such as Bluetooth (registered trademark) and WiFi (registered trademark). be.
  • the communication function of the transmission unit 115 may conform to standards other than Bluetooth (registered trademark) and WiFi (registered trademark).
  • FIG. 10 is a block diagram showing an example of the configuration of the biological information processing device 15. As shown in FIG. The biological information processing device 15 has a measurement unit 151 , an extraction unit 152 , a storage unit 153 , a correction unit 155 and an output unit 157 .
  • the measurement unit 151 acquires sensor data from the measurement device 11 installed on the footwear worn by the pedestrian.
  • the measurement unit 151 measures daily measurement data using the acquired sensor data.
  • the measurement unit 151 measures daily measurement data such as stride length, walking speed, maximum dorsiflexion angle, maximum plantarflexion angle, foot lift height, shunt amount, and foot angle.
  • An example of a method of measuring daily measurement data by the measurement unit 151 will be given below.
  • the measurement unit 151 transforms the coordinate system of the acquired sensor data from the local coordinate system to the world coordinate system.
  • the local coordinate system (x-axis, y-axis, z-axis) and the world coordinate system (X-axis, Y-axis, Z-axis) coincide.
  • the measurement unit 151 converts the sensor data acquired by the measurement device 11 from the local coordinate system (x-axis, y-axis, z-axis) of the measurement device 11 to the world coordinate system (X-axis, Y-axis, Z-axis). Convert.
  • the measurement unit 151 uses the sensor data converted into the world coordinate system to generate time-series data accompanying the walking of the user wearing the footwear on which the measurement device 11 is installed.
  • the measurement unit 151 extracts walking waveform data for one step cycle from the generated time-series data.
  • the measurement unit 151 generates time-series data such as spatial acceleration and spatial angular velocity.
  • the measurement unit 151 also integrates the spatial acceleration and the spatial angular velocity to generate time-series data such as the spatial velocity, the spatial angle, the sole angle, and the spatial trajectory.
  • the timing at which the measurement unit 151 generates the time-series data can be set arbitrarily.
  • the measurement unit 151 generates time-series data at predetermined timings set in accordance with a general walking cycle or a user-specific walking cycle. For example, the measurement unit 151 generates time-series data at predetermined time intervals set in accordance with the walking cycle. For example, the measurement unit 151 continues to generate time-series data while the user continues walking. For example, the measurement unit 151 may generate time-series data at a specific time.
  • the measuring unit 151 detects a walking event of the user walking while wearing footwear on which the measuring device 11 is installed, from the generated walking waveform data. For example, the measurement unit 151 extracts features of each walking event from a walking waveform of physical quantities related to foot movement. For example, the measurement unit 151 detects the timing of the extracted feature of each walking event as the timing of each walking event.
  • the measuring unit 151 measures, as the stride length, the moving distance in the Y direction of the measuring device 11 at the timing of successive heel strikes or successive toe-offs.
  • the measurement unit 151 measures walking speed by integrating acceleration in the Y direction.
  • the measurement unit 151 measures the angle at which the absolute value of the plantar angle is maximum in the dorsiflexion direction as the maximum dorsiflexion angle.
  • the measuring unit 151 measures the angle at which the absolute value of the plantar angle is maximum in the plantar flexion direction as the maximum plantar flexion angle.
  • the measurement unit 151 calculates the leg lift height by performing second-order integration of the Z-direction acceleration.
  • the measurement unit 151 obtains the locus of the position in the X direction by second-order integration of the acceleration in the X direction for one step cycle.
  • the measurement unit 151 measures the distance at which the distance between the position in the X direction and the traveling axis is maximum as the amount of division.
  • the measurement unit 151 measures the angle between the center line of the foot and the axis of travel (Y-axis) when the sole is in contact with the ground as the foot angle. It should be noted that the method of measuring the daily measurement data given here is an example, and the method of measuring the daily measurement data by the measurement unit 151 is not limited.
  • the measuring unit 151 may detect toe-off, heel contact, and foot crossing as walking events, and measure the stride length based on these walking events. Foot crossing corresponds to the timing at which the toe of one foot passes through the position of the midpoint between the toe and heel of the other foot.
  • the measuring unit 151 extracts the section between the toe-off and the heel contact as the walking waveform of the Y-direction trajectory for one step from the walking waveform of the Y-direction trajectory for one step cycle.
  • the measurement unit 151 calculates the absolute value of the difference between the spatial position at foot crossing and the spatial position at toe-off using the walking waveform of the Y-direction trajectory for one step.
  • the absolute value of the difference between the spatial position at foot crossing and the spatial position at toe-off corresponds to the left foot step length S L (also referred to as the first step length) with the left foot forward and the right foot back.
  • the measuring unit 151 also calculates the absolute value of the difference between the spatial position at the timing of foot crossing and the spatial position at heel contact using the walking waveform of the Y-direction trajectory for one step.
  • the absolute value of the difference between the spatial position at the timing of foot crossing and the spatial position at heel contact corresponds to the right foot step length S R (also referred to as the second step length) with the right foot forward and the left foot backward.
  • the sum of the right foot step length S R and the left foot step length S L corresponds to the stride length. According to this method, the step length of each foot can be measured individually.
  • the extraction unit 152 extracts daily measurement values of common measurement items with facility measurement data from the daily measurement data measured by the measurement unit 151 .
  • the extraction unit 152 extracts daily measured values of stride length and walking speed as common measurement items.
  • the extraction unit 152 extracts, from the daily measurement data continuously measured by the measurement unit 151, the representative value of the daily measurement values of the common measurement items with the facility measurement data.
  • FIG. 11 is a diagram summarizing the frequency distribution of daily measurement values measured over a plurality of dates.
  • FIG. 11 includes frequency distributions of daily measurements of stride length, gait speed, maximum dorsiflexion angle, maximum plantarflexion angle, foot lift height, circling amount, and foot angle.
  • scales on the horizontal and vertical axes are omitted.
  • the stride length and walking speed are common measurement items.
  • the extraction unit 152 extracts the representative values of the daily measurement values of stride length and walking speed as common measurement items.
  • the storage unit 153 stores facility measurement values of common measurement items.
  • the storage unit 153 stores facility measurement values of stride length and walking speed.
  • FIG. 12 shows an example of facility measurement values stored in the storage unit 153.
  • the storage unit 153 stores a facility-measured stride length value of 147 cm (centimeters) and a facility-measured walking speed value of 4.8 m/s (meters per second).
  • the facility measurement values of the common measurement items stored in the storage unit 153 can be updated at any timing.
  • facility measurement values of common measurement items stored in the storage unit 153 are updated according to data transmitted from facilities such as gyms and hospitals.
  • a method for updating the facility measurement values of the common measurement items stored in the storage unit 153 is not particularly limited.
  • the correction unit 155 calculates correction values for daily measurement values and facility measurement values for common measurement items. For example, the correction unit 155 calculates the difference between the daily measurement value and facility measurement value of the common measurement item as the correction value. For example, the correction unit 155 calculates the deviation between the representative value of the distribution of the daily measured values of the common measurement items and the facility measured value as the correction value. For example, the correction unit 155 uses an average value such as an arithmetic mean, a geometric mean, or a harmonic mean of a plurality of daily measured values constituting the distribution as a representative value of the distribution of the daily measured values of the common measurement item. . For example, the correcting unit 155 uses, as a representative value of the distribution of the daily measured values of the common measurement item, the mode value and the median value of the plurality of daily measured values forming the distribution.
  • FIG. 13 is an example of the frequency distribution of daily measured values of stride length.
  • the daily measure of stride length in FIG. 13 is the distribution of 561 outlier-removed samples measured in walking over approximately 40 days.
  • the average daily stride length measurement is 140 cm.
  • the facility average value of the stride is 147 cm.
  • the deviation between the average value of the distribution of daily measurements of stride length and the facility measurements is 7 cm.
  • FIG. 14 is an example of the frequency distribution of daily measurement values of walking speed.
  • the daily measured walking speed values in FIG. 13 are values measured at the same timing as in FIG. In the example of FIG. 14, the average daily walking speed measurement is 4.8 m/s.
  • the facility average walking speed is 4.5 m/s.
  • the deviation between the average value of the distribution of daily measured walking speed values and the facility measured values is 0.3 m/s.
  • FIG. 15 is a table summarizing values of common measurement items before and after correction by the correction unit 155.
  • FIG. 15 a row of facility measured values of stride length and walking speed before correction and a row of correction values of stride length and walking speed after correction are arranged vertically.
  • a trainer who gives exercise guidance to the user from whom the data in FIG. 15 was acquired can review the training menu created based on the data before correction by comparing the stride length and walking speed before and after correction. .
  • Facility measurements are taken under observation at the facility, so they tend to differ from daily measurements. For example, when the target person tries to walk with a better posture than usual, the stride tends to increase and the walking speed tends to increase. The examples of FIGS. 13 to 15 are presumed to show such a tendency. Conversely, for example, if the target person walks to appear more unwell than usual, the stride tends to be shorter and the walking speed tends to be slower.
  • facility measurement values can be corrected using daily measurement values based on natural walking. Therefore, according to this embodiment, the original motor function in the daily environment can be reflected in the detailed evaluation of the motor function in the facility.
  • the output unit 157 outputs correction values for common measurement items. For example, the output unit 157 outputs the value of the common measurement item corrected by the correction value. For example, the output unit 157 displays the values of the common measurement items and facility measurement items corrected by the correction values on the screen of the mobile terminal carried by the user. For example, the output unit 157 outputs the correction value to a terminal device that can be viewed at the facility where the facility measurement value was measured via a network (not shown). For example, the correction value output to the terminal device is displayed on the screen of that terminal device. For example, a person who checks the correction value displayed on the screen of the terminal device can recognize the difference between the facility measurement data and the daily measurement data. For example, the output unit 157 may be configured to output correction values of common measurement items to a display device (not shown) or an external system.
  • FIG. 16 is a flowchart for explaining an example of the operation of the biological information processing device 15. As shown in FIG. In the description along the flow chart of FIG. 16, the biological information processing apparatus 15 will be described as an operating entity.
  • the biological information processing device 15 acquires sensor data related to foot movement from the measuring device 11 (step S11).
  • the biological information processing device 15 measures daily measurement data using the acquired sensor data (step S12).
  • the biological information processing device 15 extracts daily measurement values of common measurement items from the measured daily measurement data (step S13).
  • the biological information processing apparatus 15 calculates correction values for the facility measured values of the common measurement items based on the extracted daily measured values of the common measurement items (step S14).
  • the biological information processing device 15 outputs the calculated correction value of the facility measurement value of the common measurement item (step S15).
  • the correction value of the facility measurement value of the common measurement item output from the biological information processing device 15 is used according to the application.
  • the information processing system of this embodiment includes a measuring device and a biological information processing device.
  • the measuring device is placed on the user's footwear.
  • the measuring device measures spatial acceleration and spatial angular velocity according to the walking of the user.
  • a measurement device generates sensor data based on the measured spatial acceleration and spatial angular velocity.
  • the measuring device outputs the generated sensor data to the biological information processing device.
  • a biological information processing apparatus has a measurement unit, an extraction unit, a storage unit, a correction unit, and an output unit.
  • the measurement unit receives sensor data regarding the movement of the user's foot from the measurement device.
  • the measurement unit measures daily measurement data using the received sensor data.
  • the extraction unit extracts, from the daily measurement data measured by the measurement unit, daily measurement values of common measurement items common to the facility measurement data measured at the facility.
  • the storage unit stores facility measurement values of common measurement items.
  • the correction unit corrects the facility measurement values of the common measurement items pre-stored in the storage unit based on the daily measurement values of the common measurement items extracted by the extraction unit.
  • the output unit outputs the facility measurement values corrected by the correction unit.
  • the information processing system of this embodiment corrects the facility measurement values of the common measurement items based on the daily measurement values of the common measurement items. Therefore, according to the present embodiment, differences in measured values (biological data) for evaluating motor function measured in different environments such as facilities and daily life can be corrected.
  • the correction unit calculates the deviation between the representative value of the distribution of the daily measurement values of the common measurement items and the facility measurement values of the common measurement items.
  • the correction unit uses the calculated deviation to correct the facility measurement values of the common measurement items. According to this aspect, since the facility measured value can be corrected based on the representative value of the distribution of the daily measured values accumulated in daily walking, highly accurate correction that reflects the daily life can be performed.
  • the information processing system of this embodiment calculates correction values for facility measurement values of facility measurement items that are not included in the daily measurement data, based on the daily measurement values measured by the measuring device.
  • facility measurement values of facility measurement items that are not included in daily measurement data are referred to as facility measurement values of facility measurement items.
  • FIG. 17 is a block diagram showing an example of the configuration of the information processing system 20 of this embodiment.
  • the information processing system 20 includes a measuring device 21 and a biological information processing device 25 .
  • the measuring device 21 and the biological information processing device 25 may be connected by wire or wirelessly.
  • the measuring device 21 and the biological information processing device 25 may be configured as a single device.
  • the information processing system 20 may be configured with only the biological information processing device 25 excluding the measurement device 21 from the configuration of the information processing system 20 .
  • the measuring device 21 is installed on the foot.
  • the measuring device 21 has the same configuration as the measuring device 11 of the first embodiment.
  • the measuring device 21 measures acceleration (also referred to as spatial acceleration) and angular velocity (also referred to as spatial angular velocity) as physical quantities relating to the movement of the user's feet wearing footwear such as shoes.
  • the measuring device 21 converts the measured physical quantity into digital data (also called sensor data).
  • the measuring device 21 transmits the converted sensor data to the biological information processing device 25 .
  • the biological information processing device 25 receives sensor data from the measuring device 21 .
  • the biological information processing device 25 measures daily measurement data using the received sensor data.
  • the daily measurement data includes stride length, walking speed, maximum dorsiflexion angle, maximum plantarflexion angle, foot lift height, circling amount, and foot angle.
  • the biological information processing device 25 extracts common measurement items with the facility measurement data from the measured daily measurement data.
  • the biological information processing device 25 calculates correction values for the extracted common measurement items.
  • the biological information processing apparatus 25 uses the calculated correction value of the common measurement item to correct the facility measurement value of the facility measurement item related to the common measurement item.
  • the biological information processing device 25 measures the stride length, walking speed, maximum dorsiflexion angle, maximum plantarflexion angle, foot lift height, shunt amount, and foot angle as daily measurement values. For example, the biological information processing device 25 extracts daily measured values of stride length and walking speed as common measurement items. The biological information processing device 25 calculates correction values for stride length and walking speed. For example, the biological information processing device 25 uses the calculated stride length correction value to calculate the correction amount for the knee joint load related to the stride length.
  • the knee joint load is the joint moment of the knee joint. A larger value of the knee joint load indicates a larger load on the knee.
  • the biological information processing device 25 uses the calculated stride length and walking speed correction amounts to calculate a walking stability correction value related to the stride length and walking speed.
  • Gait stability is the deviation of the center of gravity from the load bearing surface. The closer the walking stability is to 0, the more stable it is. When walking with the center of gravity eccentric forward, the walking stability tilts positively. When walking with the center of gravity eccentric to the rear, the walking stability inclines negatively.
  • Facility measurement values related to common measurement items are not limited to knee joint loads and walking stability. The facility measurement values related to the common measurement items may be appropriately selected according to the motor function to be evaluated.
  • the biological information processing device 25 outputs correction values for facility measurement values of facility measurement items related to common measurement items. For example, the biological information processing device 25 outputs the correction value of the facility measurement value of the facility measurement item corrected by the correction value. For example, the biological information processing device 25 outputs the correction value to a terminal device that can be viewed at the facility where the facility measurement data was measured. For example, the correction value output to the terminal device is displayed on the screen of that terminal device. For example, a person who checks the correction value displayed on the screen of the terminal device can recognize the difference between the facility measurement data and the daily measurement data. For example, the biological information processing device 25 may be configured to output correction values of facility measurement items to a display device (not shown) or an external system.
  • FIG. 18 is a block diagram showing an example of the configuration of the biological information processing device 25.
  • the biological information processing device 25 has a measurement unit 251 , an extraction unit 252 , a storage unit 253 , a correction unit 255 and an output unit 257 .
  • the corrector 255 has a first corrector 261 and a second corrector 262 .
  • the measurement unit 251 acquires sensor data from the measurement device 21 installed on the footwear worn by the user.
  • the measurement unit 251 has the same configuration as the measurement unit 151 of the first embodiment.
  • the measurement unit 251 measures daily measurement data using the acquired sensor data.
  • the measuring unit 251 measures daily measurement data such as stride length, walking speed, maximum dorsiflexion angle, maximum plantarflexion angle, height of foot lift, amount of shunt, and foot angle.
  • the extraction unit 252 extracts daily measurement values of common measurement items with facility measurement data from the daily measurement data measured by the measurement unit 251 .
  • the extraction unit 252 extracts, from the daily measurement data continuously measured by the measurement unit 251, a representative value of daily measurement values of common measurement items with the facility measurement data.
  • the extraction unit 252 extracts stride length and walking speed as common measurement items.
  • the storage unit 253 stores common measurement items.
  • the storage unit 253 also stores facility measurement values of facility measurement items related to common measurement items.
  • the storage unit 253 stores facility measurement values of stride length and walking speed.
  • the storage unit 253 stores facility measurement values of knee joint load and walking stability, which are facility measurement items related to stride length and walking speed.
  • FIG. 19 is an example of facility measurement values stored in the storage unit 253.
  • the facility-measured stride length is 147 cm
  • the facility-measured walking speed is 4.8 m/s
  • the knee joint load is 61 Nm (Newton meters)
  • the walking stability is -0.5. is stored in the storage unit 153 .
  • the knee joint load and walking stability are measured by a measurement method different from that of the measuring device 21 that measures the daily stride length and walking speed.
  • knee joint loads are measured using motion capture and ground reaction force meters.
  • walking stability is observed as a response to a disturbance stimulus on a treadmill.
  • the facility measurement values stored in the storage unit 253 can be updated at any timing.
  • the facility measurement values stored in the storage unit 253 are updated according to data transmitted from facilities such as gyms and hospitals via a network (not shown).
  • a method for updating the facility measurement values stored in the storage unit 253 is not particularly limited.
  • the first correction unit 261 calculates correction values for the daily measurement values and facility measurement values of common measurement items.
  • the first corrector 261 has the same configuration as the corrector 155 of the first embodiment.
  • the first correction unit 261 calculates correction values for stride length and walking speed.
  • the first correction unit 261 calculates the difference between the daily measurement value and facility measurement value of the common measurement item as the correction value.
  • the first correction unit 261 calculates the deviation between the representative value of the distribution of the daily measurement values of the common measurement items and the facility measurement value as the correction value.
  • the first correction unit 261 uses, as the representative value of the distribution of the daily measured values of the common measurement item, an average value such as the arithmetic mean, the geometric mean, or the harmonic mean of the multiple daily measured values that constitute the distribution. used as For example, the first correction unit 261 uses the mode value and median value of the plurality of daily measurement values forming the distribution as the representative value of the distribution of the daily measurement values of the common measurement item.
  • the second correction unit 262 uses the correction value of the common measurement item calculated by the first correction unit 261 to correct the facility measurement value of the facility measurement item related to the common measurement item. For example, the second correction unit 262 uses the stride length correction value to calculate the correction amount for the knee joint load related to the stride length. For example, the second correction unit 262 uses the correction values for the stride length and walking speed to calculate the correction amount for walking stability related to the stride length and walking speed. The second correction unit 262 calculates correction values for knee joint load and walking stability using the calculated correction amounts.
  • the second correction unit 262 uses the method of Non-Patent Document 1 to calculate the correction amount of the knee joint load (Non-Patent Document 1: Lara Allet, et al., “The influence of stride-length on plantar foot-pressures and joint moments”, Gait & Posture 34, (2011), pp.300-306.).
  • Non-Patent Document 1 Lara Allet, et al., “The influence of stride-length on plantar foot-pressures and joint moments”, Gait & Posture 34, (2011), pp.300-306.
  • a 20% (percentage) increase in stride length results in an 18% increase in knee joint load.
  • the stride length it is assumed that the daily measured value is 147 cm and the facility measured value is 140 cm.
  • the knee joint load correction amount C KJL is calculated using Equation 1 below. That is, when the knee joint load before correction stored in the storage unit 253 is 61 Nm, the knee joint load after correction is the correction amount C KJL (-4.8%) calculated
  • the second correction unit 262 uses the method of Non-Patent Document 2 to calculate the correction amount of walking stability (Non-Patent Document 2: D. D. Espy, et al., “Independent Influence of Gait Speed and Step Length on Stability and Fall Risk”, Gait Posture, 2010 Jul, 32(3), 378-82.).
  • Non-Patent Document 2 when the normalized walking speed increases by 1, the walking stability improves by 0.229. Normalized walking speed is the walking speed divided by the square root of height times 9.8. Further, according to Non-Patent Document 2, when the normalized stride increases by 1, walking stability deteriorates by 0.901.
  • the normalized stride length is a value obtained by dividing the stride length (half the stride length) by the height.
  • the daily measured values are 147 cm and 4.5 m/s
  • the facility measured values are 140 cm and 4.8 m/s for the stride length and walking speed of a subject whose height is 1.84 m.
  • the walking stability correction amount C WS is calculated using Equation 2 below. That is, when the walking stability before correction stored in the storage unit 253 is -0.5, the walking stability after correction is the correction amount C WS (0.155) calculated using the above equation 2. improved value (-0.345).
  • FIG. 20 is a table summarizing values of facility measurement items before and after correction by the first correction unit 261 and the second correction unit 262.
  • FIG. 20 a row of facility measured values of knee joint load and walking stability before correction and a row of correction values of knee joint load and walking stability after correction are arranged vertically.
  • a trainer who gives exercise guidance to the user from whom the data in FIG. 20 was acquired can review the training menu created based on the data before correction by referring to the knee joint load and walking stability after correction. can be done.
  • knee joint load and walking stability are clear indicators of motor function. Therefore, based on the knee joint load and walking stability, a more accurate training menu can be created.
  • the output unit 257 outputs correction values for common measurement items and facility measurement items. For example, the output unit 257 outputs values of common measurement items and facility measurement items corrected by the correction values. For example, the output unit 257 displays the values of the common measurement items and facility measurement items corrected by the correction values on the screen of the portable terminal carried by the user. For example, the output unit 257 outputs the correction value to a terminal device that can be viewed at the facility where the facility measurement value was measured. For example, the correction value output to the terminal device is displayed on the screen of that terminal device. For example, a person who confirms the correction value displayed on the screen of the terminal device can recognize the correction value of the facility measurement item in which the daily measurement value is reflected. For example, the output unit 257 may be configured to output correction values of common measurement items to a display device (not shown) or an external system.
  • FIG. 21 is a flowchart for explaining an example of the operation of the biological information processing device 25. As shown in FIG. In the description according to the flowchart of FIG. 21, the biological information processing apparatus 25 will be described as an operating body.
  • the biological information processing device 25 acquires sensor data relating to foot movement from the measuring device 21 (step S21).
  • the biological information processing device 25 measures daily measurement data using the acquired sensor data (step S22).
  • the biological information processing device 25 extracts the daily measurement values of the common measurement items from the measured daily measurement data (step S23).
  • the biological information processing device 25 calculates correction values for the facility measured values of the common measurement items based on the extracted daily measured values of the common measurement items (step S24).
  • the biological information processing device 25 calculates the correction value of the facility measurement value of the facility measurement item related to the common related item based on the calculated correction value of the facility measurement value of the common measurement item (step S25). .
  • the biological information processing device 25 outputs the calculated correction value of the facility measurement value of the facility measurement item (step S26).
  • the correction value of the facility measurement value of the facility measurement item output from the biological information processing device 25 is used according to the application.
  • FIG. 22 is a conceptual diagram for explaining application example 1.
  • sensor data is transmitted to the portable terminal 260 carried by the user according to the walking of the user wearing the shoes 200 on which the measuring device 21 is installed.
  • the application biological information processing device 25
  • the correction value output from the application is transmitted from the user's mobile terminal 260 to the trainer's mobile terminal 270 that manages the user's exercise.
  • the information about the correction value sent to the trainer's mobile terminal 270 is displayed on the screen of the mobile terminal 270.
  • information regarding corrected facility measurement data is displayed on the screen of the mobile terminal 270 .
  • the knee joint load in daily walking is 58 Nm.” is displayed.
  • a trainer who sees information displayed on the screen of the mobile terminal 270 can create a training menu according to the information.
  • Facility measurements are not limited to those measured using specialized equipment that evaluates motor function.
  • facility measurement values may be generated by visual inspection by a trainer of a sports gym or a specialist such as a physical therapist.
  • the correction value calculated by the biological information processing device 25 may be reflected in the training menu created by the trainer.
  • the daily measurement data related to the index value of the user's motor function visually determined by the trainer in the facility can be measured as a common measurement item, the index value is corrected based on the common measurement item. good too.
  • the index value corrected based on the common measurement item is displayed on the screen of the mobile terminal 270 carried by the trainer.
  • a trainer who sees the information displayed on the screen of the mobile terminal 270 can create a training menu according to the index value.
  • a workout menu may be customized based on methods specific to a training gym or trainer.
  • FIG. 23 is an example of displaying the training menu created in the example of FIG. 22 on the screen of the mobile terminal 260 carried by the user.
  • a training menu created by a trainer who saw the information displayed on the screen of the mobile terminal 270 is transmitted to the mobile terminal 260 of the user to be managed, together with the trainer's comment.
  • Information about the training menu transmitted to the user's mobile terminal 260 is displayed on the screen of the mobile terminal 260 .
  • the user who sees the information displayed on the screen of the mobile terminal 260 can exercise according to the training menu and comments.
  • a user-dedicated training menu created based on facility measurement values is corrected based on the user's daily measurement data. Therefore, according to this application example, it is possible to create a training menu that reflects the user's original motor function.
  • FIG. 24 is a conceptual diagram for explaining application example 2.
  • sensor data is transmitted to the portable terminal 260 carried by the user according to the walking of the user wearing the shoes 200 on which the measuring device 21 is installed.
  • the application (biological information processing device 25) installed in the mobile terminal 260 calculates a correction value for correcting the facility measurement value of the facility measurement item related to the common measurement item with the facility measurement data, based on the received sensor data. do.
  • the app verifies the degree of difference from the facility measurement values based on the calculated correction values. For example, when the correction value of the facility measurement value corrected based on the daily measurement value excessively exceeds the original facility measurement value, the application generates recommendation information recommending reducing the number of steps. For example, if the correction value of the facility measurement value corrected based on the daily measurement value is excessively lower than the original facility measurement value, the application generates recommendation information recommending an increase in the number of steps. For example, when the correction value of the facility measurement value corrected based on the daily measurement value is close to the original facility measurement value, the application generates recommendation information recommending maintaining the number of steps at that time. For example, the application displays recommended information corresponding to the calculated correction value on the screen of the mobile terminal 260 .
  • the recommendation information is "Your knees are under strain. Let's reduce the number of steps tomorrow.” is displayed on the screen of the mobile terminal 260 .
  • the user who sees the information displayed on the screen of the mobile terminal 260 can review his/her daily walking according to the information.
  • the app compares the integrated value of the knee joint load in a predetermined period (one hour, one day, etc.) with a predetermined threshold,
  • the mobile terminal 260 is notified of the advice received.
  • the application recommends reducing the number of steps. Generate recommendations.
  • the predetermined threshold value in this case is a limit value of the knee joint load so as not to damage the knee joint.
  • the app recommends maintaining the number of steps. Generate recommendations.
  • the predetermined threshold value in this case is a proper knee joint load necessary and sufficient to maintain health.
  • the application displays recommended information corresponding to the calculated correction value on the screen of the mobile terminal 260 .
  • the integrated value of the correction value of the facility measurement value of the knee joint load corrected based on the daily measurement value in a predetermined period exceeds a predetermined threshold value, the "knee The recommendation information "I'm overburdened. Let's reduce the number of steps tomorrow." For example, the user who sees the information displayed on the screen of the mobile terminal 260 can review his/her daily walking according to the information.
  • the relationship between the correction value of the facility measurement value and the original facility measurement value, and the relationship between the integrated value of the correction value of the facility measurement value corrected based on the daily measurement value in a predetermined period and a predetermined threshold is displayed on the screen of the portable terminal 260 carried by the user. Therefore, according to this application example, it is possible to provide the user with recommendation information that reflects the user's original motor function. For example, for an elderly person who is concerned about knee pain but wants to continue walking for health reasons, it is desirable to walk at an appropriate number of steps on a daily basis.
  • the information processing system of this embodiment includes a measuring device and a biological information processing device.
  • the measuring device is placed on the user's footwear.
  • the measuring device measures spatial acceleration and spatial angular velocity according to the walking of the user.
  • a measurement device generates sensor data based on the measured spatial acceleration and spatial angular velocity.
  • the measuring device outputs the generated sensor data to the biological information processing device.
  • a biological information processing apparatus has a measurement unit, an extraction unit, a storage unit, a correction unit, and an output unit.
  • the measurement unit receives sensor data regarding the movement of the user's foot from the measurement device.
  • the measurement unit measures daily measurement data using the received sensor data.
  • the extraction unit extracts, from the daily measurement data measured by the measurement unit, daily measurement values of common measurement items common to the facility measurement data measured at the facility.
  • the storage unit stores facility measurement values of common measurement items and facility measurement values of facility measurement items related to the common measurement items.
  • the corrector includes a first corrector and a second corrector.
  • the first correction unit corrects the facility measurement values of the common measurement items based on the daily measurement values of the common measurement items extracted by the extraction unit.
  • the second correction unit corrects the facility measurement values of the facility measurement items related to the common measurement items based on the facility measurement values of the common measurement items corrected by the first correction unit.
  • the output unit outputs the facility measurement value of the facility measurement item corrected by the second correction unit.
  • the information processing system of this embodiment corrects the facility measurement values of the facility measurement items related to the common measurement items based on the daily measurement values of the common measurement items. Therefore, according to the present embodiment, it is possible to correct differences in measured values (biological data) of measurement items related to measurement items measured in different environments such as facilities and daily life.
  • the extraction unit extracts the daily measured value of stride length as the common measurement item.
  • the correction unit corrects the facility measurement value of the knee joint load, which is a facility measurement item related to the stride length, based on the daily measurement value of the stride length extracted by the extraction unit.
  • the facility measurement value of the knee joint load measured in an environment (facility) different from the daily life can be corrected based on the stride length measured on a daily basis.
  • the extraction unit extracts daily measured values of stride length and walking speed as common measurement items.
  • the correction unit corrects the facility measurement value of walking stability, which is a facility measurement item related to stride length and walking speed, based on the daily measurement values of stride length and walking speed extracted by the extraction unit.
  • the facility measurement value of walking stability measured in an environment (facility) different from the daily life can be corrected based on the stride length and the walking speed that are measured in the daily life.
  • the output unit outputs the correction value of the facility measurement value to a terminal device that can be viewed by the trainer who manages the user's exercise.
  • the output unit acquires the training menu created by the trainer according to the correction values of the facility measurement values.
  • the output section acquires a training menu via an input section (not shown).
  • the output unit displays the acquired training menu on the screen of the terminal device that can be viewed by the user. According to this aspect, it is possible to provide the user with a training menu updated by the trainer based on the facility measurement values reflecting the daily measurement values.
  • the output unit displays recommended information corresponding to the correction value of the facility measurement value on the screen of the terminal device that can be viewed by the user. According to this aspect, it is possible to provide the user with recommendation information that reflects the state of daily exercise.
  • FIG. 25 is a block diagram showing an example of the configuration of the biological information processing device 35 of this embodiment.
  • the biological information processing device 35 includes an extractor 352 and a corrector 355 .
  • the extraction unit 352 extracts daily measured values of common measurement items that are common to facility measurement data measured at facilities from daily measurement data measured using sensor data related to the movement of the user's feet.
  • the correction unit 355 corrects the facility measurement values of the common measurement items stored in advance based on the daily measurement values of the common measurement items extracted by the extraction unit 352 .
  • the biological information processing apparatus of this embodiment corrects the facility measurement values of the common measurement items based on the daily measurement values of the common measurement items. Therefore, according to the present embodiment, differences in measured values (biological data) for evaluating motor function measured in different environments such as facilities and daily life can be corrected.
  • the information processing device 90 includes a processor 91, a main memory device 92, an auxiliary memory device 93, an input/output interface 95, and a communication interface 96.
  • the interface is abbreviated as I/F (Interface).
  • Processor 91 , main storage device 92 , auxiliary storage device 93 , input/output interface 95 , and communication interface 96 are connected to each other via bus 98 so as to enable data communication.
  • the processor 91 , the main storage device 92 , the auxiliary storage device 93 and the input/output interface 95 are connected to a network such as the Internet or an intranet via a communication interface 96 .
  • the processor 91 loads the program stored in the auxiliary storage device 93 or the like into the main storage device 92 .
  • the processor 91 executes programs developed in the main memory device 92 .
  • a configuration using a software program installed in the information processing device 90 may be used.
  • the processor 91 executes control and processing according to this embodiment.
  • the main storage device 92 has an area in which programs are expanded.
  • a program stored in the auxiliary storage device 93 or the like is developed in the main storage device 92 by the processor 91 .
  • the main memory device 92 is realized by a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, as the main storage device 92, a non-volatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured/added.
  • the auxiliary storage device 93 stores various data such as programs.
  • the auxiliary storage device 93 is implemented by a local disk such as a hard disk or flash memory. It should be noted that it is possible to store various data in the main storage device 92 and omit the auxiliary storage device 93 .
  • the input/output interface 95 is an interface for connecting the information processing device 90 and peripheral devices based on standards and specifications.
  • a communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on standards and specifications.
  • the input/output interface 95 and the communication interface 96 may be shared as an interface for connecting with external devices.
  • Input devices such as a keyboard, mouse, and touch panel may be connected to the information processing device 90 as necessary. These input devices are used to enter information and settings.
  • a touch panel is used as an input device, the display screen of the display device may also serve as an interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input/output interface 95 .
  • the information processing device 90 may be equipped with a display device for displaying information.
  • the information processing device 90 is preferably provided with a display control device (not shown) for controlling the display of the display device.
  • the display device may be connected to the information processing device 90 via the input/output interface 95 .
  • the information processing device 90 may be equipped with a drive device. Between the processor 91 and a recording medium (program recording medium), the drive device mediates reading of data and programs from the recording medium, writing of processing results of the information processing device 90 to the recording medium, and the like.
  • the drive device may be connected to the information processing device 90 via the input/output interface 95 .
  • the above is an example of the hardware configuration for enabling control and processing according to each embodiment of the present invention.
  • the hardware configuration of FIG. 26 is an example of a hardware configuration for executing control and processing according to each embodiment, and does not limit the scope of the present invention.
  • the scope of the present invention also includes a program that causes a computer to execute control and processing according to each embodiment.
  • the scope of the present invention also includes a program recording medium on which the program according to each embodiment is recorded.
  • the recording medium can be implemented as an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the recording medium may be implemented by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card.
  • the recording medium may be realized by a magnetic recording medium such as a flexible disk, or other recording medium.
  • each embodiment may be combined arbitrarily.
  • the components of each embodiment may be realized by software or by circuits.
  • the measurement device of each embodiment is implemented by a microcomputer, microcontroller, or the like.
  • the biological information processing apparatus of each embodiment is realized by functions of a computer included in a cloud or server.
  • the biological information processing apparatus of each embodiment may be implemented by software installed in a smart phone, tablet, notebook or stationary personal computer.
  • Reference Signs List 10 20 information processing system 11, 21 measuring device 15, 25, 35 biological information processing device 111 acceleration sensor 112 angular velocity sensor 113 control unit 115 transmission unit 151, 251 measurement unit 152, 252, 352 extraction unit 153, 253 storage unit 155 , 255, 355 correction unit 157, 257 output unit 261 first correction unit 262 second correction unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Epidemiology (AREA)
  • Signal Processing (AREA)
  • Primary Health Care (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Psychiatry (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

異なる環境において計測された、運動機能を評価するための生体データの相違を補正するために、ユーザの足の動きに関するセンサデータを用いて計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出する抽出部と、抽出された共通計測項目の日常計測値に基づいて、予め記憶された共通計測項目の施設計測値を補正する補正部と、を備える生体情報処理装置とする。

Description

生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体
 本開示は、歩行に伴って計測されるセンサデータを処理する生体情報処理装置等に関する。
 体調管理を行うヘルスケアへの関心の高まりから、歩行の特徴を含む歩容を計測し、計測された歩容に応じた情報を提供するサービスに注目が集まっている。そのようなサービスでは、歩行等における運動機能を精度よく評価する技術が求められる。例えば、歩行等における運動機能は、病院やスポーツジム等の施設で評価される。
 非特許文献1には、足底圧と関節モーメントに対する歩幅の影響について開示されている。非特許文献2には、安定性と転倒リスクに対する歩行速度と歩幅の独立した影響について開示されている。非特許文献1や非特許文献2の手法を用いれば、歩幅や歩行速度等の計測データを検証することによって、膝関節負荷や歩行安定性などの運動機能を評価できる。
 病院やスポーツジムなどの施設では、日常とは異なる環境におかれるため、歩行等の動作が日常とは異なる様相を呈する場合がある。そのような場合、本来の運動機能が反映されていない評価結果が得られる可能性がある。
 特許文献1には、病院や自宅で計測された生体データを相互に校正する生体データ管理システムについて開示されている。特許文献1のシステムは、被検体の生体データを測定する第1生体測定装置および第2生体測定装置を備える。第1生体測定装置は、病院内で使用される。第2生体測定装置は、第1生体測定装置とは異なる自宅等の環境で使用される。特許文献1のシステムは、第1生体測定装置で測定された被検体の生体データと、第2生体測定装置で測定された被検体の生体データとの誤差を予めキャリブレーション値として記憶する。特許文献1のシステムは、被検体の生体データをキャリブレーション値で校正する。
特開2014-180361号公報
Lara Allet, et al., "The influence of stride-length on plantar foot-pressures and joint moments", Gait & Posture 34, (2011), pp.300-306. D. D. Espy, et al., "Independent Influence of Gait Speed and Step Length on Stability and Fall Risk", Gait Posture, 2010 Jul, 32(3), 378-82.
 特許文献1の手法では、病院や自宅などのように、異なる環境で測定された生体データを、予め記憶されたキャリブレーション値で校正する。特許文献1の手法では、一定のキャリブレーション値で生体データを校正するため、環境間の相違が予め明確になっていないと、生体データを正確に校正することができなかった。また、自宅などの日常において、生体データの計測環境を一定にするためには、体を静止させた状態に保つ必要がある。歩行などの運動機能を評価する場合、体を静止した状態に保つことはできない。
 本開示の目的は、異なる環境において計測された、運動機能を評価するための生体データの相違を補正できる生体情報処理装置等を提供することにある。
 本開示の一態様の生体情報処理装置は、ユーザの足の動きに関するセンサデータを用いて計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出する抽出部と、抽出された共通計測項目の日常計測値に基づいて、予め記憶された共通計測項目の施設計測値を補正する補正部と、を備える。
 本開示の一態様の生体情報処理方法においては、コンピュータが、ユーザの足の動きに関するセンサデータを用いて計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出し、抽出された共通計測項目の日常計測値に基づいて、予め記憶された共通計測項目の施設計測値を補正する。
 本開示の一態様のプログラムは、ユーザの足の動きに関するセンサデータを用いて計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出る処理と、抽出された共通計測項目の日常計測値に基づいて、予め記憶された共通計測項目の施設計測値を補正する処理と、をコンピュータに実行させる。
 本開示によれば、異なる環境において計測された、運動機能を評価するための生体データの相違を補正できる生体情報処理装置等を提供することが可能になる。
第1の実施形態に係る情報処理システムの構成の一例を示すブロック図である。 第1の実施形態に係る情報処理システムの計測装置の配置例を示す概念図である。 第1の実施形態に係る情報処理システムの計測装置に設定される座標系について説明するための概念図である。 第1の実施形態に係る情報処理システムの説明で用いられる人体面について説明するための概念図である。 第1の実施形態に係る情報処理システムの説明で用いられる歩行周期について説明するための概念図である。 第1の実施形態に係る情報処理システムの日常計測項目の一例について説明するための概念図である。 第1の実施形態に係る情報処理システムの日常計測項目の別の一例について説明するための概念図である。 第1の実施形態に係る情報処理システムの日常計測項目のさらに別の一例について説明するための概念図である。 第1の実施形態に係る情報処理システムの計測装置の構成の一例を示すブロック図である。 第1の実施形態に係る情報処理システムの生体情報処理装置の構成の一例を示すブロック図である。 第1の実施形態に係る情報処理システムの生体情報処理装置によって計測される日常計測データの一例を示す図である。 第1の実施形態に係る情報処理システムの生体情報処理装置に記憶される共通計測項目の施設計測値の一例である。 第1の実施形態に係る情報処理システムの生体情報処理装置によって計測されるストライド長の日常計測値の度数分布の一例である。 第1の実施形態に係る情報処理システムの生体情報処理装置によって計測される歩行速度の日常計測値の度数分布の一例である。 第1の実施形態に係る情報処理システムの生体情報処理装置によって算出される共通計測項目の計測値の補正値の一例である。 第1の実施形態に係る情報処理システムの生体情報処理装置の動作の一例について説明するためのフローチャートである。 第2の実施形態に係る情報処理システムの構成の一例を示すブロック図である。 第2の実施形態に係る情報処理システムの生体情報処理装置の構成の一例を示すブロック図である。 第2の実施形態に係る情報処理システムの生体情報処理装置に記憶される共通計測項目および施設計測項目の施設計測値の一例である。 第1の実施形態に係る情報処理システムの生体情報処理装置によって算出される施設計測項目の施設計測値の補正値の一例である。 第2の実施形態に係る情報処理システムの生体情報処理装置の動作の一例について説明するためのフローチャートである。 第2の実施形態に係る情報処理システムの適用例1について説明するための概念図である。 第2の実施形態に係る情報処理システムの適用例1について説明するための概念図である 第2の実施形態に係る情報処理システムの適用例2について説明するための概念図である 第3の実施形態に係る生体情報処理装置の構成の一例を示すブロック図である。 各実施形態の制御や処理を実行するハードウェア構成の一例を示すブロック図である。
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。また、図面中の矢印の向きは、一例を示すものであり、ブロック間の信号等の向きを限定するものではない。
 (第1の実施形態)
 まず、第1の実施形態に係る情報処理システムについて図面を参照しながら説明する。本実施形態の情報処理システムは、ユーザの足部に設置されたセンサによって取得されたセンサデータを用いて、日常における計測データ(日常計測データとも呼ぶ)を計測する。本実施形態の情報処理システムは、計測された日常計測データから、スポーツジムや病院等の施設で計測された計測データ(施設計測データとも呼ぶ)と共通する計測項目(共通計測項目とも呼ぶ)を抽出する。日常計測データは、データ量は多いが、情報量が制限される浅いデータである。施設計測データは、データ量は少ないが、情報量が多い深いデータである。本実施形態の情報処理システムは、データ量が多い日常計測データに基づいて施設計測データを補正する。
 (構成)
 図1は、本実施形態の情報処理システム10の構成の一例を示すブロック図である。情報処理システム10は、計測装置11および生体情報処理装置15を備える。計測装置11と生体情報処理装置15は、有線で接続されてもよいし、無線で接続されてもよい。また、計測装置11と生体情報処理装置15は、単一の装置で構成されてもよい。また、情報処理システム10の構成から計測装置11を除き、生体情報処理装置15だけで情報処理システム10が構成されてもよい。
 計測装置11は、足部に設置される。計測装置11は、靴等の履物を履くユーザの足の動きに関する物理量として、加速度(空間加速度とも呼ぶ)および角速度(空間角速度とも呼ぶ)を計測する。計測装置11が計測する足の動きに関する物理量には、加速度や角速度に加えて、加速度や角速度を積分することによって計算される速度や角度、位置(軌跡)も含まれる。計測装置11は、計測された物理量をデジタルデータ(センサデータとも呼ぶ)に変換する。計測装置11は、変換後のセンサデータを生体情報処理装置15に送信する。計測装置11によって生成される加速度や角速度などのセンサデータを歩行パラメータとも呼ぶ。例えば、加速度や角速度を積分することによって計算される速度や角度、軌跡なども歩行パラメータに含まれる。例えば、地面に対する足裏の角度(足底角とも呼ぶ)も歩行パラメータに含まれる。
 計測装置11は、例えば、加速度センサと角速度センサを含む慣性計測装置によって実現される。慣性計測装置の一例として、IMU(Inertial Measurement Unit)が挙げられる。IMUは、3軸の加速度センサと、3軸の角速度センサを含む。計測装置11には、加速度センサと角速度センサ以外のセンサが含まれてもよい。慣性計測装置の別の一例として、VG(Vertical Gyro)や、AHRS(Attitude Heading)、GPS/INS(Global Positioning System/Inertial Navigation System)が挙げられる。
 図2は、靴100の中に計測装置11を設置する一例を示す概念図である。図2の例では、計測装置11は、足弓の裏側に当たる位置に設置される。例えば、計測装置11は、靴100の中に挿入されるインソールに設置される。例えば、計測装置11は、靴100の底面に設置される。例えば、計測装置11は、靴100の本体に埋設される。計測装置11は、靴100から着脱できてもよいし、靴100から着脱できなくてもよい。計測装置11は、足の動きに関するセンサデータを取得できさえすれば、足弓の裏側ではない位置に設置されてもよい。また、計測装置11は、ユーザが履く靴下や、ユーザが装着するアンクレット等の装飾品に設置されてもよい。また、計測装置11は、足に直に貼り付けられたり、足に埋め込まれたりしてもよい。図2においては、両足の靴100に計測装置11が設置される例を示す。計測装置11は、少なくとも一方の足部に設置されればよい。両足の靴100に計測装置11を設置すれば、左右の足に設置された計測装置11によって計測されたセンサデータに基づいて評価できる。
 図3は、計測装置11に設定されるローカル座標系(x軸、y軸、z軸)と、地面に対して設定される世界座標系(X軸、Y軸、Z軸)について説明するための概念図である。世界座標系(X軸、Y軸、Z軸)では、ユーザが直立した状態で、ユーザの横方向がX軸方向(右向きが正)、ユーザの正面の方向(進行方向)がY軸方向(前向きが正)、重力方向がZ軸方向(鉛直上向きが正)に設定される。本実施形態においては、計測装置11を基準とするx方向、y方向、およびz方向からなるローカル座標系を設定する。
 生体情報処理装置15は、計測装置11からセンサデータを受信する。生体情報処理装置15は、受信されたセンサデータを用いて、日常計測データを計測する。例えば、日常計測データは、ストライド長、歩行速度、最大背屈角度、最大底屈角度、足上げ高さ、分回し量、および足角を含む。
 生体情報処理装置15は、計測された日常計測データのうち、施設計測データと共通する共通計測項目の日常計測データの値(日常計測値とも呼ぶ)を抽出する。共通計測項目は、評価対象の運動機能に応じて、予め設定される。例えば、ストライド長および歩行速度が共通計測項目に設定される。例えば、生体情報処理装置15は、共通計測項目であるストライド長および歩行速度の日常計測値を抽出する。なお、ストライド長および歩行速度以外の日常計測データが共通計測項目に設定されてもよい。
 生体情報処理装置15は、抽出された共通計測項目の補正値を計算する。例えば、生体情報処理装置15は、センサデータに基づいて計測された日常計測データから抽出される共通計測項目の日常計測値と、予め記憶された共通計測項目の施設計測データの値(施設計測値とも呼ぶ)との差分を補正値として計算する。例えば、生体情報処理装置15は、日常計測データから抽出される共通計測項目の日常計測値の分布における代表値と、予め記憶された共通計測項目の施設計測値との偏差を補正値として計算する。
 生体情報処理装置15は、共通計測項目の補正値を出力する。例えば、生体情報処理装置15は、共通計測項目の施設計測値の補正値を出力する。例えば、生体情報処理装置15は、施設計測データが計測された施設で閲覧可能な端末装置(図示しない)に補正値を出力する。例えば、端末装置に出力された補正値は、その端末装置の画面に表示される。例えば、端末装置の画面に表示された補正値を確認した人物は、施設計測データと日常計測データの相違を認識できる。例えば、生体情報処理装置15は、表示装置(図示しない)や外部システムに、共通計測項目の補正値を出力するように構成されてもよい。
 続いて、本実施形態において検証される歩行に関する事項について図面を参照しながら説明する。以下の事項は、本実施形態において検証される歩行に関し、一般的な定義とは異なる場合がある。以下の事項は、本開示の他の実施形態においても適用される。
 図4は、人体に対して設定される面(人体面とも呼ぶ)について説明するための概念図である。本実施形態では、身体を左右に分ける矢状面、身体を前後に分ける冠状面、身体を水平に分ける水平面が定義される。なお、図4のような直立した状態では、世界座標系とローカル座標系が一致する。本実施形態においては、x軸を回転軸とする矢状面内の回転をロール、y軸を回転軸とする冠状面内の回転をピッチ、z軸を回転軸とする水平面内の回転をヨーと定義する。また、x軸を回転軸とする矢状面内の回転角をロール角、y軸を回転軸とする冠状面内の回転角をピッチ角、z軸を回転軸とする水平面内の回転角をヨー角と定義する。本実施形態においては、右側面から身体を見て、矢状面内における時計回りの回転を正と定義し、矢状面内における反時計回りの回転を負と定義する。
 図5は、右足を基準とする一歩行周期について説明するための概念図である。左足を基準とする一歩行周期も、右足と同様である。図5の横軸は、右足の踵が地面に着地した時点を起点とし、次に右足の踵が地面に着地した時点を終点とする右足の一歩行周期を100%として正規化された歩行周期である。片足の一歩行周期は、足の裏側の少なくとも一部が地面に接している立脚相と、足の裏側が地面から離れている遊脚相とに大別される。立脚相は、さらに、立脚初期T1、立脚中期T2、立脚終期T3、遊脚前期T4に細分される。遊脚相は、さらに、遊脚初期T5、遊脚中期T6、遊脚終期T7に細分される。なお、図5は一例であって、一歩行周期を構成する期間や、それらの期間の名称等を限定するものではない。
 図5のように、歩行においては、複数の事象(歩行イベントとも呼ぶ)が発生する。図5の(a)は、右足の踵が接地する事象(踵接地)を表す(HS:Heel Strike)。図5の(b)は、右足の足裏が接地した状態で、左足の爪先が地面から離れる事象(反対足爪先離地)を表す(OTO:Opposite Toe Off)。図5の(c)は、右足の足裏が接地した状態で、右足の踵が持ち上がる事象(踵持ち上がり)を表す(HR:Heel Rise)。図5の(d)は、左足の踵が接地した事象(反対足踵接地)である(OHS:Opposite Heel Strike)。図5の(e)は、左足の足裏が接地した状態で、右足の爪先が地面から離れる事象(爪先離地)を表す(TO:Toe Off)。図5の(f)は、左足の足裏が接地した状態で、左足と右足が交差する事象(足交差)を表す(FA:Foot Adjacent)。図5の(g)は、左足の足裏が接地した状態で、右足の脛骨が地面に対してほぼ垂直になる事象(脛骨垂直)を表す(TV:Tibia Vertical)。図5の(h)は、右足の踵が接地する事象(踵接地)を表す(HS:Heel Strike)。図5の(h)は、図5の(a)から始まる歩行周期の終点に相当するとともに、次の歩行周期の起点に相当する。なお、図5は一例であって、歩行に付随して発生する事象や、それらの事象の名称を限定するものではない。
 図6は、生体情報処理装置15が算出する歩行パラメータについて説明するための概念図である。図6には、右足ステップ長SR、左足ステップ長SL、ストライド長T、分回し量C、および足角Fを図示する。右足ステップ長SRは、左足の足裏が接地した状態から、進行方向に振り出された右足の踵が着地した状態に遷移した際の、右足の踵と左足の踵のY座標の差である。左足ステップ長SLは、右足の足裏が接地した状態から、進行方向に振り出された左足の踵が着地した状態に遷移した際の、左足の踵と右足の踵のY座標の差である。ストライド長Tは、右足ステップ長SRと左足ステップ長SLの和である。分回し量Cは、水平面内(XY面内)における足の分回しの度合である。ここで、一方の足の足裏が接地した状態における計測装置11の位置と、進行方向に振り出されたその足の足裏が接地した状態に遷移した際の計測装置11の位置とを結ぶ直線を進行軸と定義する。分回し量Cは、一方の足の足裏が接地した状態から、進行方向に振り出されたその足の足裏が再び接地した状態に遷移までの期間において、その足が水平面内で進行軸から最も離れたタイミングにおける計測装置11と進行軸との距離である。足角Fは、足裏面が接地した状態において、足の中心線と進行軸(Y軸)が成す角度である。
 図7は、足底角について説明するための概念図である。足底角は、地面(XY平面)に対する足底の角度である。足底角は、爪先が上を向いた状態(背屈)をマイナス、爪先が下を向いた状態(底屈)をプラスと定義する。一歩行周期において、背屈状態の足底角の絶対値が最大になる角度を最大背屈角度と呼ぶ。一歩行周期において、底屈状態の足底角の絶対値が最大になる角度を最大底屈角度と呼ぶ。
 例えば、生体情報処理装置15は、X軸方向の加速度とY軸方向の加速度を用いて足底角を計算する。例えば、生体情報処理装置15は、X軸、Y軸、およびZ軸の各々を中心軸とする角速度の値を積分することによって、それらの軸周りの足底角を計算する。加速度データおよび角速度データには、色々な方向に変化する高周波数および低周波のノイズが入る。そのため、加速度データおよび角速度データにローパスフィルタおよびハイパスフィルタをかけて、高周波成分および低周波成分を除去する。高周波成分および低周波成分が除去されれば、ノイズが乗りやすいセンサデータの精度を向上できる。また、加速度データおよび角速度データの各々に相補フィルタをかけて重み付き平均を取ることでも、センサデータの精度を向上できる。なお、計測装置11が足底角を計測するように構成されてもよい。
 図8は、足上げ高さについて説明するための概念図である。足上げ高さは、地面に対する足裏の高さである。図8には、一歩行周期において、足裏が地面に接地した位置(破線)から、足裏の地面に対す足上げ高さが最大の位置(実線)に遷移した状態を示す。足上げ高さHは、Z方向における計測装置11の位置に相当する。すなわち、足上げ高さHは、靴100を履いて歩行するユーザの足裏のZ方向における高さとほぼ一致する。図8の例の場合、足上げ高さHは、Z方向の加速度を二階積分することによって算出できる。計測装置11は、靴100の中の初期高さdの位置に設置される。そのため、足裏が地面に接地した状態を基準とすると、Z方向における足裏の高さはH-dだけ変化する。また、靴100の靴底の高さもH-dに相当する。足上げ高さに基づく運動機能の評価においては、H-dを足上げ高さとした方が好ましいこともある。
 〔データ取得装置〕
 次に、計測装置11の詳細について図面を参照しながら説明する。図9は、計測装置11の詳細構成の一例を示すブロック図である。計測装置11は、加速度センサ111、角速度センサ112、制御部113、および送信部115を有する。また、計測装置11は、図示しない電源を含む。
 加速度センサ111は、3軸方向の加速度(空間加速度とも呼ぶ)を計測するセンサである。加速度センサ111は、計測した加速度を制御部113に出力する。例えば、加速度センサ111には、圧電型や、ピエゾ抵抗型、静電容量型等の方式のセンサを用いることができる。なお、加速度センサ111に用いられるセンサは、加速度を計測できれば、その計測方式に限定を加えない。
 角速度センサ112は、3軸周りの角速度(空間角速度とも呼ぶ)を計測するセンサである。角速度センサ112は、計測した角速度を制御部113に出力する。例えば、角速度センサ112には、振動型や静電容量型等の方式のセンサを用いることができる。なお、角速度センサ112に用いられるセンサは、角速度を計測できれば、その計測方式に限定を加えない。
 制御部113は、加速度センサ111から3軸方向の加速度を取得する。制御部113は、角速度センサ112から3軸周りの角速度を取得する。制御部113は、取得した加速度および角速度をデジタルデータに変換する。制御部113は、変換後のデジタルデータ(センサデータとも呼ぶ)を送信部115に出力する。センサデータには、アナログデータからデジタルデータに変換された加速度データと、アナログデータからデジタルデータに変換された角速度データとが少なくとも含まれる。デジタルデータに変換された加速度データには、3軸方向の加速度ベクトルが含まれる。デジタルデータに変換された角速度データには、3軸方向の角速度ベクトルが含まれる。加速度データおよび角速度データには、それらのデータの取得時間が紐付けられる。また、制御部113は、取得した加速度データおよび角速度データに対して、実装誤差や温度補正、直線性補正などの補正を加えたセンサデータを出力するように構成されてもよい。また、制御部113は、取得した加速度データおよび角速度データを用いて、3軸周りの角度データや足底角を計測するように構成されてもよい。
 例えば、制御部113は、計測装置11の制御や処理を行う、マイクロコンピュータやマイクロコントローラである。例えば、制御部113は、CPU(Central Processing Unit)やRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等を有する。制御部113は、加速度センサ111および角速度センサ112を制御して角速度や加速度を計測する。例えば、制御部113は、計測された角速度および加速度等の物理量(アナログデータ)をAD変換(Analog-to-Digital Conversion)し、変換後のデジタルデータをフラッシュメモリに記憶させる。なお、加速度センサ111および角速度センサ112によって計測された物理量(アナログデータ)は、加速度センサ111および角速度センサ112の各々においてデジタルデータに変換されてもよい。フラッシュメモリに記憶されたデジタルデータは、所定のタイミングで送信部115に出力される。
 送信部115は、制御部113からセンサデータを取得する。送信部115は、取得したセンサデータを生体情報処理装置15に送信する。送信部115は、ケーブルなどの有線を介してセンサデータを生体情報処理装置15に送信してもよいし、無線通信を介してセンサデータを生体情報処理装置15に送信してもよい。例えば、送信部115は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、センサデータを生体情報処理装置15に送信するように構成される。なお、送信部115の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。
 〔生体情報処理装置〕
 次に、情報処理システム10が備える生体情報処理装置15の詳細について図面を参照しながら説明する。図10は、生体情報処理装置15の構成の一例を示すブロック図である。生体情報処理装置15は、計測部151、抽出部152、記憶部153、補正部155、および出力部157を有する。
 計測部151は、歩行者の履いている履物に設置された計測装置11からセンサデータを取得する。計測部151は、取得したセンサデータを用いて、日常計測データを計測する。例えば、計測部151は、ストライド長、歩行速度、最大背屈角度、最大底屈角度、足上げ高さ、分回し量、および足角などの日常計測データを計測する。以下に、計測部151による日常計測データの計測方法の一例をあげる。
 まず、計測部151は、取得されたセンサデータの座標系を、ローカル座標系から世界座標系に変換する。ユーザが直立した状態では、ローカル座標系(x軸、y軸、z軸)と世界座標系(X軸、Y軸、Z軸)は一致する。一方、ユーザが歩行している間、計測装置11の空間的な姿勢が変化するため、ローカル座標系(x軸、y軸、z軸)と世界座標系(X軸、Y軸、Z軸)は一致しない。そのため、計測部151は、計測装置11によって取得されたセンサデータを、計測装置11のローカル座標系(x軸、y軸、z軸)から世界座標系(X軸、Y軸、Z軸)に変換する。
 計測部151は、世界座標系に変換されたセンサデータを用いて、計測装置11が設置された履物を履いたユーザの歩行に伴う時系列データを生成する。計測部151は、生成された時系列データから、一歩行周期分の歩行波形データを抽出する。例えば、計測部151は、空間加速度や空間角速度などの時系列データを生成する。また、計測部151は、空間加速度や空間角速度を積分し、空間速度や空間角度、足底角、空間軌跡などの時系列データを生成する。計測部151が時系列データを生成するタイミングは、任意に設定できる。例えば、計測部151は、一般的な歩行周期やユーザに固有の歩行周期に合わせて設定された所定のタイミングで時系列データを生成する。例えば、計測部151は、歩行周期に合わせて設定された所定の時間間隔で時系列データを生成する。例えば、計測部151は、ユーザの歩行が継続されている期間、時系列データを生成し続ける。例えば、計測部151は、特定の時刻において、時系列データを生成してもよい。
 計測部151は、生成された歩行波形データから、計測装置11が設置された履物を履いて歩行するユーザの歩行イベントを検出する。例えば、計測部151は、足の動きに関する物理量の歩行波形から、歩行イベントごとの特徴を抽出する。例えば、計測部151は、抽出された歩行イベントごとの特徴のタイミングを、それぞれの歩行イベントのタイミングとして検出する。
 例えば、計測部151は、連続する踵接地や、連続する爪先離地などのタイミングにおける計測装置11のY方向の移動距離をストライド長として計測する。例えば、計測部151は、Y方向の加速度を積分することによって、歩行速度を計測する。例えば、計測部151は、足底角の絶対値が背屈方向において最大となる角度を最大背屈角度として計測する。計測部151は、足底角の絶対値が底屈方向において最大となる角度を最大底屈角度として計測する。例えば、計測部151は、Z方向加速度を二階積分することによって、足上げ高さを計算する。例えば、計測部151は、一歩行周期分のX方向の加速度を二階積分することで、X方向における位置の軌跡を得る。計測部151は、X方向における位置と進行軸の間隔が最大となる距離を、分回し量として計測する。例えば、計測部151は、足裏が接地した状態における足の中心線と進行軸(Y軸)が成す角度を、足角として計測する。なお、ここであげた日常計測データの計測方法は一例であって、計測部151による日常計測データの計測方法を限定するものではない。
 例えば、計測部151は、爪先離地、踵接地、および足交差を歩行イベントとして検出し、それらの歩行イベントに基づいて、ストライド長を計測してもよい。足交差は、一方の足の爪先が、他方の足の爪先と踵の中点の位置を通過するタイミングに相当する。計測部151は、一歩行周期分のY方向軌跡の歩行波形から、爪先離地と踵接地の間の区間を、一歩分のY方向軌跡の歩行波形として抽出する。計測部151は、一歩分のY方向軌跡の歩行波形を用いて、足交差における空間位置と、爪先離地における空間位置との差の絶対値を計算する。足交差における空間位置と、爪先離地における空間位置との差の絶対値は、左足が前、右足が後ろの状態の左足ステップ長S(第1ステップ長とも呼ぶ)に相当する。また、計測部151は、一歩分のY方向軌跡の歩行波形を用いて、足交差のタイミングにおける空間位置と、踵接地における空間位置との差の絶対値を計算する。足交差のタイミングにおける空間位置と、踵接地における空間位置との差の絶対値は、右足が前、左足が後ろの状態の右足ステップ長SR(第2ステップ長とも呼ぶ)に相当する。右足ステップ長SRと左足ステップ長SLの和がストライド長に相当する。この手法によれば、各足のステップ長を個別に計測できる。
 抽出部152は、計測部151によって計測された日常計測データから、施設計測データとの共通計測項目の日常計測値を抽出する。例えば、抽出部152は、ストライド長と歩行速度の日常計測値を共通計測項目として抽出する。
 例えば、抽出部152は、計測部151によって継続的に計測された日常計測データから、施設計測データとの共通計測項目の日常計測値の代表値を抽出する。図11は、複数の日時に亘って計測された日常計測値の度数分布をまとめた図である。図11は、ストライド長、歩行速度、最大背屈角度、最大底屈角度、足上げ高さ、分回し量、および足角の日常計測値の度数分布を含む。図11においては、横軸と縦軸の目盛りを省略する。図11の例では、ストライド長と歩行速度が共通計測項目である。例えば、抽出部152は、ストライド長および歩行速度の日常計測値の代表値を共通計測項目として抽出する。
 記憶部153は、共通計測項目の施設計測値を記憶する。例えば、記憶部153は、ストライド長と歩行速度の施設計測値を記憶する。図12は、記憶部153に記憶される施設計測値の一例である。図12の例では、ストライド長の施設計測値147cm(センチメートル)と、歩行速度の施設計測値4.8m/s(メートル毎秒)が記憶部153に記憶される。記憶部153に記憶された共通計測項目の施設計測値は、任意のタイミングで更新可能である。例えば、記憶部153に記憶された共通計測項目の施設計測値は、スポーツジムや病院などの施設から送信されたデータに応じて更新される。記憶部153に記憶された共通計測項目の施設計測値の更新方法については、特に限定を加えない。
 補正部155は、共通計測項目の日常計測値と施設計測値の補正値を計算する。例えば、補正部155は、共通計測項目の日常計測値と施設計測値の差分を補正値として算出する。例えば、補正部155は、共通計測項目の日常計測値の分布の代表値と施設計測値との偏差を補正値として算出する。例えば、補正部155は、共通計測項目の日常計測値の分布の代表値として、その分布を構成する複数の日常計測値の相加平均や相乗平均、調和平均などの平均値を代表値として用いる。例えば、補正部155は、共通計測項目の日常計測値の分布の代表値として、その分布を構成する複数の日常計測値の最頻値や中央値を代表値として用いる。
 図13は、ストライド長の日常計測値の度数分布の一例である。図13のストライド長の日常計測値は、約40日間に亘る歩行で計測され、外れ値が除去された561個のサンプルの分布である。図13の例では、ストライド長の日常計測値の平均値は140cmである。それに対し、歩幅の施設平均値は147cmである。ストライド長の日常計測値の分布の平均値と施設計測値との偏差は7cmである。
 図14は、歩行速度の日常計測値の度数分布の一例である。図13の歩行速度の日常計測値は、図14と同じタイミングで計測された値である。図14の例では、歩行速度の日常計測値の平均値は4.8m/sである。それに対し、歩行速度の施設平均値は4.5m/sである。歩行速度の日常計測値の分布の平均値と施設計測値との偏差は0.3m/sである。
 図15は、補正部155による補正の前後における共通計測項目の値をまとめた表である。図15の表には、補正前のストライド長および歩行速度の施設計測値の行と、補正後のストライド長および歩行速度の補正値の行とを上下に並べて表記する。例えば、図15のデータの取得元のユーザに対して運動指導するトレーナーは、補正前後のストライド長および歩行速度を比較することによって、補正前のデータに基づいて作成したトレーニングメニューを見直すことができる。
 施設計測値は、施設における観察下で計測されるため、日常計測値とは異なる傾向がある。例えば、対象人物が、通常よりもよい姿勢で歩こうとすると、ストライドが大きくなり、歩行速度が速くなる傾向がある。図13~図15の例は、そのような傾向があらわれたものと推測される。その反対に、例えば、対象人物が、通常よりも不調な感じを見せようとして歩くと、ストライドが小さくなり、歩行速度が遅くなる傾向がある。本実施形態では、自然な歩行に基づく日常計測値を用いて、施設計測値を補正できる。そのため、本実施形態によれば、施設における詳細な運動機能の評価に、日常環境における本来の運動機能を反映できる。
 出力部157は、共通計測項目の補正値を出力する。例えば、出力部157は、補正値によって補正された共通計測項目の値を出力する。例えば、出力部157は、補正値によって補正された共通計測項目および施設計測項目の値を、ユーザの携帯する携帯端末の画面に表示させる。例えば、出力部157は、ネットワーク(図示しない)を介して、施設計測値が計測された施設で閲覧可能な端末装置に補正値を出力する。例えば、端末装置に出力された補正値は、その端末装置の画面に表示される。例えば、端末装置の画面に表示された補正値を確認した人物は、施設計測データと日常計測データの相違を認識できる。例えば、出力部157は、表示装置(図示しない)や外部システムに、共通計測項目の補正値を出力するように構成されてもよい。
 (動作)
 次に、本実施形態の情報処理システム10の動作の一例について図面を参照しながら説明する。ここでは、情報処理システム10の生体情報処理装置15の動作の一例について、フローチャートを参照しながら説明する。図16は、生体情報処理装置15の動作の一例について説明するためのフローチャートである。図16のフローチャートに沿った説明においては、生体情報処理装置15を動作主体として説明する。
 図16において、まず、生体情報処理装置15は、足の動きに関するセンサデータを計測装置11から取得する(ステップS11)。
 次に、生体情報処理装置15は、取得されたセンサデータを用いて、日常計測データを計測する(ステップS12)。
 次に、生体情報処理装置15は、計測された日常計測データから、共通計測項目の日常計測値を抽出する(ステップS13)。
 次に、生体情報処理装置15は、抽出された共通計測項目の日常計測値に基づいて、共通計測項目の施設計測値の補正値を計算する(ステップS14)。
 次に、生体情報処理装置15は、算出された共通計測項目の施設計測値の補正値を出力する(ステップS15)。生体情報処理装置15から出力された共通計測項目の施設計測値の補正値は、用途に応じて使用される。
 以上のように、本実施形態の情報処理システムは、計測装置と生体情報処理装置を備える。計測装置は、ユーザの履物に配置される。計測装置は、ユーザの歩行に応じて空間加速度および空間角速度を計測する。計測装置は、計測された空間加速度および空間角速度に基づくセンサデータを生成する。計測装置は、生成されたセンサデータを生体情報処理装置に出力する。生体情報処理装置は、計測部、抽出部、記憶部、補正部、および出力部を有する。計測部は、ユーザの足の動きに関するセンサデータを計測装置から受信する。計測部は、受信したセンサデータを用いて日常計測データを計測する。抽出部は、計測部によって計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出する。記憶部は、共通計測項目の施設計測値を記憶する。補正部は、抽出部によって抽出された共通計測項目の日常計測値に基づいて、記憶部に予め記憶された共通計測項目の施設計測値を補正する。出力部は、補正部によって補正された施設計測値を出力する。
 本実施形態の情報処理システムは、共通計測項目の日常計測値に基づいて、その共通計測項目の施設計測値を補正する。そのため、本実施形態によれば、施設や日常生活などのように異なる環境において計測された、運動機能を評価するための計測値(生体データ)の相違を補正できる。
 本実施形態の一態様において、補正部は、共通計測項目の日常計測値の分布の代表値と、共通計測項目の施設計測値との偏差を計算する。補正部は、算出された偏差を用いて、共通計測項目の施設計測値を補正する。本態様によれば、日常の歩行で蓄積された日常計測値の分布の代表値に基づいて施設計測値を補正できるので、より日常が反映された高精度の補正を行うことができる。
 (第2の実施形態)
 次に、第2の実施形態に係る情報処理システムについて図面を参照しながら説明する。本実施形態の情報処理システムは、計測装置によって計測される日常計測値に基づいて、日常計測データには含まれない施設計測項目の施設計測値の補正値を計算する。以下において、日常計測データには含まれない施設計測項目の施設計測値を、施設計測項目の施設計測値と呼ぶ。
 (構成)
 図17は、本実施形態の情報処理システム20の構成の一例を示すブロック図である。情報処理システム20は、計測装置21および生体情報処理装置25を備える。計測装置21と生体情報処理装置25は、有線で接続されてもよいし、無線で接続されてもよい。また、計測装置21と生体情報処理装置25は、単一の装置で構成されてもよい。また、情報処理システム20の構成から計測装置21を除き、生体情報処理装置25だけで情報処理システム20が構成されてもよい。
 計測装置21は、足部に設置される。計測装置21は、第1の実施形態の計測装置11と同様の構成である。計測装置21は、靴等の履物を履くユーザの足の動きに関する物理量として、加速度(空間加速度とも呼ぶ)および角速度(空間角速度とも呼ぶ)を計測する。計測装置21は、計測された物理量をデジタルデータ(センサデータとも呼ぶ)に変換する。計測装置21は、変換後のセンサデータを生体情報処理装置25に送信する。
 生体情報処理装置25は、計測装置21からセンサデータを受信する。生体情報処理装置25は、受信されたセンサデータを用いて、日常計測データを計測する。例えば、日常計測データは、ストライド長、歩行速度、最大背屈角度、最大底屈角度、足上げ高さ、分回し量、および足角を含む。生体情報処理装置25は、計測された日常計測データのうち、施設計測データとの共通計測項目を抽出する。生体情報処理装置25は、抽出された共通計測項目の補正値を計算する。生体情報処理装置25は、算出された共通計測項目の補正値を用いて、その共通計測項目に関連する施設計測項目の施設計測値を補正する。
 例えば、生体情報処理装置25は、ストライド長、歩行速度、最大背屈角度、最大底屈角度、足上げ高さ、分回し量、および足角を日常計測値として計測する。例えば、生体情報処理装置25は、ストライド長および歩行速度の日常計測値を共通計測項目として抽出する。生体情報処理装置25は、ストライド長および歩行速度の補正値を計算する。例えば、生体情報処理装置25は、算出されたストライド長の補正値を用いて、ストライド長に関連する膝関節負荷に関する補正量を計算する。膝関節負荷は、膝関節の関節モーメントである。膝関節負荷の値が大きいほど、膝への負担が大きいことを示す。例えば、生体情報処理装置25は、算出されたストライド長および歩行速度の補正量を用いて、ストライド長および歩行速度に関連する歩行安定性の補正値を計算する。歩行安定性は、荷重支持面からの重心のずれである。歩行安定性は、0に近いほど安定である。重心が前方に偏心した状態で歩行していると、歩行安定性が正に傾く。重心が後方に偏心した状態で歩行していると、歩行安定性が負に傾く。なお、共通計測項目に関連する施設計測値は、膝関節負荷や歩行安定性に限定されない。共通計測項目に関連する施設計測値は、評価対象の運動機能に応じて適宜選択されればよい。
 生体情報処理装置25は、共通計測項目に関連する施設計測項目の施設計測値の補正値を出力する。例えば、生体情報処理装置25は、補正値によって補正された施設計測項目の施設計測値の補正値を出力する。例えば、生体情報処理装置25は、施設計測データが計測された施設で閲覧可能な端末装置に補正値を出力する。例えば、端末装置に出力された補正値は、その端末装置の画面に表示される。例えば、端末装置の画面に表示された補正値を確認した人物は、施設計測データと日常計測データの相違を認識できる。例えば、生体情報処理装置25は、表示装置(図示しない)や外部システムに、施設計測項目の補正値を出力するように構成されてもよい。
 〔生体情報処理装置〕
 次に、情報処理システム20が備える生体情報処理装置25の詳細について図面を参照しながら説明する。図18は、生体情報処理装置25の構成の一例を示すブロック図である。生体情報処理装置25は、計測部251、抽出部252、記憶部253、補正部255、および出力部257を有する。補正部255は、第1補正部261と第2補正部262を有する。
 計測部251は、ユーザの履いている履物に設置された計測装置21からセンサデータを取得する。計測部251は、第1の実施形態の計測部151と同様の構成である。計測部251は、取得したセンサデータを用いて、日常計測データを計測する。例えば、計測部251は、ストライド長、歩行速度、最大背屈角度、最大底屈角度、足上げ高さ、分回し量、および足角などの日常計測データを計測する。
 抽出部252は、計測部251によって計測された日常計測データから、施設計測データとの共通計測項目の日常計測値を抽出する。例えば、抽出部252は、計測部251によって継続的に計測された日常計測データから、施設計測データとの共通計測項目の日常計測値の代表値を抽出する。例えば、抽出部252は、ストライド長と歩行速度を共通計測項目として抽出する。
 記憶部253は、共通計測項目を記憶する。また、記憶部253は、共通計測項目に関連する施設計測項目の施設計測値を記憶する。例えば、記憶部253は、ストライド長と歩行速度の施設計測値を記憶する。例えば、記憶部253は、ストライド長と歩行速度に関連する施設計測項目である膝関節負荷および歩行安定性の施設計測値を記憶する。
 図19は、記憶部253に記憶される施設計測値の一例である。図19の例では、ストライド長の施設計測値147cm、歩行速度の施設計測値4.8m/s、膝関節負荷の施設計測値61Nm(ニュートンメートル)、歩行安定性の施設計測値-0.5が記憶部153に記憶される。膝関節負荷および歩行安定性は、ストライド長および歩行速度の日常計測値を計測する計測装置21とは異なる計測方法で計測される。例えば、膝関節負荷は、モーションキャプチャと床反力計を用いて計測される。例えば、歩行安定性は、トレッドミル上における外乱刺激に対する応答として観測される。記憶部253に記憶された施設計測値は、任意のタイミングで更新可能である。例えば、記憶部253に記憶された施設計測値は、ネットワーク(図示しない)を介して、スポーツジムや病院などの施設から送信されたデータに応じて更新される。記憶部253に記憶された施設計測値の更新方法については、特に限定を加えない。
 第1補正部261は、共通計測項目の日常計測値と施設計測値の補正値を計算する。第1補正部261は、第1の実施形態の補正部155と同様の構成である。例えば、第1補正部261は、ストライド長および歩行速度の補正値を計算する。例えば、第1補正部261は、共通計測項目の日常計測値と施設計測値の差分を補正値として算出する。例えば、第1補正部261は、共通計測項目の日常計測値の分布の代表値と施設計測値との偏差を補正値として算出する。例えば、第1補正部261は、共通計測項目の日常計測値の分布の代表値として、その分布を構成する複数の日常計測値の相加平均や相乗平均、調和平均などの平均値を代表値として用いる。例えば、第1補正部261は、共通計測項目の日常計測値の分布の代表値として、その分布を構成する複数の日常計測値の最頻値や中央値を代表値として用いる。
 第2補正部262は、第1補正部261によって算出された共通計測項目の補正値を用いて、その共通計測項目に関連する施設計測項目の施設計測値を補正する。例えば、第2補正部262は、ストライド長の補正値を用いて、ストライド長に関連する膝関節負荷に関する補正量を計算する。例えば、第2補正部262は、ストライド長および歩行速度の補正値を用いて、ストライド長および歩行速度に関連する歩行安定性に関する補正量を計算する。第2補正部262は、算出された補正量を用いて、膝関節負荷および歩行安定性の補正値を計算する。
 例えば、第2補正部262は、非特許文献1の手法を用いて、膝関節負荷の補正量を計算する(非特許文献1:Lara Allet, et al., “The influence of stride-length on plantar foot-pressures and joint moments”, Gait & Posture 34, (2011), pp.300-306.)。非特許文献1によると、ストライド長が20%(パーセント)増加すると、膝関節負荷が18%増加する。ここで、ストライド長に関して、日常計測値が147cmであり、施設計測値が140cmの場合を想定する。この場合、膝関節負荷の補正量CKJLは、下記の式1を用いて算出される。
Figure JPOXMLDOC01-appb-I000001
すなわち、記憶部253に記憶された補正前の膝関節負荷が61Nmの場合、補正後の膝関節負荷は、上記の式1を用いて算出された補正量CKJL(-4.8%)だけ低減された値(58Nm)になる。
 例えば、第2補正部262は、非特許文献2の手法を用いて、歩行安定性の補正量を計算する(非特許文献2: D. D. Espy, et al., “Independent Influence of Gait Speed and Step Length on Stability and Fall Risk”, Gait Posture, 2010 Jul, 32(3), 378-82.)。非特許文献2によると、正規化歩行速度が1増加すると、歩行安定性が0.229向上する。正規化歩行速度とは、身長に9.8を掛けた値の平方根で歩行速度を割った値である。また、非特許文献2によると、正規化歩幅が1増加すると、歩行安定性が0.901悪化する。正規化歩幅とは、歩幅(ストライド長の2分の1)を身長で割った値である。ここで、身長が1.84mの被検者のストライド長および歩行速度に関して、日常計測値が147cmおよび4.5m/s、施設計測値が140cmおよび4.8m/sの場合を想定する。この場合、歩行安定性の補正量CWSは、下記の式2を用いて算出される。
Figure JPOXMLDOC01-appb-I000002
すなわち、記憶部253に記憶された補正前の歩行安定性が-0.5の場合、補正後の歩行安定性は、上記の式2を用いて算出された補正量CWS(0.155)だけ改善された値(-0.345)になる。
 図20は、第1補正部261および第2補正部262による補正の前後における施設計測項目の値をまとめた表である。図20の表には、補正前の膝関節負荷および歩行安定性の施設計測値の行と、補正後の膝関節負荷および歩行安定性の補正値の行とを上下に並べて表記する。例えば、図20のデータの取得元のユーザに対して運動指導するトレーナーは、補正後の膝関節負荷および歩行安定性を参照することによって、補正前のデータに基づいて作成したトレーニングメニューを見直すことができる。ストライド長や歩行速度と比べると、膝関節負荷や歩行安定性は、運動機能を図る指標として明確である。そのため、膝関節負荷や歩行安定性に基づけば、より精度の高いトレーニングメニューを作成できる。
 出力部257は、共通計測項目および施設計測項目の補正値を出力する。例えば、出力部257は、補正値によって補正された共通計測項目および施設計測項目の値を出力する。例えば、出力部257は、補正値によって補正された共通計測項目および施設計測項目の値を、ユーザの携帯する携帯端末の画面に表示させる。例えば、出力部257は、施設計測値が計測された施設で閲覧可能な端末装置に補正値を出力する。例えば、端末装置に出力された補正値は、その端末装置の画面に表示される。例えば、端末装置の画面に表示された補正値を確認した人物は、日常計測値が反映された施設計測項目の補正値を認識できる。例えば、出力部257は、表示装置(図示しない)や外部システムに、共通計測項目の補正値を出力するように構成されてもよい。
 (動作)
 次に、本実施形態の情報処理システム20の動作の一例について図面を参照しながら説明する。ここでは、情報処理システム20の生体情報処理装置25の動作の一例について、フローチャートを参照しながら説明する。図21は、生体情報処理装置25の動作の一例について説明するためのフローチャートである。図21のフローチャートに沿った説明においては、生体情報処理装置25を動作主体として説明する。
 図21において、まず、生体情報処理装置25は、足の動きに関するセンサデータを計測装置21から取得する(ステップS21)。
 次に、生体情報処理装置25は、取得されたセンサデータを用いて、日常計測データを計測する(ステップS22)。
 次に、生体情報処理装置25は、計測された日常計測データから共通計測項目の日常計測値を抽出する(ステップS23)。
 次に、生体情報処理装置25は、抽出された共通計測項目の日常計測値に基づいて、共通計測項目の施設計測値の補正値を計算する(ステップS24)。
 次に、生体情報処理装置25は、算出された共通計測項目の施設計測値の補正値に基づいて、共通関連項目に関連する施設計測項目の施設計測値の補正値を計算する(ステップS25)。
 次に、生体情報処理装置25は、算出された施設計測項目の施設計測値の補正値を出力する(ステップS26)。生体情報処理装置25から出力された施設計測項目の施設計測値の補正値は、用途に応じて使用される。
 (適用例)
 次に、本実施形態の適用例について図面を参照しながら説明する。以下の適用例においては、ユーザが履く靴に設置された計測装置21によって計測されたセンサデータを、そのユーザの携帯端末にインストールされたアプリケーション(アプリとも呼ぶ)で処理する例について説明する。以下の適用例においては、第2の実施形態の生体情報処理装置25の機能を発揮するアプリが携帯端末にインストールされているものとする。
 〔適用例1〕
 図22は、適用例1について説明するための概念図である。本適用例では、計測装置21が設置された靴200を履いたユーザの歩行に応じて、そのユーザが携帯する携帯端末260にセンサデータが送信される。携帯端末260にインストールされたアプリ(生体情報処理装置25)は、受信したセンサデータに基づいて、施設計測データとの共通計測項目に関連する施設計測項目の施設計測値を補正する補正値を出力する。アプリから出力された補正値は、ユーザの携帯端末260から、そのユーザの運動を管理するトレーナーの携帯端末270に送信される。
 トレーナーの携帯端末270に送信された補正値に関する情報は、その携帯端末270の画面に表示される。例えば、トレーナーが携帯端末270の画面に表示されたボタンに触れると、補正された施設計測データに関する情報が、携帯端末270の画面に表示される。図22の例では、「ストライド長の日常計測値は140cmです。日常歩行における膝関節負荷は58Nmです。」という情報が表示される。例えば、携帯端末270の画面に表示された情報を見たトレーナーは、その情報に応じたトレーニングメニューを作成することができる。
 施設計測値は、運動機能を評価する専門的な機器を用いて計測された計測値に限定されない。例えば、施設計測値は、スポーツジムのトレーナーや、理学療法士等の専門家による目視によって生成されるものであってもよい。例えば、トレーナーによって作成されるトレーニングメニューに、生体情報処理装置25によって算出された補正値を反映させるようにしてもよい。例えば、施設においてトレーナーが目視で判定したユーザの運動機能の指標値に関連する日常計測データが共通計測項目として計測可能である場合、その共通計測項目に基づいて、指標値を補正するようにしてもよい。例えば、共通計測項目に基づいて補正された指標値を、トレーナーの携帯する携帯端末270の画面に表示させる。例えば、携帯端末270の画面に表示された情報を見たトレーナーは、その指標値に応じたトレーニングメニューを作成することができる。例えば、トレーニングメニューは、トレーニングジムやトレーナーに特有のメソッドに基づいてカスタマイズされてもよい。
 図23は、図22の例で作成されたトレーニングメニューを、ユーザの携帯する携帯端末260の画面に表示させる例である。例えば、携帯端末270の画面に表示された情報を見たトレーナーによって作成されたトレーニングメニューは、そのトレーナーのコメントと合わせて、管理対象のユーザの携帯端末260に送信される。ユーザの携帯端末260に送信されたトレーニングメニューに関する情報は、その携帯端末260の画面に表示される。例えば、携帯端末260の画面に表示された情報を見たユーザは、そのトレーニングメニューやコメントに応じた運動を行うことができる。
 本適用例では、施設計測値に基づいて作成されたユーザ専用のトレーニングメニューを、そのユーザの日常計測データに基づいて補正する。そのため、本適用例によれば、ユーザの本来の運動機能が反映されたトレーニングメニューを作成できる。
 〔適用例2〕
 図24は、適用例2について説明するための概念図である。本適用例では、計測装置21が設置された靴200を履いたユーザの歩行に応じて、そのユーザが携帯する携帯端末260にセンサデータが送信される。携帯端末260にインストールされたアプリ(生体情報処理装置25)は、受信したセンサデータに基づいて、施設計測データとの共通計測項目に関連する施設計測項目の施設計測値を補正する補正値を算出する。
 例えば、アプリは、算出された補正値に基づいて、施設計測値との相違の度合を検証する。例えば、日常計測値に基づいて補正された施設計測値の補正値が、元の施設計測値を過剰に上回っている場合、アプリは、歩数を減らすことを薦める推薦情報を生成する。例えば、日常計測値に基づいて補正された施設計測値の補正値が、元の施設計測値を過剰に下回っている場合、アプリは、歩数を増やすことを薦める推薦情報を生成する。例えば、日常計測値に基づいて補正された施設計測値の補正値が、元の施設計測値に近い場合、アプリは、その時点における歩数を維持することを薦める推薦情報を生成する。例えば、アプリは、算出された補正値に応じた推薦情報を携帯端末260の画面に表示させる。図24の例では、施設計測値の補正値が元の施設計測値を過剰に上回っていたことに応じて、「膝に負担がかかっています。明日は歩数を減らしましょう。」という推薦情報が、携帯端末260の画面に表示される。例えば、携帯端末260の画面に表示された情報を見たユーザは、その情報に応じて、日々の歩行を見直すことができる。
 例えば、アプリは、算出された補正値に基づいて、所定の期間(1時間、1日など)における膝関節負荷の積算値と、所定の閾値を比較して、利用者の膝関節負荷に応じたアドバイスを携帯端末260に通知する。例えば、日常計測値に基づいて補正された膝関節負荷の施設計測値の補正値の、前記所定の期間における積算値が、所定の閾値を上回っている場合、アプリは、歩数を減らすことを薦める推薦情報を生成する。この場合の所定の閾値とは、膝関節を傷めないための膝関節負荷の制限値である。また、例えば、日常計測値に基づいて補正された膝関節負荷の施設計測値の補正値の、所定の期間における積算値が、所定の閾値に近い場合、アプリは、歩数を維持することを薦める推薦情報を生成する。この場合の所定の閾値とは、健康を維持するのに必要十分な膝関節負荷の適正値である。例えば、アプリは、算出された補正値に応じた推薦情報を携帯端末260の画面に表示させる。図24の例では、日常計測値に基づいて補正された膝関節負荷の施設計測値の補正値の、所定の期間における積算値が、所定の閾値を上回っていたことに応じて、「膝に負担がかかっています。明日は歩数を減らしましょう。」という推薦情報が、携帯端末260の画面に表示される。例えば、携帯端末260の画面に表示された情報を見たユーザは、その情報に応じて、日々の歩行を見直すことができる。
 本適用例では、施設計測値の補正値と元の施設計測値との関係や、所定の期間における日常計測値に基づいて補正された施設計測値の補正値の積算値と所定の閾値の関係に応じた推薦情報を、ユーザの携帯する携帯端末260の画面に表示する。そのため、本適用例によれば、ユーザの本来の運動機能が反映された推薦情報を、そのユーザに提供できる。例えば、膝の痛みが気になるが、健康のための歩行を継続することが望ましい高齢者にとっては、日常において適度な歩数で歩行をすることが望ましい。本適用例によれば、ユーザの膝関節負荷の実情に応じて、歩数が多すぎる場合には歩数を減らすことを薦め、歩数が少なすぎる場合には歩数を増やすことを薦めることによって、ユーザは適切な歩行を継続できる。
 以上のように、本実施形態の情報処理システムは、計測装置と生体情報処理装置を備える。計測装置は、ユーザの履物に配置される。計測装置は、ユーザの歩行に応じて空間加速度および空間角速度を計測する。計測装置は、計測された空間加速度および空間角速度に基づくセンサデータを生成する。計測装置は、生成されたセンサデータを生体情報処理装置に出力する。生体情報処理装置は、計測部、抽出部、記憶部、補正部、および出力部を有する。計測部は、ユーザの足の動きに関するセンサデータを計測装置から受信する。計測部は、受信したセンサデータを用いて日常計測データを計測する。抽出部は、計測部によって計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出する。記憶部は、共通計測項目の施設計測値と、共通計測項目に関連する施設計測項目の施設計測値とを記憶する。補正部は、第1補正部と第2補正部を含む。
第1補正部は、抽出部によって抽出された共通計測項目の日常計測値に基づいて、共通計測項目の施設計測値を補正する。第2補正部は、第1補正部によって補正された共通計測項目の施設計測値に基づいて、共通計測項目に関連する施設計測項目の施設計測値を補正する。出力部は、第2補正部によって補正された施設計測項目の施設計測値を出力する。
 本実施形態の情報処理システムは、共通計測項目の日常計測値に基づいて、その共通計測項目に関連する施設計測項目の施設計測値を補正する。そのため、本実施形態によれば、施設や日常生活などのように異なる環境において計測された計測項目に関連する計測項目の計測値(生体データ)の相違を補正できる。
 本実施形態の一態様において、抽出部は、共通計測項目としてストライド長の日常計測値を抽出する。補正部は、抽出部によって抽出されたストライド長の日常計測値に基づいて、ストライド長に関連する施設計測項目である膝関節負荷の施設計測値を補正する。本態様によれば、日常で計測されたストライド長に基づいて、日常とは異なる環境(施設)で計測された膝関節負荷の施設計測値を補正できる。
 本実施形態の一態様において、抽出部は、共通計測項目としてストライド長および歩行速度の日常計測値を抽出する。補正部は、抽出部によって抽出されたストライド長および歩行速度の日常計測値に基づいて、ストライド長および歩行速度に関連する施設計測項目である歩行安定性の施設計測値を補正する。本態様によれば、日常で計測されたストライド長および歩行速度に基づいて、日常とは異なる環境(施設)で計測された歩行安定性の施設計測値を補正できる。
 本実施形態の一態様において、出力部は、施設計測値の補正値を、ユーザの運動を管理するトレーナーによって閲覧可能な端末装置に出力する。出力部は、施設計測値の補正値に応じてトレーナーによって作成されたトレーニングメニューを取得する。例えば、出力部は、図示しない入力部を介して、トレーニングメニューを取得する。出力部は、取得されたトレーニングメニューを、ユーザによって閲覧可能な端末装置の画面に表示させる。本態様によれば、日常計測値が反映された施設計測値に基づいて、トレーナーによって更新されたトレーニングメニューをユーザに提供できる。
 本実施形態の一態様において、出力部は、施設計測値の補正値に応じた推薦情報を、ユーザによって閲覧可能な端末装置の画面に表示させる。本態様によれば、日常の運動状況を反映させた推薦情報をユーザに提供できる。
 (第3の実施形態)
 次に、第3の実施形態に係る生体情報処理装置について図面を参照しながら説明する。本実施形態の生体情報処理装置は、第1~第2の実施形態の生体情報処理装置を簡略化した構成である。図25は、本実施形態の生体情報処理装置35の構成の一例を示すブロック図である。生体情報処理装置35は、抽出部352と補正部355を備える。
 抽出部352は、ユーザの足の動きに関するセンサデータを用いて計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出する。補正部355は、抽出部352によって抽出された共通計測項目の日常計測値に基づいて、予め記憶された共通計測項目の施設計測値を補正する。
 本実施形態の生体情報処理装置は、共通計測項目の日常計測値に基づいて、その共通計測項目の施設計測値を補正する。そのため、本実施形態によれば、施設や日常生活などのように異なる環境において計測された、運動機能を評価するための計測値(生体データ)の相違を補正できる。
 (ハードウェア)
 ここで、本開示の各実施形態に係る制御や処理を実行するハードウェア構成について、図26の情報処理装置90を一例として挙げて説明する。なお、図26の情報処理装置90は、各実施形態の制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。
 図26のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図26においては、インターフェースをI/F(Interface)と略記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して、互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93、および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。
 プロセッサ91は、補助記憶装置93等に格納されたプログラムを、主記憶装置92に展開する。プロセッサ91は、主記憶装置92に展開されたプログラムを実行する。本実施形態においては、情報処理装置90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、本実施形態に係る制御や処理を実行する。
 主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92には、プロセッサ91によって、補助記憶装置93等に格納されたプログラムが展開される。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリによって実現される。また、主記憶装置92として、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリが構成/追加されてもよい。
 補助記憶装置93は、プログラムなどの種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって実現される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。
 入出力インターフェース95は、規格や仕様に基づいて、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。
 情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器が接続されてもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成としてもよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。
 また、情報処理装置90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
 また、情報処理装置90には、ドライブ装置が備え付けられてもよい。ドライブ装置は、プロセッサ91と記録媒体(プログラム記録媒体)との間で、記録媒体からのデータやプログラムの読み込み、情報処理装置90の処理結果の記録媒体への書き込みなどを仲介する。ドライブ装置は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
 以上が、本発明の各実施形態に係る制御や処理を可能とするためのハードウェア構成の一例である。なお、図26のハードウェア構成は、各実施形態に係る制御や処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、各実施形態に係る制御や処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。さらに、各実施形態に係るプログラムを記録したプログラム記録媒体も本発明の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体によって実現されてもよい。また、記録媒体は、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現されてもよい。プロセッサが実行するプログラムが記録媒体に記録されている場合、その記録媒体はプログラム記録媒体に相当する。
 各実施形態の構成要素は、任意に組み合わせてもよい。また、各実施形態の構成要素は、ソフトウェアによって実現されてもよいし、回路によって実現されてもよい。例えば、各実施形態の計測装置は、マイクロコンピュータやマイクロコントローラなどによって実現される。例えば、各実施形態の生体情報処理装置は、クラウドやサーバに含まれるコンピュータの機能によって実現される。各実施形態の生体情報処理装置は、スマートフォンやタブレット、ノート型や設置型のパーソナルコンピュータなどにインストールされたソフトウェアによって実現されてもよい。
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 10、20  情報処理システム
 11、21  計測装置
 15、25、35  生体情報処理装置
 111  加速度センサ
 112  角速度センサ
 113  制御部
 115  送信部
 151、251  計測部
 152、252、352  抽出部
 153、253  記憶部
 155、255、355  補正部
 157、257  出力部
 261  第1補正部
 262  第2補正部

Claims (10)

  1.  ユーザの足の動きに関するセンサデータを用いて計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出する抽出手段と、
     抽出された前記共通計測項目の日常計測値に基づいて、予め記憶された前記共通計測項目の施設計測値を補正する補正手段と、を備える生体情報処理装置。
  2.  前記補正手段は、
     前記共通計測項目の日常計測値の分布の代表値と、前記共通計測項目の施設計測値との偏差を計算し、
     算出された前記偏差を用いて、前記共通計測項目の施設計測値を補正する請求項1に記載の生体情報処理装置。
  3.  前記補正手段は、
     前記共通計測項目の日常計測値に基づいて、前記共通計測項目の施設計測値を補正し、
     補正された前記共通計測項目の施設計測値に基づいて、前記共通計測項目に関連する施設計測項目の施設計測値を補正する請求項1または2に記載の生体情報処理装置。
  4.  前記抽出手段は、
     前記共通計測項目としてストライド長の日常計測値を抽出し、
     前記補正手段は、
     抽出された前記ストライド長の日常計測値に基づいて、前記ストライド長に関連する施設計測項目である膝関節負荷の施設計測値を補正する請求項3に記載の生体情報処理装置。
  5.  前記抽出手段は、
     前記共通計測項目としてストライド長および歩行速度の日常計測値を抽出し、
     前記補正手段は、
     抽出された前記ストライド長および前記歩行速度の日常計測値に基づいて、前記ストライド長および前記歩行速度に関連する施設計測項目である歩行安定性の施設計測値を補正する請求項3に記載の生体情報処理装置。
  6.  前記補正手段によって補正された施設計測値の補正値を出力する出力手段を備え、
     前記出力手段は、
     前記施設計測値の補正値を、前記ユーザの運動を管理するトレーナーによって閲覧可能な端末装置に出力し、
     前記施設計測値の補正値に応じて前記トレーナーによって作成されたトレーニングメニューを取得し、
     取得された前記トレーニングメニューを、前記ユーザによって閲覧可能な端末装置の画面に表示させる請求項1乃至5のいずれか一項に記載の生体情報処理装置。
  7.  前記補正手段によって補正された施設計測値の補正値を出力する出力手段を備え、
     前記出力手段は、
     前記施設計測値の補正値に応じた推薦情報を、前記ユーザによって閲覧可能な端末装置の画面に表示させる請求項1乃至5のいずれか一項に記載の生体情報処理装置。
  8.  請求項1乃至7のいずれか一項に記載の生体情報処理装置と、
     ユーザの履物に配置され、前記ユーザの歩行に応じて空間加速度および空間角速度を計測し、計測された前記空間加速度および前記空間角速度に基づくセンサデータを生成し、生成された前記センサデータを前記生体情報処理装置に出力する計測装置と、を備える情報処理システム。
  9.  コンピュータが、
     ユーザの足の動きに関するセンサデータを用いて計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出し、
     抽出された前記共通計測項目の日常計測値に基づいて、予め記憶された前記共通計測項目の施設計測値を補正する生体情報処理方法。
  10.  ユーザの足の動きに関するセンサデータを用いて計測される日常計測データから、施設で計測された施設計測データと共通する共通計測項目の日常計測値を抽出る処理と、
     抽出された前記共通計測項目の日常計測値に基づいて、予め記憶された前記共通計測項目の施設計測値を補正する処理と、をコンピュータに実行させるプログラムが記録された非一過性の記録媒体。
PCT/JP2021/014124 2021-04-01 2021-04-01 生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体 WO2022208838A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023510109A JPWO2022208838A5 (ja) 2021-04-01 生体情報処理装置、情報処理システム、生体情報処理方法、およびプログラム
US18/284,324 US20240161921A1 (en) 2021-04-01 2021-04-01 Biometric information processing device, information processing system, biometric information processing method, and recording medium
PCT/JP2021/014124 WO2022208838A1 (ja) 2021-04-01 2021-04-01 生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014124 WO2022208838A1 (ja) 2021-04-01 2021-04-01 生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体

Publications (1)

Publication Number Publication Date
WO2022208838A1 true WO2022208838A1 (ja) 2022-10-06

Family

ID=83457024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014124 WO2022208838A1 (ja) 2021-04-01 2021-04-01 生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体

Country Status (2)

Country Link
US (1) US20240161921A1 (ja)
WO (1) WO2022208838A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178908A (ja) * 2009-02-05 2010-08-19 Omron Healthcare Co Ltd 管理装置、管理システム、および管理方法
JP2014180361A (ja) * 2013-03-19 2014-09-29 Yuwa:Kk 生体データ管理システム
JP2018143412A (ja) * 2017-03-03 2018-09-20 株式会社ノーニューフォークスタジオ 歩行教示システム、歩行教示方法
WO2019008689A1 (ja) * 2017-07-04 2019-01-10 富士通株式会社 情報処理装置、情報処理システム、および情報処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178908A (ja) * 2009-02-05 2010-08-19 Omron Healthcare Co Ltd 管理装置、管理システム、および管理方法
JP2014180361A (ja) * 2013-03-19 2014-09-29 Yuwa:Kk 生体データ管理システム
JP2018143412A (ja) * 2017-03-03 2018-09-20 株式会社ノーニューフォークスタジオ 歩行教示システム、歩行教示方法
WO2019008689A1 (ja) * 2017-07-04 2019-01-10 富士通株式会社 情報処理装置、情報処理システム、および情報処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALLET, LARA ET AL.: "The influence of stride-length on plantar foot-pressures and joint moments", GIAT & POSTURE, vol. 34, 2011, pages 300 - 306, XP028285432, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S0966636211001688> DOI: 10.1016/j.gaitpost.2011.05.013 *
ESPY, D. D. ET AL.: "Independent influence of gait speed and step length on stability and fall risk", GAIT & POSTURE, vol. 32, no. 3, 2010, pages 378 - 382, XP027298253, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/abs/pii/S0966636210001712> *

Also Published As

Publication number Publication date
JPWO2022208838A1 (ja) 2022-10-06
US20240161921A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2021140658A1 (ja) 異常検出装置、判定システム、異常検出方法、およびプログラム記録媒体
WO2022208838A1 (ja) 生体情報処理装置、情報処理システム、生体情報処理方法、および記録媒体
WO2023127007A1 (ja) 筋力指標推定装置、筋力指標推定システム、筋力指標推定方法、および記録媒体
WO2022070416A1 (ja) 推定装置、推定方法、およびプログラム記録媒体
WO2023127013A1 (ja) 静的バランス推定装置、静的バランス推定システム、静的バランス推定方法、および記録媒体
US20240138713A1 (en) Harmonic index estimation device, estimation system, harmonic index estimation method, and recording medium
WO2023127008A1 (ja) 動的バランス推定装置、動的バランス推定システム、動的バランス推定方法、および記録媒体
US20240138757A1 (en) Pelvic inclination estimation device, estimation system, pelvic inclination estimation method, and recording medium
WO2023127010A1 (ja) 移動能力推定装置、移動能力推定システム、移動能力推定方法、および記録媒体
WO2022038664A1 (ja) 計算装置、歩容計測システム、計算方法、およびプログラム記録媒体
WO2023127009A1 (ja) 下肢筋力推定装置、下肢筋力推定システム、下肢筋力推定方法、および記録媒体
WO2022201338A1 (ja) 特徴量生成装置、歩容計測システム、特徴量生成方法、および記録媒体
WO2023127015A1 (ja) 筋力評価装置、筋力評価システム、筋力評価方法、および記録媒体
US20240138710A1 (en) Waist swinging estimation device, estimation system, waist swinging estimation method, and recording medium
WO2023127014A1 (ja) 易転倒性推定装置、易転倒性推定システム、易転倒性推定方法、および記録媒体
JP7509229B2 (ja) 検出装置、検出システム、検出方法、およびプログラム
WO2023157161A1 (ja) 検出装置、検出システム、歩容計測システム、検出方法、および記録媒体
WO2023170948A1 (ja) 歩容計測装置、計測装置、歩容計測システム、歩容計測方法、および記録媒体
US20240122531A1 (en) Index value estimation device, estimation system, index value estimation method, and recording medium
WO2022038663A1 (ja) 検出装置、検出システム、検出方法、およびプログラム記録媒体
WO2022219905A1 (ja) 計測装置、計測システム、計測方法、および記録媒体
WO2022101971A1 (ja) 検出装置、検出システム、検出方法、およびプログラム記録媒体
WO2022244222A1 (ja) 推定装置、推定システム、推定方法、および記録媒体
WO2023047558A1 (ja) 推定装置、情報提示システム、推定方法、および記録媒体
JP2023174049A (ja) フレイル推定装置、推定システム、フレイル推定方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284324

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023510109

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935000

Country of ref document: EP

Kind code of ref document: A1