WO2023126595A1 - Solide dessicant résistant aux hydroxydes alcalins - Google Patents

Solide dessicant résistant aux hydroxydes alcalins Download PDF

Info

Publication number
WO2023126595A1
WO2023126595A1 PCT/FR2022/052419 FR2022052419W WO2023126595A1 WO 2023126595 A1 WO2023126595 A1 WO 2023126595A1 FR 2022052419 W FR2022052419 W FR 2022052419W WO 2023126595 A1 WO2023126595 A1 WO 2023126595A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
kaolin
mixtures
desiccant
solid
Prior art date
Application number
PCT/FR2022/052419
Other languages
English (en)
Inventor
Ugo RAVON
Cécile LUTZ
Isabelle GLAUDEIX
Sylvie Szendrovics
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to AU2022425599A priority Critical patent/AU2022425599A1/en
Priority to CA3240689A priority patent/CA3240689A1/fr
Publication of WO2023126595A1 publication Critical patent/WO2023126595A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/11Clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water

Definitions

  • the present invention relates to the field of the production of dihydrogen and in particular the production of dry dihydrogen, and more specifically the production of dihydrogen dried on a molecular sieve.
  • electrolytes can thus be used, and reference will be made here in particular to basic electrolytes, in particular electrolytes based on alkali metal hydroxide, and most particularly sodium hydroxide and potassium hydroxide.
  • One of the most effective electrolytes is constituted by aqueous solutions of potassium hydroxide, also called potash, or KOH.
  • dihydrogen is obtained on the cathode by the reduction of two protons.
  • the hydrogen gas thus recovered is wet, i.e. it contains more or less significant traces of water.
  • the wet dihydrogen recovered optionally, but most often, contains traces of alkali metal hydroxide, and for example traces of potassium.
  • wet gases are usually dried by different techniques, for example by membrane permeation, by washes gases by formulations based on organic compounds, for example based on glycol.
  • desiccant solids such as activated aluminas, silica gels or molecular sieves for drying organic liquids or gases, as described for example in patent EP1597197 B1, where 3A zeolite agglomerates allow the drying of esters and alcohols.
  • wet hydrogen is most often dried using solid desiccants.
  • Zeolitic agglomerates also known as molecular sieves, are among the most effective desiccants and make it possible to achieve very low water residuals of around one part per million.
  • zeolites which are alumino-silicates of controlled crystallinity.
  • the zeolite crystals which are in the form of very fine powder, must be shaped to be easier to handle, and for example in the form of balls or threads.
  • agglomeration binders are most often clay-type binders, and are now well known and commonly used to control the final shape of zeolite agglomerates.
  • clay-based agglomeration binders are most of the time very sensitive to the action of inorganic bases, such as sodium hydroxide or potassium hydroxide, and others.
  • This fragility leads to molecular sieves which run the risk of not being sufficiently stable under the conditions for drying gases originating from electrolysis using basic electrolytes, in particular electrolytes based on alkali metal hydroxide, and most particularly electrolytes based on sodium hydroxide and potassium hydroxide.
  • the technical problem that the present invention proposes to solve is therefore the supply of a solid desiccant intended for the drying of moist gases produced by basic electrolysis and which is resistant to traces of alkali metal hydroxides present in said moist gases.
  • Another object of the present invention is to provide solid desiccants resistant to traces of potassium hydroxide present in humid gases.
  • the present invention relates to the use for drying wet gas comprising traces of alkali metal hydroxide, of a desiccant solid comprising at least one kaolin compound.
  • the wet gas which can be dried using the aforementioned desiccant solid can be of any type well known to those skilled in the art, and for example and without limitation the gas is chosen from industrial gases such as nitrogen, oxygen, hydrogen, rare gases, carbon dioxide, and mixtures thereof, and in particular hydrogen, optionally mixed with one or more of the other gases listed above, and most particularly hydrogen obtained by electrolysis in a basic medium.
  • industrial gases such as nitrogen, oxygen, hydrogen, rare gases, carbon dioxide, and mixtures thereof, and in particular hydrogen, optionally mixed with one or more of the other gases listed above, and most particularly hydrogen obtained by electrolysis in a basic medium.
  • the moisture content of the gas to be dried in the context of the use of the present invention can vary in large proportions, in particular depending on the nature of the gas to be dried (wet gas) and the nature of the solid desiccant used. As a general rule, the humidity level is between 5 ppm by volume and 2% by volume. By moisture content is meant the volumetric quantity of water contained in the gas to be dried.
  • traces of alkaline hydroxide such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and mixtures thereof, more particularly sodium hydroxide , potassium hydroxide, and mixtures thereof, more specifically traces of potassium hydroxide.
  • traces is meant more precisely contents comprised between 1 ppm and 1000 ppm, preferably between 1 ppm and 500 ppm, by volume.
  • the solid desiccant which is the subject of the use according to the present invention can be of any type well known to those skilled in the art and by way of non-limiting examples can be chosen from activated aluminas, gels silica, molecular sieves, and others, as well as mixtures thereof in all proportions. Particularly preferred are molecular sieves, and among these zeolite agglomerates, and more specifically zeolite agglomerates comprising crystals of zeolite(s) and at least one kaolin compound.
  • the kaolin compound is a kaolin binder which binds together the zeolite crystals (s) in order to confer cohesion to said zeolite agglomerate.
  • zeolitic agglomerates with a kaolin binder are very well known to those skilled in the art, and are commercially available or can be prepared according to known procedures and available in the scientific literature and the patent literature or even on the Internet.
  • the solid desiccant is a zeolite agglomerate comprising from 70% to 99.99%, preferably from 70% to 99.9%, more preferably from 80% to 99, 9% by weight, limits included, of crystals of at least one zeolite chosen from LTA-type zeolites, FAll-type zeolites, SOD-type zeolites, P-type zeolites, and mixtures thereof, and preferably from 3A, 4A, 5A, 13X zeolites, and mixtures thereof, more preferably from 3A and 4A zeolites, and mixtures thereof.
  • the zeolite agglomerate which can be used in the context of the present invention may also comprise crystals of one or more zeolites, other than those already listed above.
  • zeolite agglomerates whose zeolite crystals are perfectly suitable for drying gases, for example 3A, 4A, 5A, 13X zeolites, and mixtures thereof, more preferably 3A and 4A zeolites, and mixtures thereof.
  • the kaolin compound is advantageously a kaolin binder.
  • kaolin binder is meant a kaolin clay or a precursor of kaolin clay and more particularly a clay chosen from kaolins, kaolinites, nacrites, dickites, halloysites and metakaolins, and mixtures thereof.
  • the zeolitic agglomerate which can be used in the context of the present invention may also comprise one or more other binders, but also one or more inert fillers, with the aim of further reinforcing the cohesion of the solid desiccant, of modifying its density, of create porosity.
  • binders for example, of bentonite, without this example being limiting.
  • inert fillers mention may be made, for example, in a non-limiting manner, of sources of silica of any type known to those skilled in the art, specialist in the synthesis of zeolites, such as colloidal silica, diatoms, perlite , the ashes of calcination (“fly ash” in English English), sand, or any other form of solid silica, but also glass fibers, carbon fibers, carbon nanotubes, and others and mixtures thereof.
  • sources of silica of any type known to those skilled in the art specialist in the synthesis of zeolites, such as colloidal silica, diatoms, perlite , the ashes of calcination (“fly ash” in English English), sand, or any other form of solid silica, but also glass fibers, carbon fibers, carbon nanotubes, and others and mixtures thereof.
  • the other binders and/or inert fillers do not represent more than 33% by weight relative to the total weight of the kaolin compounds, the other binders and the fillers.
  • the kaolin compound may also comprise one or more additives, preferably organic, for example lignin, starch, methylcelluloses and their derivatives, surface-active molecules (cationic, anionic, nonionic or amphoteric ), intended to facilitate the preparation of the desiccant solid, in particular the handling of the zeolite(s)/kaolin compound(s) paste by modifying the rheology and/or the tackiness or to confer on the desiccant solid properties satisfactory, in particular of macroporosity. They are introduced during the preparation of the solid desiccant at a rate of 0 to 5%, preferably 0.1% to 2%, by weight relative to the total weight of the adsorbent.
  • additives preferably organic, for example lignin, starch, methylcelluloses and their derivatives, surface-active molecules (cationic, anionic, nonionic or amphoteric ), intended to facilitate the preparation of the desiccant solid, in particular the handling of the zeolite(s)/kaolin
  • methyl celluloses and their derivatives such as carboxymethylcellulose, lignosulphonates, polycarboxylic acids and the acids of carboxylic copolymers, their amino derivatives and their salts, in particular the alkaline salts and ammonium salts.
  • the kaolin compound may be totally or partly, and preferably partly, zeolitized, that is to say that all or part respectively of the compound, or binder, kaolin is transformed into zeolitic material, either before use, or during use, or before and during use.
  • the zeolite can be carried out by any means well known to those skilled in the art and for example as described in EP1697042. Zeolithization can also take place, under certain conditions, during the actual use of gas drying. Without wishing to be bound by theory, it is believed that the presence of traces of alkali hydroxide, possibly in association with temperature rises at least locally in the desiccant solid, can lead to at least partial zeoliteization of the kaolin compound or binder.
  • desiccant solids comprising a zeolitic compound are particularly resistant to the presence of traces of alkali metal hydroxides, in particular traces of potash present in wet dihydrogen to be dried, in particular in dihydrogen obtained by electrolysis.
  • the desiccant solids comprising a kaolin compound resist particularly well and in particular better than the desiccant solids commonly used and known today for the drying of gases.
  • the use of the present invention is particularly suitable for zeolite agglomerates with a kaolin binder and more particularly for zeolite agglomerates based on 3A, 4A, 5A and/or 13X zeolite comprising kaolin as an agglomeration binder which can be totally or at least partially zeolited, and preferably for agglomerates based on 3A and/or 4A zeolite, with kaolin binder, non-zeolited or partially or totally zeolited.
  • the present invention relates to a process for drying wet gas comprising traces of alkali metal hydroxide, comprising at least one step of bringing said wet gas into contact with a solid desiccant comprising at least one kaolin compound such that it has just been defined.
  • the contacting of said moist gas with the solid desiccant can be carried out according to any method well known to those skilled in the art and in particular in an adsorber, which is for example and most often a column containing the solid desiccant.
  • the method of the invention can be implemented according to various techniques and methods and for example according to a method chosen from:
  • pressure-modulated processes for example of the PSA type (Pressure Swing Adsorption or “Pressure Swing Adsorption” in English) or of the VSA type (Vacuum Swing Adsorption or “Vacuum Swing Adsorption”), or of the VPSA (hybrid process of the 2 previous ones), or of the RPSA type (“Rapid Pressure Swing Adsorption” in English), preferably of the PSA type,
  • the wet gas intended to be dried in the process of the present invention may have been subjected to a first drying beforehand, if desired or if desired, and in particular if the water content of the wet gas is too high.
  • This first drying step can be carried out according to any method well known to those skilled in the art and for example by cooling the gas and purging the condensed water or by passage through a membrane.
  • the method of the invention is generally carried out at pressure between atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa and at room or moderate temperature, preferably below the boiling temperature of the water at the considered pressure.
  • the method of the invention is particularly well suited for drying wet dihydrogen obtained by electrolysis with basic electrolyte and in particular electrolyte based on potash.
  • the dihydrogen drying process obtained by basic electrolysis in the presence of potash is particularly effective when the desiccant solid is a zeolite agglomerate as defined previously, and for example a zeolite agglomerate based on 3A, 4A, 5A and/or 13X zeolite comprising kaolin as agglomeration binder, and preferably for a zeolite agglomerate based on 3A and/or 4A zeolite, with a kaolin binder.
  • the desiccant solid as described in the present invention unlike the desiccant solids used today, is much more stable and resistant to basic attacks. This results in less contamination of the gas to be dried by dust or the like and above all a limited increase in the pressure drops in the desiccant systems, in particular the adsorbers, as they operate. Thus the use for the drying of wet gases of a solid desiccant as described above is more effective and has a significant and certain economic advantage.
  • the stabilities of the desiccant solids were evaluated according to the following test. In an Erlenmeyer flask, 5 g of sieve activated beforehand at 550° C. for 2 hours, are suspended in 100 mL of a potassium hydroxide solution at 110 g L' 1 .
  • the solid particles are left in contact with the solution for 1 hour, with manual stirring from time to time.
  • the solutions are then recovered by filtration for the determination of silicon and aluminum.
  • the sieve is then dried at approximately 50°C for 8 hours (without washing with water) then activated in a ventilated oven at 230°C for 3 hours (direct instruction).
  • Sample 1 (comparative) 4A zeolite agglomerate with 20% attapulgite binder weight
  • Sample 2 (invention) 4A zeolite agglomerate with 20% weight of kaolin binder
  • Sample 3 (invention): 4A zeolite agglomerate with 20% weight of zeolite kaolin binder (2% residual binder) with an aqueous solution of 110 g L′ 1 of sodium hydroxide (NaOH) at 95° C. for 2 hours, with an aqueous NaOH solution to zeolite agglomerate mass ratio of 2.1.
  • the water adsorption capacity (H50), expressed in %, is determined by the ratio of the increase in the mass of 1 g of desiccant solid activated after water saturation at the end of a stay 24 hours in a closed enclosure at 23 ⁇ 2°C, the relative humidity of which is equal to 50%, on the mass of reference activated desiccant solid (here 1 g), multiplied by 100.
  • the Mechanical Resistance (RM) measured corresponds to the crushing resistance in grains.
  • the mechanical grain crushing strengths are determined with a "Grain Crushing Strength” device marketed by Vinci Technologies, according to the ASTM D 4179 and D 6175 standards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

La présente invention concerne l'utilisation pour le séchage de gaz humide comprenant des traces d'hydroxyde alcalin, d'un solide dessicant comprenant au moins un composé kaolinique. L'invention concerne également le procédé de séchage de gaz humide comprenant des traces d'hydroxyde alcalin, comprenant au moins une étape de mise en contact dudit gaz humide avec un solide dessicant comprenant au moins un composé kaolinique.

Description

SOLIDE DESSICANT RÉSISTANT AUX HYDROXYDES ALCALINS
[0001] La présente invention concerne le domaine de la production de dihydrogène et notamment la production de dihydrogène sec, et plus spécifiquement la production de dihydrogène séché sur tamis moléculaire.
[0002] La génération de dihydrogène par électrolyse basique est une technologie maintenant bien connue et suffisamment développée pour pouvoir faire l’objet d’implantations d’unités de production importantes. Dans ce procédé d’électrolyse basique, l’eau est transformée en dihydrogène et en dioxygène sous l’action d’un courant électrique. Comme dans tout type d’électrolyse, un électrolyte est souvent nécessaire pour faciliter le transfert ionique dans la solution à électrolyser.
[0003] Différents électrolytes peuvent être ainsi employés, et on retiendra ici tout particulièrement les électrolytes basiques, en particulier les électrolytes à base d’hydroxyde de métaux alcalins, et tout particulièrement l’hydroxyde de sodium et l’hydroxyde de potassium. Un des électrolytes les plus efficaces est constitué par les solutions aqueuses d’hydroxyde de potassium, encore dénommé potasse, ou KOH.
[0004] Dans un procédé d’électrolyse basique, le dihydrogène est obtenu sur la cathode par la réduction de deux protons. Le dihydrogène gazeux ainsi récupéré est humide, c’est- à-dire qu’il contient des traces plus ou moins importantes d’eau. En outre, le dihydrogène humide récupéré contient éventuellement, mais le plus souvent, des traces d’hydroxyde alcalin, et par exemple des traces de potasse.
[0005] Or il s’avère que de telles traces d’hydroxyde alcalin peuvent être nuisibles aux solides de séchage, solides qui figurent parmi les solutions préférées pour le séchage de dihydrogène issu de l’électrolyse. De nombreux domaines d’application requièrent l’utilisation de dihydrogène sec, et en particulier de dihydrogène ayant subi un traitement sur solide de séchage. Il pourrait donc être envisagé d’éliminer toute trace d’hydroxyde alcalin présent dans le dihydrogène à sécher et maintenir une bonne production de dihydrogène sec présentant une pureté la plus grande possible. Avant d’être utilisé, le dihydrogène doit par conséquent être purifié mais la présence de potasse, une base forte, limite grandement la gamme de tamis pouvant être utilisée.
[0006] Il est bien connu de l’homme du métier les différentes techniques classiquement utilisées aujourd’hui pour le séchage des gaz. Ainsi, les gaz humides sont habituellement séchés par différentes techniques, par exemple par perméation membranaire, par lavages des gaz par des formulations à base de composés organiques, par exemple à base de glycol.
[0007] Il est connu par ailleurs d’utiliser des solides dessicants, comme par exemple des alumines activées, des gels de silice ou des tamis moléculaires pour le séchage de liquides organiques ou de gaz, comme décrit par exemple dans le brevet EP1597197 B1 , où des agglomérés de zéolithe 3A permettent le séchage d’esters et d’alcools. Ainsi, le dihydrogène humide est-il aujourd’hui le plus souvent séché au moyen de solides dessicants. Les agglomérés zéolithiques, dits encore tamis moléculaires, sont parmi les agents dessicants les plus efficaces et permettent d’atteindre des résiduels d’eau très faibles de l’ordre de la partie par million.
[0008] Cette extrême capacité à adsorber les molécules d’eau est une des caractéristiques des zéolithes qui sont des alumino-silicates de cristallinité contrôlée. Toutefois et afin de pouvoir être utilisés dans les procédés industriels, les cristaux de zéolithes, qui se présentent sous forme de poudre très fine, doivent être mises en forme pour être plus facilement manipulables, et par exemple sous formes de billes ou de filés.
[0009] Pour mettre en forme ces cristaux zéolithiques, et comme le pouvoir agglomérant de zéolithes est très faible, il est nécessaire d’utiliser des liants, dits liants d’agglomération. Ces liants d’agglomération sont le plus souvent des liants de type argile, et sont aujourd’hui bien connus et couramment utilisés pour contrôler la forme finale des agglomérés zéolithiques.
[0010] Il reste néanmoins que ces liants d’agglomérations à base d’argile sont la plupart du temps très sensibles à l’action des bases inorganiques, telles que l’hydroxyde de sodium ou l’hydroxyde de potassium, et autres. Cette fragilité conduit à des tamis moléculaires qui risquent de ne pas être suffisamment stables dans les conditions de séchage de gaz provenant d’électrolyses mettant en oeuvre des électrolytes basiques, en particulier des électrolytes à base d’hydroxyde de métaux alcalins, et tout particulièrement des électrolytes à base d’hydroxyde de sodium et d’hydroxyde de potassium.
[0011] Le problème technique que se propose de résoudre la présente invention est donc la fourniture d’un solide dessicant destiné au séchage de gaz humides produits par électrolyse basique et qui soit résistant aux traces d’hydroxydes alcalins présentes dans les dits gaz humides. Un autre objectif de la présente invention est la mise à disposition de solides dessicants résistant aux traces d’hydroxyde de potassium présentes dans des gaz humides. Un autre objectif encore de la présente invention et la fourniture d’un solide dessicant résistant aux traces d’hydroxyde de potassium présentes dans de l’hydrogène humide produit par hydrolyse basique, dans laquelle l’électrolyte basique comprend de l’hydroxyde de potassium.
[0012] Il a maintenant été découvert que les objectifs précités sont atteints en totalité ou au moins en partie grâce à l’objet de l’invention qui va maintenant être exposé. D’autres objectifs encore apparaîtront dans la suite de la description. Il a en effet été découvert de manière tout à fait surprenante par les inventeurs que des solides dessicants spécifiques peuvent être utilisés pour le séchage de gaz humides, sans subir d’importantes dégradations, même en présence de traces de composés basiques, tels que des hydroxydes alcalins.
[0013] Ainsi, et selon un premier aspect, la présente invention concerne l’utilisation pour le séchage de gaz humide comprenant des traces d’hydroxyde alcalin, d’un solide dessicant comprenant au moins un composé kaolinique.
[0014] Le gaz humide qui peut être séché à l’aide du solide dessicant précité peut être de tout type bien connu de l’homme du métier, et par exemple et à titre non limitatif le gaz est choisi parmi les gaz industriels tels que l’azote, l’oxygène, l’hydrogène, les gaz rares, le dioxyde de carbone, et leurs mélanges, et en particulier l’hydrogène, éventuellement en mélange avec un ou plusieurs des autres gaz listés précédemment, et tout particulièrement l’hydrogène obtenu par électrolyse en milieu basique.
[0015] Le taux d’humidité du gaz à sécher dans le cadre de l’utilisation de la présente invention peut varier dans de grandes proportions, notamment en fonction de la nature du gaz à sécher (gaz humide) et de la nature du solide dessicant utilisé. En règle générale le taux d’humidité est compris entre 5 ppm en volume et 2% en volume. On entend par taux d’humidité la quantité volumique d’eau contenue dans le gaz à sécher.
[0016] L’ utilisation selon la présente invention est particulièrement bien adaptée pour les gaz humides qui comprennent des traces d’hydroxyde alcalin, tel que hydroxyde de lithium, hydroxyde de sodium, hydroxyde de potassium, et leurs mélanges, plus particulièrement hydroxyde de sodium, hydroxyde de potassium, et leurs mélanges, plus spécifiquement des traces d’hydroxyde de potassium. Par « traces », on entend plus précisément des teneurs comprises entre 1 ppm et 1000 ppm, de préférence entre 1 ppm et 500 ppm, en volume.
[0017] Le solide dessicant qui fait l’objet de l’utilisation selon la présente invention peut être de tout type bien connu de l’homme du métier et à titre d’exemples non limitatifs peut être choisi parmi les alumines activées, les gels de silice, les tamis moléculaires, et autres, ainsi que leurs mélanges en toutes proportions. On préfère tout particulièrement les tamis moléculaires, et parmi ceux-ci les agglomérés zéolithiques, et plus spécifiquement les agglomérés zéolithiques comprenant des cristaux de zéolithe(s) et au moins un composé kaolinique.
[0018] Selon un mode de réalisation particulièrement préféré de l’utilisation de la présente invention, le composé kaolinique est un liant kaolinique qui vient lier entre eux les cristaux de zéolithe(s) afin de conférer de la cohésion audit aggloméré zéolithique. De tels agglomérés zéolithiques à liant kaolinique sont très bien connus de l’homme du métier, et sont disponibles dans le commerce ou peuvent être préparés selon des modes opératoires connus et disponibles dans la littérature scientifique et la littérature brevets ou encore sur l’Internet.
[0019] Selon un mode de réalisation de l’invention, le solide dessicant est un aggloméré zéolithique comprenant de 70% à 99,99%, de préférence de 70% à 99,9%, de préférence encore de 80% à 99,9% en poids, bornes incluses, de cristaux d’au moins une zéolithe choisie parmi les zéolithes de type LTA, les zéolithes de type FAll, les zéolithes de type SOD, les zéolithes de type P, et leurs mélanges, et de préférence parmi les zéolithes 3A, 4A, 5A, 13X, et leurs mélanges, de préférence encore parmi les zéolithes 3A et 4A, et leurs mélanges.
[0020] L’aggloméré zéolithique utilisable dans le cadre de la présente invention peut en outre comprendre des cristaux d’une ou plusieurs zéolithes, autres que celles déjà listées ci-dessus. On préfère cependant utiliser des agglomérés zéolithiques dont les cristaux de zéolithes sont parfaitement bien adaptés aux séchages de gaz, par exemple les zéolithes 3A, 4A, 5A, 13X, et leurs mélanges, de préférence encore les zéolithes 3A et 4A, et leurs mélanges.
[0021] Comme indiqué précédemment, le composé kaolinique est avantageusement un liant kaolinique. Par « liant kaolinique », on entend une argile kaolinique ou un précurseur d’argile kaolinique et plus particulièrement une argile choisie parmi les kaolins, les kaolinites, les nacrites, les dickites, les halloysites et métakaolins, et leurs mélanges.
[0022] L’aggloméré zéolithique utilisable dans le cadre de la présente invention peut également comprendre un ou plusieurs autres liants, mais aussi une ou plusieurs charges inertes, dans le but de renforcer encore la cohésion du solide dessicant, de modifier sa densité, de créer de la porosité. Parmi les autres liants d’agglomération possibles, on peut citer par exemple la bentonite, sans que cet exemple soit limitatif. Parmi les charges inertes possibles, on peut citer par exemple, de manière non limitative, les sources de silice de tout type connu de l’homme du métier, spécialiste de la synthèse de zéolithes, telles que la silice colloïdale, les diatomées, la perlite, les cendres de calcination (« fly ash » en langue anglaise), le sable, ou toute autre forme de silice solide, mais aussi fibres de verre, fibres de carbone, nanotubes de carbone, et autres et leurs mélanges.
[0023] Selon un mode de réalisation préféré, les autres liants et/ou charges inertes ne représentent pas plus de 33% en poids par rapport au poids total des composés kaoliniques, des autres liants et des charges.
[0024] Le composé kaolinique peut par ailleurs comprendre un ou plusieurs additifs, de préférence organiques, par exemple de la lignine, de l’amidon, les méthylcelluloses et leurs dérivés, des molécules tensio-actives (cationiques, anioniques, non ioniques ou amphotères), destinées à faciliter la préparation du solide dessicant, en particulier la manipulation de la pâte zéolithe(s)/composé(s) kaolinique(s) par modification de la rhéologie et/ou du pouvoir collant ou à conférer au solide dessicant des propriétés satisfaisantes, notamment de macroporosité. Ils sont introduits lors de la préparation du solide dessicant à raison de 0 à 5%, de préférence de 0,1 % à 2%, en poids par rapport au poids total de l’adsorbant.
[0025] On peut citer de manière préférentielle mais non exhaustive, les méthyl-celluloses et leurs dérivés, telle que la carboxyméthylcellulose, les lignosulfonates, les acides polycarboxyliques et les acides de copolymères carboxyliques, leurs dérivés aminés et leurs sels, notamment les sels alcalins et les sels d'ammonium.
[0026] Dans encore un autre mode de réalisation préféré, le composé kaolinique peut être en totalité ou en partie, et préférentiellement en partie, zéolithisé, c’est-à-dire que la totalité ou une partie respectivement du composé, ou liant, kaolinique est transformé en matière zéolithique, soit avant utilisation, soit pendant l’utilisation, soit avant et pendant l’utilisation. La zéolithisation peut être effectuée par tout moyen bien connu de l’homme du métier et par exemple comme décrit dans EP1697042. La zéolithisation peut également s’opérer, dans certaines conditions, lors de l’utilisation même de séchage du gaz. Sans vouloir être lié par la théorie, on pense que la présence de traces d’hydroxyde alcalin, éventuellement en association avec des élévations de température au moins localement dans le solide dessicant, peut entraîner une zéolithisation au moins partielle du composé ou liant kaolinique.
[0027] Il a ainsi été découvert que des solides dessicants comprenant un composé zéolithique résistent particulièrement bien à la présence de traces d’hydroxydes alcalins, en particulier des traces de potasse présentes dans du dihydrogène humide à sécher, en particulier dans du dihydrogène obtenu par électrolyse. Les solides dessicants comprenant un composé kaolinique résistent particulièrement bien et notamment mieux que des solides dessicants couramment utilisés et connus aujourd’hui pour le séchage des gaz. [0028] Ainsi l’utilisation de la présente invention est particulièrement adaptée pour les agglomérés zéolithiques à liant kaolinique et tout particulièrement pour les agglomérés zéolithiques à base de zéolithe 3A, 4A, 5A et/ou 13X comprenant du kaolin comme liant d’agglomération pouvant être totalement ou au moins partiellement zéolithisé, et de préférence pour les agglomérés à base de zéolithe 3A et/ou 4A, à liant kaolin, non zéolithisé ou partiellement ou totalement zéolithisé.
[0029] Selon un second aspect, la présente invention concerne un procédé de séchage de gaz humide comprenant des traces d’hydroxyde alcalin, comprenant au moins une étape de mise en contact dudit gaz humide avec un solide dessicant comprenant au moins un composé kaolinique tel qu’il vient d’être défini.
[0030] La mise en contact dudit gaz humide avec le solide dessicant peut être effectuée selon toute méthode bien connue de l’homme du métier et notamment dans un adsorbeur, qui est par exemple et le plus souvent une colonne contenant le solide dessicant.
[0031] Le procédé de l’invention peut être mis en oeuvre selon diverses techniques et méthodes et par exemple selon un procédé choisi parmi :
• les procédés modulés en pression, par exemple de type PSA (Adsorption modulée en pression ou « Pressure Swing Adsorption » en langue anglaise) ou de type VSA (Adsorption modulée en vide ou « Vacuum Swing Adsorption » en langue anglaise), ou de type VPSA (procédé hybride des 2 précédents), ou de type RPSA (« Rapid Pressure Swing Adsorption» en langue anglaise), de préférence de type PSA,
• les procédés modulés en température de type TSA (Adsorption modulée en température ou « Temperature Swing Adsorption » en langue anglaise), et
• les procédés modulés en pression et en température de type PTSA (Adsorption modulée en Pression et en Température ou « Pressure and Temperature Swing Adsorption » en langue anglaise).
[0032] Le gaz humide destiné à être séché dans le procédé de la présente invention peut avoir au préalable été soumis à un premier séchage, si désiré ou si souhaité, et notamment si la teneur en eau du gaz humide est trop importante. Cette première étape de séchage peut être réalisée selon tout méthode bien connue de l’homme du métier et par exemple par refroidissement du gaz et purge de l’eau condensée ou par passage sur membrane.
[0033] Le procédé de l’invention est généralement effectué à pression comprise entre la pression atmosphérique et 10 MPa, de préférence entre la pression atmosphérique et 5 MPa et à température ambiante ou modérée, de préférence inférieure à la température d’ébullition de l’eau à la pression considérée. [0034] Le procédé de l’invention est tout particulièrement bien adapté pour le séchage de dihydrogène humide obtenu par électrolyse avec électrolyte basique et en particulier électrolyte à base de potasse. Le procédé de séchage de dihydrogène obtenu par électrolyse basique en présence de potasse est particulièrement efficace lorsque le solide dessicant est un aggloméré zéolithique tel que défini précédemment, et par exemple un aggloméré zéolithique à base de zéolithe 3A, 4A, 5A et/ou 13X comprenant du kaolin comme liant d’agglomération, et de préférence pour un aggloméré zéolithique à base de zéolithe 3A et/ou 4A, à liant kaolin.
[0035] Le solide dessicant tel que décrit dans la présente invention, contrairement aux solides dessicants utilisés aujourd’hui, est beaucoup plus stable et résistant aux attaques basiques. Il en résulte de moindres contaminations du gaz à sécher par des poussières ou autres et surtout une augmentation limitée des pertes de charge dans les systèmes dessicants, notamment les adsorbeurs, au fur et à mesure de leur fonctionnement. Ainsi l’utilisation pour le séchage des gaz humides d’un solide dessicant tel que décrit précédemment est-elle plus efficace et présente un avantage économique important et certain.
[0036] L’ invention est maintenant illustrée à l’aide des exemples qui suivent et qui ne limitent en aucun cas l’invention dont la portée est définie par les revendications annexées à la présente description.
Exemples de résistance à la potasse
[0037] Les stabilités des solides dessicants ont été évaluées selon le test suivant. Dans un erlenmeyer, 5 g de tamis préalablement activés à 550°C pendant 2 heures, sont mis en suspension dans 100 mL d’une solution de potasse à 110 g L’1.
[0038] On laisse les particules solides en contact avec la solution pendant 1 heure, avec agitation manuelle de temps à autre. On récupère ensuite les solutions par filtration pour dosage du silicium et de l’aluminium. Le tamis est alors séché à environ 50°C pendant 8 heures (sans lavage à l’eau) puis activé à four ventilé à 230°C pendant 3 heures (consigne directe).
[0039] Les 3 échantillons suivants sont testés :
Échantillon 1 (comparatif) Aggloméré zéolithique 4A avec 20% poids de liant attapulgite
(échantillon de la société Arkema commercialisé sous le nom NK10 b1 ,6/2, 5mm),
Échantillon 2 (invention) Aggloméré zéolithique 4A avec 20% poids de liant kaolin
(échantillon de la société Arkema commercialisé sous le nom SRA b1 ,6/2, 5mm), Échantillon 3 (invention) : Aggloméré zéolithique 4A avec 20% poids de liant kaolin zéolithisé (2% de liant résiduel) avec une solution aqueuse à 110 g L'1 d’hydroxyde de sodium (NaOH) à 95°C pendant 2 heures, avec un rapport massique Solution aqueuse de NaOH sur Aggloméré zéolithique de 2,1.
[0040] Un test supplémentaire (Test blanc) est réalisé avec les 3 échantillons non traités à la potasse. On réalise le test et le Test blanc sur chacun des échantillons, des mesures d’adsorption d’eau (H50) et de Résistance Mécanique (RM).
[0041] La capacité d’adsorption d’eau (H50), exprimée en %, est déterminée par le rapport de l’augmentation de la masse de 1 g de solide dessicant activé après saturation en eau à l’issue d’un séjour de 24 heures dans une enceinte fermée à 23 ± 2°C dont l’humidité relative est égale à 50%, sur la masse de solide dessicant activé de référence (ici 1 g), multiplié par 100.
[0042] La Résistance Mécanique (RM) mesurée (exprimée en daN) correspond à la résistance à l'écrasement en grains. Les résistances mécaniques à l’écrasement en grains sont déterminées avec un appareil « Grain Crushing Strength » commercialisé par Vinci Technologies, selon les normes ASTM D 4179 et D 6175.
[0043] Les mesures de H50 et de RM (Test et test blanc) pour les 3 échantillons sont consignées dans le Tableau 1 ci-dessous.
- Tableau 1 -
Figure imgf000009_0001
[0044] Ces résultats montrent que les agglomérés zéolithiques comprenant un liant kaolinique sont plus résistants au traitement par la potasse, et ce, même lorsque le liant kaolinique a été partiellement zéolithisé, tout en conservant des capacités d’adsorption acceptables.

Claims

REVENDICATIONS
1. Utilisation pour le séchage de gaz humide comprenant des traces d’hydroxyde alcalin, d’un solide dessicant comprenant au moins un composé kaolinique.
2. Utilisation selon la revendication 1 , dans laquelle le gaz humide est choisi parmi l’azote, l’oxygène, l’hydrogène, les gaz rares, le dioxyde de carbone, et leurs mélanges, et de préférence le gaz humide est l’hydrogène.
3. Utilisation selon la revendication 1 ou la revendication 2, dans laquelle le taux d’humidité du gaz humide est compris entre 5 ppm en volume et 2% en volume
4. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le solide dessicant est choisi parmi les alumines activées, les gels de silice, les tamis moléculaires, et autres, ainsi que leurs mélanges en toutes proportions, et de préférence parmi les tamis moléculaires, et parmi ceux-ci les agglomérés zéolithiques, et plus spécifiquement les agglomérés zéolithiques comprenant des cristaux de zéolithe(s) et au moins un composé kaolinique.
5. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le solide dessicant est un aggloméré zéolithique comprenant de 70% à 99,99%, de préférence de 70% à 99,9%, de préférence encore de 80% à 99,9% en poids, bornes incluses, de cristaux d’au moins une zéolithe choisie parmi les zéolithes de type LTA, les zéolithes de type FAU, les zéolithes de type SOD, les zéolithes de type P, et leurs mélanges, et de préférence parmi les zéolithes 3A, 4A, 5A, 13X, et leurs mélanges, de préférence encore parmi les zéolithes 3A et 4A, et leurs mélanges.
6. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le composé kaolinique est une argile kaolinique ou un précurseur d’argile kaolinique et plus particulièrement une argile choisie parmi les kaolins, les kaolinites, les nacrites, les dickites, les halloysites et métakaolins, et leurs mélanges.
7. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le composé kaolinique est zéolithisé en totalité ou en partie, et préférentiellement en partie.
8. Procédé de séchage de gaz humide comprenant des traces d’hydroxyde alcalin, comprenant au moins une étape de mise en contact dudit gaz humide avec un solide dessicant comprenant au moins un composé kaolinique, défini dans l’une des revendications 1 à 7.
9. Procédé selon la revendication 8, caractérisé en ce qu’il est effectué à pression comprise entre la pression atmosphérique et 10 MPa, de préférence entre la pression atmosphérique et 5 MPa et à température ambiante ou modérée, de préférence inférieure à la température d’ébullition de l’eau à la pression considérée.
10. Procédé selon la revendication 8 ou la revendication 9, de séchage de dihydrogène humide obtenu par électrolyse avec électrolyte basique et de préférence séchage de dihydrogène humide obtenu par électrolyse avec électrolyte à base de potasse.
11. Procédé selon l’une quelconque des revendications 8 à 10, dans lequel le solide dessicant est un aggloméré zéolithique à base de zéolithe 3A, 4A, 5A et 13X, comprenant du kaolin comme liant d’agglomération, et de préférence un aggloméré zéolithique à base de zéolithe 3A et/ou 4A, à liant kaolin.
PCT/FR2022/052419 2021-12-30 2022-12-19 Solide dessicant résistant aux hydroxydes alcalins WO2023126595A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022425599A AU2022425599A1 (en) 2021-12-30 2022-12-19 Solid desiccant resistant to alkali hydroxides
CA3240689A CA3240689A1 (fr) 2021-12-30 2022-12-19 Solide dessicant resistant aux hydroxydes alcalins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2114669A FR3131545A1 (fr) 2021-12-30 2021-12-30 Solide dessicant résistant aux hydroxydes alcalins
FRFR2114669 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023126595A1 true WO2023126595A1 (fr) 2023-07-06

Family

ID=81326722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052419 WO2023126595A1 (fr) 2021-12-30 2022-12-19 Solide dessicant résistant aux hydroxydes alcalins

Country Status (5)

Country Link
AU (1) AU2022425599A1 (fr)
CA (1) CA3240689A1 (fr)
FR (1) FR3131545A1 (fr)
TW (1) TW202333847A (fr)
WO (1) WO2023126595A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295805A (ja) * 1990-04-11 1991-12-26 Tosoh Corp X型ゼオライト成形体の製造方法
US6313059B1 (en) * 1997-06-20 2001-11-06 Maryellen Lavin Desiccant for drying CH2F2 refrigerant utilizing zeolite
US20010049998A1 (en) * 1998-07-01 2001-12-13 Zeochem Molecular sieve adsorbent for gas purification and preparation thereof
EP1697042A1 (fr) 2003-12-22 2006-09-06 Ceca S.A. Procede de purification d'un flux gazeux contamine par co 2 et un ou plusieurs hydrocarbures et/ou oxydes d'azote par adsorption sur un adsorbant zeolitique agrege
US20110104494A1 (en) * 2008-03-03 2011-05-05 Chemiewerk Bad Kostritz Gmbh Adsorbent granulate and method for the manufacture thereof
FR3009299A1 (fr) * 2013-08-05 2015-02-06 Ceca Sa Materiau zeolithique a base de zeolithe mesoporeuse
EP1597197B1 (fr) 2003-02-11 2018-09-19 Arkema France Procédé de séchage d'esters ou d'alcools au moyen d'adsorbants agglomérés
WO2021195704A1 (fr) * 2020-04-01 2021-10-07 Jarrod Ward Système intégré de refroidissement et de capture d'eau

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295805A (ja) * 1990-04-11 1991-12-26 Tosoh Corp X型ゼオライト成形体の製造方法
US6313059B1 (en) * 1997-06-20 2001-11-06 Maryellen Lavin Desiccant for drying CH2F2 refrigerant utilizing zeolite
US20010049998A1 (en) * 1998-07-01 2001-12-13 Zeochem Molecular sieve adsorbent for gas purification and preparation thereof
EP1597197B1 (fr) 2003-02-11 2018-09-19 Arkema France Procédé de séchage d'esters ou d'alcools au moyen d'adsorbants agglomérés
EP1697042A1 (fr) 2003-12-22 2006-09-06 Ceca S.A. Procede de purification d'un flux gazeux contamine par co 2 et un ou plusieurs hydrocarbures et/ou oxydes d'azote par adsorption sur un adsorbant zeolitique agrege
US20110104494A1 (en) * 2008-03-03 2011-05-05 Chemiewerk Bad Kostritz Gmbh Adsorbent granulate and method for the manufacture thereof
FR3009299A1 (fr) * 2013-08-05 2015-02-06 Ceca Sa Materiau zeolithique a base de zeolithe mesoporeuse
WO2021195704A1 (fr) * 2020-04-01 2021-10-07 Jarrod Ward Système intégré de refroidissement et de capture d'eau

Also Published As

Publication number Publication date
FR3131545A1 (fr) 2023-07-07
CA3240689A1 (fr) 2023-07-06
AU2022425599A1 (en) 2024-06-27
TW202333847A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
EP2043775B1 (fr) Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
KR100851798B1 (ko) 질소 가스의 분리 방법 및 분자체 탄소
EP1084743B1 (fr) Utilisation d'une alumine activée pour éliminer le CO2 d'un gaz
JP2554300B2 (ja) 炭素分子篩用の高酸素容量椰子殻炭とその製造方法および圧力変動吸着法による空気分離に適した炭素分子篩の製造方法
BE1019420A5 (fr) Composition solide minerale, son procede de preparation et son utilisation en abattement de dioxines et metaux lourds des gaz de fumees.
JP6760583B2 (ja) 活性炭の製造方法
FR2749004A1 (fr) Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolithe x echangee au lithium
EP1120149A1 (fr) Procédé de purification d'un gaz par adsorption des impuretés sur plusieurs charbons actifs
WO2009081023A2 (fr) Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
FR2766476A1 (fr) Adsorbant zeolitique ameliore pour la separation des gaz de l'air et son procede d'obtention
FR2946894A1 (fr) Procede de separation de co2 par adsorption modulee en pression sur un solide carbone poreux
WO2016038307A1 (fr) Agrégats de nanocristaux de zéolithes
JP2001240407A (ja) 活性炭及びその製造方法
EP0300868B1 (fr) Adsorbant pour la purification des gaz et procédé de purification
WO1999046031A9 (fr) Decarbonatation de flux gazeux au moyen d'adsorbants zeolitiques
EP1116691A1 (fr) Zéolites X échangées notamment au lithium, leur procédé de preparation et leur utilisation comme absorbants de l'azote dans séparation des gaz de l'air
WO2007057570A1 (fr) Procede de separation et/ou purification d'un melange de gaz
WO2023126595A1 (fr) Solide dessicant résistant aux hydroxydes alcalins
JP2011212531A (ja) アルキルシラノール除去材及びそれを製造する方法
EP0982063B1 (fr) Procédé PSA utilisant une zéolite faujasite contenant des cations métalliques en tant qu'adsorbant
JP2003012316A (ja) 活性炭とその製造方法
JP2024070334A (ja) 多孔質炭素材料の製造方法
EP0982064B1 (fr) Procédé PSA utilisant un adsorbant aggloméré constitué d'une phase zéolitique et d'un liant
CA2342258A1 (fr) Methode de separation de molecules en phase gaz par adsorption au moyen d'adsorbants inorganiques solides agglomeres a distribution mesoporeuse etroite et calibree
JP2005263521A (ja) ゼオライト複合炭化物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22850654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3240689

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: AU2022425599

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024012347

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022425599

Country of ref document: AU

Date of ref document: 20221219

Kind code of ref document: A