WO2023125762A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023125762A1
WO2023125762A1 PCT/CN2022/143218 CN2022143218W WO2023125762A1 WO 2023125762 A1 WO2023125762 A1 WO 2023125762A1 CN 2022143218 W CN2022143218 W CN 2022143218W WO 2023125762 A1 WO2023125762 A1 WO 2023125762A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
candidate
same
candidate pdcch
terminal device
Prior art date
Application number
PCT/CN2022/143218
Other languages
English (en)
French (fr)
Inventor
高飞
刘显达
焦淑蓉
杨育波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22915012.3A priority Critical patent/EP4447585A1/en
Publication of WO2023125762A1 publication Critical patent/WO2023125762A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • PDCCH repetition (PDCCH repetition) is adopted, and one DCI is transmitted twice.
  • PDCCH physical downlink control channel
  • at least one of the two associated physical downlink control channel (physical downlink control channel, PDCCH) corresponding to the repeatedly transmitted DCI may meet the requirement of a blind detection with an independently transmitted PDCCH Four conditions (i.e. the same frequency resources, the same scrambling code sequence, the same set of control resources, and the same DCI load size), this situation can be called a transmission reference point ambiguity scenario.
  • the protocol stipulates that both network devices and terminal devices follow the repeated transmission
  • the PDCCH is used to determine the transmission reference point.
  • each time slot is divided into one or more spans according to a PDCCH monitoring occasion (PDCCH MO), and each span contains one or more candidate PDCCHs.
  • PDCCH MO PDCCH monitoring occasion
  • each span contains one or more candidate PDCCHs.
  • the terminal device determines whether two candidate PDCCHs are recorded as a blind detection, it needs to judge whether each candidate PDCCH and other candidate PDCCHs meet the four conditions of being recorded as a blind detection, so that it is necessary to traverse all the configured candidate PDCCHs.
  • the processing complexity of the terminal device is very high. In order to reduce processing complexity, the protocol stipulates that some terminal devices may not judge whether two candidate PDCCHs are marked as a blind detection on other spans in a time slot except the first span.
  • the terminal device does not judge whether the two candidate PDCCHs are marked as a blind detection on other spans in a time slot except the first span, when the DCI of the repeated transmission corresponds to an associated PDCCH
  • the terminal device since the terminal device will not judge, it will cause the terminal device to be unable to judge whether the monitored DCI is a PDCCH repeated transmission or a PDCCH independent transmission. There will still be uncertainties in the determination of the reference point, which will affect data transmission.
  • the present application provides a communication method and device, so that a terminal device can determine whether the monitored DCI is repeatedly transmitted by the PDCCH or independently transmitted by the PDCCH.
  • the present application provides a communication method, which may include: after a network device determines first configuration information according to a first condition, sending the first configuration information to a first terminal device; wherein, the first The configuration information includes information indicating that the first terminal device monitors the candidate PDCCH based on the time span, and includes the configuration information of the first candidate PDCCH and the second candidate PDCCH; the first condition is that the first candidate PDCCH and the second candidate The PDCCH does not satisfy at least one of the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same DCI load size; the first candidate PDCCH and the second candidate PDCCH are located in a time slot except for the first time On a time span other than the time span, the first candidate PDCCH and the second candidate PDCCH are located on the same time span, the first candidate PDCCH is a PDCCH used for independent transmission, and the second candidate PDCCH is used for Repeated transmission of any candidate PDCCH among associated candidate PDCCH
  • the first terminal device to accurately determine whether the detected DCI is repeatedly transmitted by the PDCCH or independently transmitted by the PDCCH, so as to avoid the problem of ambiguity in judging the reference point of the scheduling data.
  • the network device may receive first capability information from the first terminal device, and the first capability information indicates that the first A terminal device does not support judging whether two candidate PDCCHs satisfy the same time-frequency resource, same scrambling code sequence, same control resource set, and same DCI load size in a time span other than the first time span. In this way, the network device can configure accurate first configuration information for the first terminal device according to the capabilities of the first terminal device.
  • the network device may also receive second capability information from the second terminal device, the second capability information indicating that the second terminal device supports In the span, it is judged whether the two candidate PDCCHs meet the requirements of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size; furthermore, the network device can determine the second configuration according to the second capability information information, the second configuration information includes configuration information indicating that the second terminal device monitors a candidate PDCCH based on a time span, and includes a third candidate PDCCH and a fourth candidate PDCCH, the third candidate PDCCH and the fourth candidate The PDCCH satisfies the same time-frequency resources, the same scrambling code sequence, the same control resource set, and the same DCI load size; the third candidate PDCCH and the fourth candidate PDCCH are located in the one time slot except for the first time span In other time spans, the third candidate PDCCH and the fourth candidate PDCCH are located on the same time span, the third candidate PDCCH
  • the present application provides a communication method, which may include: a first terminal device receives first configuration information from a network device, and the first configuration information includes instructing the first terminal device to listen to candidates based on a time span PDCCH information, and configuration information including the first candidate PDCCH and the second candidate PDCCH, the first candidate PDCCH and the second candidate PDCCH do not satisfy the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the DCI At least one of the same load size; the first candidate PDCCH and the second candidate PDCCH are located on a time span other than the first time span in a time slot, and the first candidate PDCCH and the second candidate PDCCHs are located on the same time span, the first candidate PDCCH is a PDCCH for independent transmission, and the second candidate PDCCH is any candidate PDCCH among the associated candidate PDCCHs for repeated transmission; then, the first The terminal device decodes the first candidate PDCCH and the second candidate PDCCH respectively; or,
  • the first terminal device to accurately determine whether the detected DCI is repeatedly transmitted by the PDCCH or independently transmitted by the PDCCH, so as to avoid the problem of ambiguity in judging the reference point of the scheduling data.
  • the first terminal device before the first terminal device receives the first configuration information from the network device, the first terminal device sends first capability information to the network device, and the first capability The information indicates that the first terminal device does not support whether two candidate PDCCHs satisfy the requirements of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the DCI load size in a time span other than the first time span. Same judgment. In this way, the network device can be configured with accurate first configuration information according to the capability of the first terminal device.
  • the first terminal device After the first terminal device determines that the configuration information of the first PDCCH candidate and the second PDCCH candidate included in the first configuration information is wrong information, the first terminal device Do not decode the first candidate PDCCH and/or the second candidate PDCCH, or skip decoding (skip decoding); or, the first terminal device performs the associated candidate PDCCH for repeated transmission None are decoded. In this way, the first terminal device can avoid the problem of ambiguity in judging the reference point of the scheduling data.
  • the present application provides a communication method, which may include: a second terminal device receives second configuration information from a network device, and the second configuration information includes instructing the second terminal device to listen to candidates based on a time span Information about the physical downlink control channel PDCCH, and configuration information including the third candidate PDCCH and the fourth candidate PDCCH; the third candidate PDCCH and the fourth candidate PDCCH satisfy the same time-frequency resources, the same scrambling code sequence, and the set of control resources The same, the downlink control information DCI load size is the same; the third candidate PDCCH and the fourth candidate PDCCH are located on a time span other than the first time span in a time slot, and the third candidate PDCCH and the fourth candidate PDCCH The four candidate PDCCHs are located on the same time span, the third candidate PDCCH is a PDCCH for independent transmission, and the fourth candidate PDCCH is any candidate PDCCH among the associated candidate PDCCHs for repeated transmission; after that, the According to the second configuration information, the second terminal
  • the second terminal device to accurately determine whether the monitored DCI is repeatedly transmitted by the PDCCH or independently transmitted by the PDCCH, so as to avoid the problem of ambiguity in judging the reference point of the scheduling data.
  • the second terminal device may send the second capability information to the network device, and the second The capability information indicates that the second terminal device supports whether two candidate PDCCHs satisfy the requirements of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the DCI load size in a time span other than the first time span. Same judgment. In this way, the network device can accurately configure the second configuration information for the second terminal device according to the capability of the second terminal device.
  • the third candidate PDCCH and the fourth candidate PDCCH satisfy some of the conditions of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size, which is the network A condition determined through negotiation between the device and the second terminal device, or a condition predefined in a communication protocol.
  • the present application further provides a communication device, the communication device may be a network device, and the communication device has a function of implementing the method in the first aspect or each possible design example of the first aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above-mentioned first aspect or in each possible design example of the first aspect, for details, refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive information, messages or data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to execute corresponding functions in the first aspect or each possible design example of the first aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, the communication device may be a first terminal device, and the communication device has a function of implementing the method in the above second aspect or each possible design example of the second aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above-mentioned second aspect or in each possible design example of the second aspect.
  • these units can perform the corresponding functions in the above-mentioned second aspect or in each possible design example of the second aspect.
  • refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive information, messages or data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to execute corresponding functions in the second aspect or each possible design example of the second aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, which may be a second terminal device, and has a function of implementing the method in the third aspect or each possible design example of the third aspect.
  • a communication device which may be a second terminal device, and has a function of implementing the method in the third aspect or each possible design example of the third aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above third aspect or in each possible design example of the third aspect, for details, refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used to send and receive information, messages or data, and to communicate with other devices in the communication system
  • the processor is configured to support the communication device to execute corresponding functions in the above third aspect or in each possible design example of the third aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the embodiment of the present application provides a communication system, which may include the aforementioned network device, the first terminal device, the second terminal device, and the like.
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium stores program instructions, and when the program instructions are run on the computer, the computer executes the first aspect and its In any possible design, or in the second aspect and any possible design thereof, or in the third aspect and any possible design thereof.
  • Exemplary, computer readable storage media may be any available media that can be accessed by a computer.
  • computer readable media may include non-transitory computer readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable Except for electrically programmable read-only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instruction or data structure and can Any other media accessed by a computer.
  • random-access memory random-access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • the embodiment of the present application provides a computer program product, including computer program codes or instructions, when the computer program codes or instructions are run on a computer, making any possible design of the first aspect or the first aspect , or in the second aspect or any possible design of the second aspect, or the method described in the third aspect or any possible design of the third aspect is executed.
  • the present application also provides a chip, including a processor, the processor is coupled to a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the first aspect above Or in any possible design of the first aspect, or in the above-mentioned second aspect or in any possible design of the second aspect, or in the above-mentioned third aspect or in any possible design of the third aspect.
  • Figure 1a is a schematic diagram of a communication scenario provided by the present application.
  • Figure 1b is a schematic diagram of another communication scenario provided by the present application.
  • Figure 1c is a schematic diagram of another communication scenario provided by the present application.
  • Figure 1d is a schematic diagram of another communication scenario provided by the present application.
  • FIG. 2 is a schematic diagram of a TRP1 and TRP2 serving as a cooperative base station and serving a terminal device at the same time provided by the present application;
  • FIG. 3 is a schematic diagram of a candidate PDCCH repeated transmission between two SSSs provided by the present application
  • FIG. 4 is a schematic diagram of a reference point ambiguity scene of repeated PDCCH transmission and PDCCH independent transmission provided by the present application;
  • FIG. 5 is a schematic diagram of another ambiguous reference point scenario of PDCCH repeated transmission and PDCCH independent transmission provided by the present application;
  • FIG. 6 is a schematic diagram of a PDCCH MO provided by the present application.
  • FIG. 7 is a schematic diagram of determining the position of a span in a slot provided by the present application.
  • FIG. 8 is a schematic diagram of a reference point blurred scene provided by the present application.
  • FIG. 9 is a flowchart of a communication method provided by the present application.
  • FIG. 10 is a flowchart of another communication method provided by the present application.
  • FIG. 11 is a flowchart of another communication method provided by the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 13 is a structural diagram of a communication device provided by the present application.
  • the embodiments of the present application provide a communication method and device, so that a terminal device can determine whether the monitored DCI is repeatedly transmitted by the PDCCH or independently transmitted by the PDCCH.
  • the method and the device described in this application are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
  • the communication method provided by the present application can be applied to various communication systems, such as long term evolution (long term evolution, LTE) system, new radio (new radio, NR) system, wireless local area networks (eireless local area networks, WLAN), fifth Generation (5th generation, 5G) communication system, sixth generation (6th generation, 6G) communication system or other evolutionary systems in the future, etc.
  • LTE long term evolution
  • NR new radio
  • WLAN wireless local area networks
  • 5th generation, 5G fifth Generation
  • 6th generation, 6G sixth generation
  • this application can be applied to the following various communication scenarios: point-to-point transmission between network devices and terminal devices or between terminal devices, multi-hop or relay transmission between network devices and terminal devices, multiple network devices Scenarios such as dual connectivity (DC) or multiple connections with terminal devices.
  • DC dual connectivity
  • FIG. 1a-FIG. 1d show schematic diagrams of communication scenarios applicable to the communication method provided by the embodiment of the present application, and each communication scenario may include a network device and a terminal device.
  • FIG. 1a shows a point-to-point single connection scenario between a network device and a terminal device.
  • Fig. 1b shows a multi-hop single-connection scenario of a network device and a terminal device.
  • Fig. 1c shows a DC dual connectivity scenario of a network device and a terminal device.
  • Fig. 1d shows a multi-hop and multi-connection scenario between a network device and a terminal device.
  • the network device is a device with a wireless transceiver function or a chip, a chip system, a functional module, etc. that can be set on the network device.
  • the network device includes but is not limited to: base station (base station, BS), base station (evolved node B, eNB), base station (generation node B, gNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, Wi-Fi) system in the access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be a network node that constitutes a gNB or a transmission point,
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Functions of the radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • a CU may be divided into network devices in the access network RAN, or a CU may be divided into network devices in the core network CN, which is not limited.
  • the terminal equipment may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , User Agent, or User Device.
  • the terminal device can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device in the embodiment of the present application may include a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function, such as a mobile phone, a tablet computer (Pad), a mobile phone with a wireless transceiver function Computers, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), telemedicine ( Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart wearable devices (smart glasses, smart watches) , smart earphones, etc.), wireless terminals in smart homes, etc., or chips or chip modules (or chip systems) that can be installed in the above devices.
  • a wireless communication function such as a mobile phone, a tablet computer (Pad), a mobile phone with a wireless transceiver function
  • Computers virtual reality (virtual reality, VR) terminal equipment, augmented
  • a terminal device with a wireless transceiver function and a chip, a chip system, or a functional module that can be provided in the aforementioned terminal device are collectively referred to as a terminal device.
  • Figs. 1a-1d are only examples of communication scenarios (also referred to as communication systems), and are not intended to limit the communication systems applicable to this application.
  • transmissions such as uplink, downlink, access link, backhaul (backhaul) link, and sidelink (sidelink) in the above communication scenarios are not limited.
  • Figs. 1a-1d the number and types of devices shown in the communication scenarios shown in Figs. 1a-1d are only examples. In each communication scenario, there may be more devices, such as core network devices, etc., which are not shown in Figs. 1a-1d.
  • Candidate PDCCH can be understood as the basic granularity of DCI blind detection of terminal equipment.
  • a candidate PDCCH corresponds to a DCI blind detection
  • a candidate PDCCH corresponds to a monitored Candidate PDCCH
  • a candidate PDCCH is counted as a candidate PDCCH for monitoring, or a DCI detection process (including performing information bit analysis, decoding and judgment operations), and a candidate PDCCH corresponds to a specific physical resource on the CORESET.
  • the number of candidate PDCCHs reflects the complexity of DCI detection by the terminal equipment, or the overhead of DCI processing operations.
  • the physical resource size and location corresponding to each candidate PDCCH can be determined by the number and location of control channel elements (control channel element, CCE).
  • the encoding/rate matching operation is based on the repeated transmission of one PDCCH, and the same coded bits are repeatedly transmitted on the other PDCCHs.
  • the same aggregation level (aggregation level, AL) or the same number of CCEs is used for each repeated transmission, and the same coded bits and the same DCI load information are repeatedly transmitted (that is, the contents of the DCI bits are the same).
  • the reliability of DCI transmission can be improved by using a multi-TRP joint transmission mechanism.
  • coded bits are formed by the above coding method, and then sent by multiple TRPs on different time-frequency resources.
  • the terminal device may receive multiple copies of coded bits on the above-mentioned different time-frequency resources respectively, and then perform a joint parsing operation to obtain DCI information bits (information sources).
  • the terminal device respectively performs channel estimation on the above-mentioned different time-frequency resources, demodulates the received signal, obtains likelihood values (soft value bit information) and combines them.
  • SNR signal-to-noise ratio
  • the above operations can also avoid the problem that the DCI cannot be transmitted due to the interruption of the transmission link from the terminal equipment to a certain TRP due to channel changes.
  • TRP1 and TRP2 serve as a cooperative base station for a terminal device at the same time.
  • the DCI sent by TRP1 corresponds to the control resource set (CORESET) 1 (the first quasi co-location assumption (quasi co-location assumption, QCL assumption) is configured, corresponding to the channel characteristics from the terminal device to TRP1), and TRP2 sends
  • the DCI of corresponds to CORESET2 (in which the second QCL hypothesis is configured, corresponding to the channel characteristics from the terminal device to TRP2).
  • Two CORESETs may be configured with complete/partial overlap/complete non-overlap to improve DCI transmission flexibility and ensure frequency selection scheduling gain.
  • the two DCIs delivered by the two CORESETs are respectively carried on the two candidate PDCCHs.
  • the search space sets (search space set, SSS) to which the two candidate PDCCHs belong are associated (linkage/linked), and the terminal device is in this
  • the soft-valued bit information received on the two candidate PDCCHs can be combined (ie soft combined operation). It can also be understood that the two candidate PDCCHs have an association relationship.
  • the DCIs carried by the two candidate PDCCHs are used for repeated transmission.
  • the terminal device in order to prevent the terminal device from performing too many soft combining operations and reduce the complexity of the terminal device, it is necessary to define an association relationship between candidate PDCCHs associated with two CORESETs.
  • the current protocol supports that all candidate PDCCHs in one SSS are used for PDCCH repeated transmission, excluding candidate PDCCHs that transmit independent PDCCHs.
  • the network device configures the association relationship through the radio resource control (radio resource control, RRC) parameter on the two SSSs used for PDCCH repeated transmission, that is, SSS#i and SSS#j can be called the associated SSS .
  • RRC radio resource control
  • SSS#i includes aggregation levels AL4 and AL8, and the corresponding numbers of candidate PDCCHs are 4 and 2 respectively.
  • PDCCH retransmission the PDCCH retransmission of AL4 can only be realized through two AL4 candidate PDCCHs, instead of one AL4 candidate PDCCH and one AL8 candidate PDCCH. Therefore, assuming that there is a predefined PDCCH retransmission mapping relationship, the association relationship shown in FIG. 3 can be obtained.
  • candidate PDCCH index 1 of SSS#i and candidate PDCCH index 1 of SSS#j perform PDCCH retransmission together
  • candidate PDCCH index 2 of SSS#i and candidate PDCCH index 2 of SSS#j perform PDCCH retransmission together
  • the above two pairs of PDCCHs are respectively referred to as associated candidate PDCCHs.
  • the candidate PDCCH index 1 of SSS #i and the candidate PDCCH index 1 of SSS #j perform PDCCH repeated transmission. It can be seen from the above two examples that all candidate PDCCHs in one SSS are used for repeated PDCCH transmission, excluding candidate PDCCHs used for transmitting independent PDCCHs. If a network device wants to send an independent PDCCH, it can only be realized by configuring other SSSs, such as configuring SSS#k.
  • the 3rd generation partnership project stipulates a calculation rule for whether a candidate PDCCH is counted as a blind detection (can be called a count one operation).
  • a blind detection may be called “a candidate PDCCH for monitoring” or “counted as a candidate PDCCH for monitoring” in the protocol. If candidate PDCCH 1 and candidate PDCCH 2 meet the following four conditions at the same time: the same aggregation level and the same starting CCE position (also can be understood as the same time-frequency resource), the same scrambling sequence (scrambling sequence), the same CORESET and the same DCI load size, the two candidate PDCCHs can be counted as one blind detection.
  • these two candidate PDCCHs are counted as one candidate PDCCH for monitoring. If the two candidate PDCCHs do not meet at least one of the above four conditions, the two candidate PDCCHs are not counted as a blind detection, or the two candidate PDCCHs are not counted as a candidate PDCCH for monitoring, or the two PDCCH candidates are counted as two blind detections, or these two PDCCH candidates are counted as two PDCCH candidates for monitoring.
  • the terminal device judges that two candidate PDCCHs meet the "count one" condition, that is, when the above four conditions are met at the same time, the number of blind detections corresponding to the two candidate PDCCHs can be counted as one, so that the terminal device will only perform One decoding operation. Conversely, if the terminal device judges that the two candidate PDCCHs do not meet the "count one" condition, that is, when the above four conditions cannot be met at the same time, the number of blind detections corresponding to the two candidate PDCCHs can be counted as two times, so that the terminal device can count the two Each of the candidate PDCCHs performs a decoding operation once, twice in total.
  • the candidate PDCCH that detects the PDCCH is used as a reference point (also called a transmission reference point or a reference PDCCH candidate (reference PDCCH candidate)).
  • a reference point also called a transmission reference point or a reference PDCCH candidate (reference PDCCH candidate)
  • the same PDCCH is sent on two associated candidate PDCCHs, and the terminal device may only monitor the PDCCH on the first candidate PDCCH, or may only monitor the PDCCH on the second candidate PDCCH, or the terminal device It is possible that PDCCHs are monitored on both candidate PDCCHs.
  • the reference point ambiguity scene of PDCCH repeated transmission and PDCCH independent transmission is shown in Figure 4 or Figure 5 .
  • the first candidate PDCCH and the second candidate PDCCH are a pair of candidate PDCCHs used for repeated transmission of the PDCCH, also called a pair of associated candidate PDCCHs.
  • the third candidate PDCCH is a candidate PDCCH for PDCCH independent transmission.
  • the second candidate PDCCH and the third candidate PDCCH satisfy the condition of count one, that is, the second candidate PDCCH and the third candidate PDCCH are counted as one candidate PDCCH for monitoring the PDCCH.
  • the terminal device performs one decoding on the time-frequency resource corresponding to the second candidate PDCCH or the third candidate PDCCH.
  • FIG. 1 the first candidate PDCCH and the second candidate PDCCH are a pair of candidate PDCCHs used for repeated transmission of the PDCCH, also called a pair of associated candidate PDCCHs.
  • the third candidate PDCCH is a candidate PDCCH for
  • the third candidate PDCCH and the first candidate PDCCH satisfy the count one condition, that is, the first candidate PDCCH and the third candidate PDCCH are counted as one candidate PDCCH for monitoring the PDCCH.
  • the terminal device performs one decoding on the time-frequency resource corresponding to the first candidate PDCCH or the third candidate PDCCH.
  • the terminal device passes the translation
  • the code cannot completely determine whether the detected PDCCH is transmitted through the repeated transmission of the PDCCH or independently transmitted through the PDCCH, which in turn affects the problem of the subsequent scheduling reference point. For example, in the scenario shown in FIG. 5 , the terminal device cannot determine whether the detected PDCCH is repeatedly sent to the terminal device by the network device through the PDCCH, or sent to the terminal device through independent transmission of the PDCCH.
  • the network device and the terminal device may define different reference points. For example, the network device determines that the second candidate PDCCH is the reference point, but the terminal device determines the third candidate PDCCH as the reference point, which will cause subsequent data transmission failure.
  • the reference point is determined according to the definition of the reference point in the repeated transmission of the PDCCH. In this way, the understanding of the network device and the terminal device on the blurred reference point scene remains consistent, ensuring correct data transmission.
  • the time span (span) may also be called a PDCCH monitoring time span (PDCCH monitoring span).
  • the rules for determining a span pattern include:
  • Each span is included in a separate time slot (slot), that is, the span cannot cross the boundary of the slot.
  • Each monitoring occasion (PDCCH monitoring occasion, PDCCH MO) is completely contained in one span. That is, one PDCCH MO cannot cross the span boundary.
  • the PDCCH MO here indicates the duration of blind detection of a PDCCH by a terminal device, which is jointly determined by the monitoring start position of an SSS and the CORESET associated with the monitored SSS.
  • the monitoring start position of a terminal device monitoring a SSS is the first symbol in a slot, and this SSS is bound to a duration of 3 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) CORESET with a long symbol, so the PDCCH MO of the terminal device monitoring this SSS is the first 3 OFDM symbols of the slot, that is, the first OFDM symbol, the second OFDM symbol and the third OFDM symbol.
  • PDCCH MO#1, PDCCH MO#2 and the time-domain symbol interval (OFDM symbol) between them can be shown in Figure 6.
  • the terminal device will report one or more (X, Y) combinations (combinations) for PDCCH monitoring, where one span pattern or span combination or combination is represented as one (X, Y), and X is represented as Minimum time domain symbol interval between two span start symbols.
  • Y represents the maximum length of a span, and the unit is OFDM symbols in the time domain.
  • the monitoring capability of a terminal device is defined with span as the granularity (unit).
  • span the granularity (unit).
  • Table 1 describes the upper limit of blind detection times corresponding to a span pattern (X, Y) under a given subcarrier in a bandwidth part (BWP) in a serving cell, or is to be
  • the upper limit of the number of monitored candidate PDCCHs can be recorded as
  • Table 2 describes the upper limit of the number of non-overlapping CCEs corresponding to a span pattern (X, Y) in a BWP in a serving cell under a given subcarrier, which can be recorded as
  • the terminal device determines the span position in a slot according to the PDCCH configuration issued by the network device or the R16 rule for determining the span, as shown in Figure 7 below.
  • span in R16 is only an example, and this application can also be applied to spans in R15, for example, the rules for determining spans in R15, such as in terminal device feature group 3-5b (feature group 3-5b) Describe the rules.
  • the terminal device determines according to the RRC parameter configuration that one of the pair of associated candidate PDCCHs and the independently transmitted candidate PDCCH meet the condition of count one, then no matter whether the DCI monitored on this overlapping resource is through the independent transmission of the PDCCH Whether it is transmitted or transmitted through the associated PDCCH, it will be understood according to the associated PDCCH transmission method, that is, the method of determining the corresponding reference point is determined according to the associated PDCCH method (ie, the PDCCH repeated transmission reference point).
  • a way for a terminal device to monitor candidate PDCCHs is based on span monitoring.
  • Each time slot is divided into one or more spans, and each span contains one or more candidate PDCCHs. Since the judgment of "count one" requires the terminal device to make an ergodic judgment on the candidate PDCCHs configured by the network device, that is, each candidate PDCCH must be judged on the four conditions in "count one" with other candidate PDCCHs to determine the participating judgment Whether the two candidate PDCCHs satisfy the four conditions at the same time requires the terminal device to traverse all the configured candidate PDCCHs, which will cause very high processing complexity for the terminal device.
  • the standard reaches the following conclusion: some terminal devices can not perform the judgment operation recorded as a blind detection, that is, "count one" on other spans except the first span in a time slot of the main cell operate. However, in the case that the terminal device does not judge whether the two candidate PDCCHs are marked as a blind detection in a time slot on other spans except the first span, when the repeatedly transmitted DCI corresponds to an associated candidate When the configuration of the PDCCH and a candidate PDCCH for independent transmission meets the four conditions recorded as a blind detection, since the terminal device will not judge, it will cause the terminal device to use the time-frequency resource that satisfies "count one" according to the associated candidate The configuration of the SSS where the PDCCH is located and the configuration of the SS where the candidate PDCCH is located for independent transmission are monitored. One DCI is monitored respectively. There will be uncertainty, that is, there will be an ambiguity in the reference point, which will affect the data transmission.
  • the terminal device determines that there are two spans in one slot according to the PDCCH configuration issued by the network device and the predefined rules of the protocol, namely span#1 and span#2.
  • a pair of candidate PDCCHs with a linkage relationship (linkage) used for PDCCH repeated transmission are respectively in two spans, that is, inter-span PDCCH repetition (inter-span PDCCH repetition).
  • the network device configures a candidate PDCCH#3 (individual PDCCH candidate) for independent transmission on span#2. Assume that the network device configures the candidate PDCCH #3 and the associated candidate PDCCH #2 to meet the "count one" condition.
  • the terminal device will not perform the judgment operation on span#2 that satisfies the four conditions of "count one", that is, it will not judge whether the two candidate PDCCHs use the same scrambling code, and will not judge whether the two candidate PDCCHs belong to Whether the search space set (SSS) of the search space set (SSS) of the two candidate PDCCHs is associated with the same CORESET will not determine whether the load size of the DCI format configured in the search space set (SSS) to which the two candidate PDCCHs respectively belong is the same, nor will it determine whether the two candidate PDCCHs correspond to Whether the time-frequency resources are the same (that is, whether the same CCE set is used).
  • the terminal device will perform processing according to the high layer parameter configuration of the SSS to which the two candidate PDCCHs belong, that is, perform two decoding operations respectively.
  • the DCI monitored by the terminal device on candidate PDCCH #2 and candidate PDCCH #3 is found to be both an independent transmission PDCCH and a repeated transmission PDCCH according to high-level parameters. It is impossible to determine which transmission it is, and then refer to the scheduled data transmission There is a problem of ambiguity in judgment, and normal data transmission cannot be performed between the terminal device and the network device.
  • the present application proposes a communication method to solve the problem of ambiguity in judging the reference point of data transmission, so that terminal equipment and network equipment can accurately transmit data.
  • Fig. 9 shows a communication method provided by an embodiment of the present application, and the method is applicable to the scenarios shown in Fig. 1a-Fig. 1d.
  • the specific process of the method may include:
  • Step 901 The network device determines first configuration information according to the first condition; the first configuration information includes information instructing the first terminal device to monitor candidate PDCCHs based on a time span, and configuration information including the first candidate PDCCH and the second candidate PDCCH .
  • the first candidate PDCCH and the second candidate PDCCH are located on a time span other than the first time span in a time slot, and the first candidate PDCCH and the second candidate PDCCH are located on the same
  • the first candidate PDCCH is a PDCCH used for independent transmission
  • the second candidate PDCCH is a candidate PDCCH among associated candidate PDCCHs used for repeated transmission.
  • the second candidate PDCCH It can be any candidate PDCCH among the associated candidate PDCCHs for repeated transmission.
  • the first condition is that the first PDCCH candidate and the second PDCCH candidate do not satisfy at least one of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size.
  • the first candidate PDCCH and the second candidate PDCCH do not satisfy at least one of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same downlink control information DCI load size, specifically referring to the The first PDCCH candidate and the second PDCCH candidate do not satisfy at least one of the following:
  • the time-frequency resource of the first candidate PDCCH is the same as the time-frequency resource of the second candidate PDCCH; for example, the CCE set corresponding to the first candidate PDCCH is the same as the CCE set corresponding to the second candidate PDCCH;
  • the number of start symbols and persistent OFDM symbols of the control resource set where the first candidate PDCCH is located is the same as the PRB corresponding to the second candidate PDCCH;
  • the physical resource block (physical resource block, PRB) corresponding to the first candidate PDCCH is the same as the PRB corresponding to the second candidate PDCCH;
  • the scrambling code sequence of the first candidate PDCCH is the same as the scrambling code sequence of the second candidate PDCCH; for example, the sequence used to scramble the downlink control information carried on the first candidate PDCCH is the same as the sequence used to scramble the The sequence of the downlink control information carried on the second candidate PDCCH is the same;
  • the control resource set of the first candidate PDCCH is the same as the control resource set of the second candidate PDCCH; for example, the index of the control resource set associated with the SSS to which the first candidate PDCCH belongs is associated with the SSS to which the second candidate PDCCH belongs The index of the control resource collection of the same;
  • the size of the DCI load monitored on the first candidate PDCCH is the same as the size of the DCI load monitored on the second candidate PDCCH; for example, the DCI load used for terminal device decoding on the first candidate PDCCH is the same as that in The DCI load size used for terminal device decoding on the second candidate PDCCH is the same; wherein, the DCI load size can be determined based on the high-level parameter configuration of the SSS to which the candidate PDCCH belongs. Of course, the DCI load size can also be determined based on other methods. Applications are not limited.
  • the network device is constrained to perform scheduling restriction by the first condition. That is, the first condition may be predefined by the protocol. In an optional implementation manner, the first condition may also be described as: the terminal device does not expect to be configured to process "the following scenarios", or the terminal device does not expect to perform PDCCH decoding on overlapping resources in the "following scenarios” , or the terminal device does not expect to perform decoding on the second candidate PDCCH according to the configuration information of the SSS to which the associated candidate PDCCH (that is, the second candidate PDCCH) belongs in the "following scenarios", or the terminal device does not expect In the "following scenario", decoding is performed on the first candidate PDCCH according to the configuration information of the SSS to which the candidate PDCCH used for independent transmission (that is, the first candidate PDCCH) belongs.
  • the network device before the network device sends the first configuration information to the first terminal device, that is, when the network device determines the first configuration information according to the first condition, it needs to determine the first configuration information.
  • the first PDCCH candidate and the second PDCCH candidate do not satisfy at least one of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size.
  • the network device meets the protocol requirements only after being determined, and then sends the first configuration information to the first terminal device.
  • the network device determines that the first candidate PDCCH and the second candidate PDCCH do not satisfy at least one of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size, it may, but is not limited to, pass Determined in two ways:
  • Method a1 The network device first generates two candidate PDCCHs, and then judges whether the two candidate PDCCHs satisfy the same time-frequency resources, the same scrambling code sequence, the same control resource set, and the same DCI load size at the same time. If they are satisfied at the same time, the network The device modifies the two candidate PDCCH configurations until the two candidate PDCCHs do not satisfy the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size at the same time, thus obtaining that the first candidate PDCCH and the second candidate PDCCH do not meet the requirements At least one of the same time-frequency resources, the same scrambling code sequence, the same control resource set, and the same DCI load size.
  • the method a1 relatively flexible configuration can be realized, and at the same time, it can be ensured that the configuration does not exceed the processing capability of the terminal device for judging two candidate PDCCHs.
  • Method a2 The network device never configures one or more of the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same DCI load size of the first candidate PDCCH and the second candidate PDCCH The condition is met regardless of whether the remaining other conditions are met. Thus, it is obtained that the first PDCCH candidate and the second PDCCH candidate do not satisfy at least one of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size.
  • the complexity can be reduced and the system efficiency can be improved.
  • the foregoing method is only an example to illustrate the manner of determining the network device, and the network device may also perform determination in other manners.
  • it can be combined according to the preset configuration; or, for example, first determine the first candidate PDCCH, and then determine the second candidate PDCCH according to the first candidate PDCCH; or first determine the second candidate PDCCH, and then determine the first candidate PDCCH and other methods.
  • the way out is determined.
  • the configuration information of another candidate PDCCH may be determined according to attributes or values such as time-frequency resources, scrambling code sequences, control resource sets, and monitored DCI loads of a candidate PDCCH. This application is not limited.
  • the network device determines that the first PDCCH candidate and the second PDCCH candidate do not meet the requirements of the same time-frequency resource, the same scrambling code sequence, the same set of control resources, and the DCI load Before at least one of the same, the network device may also determine whether the first candidate PDCCH and the second candidate PDCCH are on a secondary cell (Scell) or on a span other than the first span within a time slot .
  • Scell secondary cell
  • the span there may be multiple ways to judge the span, for example, it may be to judge the start OFDM symbol or the end OFDM symbol position of the span where the first candidate PDCCH and the second candidate PDCCH are located, or it may be to judge The sequence numbers of the spans in which the first candidate PDCCH and the second candidate PDCCH are located may of course be in other manners, which are not listed here.
  • the information instructing the first terminal device to monitor the candidate PDCCH based on the time span and the configuration information of the first PDCCH candidate and the second PDCCH candidate may be sent in one message or in two messages.
  • Step 902 The network device sends the first configuration information to the first terminal device, and correspondingly, the first terminal device receives the first configuration information from the network device.
  • the information included in the first configuration information indicating that the second terminal device monitors a candidate PDCCH based on a time span may be configured through a parameter R16 monitoring capability (r16monitoringcapability), or the first configuration information is this parameter, Alternatively, the first configuration information may also be implemented in other ways, which is not limited in this application.
  • the first terminal device may be the above-mentioned first-type terminal device, or may be the above-mentioned second-type terminal device, and this application does not limit the first terminal device.
  • the first type of terminal device and the second type of terminal device in the above description are only introduced for the sake of simple description, and there may be other descriptions, and this description is not limited to the terminal device.
  • a terminal device belongs to the first type of terminal device, it actually means that the terminal device supports checking whether the two candidate PDCCHs satisfy the requirements of the same time-frequency resource in a time span other than the first time span.
  • the same scrambling code sequence, the same control resource set, and the same DCI load size when describing that a terminal device belongs to the second type of terminal device, it actually means that the terminal device does not support time spans other than the first time span In terms of the span, it is judged whether the two candidate PDCCHs satisfy the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same DCI load size.
  • the first terminal device may perform the following Step 903a.
  • the first terminal device when the first terminal device belongs to the second type of terminal device, the first terminal device performs the following step 903a after receiving the first configuration information; When the first terminal device belongs to the first type of terminal device, the first terminal device executes the following step 903b after receiving the first configuration information.
  • the first terminal device may also determine whether the first candidate PDCCH and the second candidate PDCCH are on a Scell or within a time slot On other spans except the first span.
  • the span may be to judge the start OFDM symbol or the end OFDM symbol position of the span where the first candidate PDCCH and the second candidate PDCCH are located, or it may be to judge The sequence numbers of the spans in which the first candidate PDCCH and the second candidate PDCCH are located may of course be in other manners, which are not listed here.
  • the first terminal device when the first terminal device belongs to the second type of terminal device, before the first terminal device receives the first configuration information from the network device, the first terminal device sends The network device sends first capability information, where the first capability information indicates that the first terminal device does not support whether two candidate PDCCHs satisfy the requirement of the same time-frequency resource in a time span other than the first time span. 1. Judging that the scrambling code sequence is the same, the control resource set is the same, and the DCI load size is the same.
  • the two candidate PDCCHs in the above-mentioned "judgment whether the two candidate PDCCHs satisfy the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size" may refer to Two candidate PDCCHs among all candidate PDCCHs on any time span other than the first time span.
  • the principles involved in the following are the same, and the following can refer to each other.
  • Step 903a The first terminal device decodes the first PDCCH candidate and the second PDCCH candidate.
  • decoding a certain candidate PDCCH may also be understood as performing decoding on the certain candidate PDCCH according to the configuration information of the SSS to which the certain candidate PDCCH belongs. The following is similar to the localities, which can be referred to each other.
  • Step 903b When the first terminal device determines that the first candidate PDCCH and the second candidate PDCCH meet some of the conditions of the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same DCI load size, determine the The configuration information of the first PDCCH candidate and the second PDCCH candidate included in the first configuration information is incorrect information.
  • some of the conditions among the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same load size of downlink control information DCI may be the conditions determined through negotiation between the network device and the first terminal device, or Communication protocol predefined conditions.
  • the first terminal device does not expect the first candidate PDCCH and the second candidate PDCCH to meet some of the conditions of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same downlink control information DCI load size.
  • the first terminal device only judges part of the conditions, so that the first terminal device can save costs.
  • the first terminal device may also determine that the first candidate PDCCH and the second candidate PDCCH satisfy the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same downlink control information DCI load size. When all conditions are met, it is determined that the configuration information of the first PDCCH candidate and the second PDCCH candidate included in the first configuration information is error information.
  • the second A terminal device does not decode the first candidate PDCCH and/or the second candidate PDCCH; or, the first terminal device does not decode any of the associated candidate PDCCHs used for repeated transmission.
  • the first terminal device may not monitor a candidate PDCCH for independent transmission (ie, the first candidate PDCCH); or, the first terminal device may not monitor one of the associated candidate PDCCHs for repeated transmission a candidate PDCCH (that is, the second candidate PDCCH); or, the first terminal device may not monitor the candidate PDCCH for independent transmission (that is, the first candidate PDCCH) and the associated candidate PDCCH for repeated transmission A candidate PDCCH (that is, the second candidate PDCCH); or, the first terminal device may not decode or monitor the candidate PDCCH for independent transmission according to the configuration information of the SSS to which the candidate PDCCH for independent transmission belongs Behavior; or, the first terminal device may not decode one of the associated candidate PDCCHs for repeated transmission according to the configuration information of the SSS to which one of the associated candidate PDCCHs for repeated transmission belongs, or Listening behavior.
  • a candidate PDCCH for independent transmission ie, the first candidate PDCCH
  • the first terminal device may not monitor one of the associated candidate PDCCHs for repeated
  • one candidate PDCCH among the candidate PDCCH for independent transmission and the associated candidate PDCCH for repeated transmission satisfies the "count one" condition.
  • the first terminal device may not monitor the associated candidate PDCCHs (that is, the two candidate PDCCHs) used for repeated transmission.
  • not monitor can also be replaced by not decode (not decode) or not attempt to decode (not attempt to decode) or skip decoding (skip decoding).
  • the first terminal device can accurately determine whether the monitored DCI is repeatedly transmitted by PDCCH or independently transmitted by PDCCH, so as to avoid the problem of ambiguity in judging the reference point of scheduling data.
  • Fig. 10 shows another communication method provided by the embodiment of the present application, which is applicable to the scenarios shown in Fig. 1a-Fig. 1d.
  • the specific process of the method may include:
  • Step 1001 A network device sends second configuration information to a second terminal device, and correspondingly, the second terminal device receives the second configuration information from the network device.
  • the second configuration information includes information indicating that the second terminal device monitors candidate PDCCHs based on a time span, and configuration information including a third candidate PDCCH and a fourth candidate PDCCH; the third candidate PDCCH and the fourth candidate PDCCH The fourth candidate PDCCH satisfies the same time-frequency resources, the same scrambling code sequence, the same control resource set, and the same downlink control information DCI load size; the third candidate PDCCH and the fourth candidate PDCCH are located in one time slot except the first On a time span other than one time span, the third candidate PDCCH and the fourth candidate PDCCH are located on the same time span, the third candidate PDCCH is a PDCCH used for independent transmission, and the fourth candidate PDCCH It is a candidate PDCCH among the associated candidate PDCCHs used for repeated transmission, and in the embodiment of the present application, the fourth candidate PDCCH may be any candidate PDCCH among the associated candidate PDCCHs used for repeated transmission.
  • the information included in the second configuration information indicating that the second terminal device monitors the candidate PDCCH based on the time span may be configured through the parameter r16monitoringcapability.
  • the second terminal device may send the second capability information to the network device, so
  • the second capability information indicates that the second terminal device supports whether two candidate PDCCHs satisfy the requirements of the same time-frequency resources, the same scrambling code sequence, and the same set of control resources in a time span other than the first time span. Judgment that the DCI loads are the same size.
  • the network device may determine the second configuration information according to the second capability information.
  • the configuration information of the third candidate PDCCH and the fourth candidate PDCCH in the second configuration information in addition to being configured as the first
  • the three candidate PDCCHs and the fourth candidate PDCCH can be configured so that the third candidate PDCCH and the fourth candidate The candidate PDCCHs satisfy some of the conditions of the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same load size of downlink control information DCI, or it can also be configured such that the third candidate PDCCH and the fourth candidate PDCCH are not Satisfy all the conditions of the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same load size of the downlink control information DCI.
  • the second terminal device monitors the information of the candidate PDCCH based on the time span, and the configuration information of the third candidate PDCCH and the fourth candidate PDCCH can be sent in one message, or two or more pieces of configuration information can be sent of.
  • Step 1002 The second terminal device determines, according to the second configuration information, that the third candidate PDCCH and the fourth candidate PDCCH satisfy the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the DCI load size Some of the conditions in the same.
  • the second terminal device determines that the third candidate PDCCH and the fourth candidate PDCCH meet some of the conditions of the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same DCI load size
  • the second terminal device determines that the third candidate PDCCH and the fourth candidate PDCCH can be recorded as a blind detection, so that the second terminal device can determine by judging some conditions, which can reduce the number of second terminal devices s expenses.
  • the third candidate PDCCH and the fourth candidate PDCCH satisfy some of the conditions of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size, which may be the network device and
  • the second terminal device negotiates a determined condition, or may be a predefined condition in a communication protocol.
  • the second terminal device may also determine whether the third PDCCH candidate and the fourth PDCCH candidate are on a Scell or a On other spans in the time slot except the first span. In one embodiment, there may be multiple ways to judge the span, for example, it may be to judge the start OFDM symbol or the end OFDM symbol position of the span where the third candidate PDCCH and the fourth candidate PDCCH are located, or it may be to judge The sequence numbers of the spans in which the third candidate PDCCH and the fourth candidate PDCCH are located may of course be in other manners, which will not be listed here.
  • the second terminal device may also determine, according to the second configuration information, that the third candidate PDCCH and the fourth candidate PDCCH satisfy the same time-frequency resource, the same scrambling code sequence, and the same set of control resources, All the conditions in which the DCI loads are the same, and the determination by the second terminal device of the third PDCCH candidate and the fourth PDCCH candidate may be recorded as a blind detection.
  • the second terminal device judges that the third candidate PDCCH and the fourth candidate PDCCH satisfy some of the conditions of the same time-frequency resource, the same scrambling code sequence, the same set of control resources, and the same DCI load size, Or when all conditions are met, the third candidate PDCCH and the fourth candidate PDCCH satisfy the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same DCI load size.
  • the third candidate PDCCH and the fourth candidate PDCCH satisfy the same time-frequency resources, the same scrambling code sequence, the same set of control resources, and the same DCI load size.
  • Step 1003 The second terminal device decodes the third PDCCH candidate and/or the fourth PDCCH candidate.
  • the second terminal device decodes the third candidate PDCCH assuming that the network device sends a PDCCH on the third candidate PDCCH; or the second terminal device assumes that the network device is in The PDCCH is sent on the fourth candidate PDCCH, and the fourth candidate PDCCH is decoded.
  • the second terminal device can accurately determine whether the monitored DCI is repeatedly transmitted by PDCCH or independently transmitted by PDCCH, so as to avoid the problem of ambiguity in judging the reference point of scheduling data.
  • Fig. 11 shows another communication method provided by the embodiment of the present application, which is applicable to the scenarios shown in Fig. 1a-Fig. 1d.
  • the specific process of the method may include:
  • Step 1101 The terminal device sends capability information to the network device, and the capability information indicates whether the terminal device supports performing two candidate PDCCHs on a time span other than the first time span, whether the time-frequency resources are the same, Judgment that the scrambling code sequence is the same, the control resource set is the same, and the DCI load size is the same.
  • the capability information indicates that the terminal device supports whether two candidate PDCCHs satisfy the same time-frequency resource, the same scrambling code sequence, the same control resource set, It is judged that the DCI loads are the same, or the capability information indicates that the terminal device does not support whether the two candidate PDCCHs satisfy the requirements of the same time-frequency resource and scrambling code sequence in a time span other than the first time span Judgment that they are the same, the set of control resources is the same, and the size of the DCI load is the same.
  • Step 1102 The network device determines configuration information according to the capability information.
  • the network device can send different configuration information for different terminal devices.
  • the network device can determine the configuration information according to the method of the current protocol R17. At this point, for the configuration information, refer to the related description of the second configuration information in the embodiment shown in FIG. 10 .
  • the third candidate PDCCH and the fourth candidate PDCCH may satisfy the same time-frequency resource, the same scrambling code sequence, the same control The resource sets are the same, and the downlink control information DCI load size is the same; or, the third candidate PDCCH and the fourth candidate PDCCH may meet the requirements of the same time-frequency resources, the same scrambling code sequence, the same control resource set, and the downlink control information DCI load size.
  • the third candidate PDCCH and the fourth candidate PDCCH may not satisfy all the conditions in the same time-frequency resources, the same scrambling code sequence, the same control resource set, and the same downlink control information DCI load size .
  • the terminal device can perform corresponding operations according to the current method in R17, for example, when the terminal device judges whether the third candidate PDCCH and the fourth candidate PDCCH meet the requirements of The frequency resources are the same, the scrambling code sequence is the same, the control resource set is the same, and the downlink control information DCI load size is the same.
  • the terminal device may also perform operations of the second terminal device in the embodiment shown in FIG. 10 , which may refer to each other, and will not be described in detail here.
  • the network device may determine the configuration information according to the method in the embodiment shown in FIG. 9 .
  • the configuration information refer to the related description of the first configuration information in the embodiment shown in FIG. 9 .
  • the terminal device may perform the operation of step 903a in the embodiment shown in FIG. 9 .
  • the terminal device may perform the operation of step 903a in the embodiment shown in FIG. 9 .
  • the terminal device can accurately determine whether the monitored DCI is repeatedly transmitted by PDCCH or independently transmitted by PDCCH, so as to avoid the problem of ambiguity in judging the reference point of scheduling data.
  • the communication device 1200 may include a transceiver unit 1201 and a processing unit 1202 .
  • the transceiver unit 1201 is used for the communication device 1200 to receive information (message or data) or send information (message or data), and the processing unit 1202 is used to control and manage the actions of the communication device 1200 .
  • the processing unit 1202 can also control the steps performed by the transceiver unit 1201.
  • the communication device 1200 may specifically be the network device in the foregoing embodiments, a processor of the network device, or a chip, or a chip system, or a functional module, etc.; or, the communication device 1200 may specifically be The first terminal device in the above embodiment, the processor in the first terminal device, or a chip, or a chip system, or a functional module, etc.; or, the communication device 1200 may specifically be the first terminal device in the above embodiment The second terminal device, the processor in the second terminal device, or a chip, or a chip system, or a functional module, etc.
  • the communication device 1200 when used to implement the functions of the network device in the embodiments described in FIGS. 9-10 , it may specifically include:
  • the processing unit 1202 is configured to determine first configuration information according to a first condition; the first configuration information includes information indicating that the first terminal device monitors a candidate physical downlink control channel PDCCH based on a time span, and includes the first candidate PDCCH and the second Configuration information of two candidate PDCCHs, the first condition is that the first candidate PDCCH and the second candidate PDCCH do not satisfy the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same downlink control information DCI load size at least one of: the first candidate PDCCH and the second candidate PDCCH are located in a time slot other than the first time span, and the first candidate PDCCH and the second candidate PDCCH are located in the same In a time span, the first candidate PDCCH is a PDCCH used for independent transmission, and the second candidate PDCCH is any candidate PDCCH among associated candidate PDCCHs used for repeated transmission; The first terminal device sends the first configuration information.
  • the transceiving unit 1201 is further configured to: receive the first configuration information from the first terminal device before the processing unit 1202 determines the first configuration information according to the first condition. Capability information, where the first capability information indicates that the first terminal device does not support whether two candidate PDCCHs satisfy the requirements of the same time-frequency resource, the same scrambling code sequence, Judgment that the set of control resources is the same and the size of the DCI load is the same.
  • the transceiving unit 1201 is further configured to receive second capability information from the second terminal device, the second capability information indicating that the second terminal device supports a time span other than the first time span above, it is judged whether the two candidate PDCCHs meet the requirements of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size; furthermore, the processing unit 1202 is further configured to determine the second PDCCH according to the second capability information.
  • the second configuration information includes configuration information indicating that the second terminal device monitors a candidate PDCCH based on a time span, and includes a third PDCCH candidate and a fourth PDCCH candidate, the third PDCCH candidate and the first PDCCH candidate
  • the four candidate PDCCHs satisfy the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size; the third candidate PDCCH and the fourth candidate PDCCH are located in the one slot except the first one
  • the third candidate PDCCH and the fourth candidate PDCCH are located on the same time span, the third candidate PDCCH is a PDCCH used for independent transmission, and the fourth candidate PDCCH is a PDCCH used for Any candidate PDCCH among the associated candidate PDCCHs for repeated transmission.
  • the communication device 1200 when used to implement the functions of the first terminal device in the embodiment described above in FIG. 9 , it may specifically include:
  • the transceiver unit 1201 is configured to receive first configuration information from a network device, the first configuration information includes information indicating that the first terminal device monitors a candidate physical downlink control channel PDCCH based on a time span, and includes the first candidate PDCCH and Configuration information of the second candidate PDCCH, the first candidate PDCCH and the second candidate PDCCH do not satisfy at least one of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same downlink control information DCI load size;
  • the first candidate PDCCH and the second candidate PDCCH are located on a time span other than the first time span in a time slot, and the first candidate PDCCH and the second candidate PDCCH are located on the same time span,
  • the first candidate PDCCH is a PDCCH used for independent transmission, and the second candidate PDCCH is any candidate PDCCH among associated candidate PDCCHs used for repeated transmission;
  • the processing unit 1202 is configured to process the first candidate PDCCH Decoding is performed separately with the second candidate
  • the transceiving unit 1201 is further configured to send first capability information to the network device before receiving the first configuration information from the network device, the first capability information Instructing the first terminal device not to support whether two candidate PDCCHs satisfy the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size in a time span other than the first time span judgment.
  • the communication device 1200 when used to implement the functions of the second terminal device in the embodiment described above in FIG. 10 , it may specifically include:
  • the transceiver unit 1201 is configured to receive second configuration information from a network device, the second configuration information includes information indicating that the second terminal device monitors a candidate physical downlink control channel PDCCH based on a time span, and includes a third candidate PDCCH and Configuration information of the fourth candidate PDCCH; the third candidate PDCCH and the fourth candidate PDCCH satisfy the same time-frequency resource, the same scrambling code sequence, the same set of control resources, and the same downlink control information DCI load size; the third candidate The PDCCH and the fourth candidate PDCCH are located on a time span other than the first time span in a slot, the third candidate PDCCH and the fourth candidate PDCCH are located on the same time span, and the third candidate The PDCCH is a PDCCH for independent transmission, and the fourth candidate PDCCH is any one of the associated candidate PDCCHs for repeated transmission; the processing unit 1202 is configured to determine the fourth candidate according to the second configuration information The three candidate PDCCHs and the fourth candidate PDCCH meet some of the conditions
  • the transceiving unit 1201 before receiving the second configuration information from the network device, is further configured to send second capability information to the network device, the second capability information Instructing the second terminal device to support whether the two candidate PDCCHs meet the requirements of the same time-frequency resource, the same scrambling code sequence, the same control resource set, and the same DCI load size in a time span other than the first time span judge.
  • the third candidate PDCCH and the fourth candidate PDCCH satisfy some of the conditions of the same time-frequency resource, the same scrambling code sequence, the same set of control resources, and the same DCI load size, which is the network device and the The condition determined through negotiation of the second terminal device, or the condition predefined in the communication protocol.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the communication device 1300 may include a transceiver 1301 and a processor 1302 .
  • the communication device 1300 may further include a memory 1303 .
  • the memory 1303 may be set inside the communication device 1300 , and may also be set outside the communication device 1300 .
  • the processor 1302 may control the transceiver 1301 to receive and send information, messages or data, and the like.
  • the processor 1302 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor 1302 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the transceiver 1301 , the processor 1302 and the memory 1303 are connected to each other.
  • the transceiver 1301, the processor 1302 and the memory 1303 are connected to each other through a bus 1304;
  • the bus 1304 can be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 13 , but it does not mean that there is only one bus or one type of bus.
  • the memory 1303 is used to store programs and the like.
  • the program may include program code including computer operation instructions.
  • the memory 1303 may include RAM, and may also include non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 1302 executes the application program stored in the memory 1303 to realize the above functions, thereby realizing the functions of the communication device 1300 .
  • the communication apparatus 1300 may be the network device in the above embodiment; it may also be the first terminal device in the above embodiment; it may also be the second terminal device in the above embodiment.
  • the transceiver 1301 can implement the The transceiving operation to be performed; the processor 1302 may implement other operations performed by the network device in the embodiment shown in FIG. 9 or FIG. 10 except for the transceiving operation.
  • the processor 1302 may implement other operations performed by the network device in the embodiment shown in FIG. 9 or FIG. 10 except for the transceiving operation.
  • the transceiver 1301 when the communication device 1300 realizes the functions of the first terminal device in the embodiment shown in FIG. 9 , the transceiver 1301 can realize the function executed by the first terminal device in the embodiment shown in FIG. 9 The transceiving operation; the processor 1302 may implement other operations except the transceiving operation performed by the first terminal device in the embodiment shown in FIG. 9 .
  • the processor 1302 may implement other operations except the transceiving operation performed by the first terminal device in the embodiment shown in FIG. 9 .
  • the transceiver 1301 when the communication device 1300 realizes the functions of the second terminal device in the embodiment shown in FIG. 10 , the transceiver 1301 can implement the function executed by the second terminal device in the embodiment shown in FIG. 10 The transceiving operation; the processor 1302 may implement other operations performed by the second terminal device in the embodiment shown in FIG. 10 except for the transceiving operation.
  • the processor 1302 may implement other operations performed by the second terminal device in the embodiment shown in FIG. 10 except for the transceiving operation.
  • an embodiment of the present application provides a communication system, and the communication system may include the network device, the first terminal device, the second terminal device, and the like involved in the above embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, including a processor, the processor is coupled to a memory, and is configured to call a program in the memory so that the chip implements the communication method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, the chip is coupled with a memory, and the chip is used to implement the communication method provided in the foregoing method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,以实现终端设备确定监听到的DCI是PDCCH重复传输还是PDCCH独立传输的。网络设备根据第一条件确定第一配置信息,向第一终端设备发送第一配置信息;第一配置信息含指示第一终端设备基于时间跨度监听候选PDCCH的信息及第一候选PDCCH和第二候选PDCCH的配置信息。第一条件为第一候选PDCCH和第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中至少一个;第一候选PDCCH和第二候选PDCCH位于一个时隙中除第一个时间跨度以外的同一个时间跨度,第一候选PDCCH用于独立传输,第二候选PDCCH为用于重复传输的关联候选PDCCH中任一个。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年12月31日提交中国专利局、申请号为202111672841.3、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在新无线(new radio,NR)系统中,为了提高下行控制信息(downlink control information,DCI)的传输可靠性,采用PDCCH重复传输(PDCCH repetition),1个DCI传输2次。在重复传输场景中,重复传输的DCI对应的两个关联的候选物理下行控制信道(physical downlink control channel,PDCCH)中的至少一个可能会与一个独立传输的PDCCH之间满足记为一次盲检的四个条件(即时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同),这种情况可以称为传输参考点模糊场景。而为了保证网络设备和终端设备在传输参考点模糊场景下的理解一致,也即网络设备和终端设备确定的传输参考点一致,以正确进行数据传输,协议规定网络设备和终端设备均按照重复传输的PDCCH的方式来确定传输参考点。
目前,终端设备监听候选PDCCH的一种方式是基于时间跨度(span)监听。其中,每个时隙根据PDCCH监听时机(PDCCH monitoring occasion,PDCCH MO)划分出一个或多个span,每个span内包含一个或多个候选PDCCH。而终端设备在确定两个候选PDCCH是否记为一次盲检时,需要判断每个候选PDCCH和其他候选PDCCH是否满足记为一次盲检的四个条件,这样就需要遍历所有配置的候选PDCCH,会造成终端设备的处理复杂度非常高。为了降低处理复杂度,协议规定一些终端设备可以在一个时隙内除了第一个span以外的其他span上不进行判断是否两个候选PDCCH记为一次盲检的判断。
然而,在终端设备在一个时隙内除了第一个span以外的其他span上不进行判断是否两个候选PDCCH记为一次盲检的判断的情况下,当重复传输的DCI对应的一个关联的PDCCH和一个独立传输的PDCCH的配置满足记为一次盲检的四个条件时,由于终端设备不会判断,所以会导致终端设备无法判断监听到的DCI是PDCCH重复传输还是PDCCH独立传输,这样对于传输参考点的确定仍然会存在不确定的情况,从而影响数据传输。
发明内容
本申请提供一种通信方法及装置,用以实现终端设备可以确定监听到的DCI是PDCCH重复传输的还是PDCCH独立传输的。
第一方面,本申请提供了一种通信方法,该方法可以包括:网络设备根据第一条件确定第一配置信息后,向第一终端设备发送所述第一配置信息;其中,所述第一配置信息包 含指示第一终端设备基于时间跨度监听候选PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息;所述第一条件为所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的至少一个;所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH。
通过上述方法,可以使第一终端设备准确地确定监听到的DCI是PDCCH重复传输的还是PDCCH独立传输的,避免对调度数据的参考点判断出现模糊的问题。
在一个可能的设计中,所述网络设备根据所述第一条件确定所述第一配置信息之前,可以从所述第一终端设备接收第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。这样,所述网络设备可以根据所述第一终端设备的能力为所述第一终端设备配置准确的第一配置信息。
在一个可能的设计中,所述网络设备还可以从第二终端设备接收第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断;进而,所述网络设备可以根据所述第二能力信息确定第二配置信息,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选PDCCH,以及包含第三候选PDCCH和第四候选PDCCH的配置信息,所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于所述一个时隙中除所述第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH。这样,所述网络设备可以根据所述第二终端设备的能力为所述第二终端设备配置准确的第二配置信息。
第二方面,本申请提供了一种通信方法,该方法可以包括:第一终端设备从网络设备接收第一配置信息,所述第一配置信息包含指示所述第一终端设备基于时间跨度监听候选PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息,所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的至少一个;所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;然后,所述第一终端设备对所述第一候选PDCCH和所述第二候选PDCCH分别进行译码;或者,所述第一终端设备确定所述第一候选PDCCH和所述第二候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中部分条件时,确定所述第一配置信息包含的所述第一候选PDCCH和所述第二候选PDCCH的配置信息为错误信息。
通过上述方法,可以使第一终端设备准确地确定监听到的DCI是PDCCH重复传输的还是PDCCH独立传输的,避免对调度数据的参考点判断出现模糊的问题。
在一个可能的设计中,在所述第一终端设备从所述网络设备接收所述第一配置信息之前,所述第一终端设备向所述网络设备发送第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。这样,可以使网络设备根据所述第一终端设备的能力配置准确的第一配置信息。
在一个可能的设计中,在所述第一终端设备确定所述第一配置信息包含的所述第一候选PDCCH和所述第二候选PDCCH的配置信息为错误信息后,所述第一终端设备对所述第一候选PDCCH和/或所述第二候选PDCCH不进行译码,或跳过译码(skip decoding);或者,所述第一终端设备对所述用于重复传输的关联候选PDCCH均不进行译码。这样可以使第一终端设备避免对调度数据的参考点判断出现模糊的问题。
第三方面,本申请提供了一种通信方法,该方法可以包括:第二终端设备从网络设备接收第二配置信息,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第三候选PDCCH和第四候选PDCCH的配置信息;所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;之后,所述第二终端设备根据所述第二配置信息,确定所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件;进而,所述第二终端设备对所述第三候选PDCCH和/或所述第四候选PDCCH进行译码。
通过上述方法,可以使第二终端设备准确地确定监听到的DCI是PDCCH重复传输的还是PDCCH独立传输的,避免对调度数据的参考点判断出现模糊的问题。
在一个可能的设计中,在所述第二终端设备从所述网络设备接收所述第二配置信息之前,所述第二终端设备可以向所述网络设备发送第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。这样可以使网络设备根据所述第二终端设备的能力准确为所述第二终端设备配置第二配置信息。
在一个可能的设计中,所述第三候选PDCCH和所述第四候选PDCCH满足的时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件,为所述网络设备和所述第二终端设备协商确定的条件,或者为通信协议预定义的条件。
第四方面,本申请还提供了一种通信装置,所述通信装置可以是网络设备,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信息、消息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第五方面,本申请还提供了一种通信装置,所述通信装置可以是第一终端设备,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信息、消息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第六方面,本申请还提供了一种通信装置,所述通信装置可以是第二终端设备,该通信装置具有实现上述第三方面或第三方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第三方面或第三方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发信息、消息或数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第三方面或第三方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第七方面,本申请实施例提供了一种通信系统,可以包括上述提及的网络设备、第一终端设备和第二终端设备等。
第八方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计中,或第二方面及其任一可能的设计中,或第三方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第九方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码或指令的,当计算机程序代码或指令在计算机上运行时,使得上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中,或者上述第三方面或第三方面任一种可能的设计中所述的方法被执行。
第十方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中,或者上述第三方面或第三方面任一种可能的设计中所述的方法。
上述第四方面至第十方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或者第二方面或第二方面中的各种可能方案,或者第三方面或第三方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1a为本申请提供的一种通信场景的示意图;
图1b为本申请提供的另一种通信场景的示意图;
图1c为本申请提供的另一种通信场景的示意图;
图1d为本申请提供的另一种通信场景的示意图;
图2为本申请提供的一种TRP1和TRP2作为协作基站同时为一个终端设备服务的示意图;
图3为本申请提供的一种两个SSS间的候选PDCCH重复传输的示意图;
图4为本申请提供的一种PDCCH重复传输与PDCCH独立传输的参考点模糊场景的示意图;
图5为本申请提供的另一种PDCCH重复传输与PDCCH独立传输的参考点模糊场景的示意图;
图6为本申请提供的一种PDCCH MO的示意图;
图7为本申请提供的一种一个slot内的span位置确定的示意图;
图8为本申请提供的一种参考点模糊场景示意图;
图9为本申请提供的一种通信方法的流程图;
图10为本申请提供的另一种通信方法的流程图;
图11为本申请提供的另一种通信方法的流程图;
图12为本申请提供的一种通信装置的结构示意图;
图13为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以实现终端设备可以确定监听到的DCI是PDCCH重复传输的还是PDCCH独立传输的。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复 之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
本申请提供的通信方法可以应用于多种通信系统,例如长期演进(long term evolution,LTE)系统、新无线(new radio,NR)系统、无线局域网络(eireless local area networks,WLAN)、第五代(5th generation,5G)通信系统、第六代(6th generation,6G)通信系统或未来的其他演进系统等。示例性的,本申请可以适用于如下的多种通信场景:网络设备和终端设备之间或终端设备之间点对点传输、网络设备和终端设备的多跳或中继(relay)传输、多个网络设备和终端设备的双连接(dual connectivity,DC)或多连接等场景。
示例性的,图1a-图1d示出了本申请实施例提供的通信方法适用的通信场景的示意图,各通信场景中可以包括网络设备和终端设备。其中,图1a示出了网络设备和终端设备之间点对点单连接场景。图1b示出了网络设备和终端设备的多跳单连接场景。图1c示出了网络设备和终端设备的DC双连接场景。图1d示出了网络设备和终端设备之间多跳多连接场景。
所述网络设备为具有无线收发功能的设备或可设置于该网络设备的芯片、芯片系统、功能模块等,该网络设备包括但不限于:基站(base station,BS)、基站(evolved node B,eNB)、基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。所述终端设备可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请的实施例中的终端设备可以包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备,例如可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端等等,也可以是能够设置于以上设备的芯片或芯片模组(或芯片系统)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片、芯片系统或功能模块等统称为终端设备。
需要说明的是,图1a-图1d仅是通信场景(也可以称为通信系统)的示例,不作为对本申请适用的通信系统的限定。在本申请中不限定上述通信场景中的上行、下行、接入链路、回传(backhaul)链路、侧链路(sidelink)等传输。
需要说明的是,图1a-图1d所示的通信场景中示出的设备的数量和类型仅为示例。在各通信场景中还可以有更多设备,例如核心网设备等,在图1a-图1d中不再示出。
为方便理解,下面先对本申请涉及到的一些相关技术进行简单介绍。
1、候选PDCCH
候选PDCCH可以理解为终端设备DCI盲检的基本粒度,当终端设备在一个候选PDCCH上只监听一种长度的DCI负载长度时,一个候选PDCCH对应一次DCI盲检,或者一个候选PDCCH对应一个被监听的候选PDCCH,或者一个候选PDCCH计为用于监听的候选PDCCH,或者一个DCI检测进程(包括执行信息比特的解析译码判决等操作),并且一个候选PDCCH对应该CORESET上的特定的物理资源。
其中,候选PDCCH数量体现了终端设备检测DCI的复杂度,或者DCI处理运算的开销。每个候选PDCCH对应的物理资源大小和位置可以通过控制信道单元(control channel element,CCE)的数量和位置确定。
2、PDCCH重复传输
对于PDCCH重复传输有如下定义:编码/速率匹配操作是基于一个PDCCH重复传输,其他的PDCCH重复传输相同的编码比特。每次重复传输都是采用相同的聚合级别(aggregation level,AL)或相同的CCE个数,重复传输相同的编码比特和相同的DCI负载信息(即DCI比特内容相同)。
可以利用多TRP联合发送机制提升DCI传输的可靠性。具体的,对于同一个DCI信息比特(信源),经过上述编码方式形成编码比特后,由多个TRP分别在不同的时频资源上发送。终端设备可以分别在上述不同的时频资源上接收多份编码比特,然后进行联合解析操作获取DCI信息比特(信源)。例如,终端设备分别在上述不同的时频资源上做信道估计并对接收信号进行解调,获取似然值(软值比特信息)进行合并。通过上述操作可以提升传输的信噪比(signal-to-noise ratio,SNR),从而提升DCI传输可靠性。同时,上述 操作还可以避免由于终端设备到某一个TRP的传输链路由于信道变化而发生中断无法传输DCI的问题。
如图2所示,TRP1和TRP2作为协作基站同时为一个终端设备服务。TRP1发送的DCI对应控制资源集合(control resource set,CORESET)1(其中配置了第一准共址假设(quasi co-location assumption,QCL assumption),对应终端设备到TRP1的信道特征),TRP2下发的DCI对应CORESET2(其中配置了第二QCL假设,对应终端设备到TRP2的信道特征)。两个CORESET可能配置完全/部分重叠/完全不重叠以提升DCI发送灵活性保证频选调度增益。两个CORESET上分别下发的两个DCI分别承载在两个候选PDCCH上,这两个候选PDCCH所属的搜索空间集合(search space set,SSS)存在关联关系(linkage/linked),终端设备在这两个候选PDCCH上接收到的软值比特信息可以做合并处理(即软合并操作)。也可以理解为这两个候选PDCCH具有关联关系。这两个候选PDCCH承载的DCI为用于重复传输的。
进一步的,为防止终端设备执行过多的软合并操作降低终端设备复杂度,需要定义两个CORESET分别关联的候选PDCCH之间的关联关系。对于PDCCH重复传输,目前协议支持一个SSS内的所有候选PDCCH都用于PDCCH重复传输,不包含发送独立PDCCH的候选PDCCH。如图3所示,网络设备在用于PDCCH重复发送的两个SSS上通过无线资源控制(radio resource control,RRC)参数配置关联关系,即SSS#i和SSS#j可以称之为关联的SSS。用于PDCCH重复传输的候选PDCCH分属于两个SSS。假设SSS#i包含聚集级别AL4和AL8,分别对应的候选PDCCH个数为4个和2个。根据PDCCH重复传输的定义,那么AL4的PDCCH重复传输只能通过两个AL4的候选PDCCH来实现,而不能是1个AL4的候选PDCCH和1个AL8的候选PDCCH。因此,假设存在某种预定义的PDCCH重复传输映射关系,可以得到图3中所示的关联关系。对于AL8而言,SSS#i的候选PDCCH索引1与SSS#j的候选PDCCH索引1一起进行PDCCH重复传输,SSS#i的候选PDCCH索引2与SSS#j的候选PDCCH索引2一起进行PDCCH重复传输,上述两对PDCCH分别称之为关联的候选PDCCH。对于AL16而言,SSS#i的候选PDCCH索引1与SSS#j的候选PDCCH索引1一起进行PDCCH重复传输。从上述两个举例可以看出,一个SSS内的所有候选PDCCH都是用于PDCCH重复传输的,而不包含用于发送独立PDCCH的候选PDCCH。如果网络设备要发送独立PDCCH,只能通过配置其他SSS来实现,例如配置SSS#k。
3、记为(或计为)一次盲检(count one)
第三代合作伙伴项目(the 3rd generation partnership project,3gpp)通信协议TS38.213中规定了1个候选PDCCH是否计为一次盲检的计算规则(可称做count one操作)。“一次盲检”在协议中可以叫做“一个用于监听的候选PDCCH”或“计数为一个用于监听的候选PDCCH”。如果候选PDCCH 1和候选PDCCH 2同时满足下面四个条件:相同的聚集级别以及相同的起始CCE位置(也可以理解为相同的时频资源)、相同的扰码序列(scrambling sequence)、相同的CORESET、相同的DCI负载大小,则这两个候选PDCCH可以计数为一次盲检。也可理解为这两个候选PDCCH计数为一个用于监听的候选PDCCH。如果这两个候选PDCCH不满足上述四个条件的至少一个条件,则这两个候选PDCCH不计数为一次盲检,或这两个候选PDCCH不计数为一个用于监听的候选PDCCH,或这两个候选PDCCH计数为两次盲检,或这两个候选PDCCH计数为两个用于监听的候选PDCCH。
当终端设备判断两个候选PDCCH满足“count one”条件,即同时满足上述四个条件时,两个候选PDCCH对应的盲检次数可以计为一次,这样终端设备对这两个候选PDCCH只会执行一次译码操作。反之,如果终端设备判断两个候选PDCCH不满足“count one”条件,即不能同时满足上述四个条件时,两个候选PDCCH对应的盲检次数可以计为两次,这样终端设备对这两个候选PDCCH分别各执行一次译码操作,总共执行两次。
4、PDCCH重复传输参考点
对于PDCCH独立传输(individual PDCCH),以检测到PDCCH的候选PDCCH作为参考点(也称传输参考点或参考候选PDCCH(reference PDCCH candidate))。而对于PDCCH重复传输,两个关联的候选PDCCH上发送相同的PDCCH,终端设备可能只在第一个候选PDCCH上监听到PDCCH,也可能只在第二个候选PDCCH上监听到PDCCH,或者终端设备可能在两个候选PDCCH上都监听到PDCCH。此时,针对参考点的选择,例如PUSCH准备时间(N2),CSI计算时间(Z),计数下行分配指示(counter downlink assignment indicator,C-DAI)或者总共下行分配指示(total downlink assignment indicator,T-DAI)等等,目前协议有一些规定。例如,对于PUSCH准备时间(N2),CSI计算时间(Z),协议预定义在时域上,以结束时间较晚的候选PDCCH作为参考候选PDCCH;又例如,对于C-DAI或者T-DAI,协议预定义在时域上以PDCCH监听时机(起始OFDM符号)较早的候选PDCCH作为参考候选PDCCH;还例如,对于物理下行共享信道(physical downlink shared channel,PDSCH)映射类型B,当终端设备被配置高层参数ReferenceofSLIV-ForDCIFormat1_2,且接收到DCI格式1_2调度的PDSCH的K0=0时,协议预定义在时域上以PDCCH监听时机(起始OFDM符号)较晚的候选PDCCH作为参考候选PDCCH。需要说明的是,上述列举的参考点的选择仅为示例,参考点的选择还可以有其它方式,本申请不作限定。
5、传输参考点模糊场景
PDCCH重复传输与PDCCH独立传输的参考点模糊场景如图4或图5所示。其中,第一候选PDCCH和第二候选PDCCH是一对用于PDCCH重复传输的候选PDCCH,也称为一对关联的候选PDCCH。第三候选PDCCH为用于PDCCH独立传输的候选PDCCH。图4中,第二候选PDCCH与第三候选PDCCH满足count one的条件,即第二候选PDCCH与第三候选PDCCH计数为一个用于监听PDCCH的候选PDCCH。终端设备在第二候选PDCCH或第三候选PDCCH对应的时频资源上进行一次译码。图5中,第三候选PDCCH与第一候选PDCCH满足count one条件,即第一候选PDCCH与第三候选PDCCH计数为一个用于监听PDCCH的候选PDCCH。终端设备在第一候选PDCCH或第三候选PDCCH对应的时频资源上进行一次译码。
由于上述场景中,如果终端设备仅在第一候选PDCCH和第三候选PDCCH所在的时频资源上监听到PDCCH,而由于信道环境恶劣未能在第二候选PDCCH上监听到PDCCH,终端设备通过译码并不能够完全确定检测到的PDCCH是通过PDCCH重复传输发送的,还是通过PDCCH独立发送的,进而影响到后续调度参考点的问题。例如,如图5所示的场景中,终端设备无法确定检测到的PDCCH是网络设备通过PDCCH重复发送给终端设备的,还是通过PDCCH独立传输发送给终端设备的。假设网络设备是通过PDCCH重复发送给终端设备的,但是终端设备判断成是独立传输发送给终端设备的,那么网络设备和终端设备对参考点定义可能不同。例如网络设备判断第二候选PDCCH为参考点,而终端设备判断第三候选PDCCH为参考点,这样会造成后续数据传输的失败。
针对上述情况,标准会议经过讨论定义,图4和图5所示的场景中,参考点均按照PDCCH重复传输中参考点的定义方式来确定。这样网络设备和终端设备对于这种参考点模糊场景的理解保持一致,保证正确地进行数据传输。
6、时间跨度(span)
时间跨度(span)也可以叫做PDCCH监听时间跨度(PDCCH monitoring span)。
R16中,一个span图案(pattern)的确定规则包括:
(1)每个span都包含在1个单独的时隙(slot)内,即span不能跨slot的边界。
(2)span和span之间不能重叠。
(3)每个监听时机(PDCCH monitoring occasion,PDCCH MO)完全包含在1个span内。即1个PDCCH MO不能跨span的边界。这里的PDCCH MO表示的是1个终端设备盲检PDCCH的持续时间,通过1个SSS的监听起始位置和监听的这个SSS关联的CORESET联合确定。
例如,终端设备监听1个SSS的监听起始位置是1个slot内的第1个符号,这个SSS绑定了1个持续时间为3个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号长的CORESET,因此终端设备监听这个SSS的PDCCH MO为所在slot的前3个OFDM符号,即第1个OFDM符号,第2个OFDM符号和第3个OFDM符号。例如,PDCCH MO#1、PDCCH MO#2以及两者之间的时域符号间隔(OFDM symbol)可以如图6所示。
(4)终端设备会上报一个或者多个(X,Y)的组合(combination)用于PDCCH监听,其中,1个span pattern或span combination或combination表示为1个(X,Y),X表示为两个span起始符号之间的最小时域符号间隔。Y表示一个span的最大长度,单位为时域OFDM符号。
R16中,终端设备的监听能力是以span为粒度(单位)定义的。如下表所示,表1描述的是一个服务小区中在一个带宽部分(bandwidth part,BWP)中一个span pattern(X,Y)在给定子载波下对应的盲检次数上限值,或者是待监听的候选PDCCH个数的上限值,可以记为
Figure PCTCN2022143218-appb-000001
表2描述的是一个服务小区中在一个BWP中一个span pattern(X,Y)在给定子载波下对应的不重叠的CCE个数的上限值,可以记为
Figure PCTCN2022143218-appb-000002
表1
Figure PCTCN2022143218-appb-000003
表2
Figure PCTCN2022143218-appb-000004
在R16中,1个slot的span pattern的确定方法,还包括如下规则:一个终端设备可以根据子载波间隔配置μ=0和μ=1 指示支持的监听候选PDCCH的能力组合(X,Y)=(2,2), (4,3)和(7,3)中的一个或多个。如果终端设备指示支持的监听候选PDCCH能力是多个(X,Y)组合,且PDCCH配置导致每两个连续的PDCCH监听span的间隔(separation)大于或等于X,其中X为一个或多个(X,Y)组合中的X,那么终端设备将根据满足不等式条件中最大的
Figure PCTCN2022143218-appb-000005
Figure PCTCN2022143218-appb-000006
值所对应的(X,Y)组合来监听候选PDCCH。例如,终端设备向网络设备发送信令,通知网络设备支持的监听候选PDCCH能力为组合(X,Y)={(2,2),(4,3),(7,3)}。终端设备根据网络设备下发的PDCCH配置或R16确定span的规则,将一个slot内的span位置确定为如下图7所示。以R16span为例,因第一个span与第二个span之间的间隔是X’=5,第二个span与第三个span之间的间隔是X’=4,其中,5大于X=4,2,而4大于或等于X=4,2,因此对于1个slot内的两个span均满足间隔大于或等于X=4,2,即均满足(X,Y)组合(4,3)和(2,2)。但由于(4,3)对应的
Figure PCTCN2022143218-appb-000007
Figure PCTCN2022143218-appb-000008
值比(2,2)对应的值要大,因此终端设备会确定(4,3)为slot的span pattern,基于此,确定根据(4,3)对应的
Figure PCTCN2022143218-appb-000009
Figure PCTCN2022143218-appb-000010
值监听候选PDCCH。
需要说明的是,上述描述的R16中的span仅为示例,本申请还可以应用于R15中的span,例如R15确定span的规则,如终端设备特性组3-5b(feature group 3-5b)中描述的规则。
目前,终端设备根据RRC参数配置确定一对关联的候选PDCCH中有一个与独立传出的候选PDCCH满足count one的条件,那么无论在这个重叠资源上监听到的DCI是通过独立传输的PDCCH的方式发送的还是通过关联的PDCCH的方式发送,都会按照关联的PDCCH发送的方式进行理解,即相应参考点的确定的方法都根据关联的PDCCH的方式来确定(即PDCCH重复传输参考点)。
但是,目前,终端设备监听候选PDCCH的一种方式是基于span监听。每个时隙划分出一个或多个span,每个span内包含一个或多个候选PDCCH。由于“count one”的判断需要终端设备对网络设备配置的候选PDCCH进行遍历地判断,即每个候选PDCCH都要跟其他的候选PDCCH进行“count one”中四个条件的判断,确定参与判断的两个候选PDCCH是否同时满足这四个条件,这样就需要终端设备遍历所有配置的候选PDCCH,从而会造成终端设备的处理复杂度非常高。为了降低处理复杂度,标准达成如下结论:一些终端设备可以在主小区的一个时隙内除了第一个span以外的其他span上,不执行记为一次盲检的判断操作,即“count one”操作。然而,在终端设备在一个时隙内除了第一个span以外的其他span上不进行判断是否两个候选PDCCH记为一次盲检的判断的情况下,当重复传输的DCI对应的一个关联的候选PDCCH和一个独立传输的候选PDCCH的配置满足记为一次盲检的四个条件时,由于终端设备不会判断,所以会导致终端设备对这个满足“count one”的时频资源分别根据关联的候选PDCCH所在SSS的配置和独立传输的候选PDCCH所在SS的配置进行监听处理,分别各监听到1个DCI,无法判断监听到的DCI是PDCCH重复传输还是PDCCH独立传输,这样对于传输参考点的确定仍然会存在不确定的情况,即存在参考点模糊情况,从而影响数据传输。
例如,图8所示,终端设备根据网络设备下发的PDCCH配置和协议预定义的规则确定1个slot内有两个span,分别为span#1和span#2。一对用于PDCCH重复传输的具有关联关系(linkage)的候选PDCCH分别在两个span内,也就是跨span的PDCCH重复(inter-span PDCCH repetition)。网络设备在span#2上配置了一个用于独立传输的候选 PDCCH#3(individual PDCCH candidate)。假设网络设备配置候选PDCCH#3与关联的候选PDCCH#2满足“count one”条件。根据协议规定,终端设备不会在span#2上进行满足“count one”的4个条件判断操作,即不会判断两个候选PDCCH是否使用相同的扰码,不会判断两个候选PDCCH分别所属的搜索空间集合(SSS)是否关联相同的CORESET,不会判断两个候选PDCCH分别所属的搜索空间集合(SSS)中配置的DCI格式的负载大小是否相同,也不会判断两个候选PDCCH分别对应的时频资源是否相同(即是否采用相同的CCE集合)。那么,终端设备会按照这两个候选PDCCH所属的SSS的高层参数配置进行处理,即分别执行两次译码操作。终端设备在候选PDCCH#2和候选PDCCH#3上监听到的DCI根据高层参数发现既是独立传输的PDCCH,又是重复传输的PDCCH,无法确定是哪一种传输,进而对于调度的数据传输的参考点存在判断模糊问题,终端设备和网络设备之间无法进行正常的数据传输。
基于此,本申请提出一种通信方法,用以解决数据传输的参考点存在判断模糊的问题,以使终端设备和网络设备准确传输数据。
图9示出了本申请实施例提供的一种通信方法,该方法适用于图1a-图1d所示的场景。参阅图9所示,该方法的具体流程可以包括:
步骤901:网络设备根据第一条件确定第一配置信息;所述第一配置信息包含指示第一终端设备基于时间跨度监听候选PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息。
一个实施例中,所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的一个候选PDCCH,本申请实施方式中,第二候选PDCCH可以为用于重复传输的关联候选PDCCH中的任一候选PDCCH。
所述第一条件为所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的至少一个。
举例说明,所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的至少一个,具体是指所述第一候选PDCCH和所述第二候选PDCCH不满足如下至少一项:
所述第一候选PDCCH的时频资源和所述第二候选PDCCH的时频资源相同;例如,所述第一候选PDCCH对应的CCE集合和第二候选PDCCH对应的CCE集合相同;又例如,在时域上,所述第一候选PDCCH所在的控制资源集合的起始符号以及持续OFDM符号的个数,与所述第二候选PDCCH所在的控制资源集合的起始符号以及持续OFDM符号的个数相同,在频域上,所述第一候选PDCCH对应的物理资源块(physical resource block,PRB)与所述第二候选PDCCH对应的PRB相同;
所述第一候选PDCCH的扰码序列和所述第二候选PDCCH的扰码序列相同;例如,用于加扰所述第一候选PDCCH上承载的下行控制信息的序列,与用于加扰所述第二候选PDCCH上承载的下行控制信息的序列相同;
所述第一候选PDCCH的控制资源集合和所述第二候选PDCCH的控制资源集合相同;例如,所述第一候选PDCCH所属SSS关联的控制资源集合的索引和所述第二候选PDCCH所属SSS关联的控制资源集合的索引相同;
所述第一候选PDCCH上监听的DCI负载大小和所述第二候选PDCCH上监听的DCI负载大小相同;例如,在所述第一候选PDCCH上用于终端设备译码的DCI负载大小,与在所述第二候选PDCCH上用于终端设备译码的DCI负载大小相同;其中,DCI负载大小可以基于候选PDCCH所属的SSS的高层参数配置来确定,当然DCI负载大小也可以基于其他方式确定,本申请不作限定。
在该实施例中,通过所述第一条件来约束所述网络设备进行调度限制。也即第一条件可以是协议预定义的。在一种可选的实施方式中,第一条件还可以描述为:终端设备不期待被配置处理“如下场景”,或终端设备不期待在“如下场景”中的重叠资源上进行PDCCH上译码,或终端设备不期待在“如下场景”中根据关联的候选PDCCH(即所述第二候选PDCCH)所属的SSS的配置信息在所述第二候选PDCCH上进行译码,或终端设备不期待在“如下场景”中根据用于独立传输的候选PDCCH(即所述第一候选PDCCH)所属的SSS的配置信息在所述第一候选PDCCH上进行译码。上述“如下场景”为:在一个slot中除第一个span以外的其他span上,一对关联的候选PDCCH中其中一个候选PDCCH与独立传输的候选PDCCH满足“count one”的条件,例如图8所示的场景。
可选的,所述网络设备在向所述第一终端设备发送所述第一配置信息之前,也即所述网络设备在根据所述第一条件确定所述第一配置信息时,要确定第一候选PDCCH和第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的至少一个。网络设备只有确定之后,才符合协议要求,再发送所述第一配置信息给所述第一终端设备。
示例性的,所述网络设备确定第一候选PDCCH和第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的至少一个时,可以但不限于通过以下两种方式确定:
方法a1、所述网络设备首先生成两个候选PDCCH,再判断两个候选PDCCH是否同时满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同,如果同时满足,所述网络设备修改两个候选PDCCH配置,直到两个候选PDCCH不同时满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同,由此得到第一候选PDCCH和第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的至少一个。通过方法a1,可以实现较为灵活的配置,同时可以保证配置不超过终端设备对两个候选PDCCH判断的处理能力。
方法a2、所述网络设备始终不配置所述第一候选PDCCH和所述第二候选PDCCH的时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的某一个或几个条件满足,不管剩余其他条件是否满足。由此得到第一候选PDCCH和第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的至少一个。通过方法a2,可以减少复杂度,提高系统效率。
应理解,上述方法仅仅是举例说明网络设备的确定方式,网络设备还有其它方式进行确定。例如可以根据预设的配置组合;或者例如先确定出第一候选PDCCH,再根据第一候选PDCCH确定出第二候选PDCCH;或者先确定第二候选PDCCH,再确定第一候选PDCCH等其它方式确定出等方式确定。具体可以例如根据一个候选PDCCH的时频资源、扰码序列、控制资源集合、监听的DCI负载大小等属性或取值确定出另一个候选PDCCH的配置信息。本申请不做限定。
在一种可选的实施方式中,所述网络设备在通过上述多种方式确定第一候选PDCCH和第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的至少一个之前,所述网络设备还可以判断所述第一候选PDCCH和所述第二候选PDCCH是否在辅小区(Scell)上或一个时隙内除第一个span以外的其他span上。一个实施例中,上述判断span的方式可能有多种,例如可以是判断所述第一候选PDCCH和所述第二候选PDCCH所在的span的起始OFDM符号或结束OFDM符号位置,也可以是判断所述第一候选PDCCH和所述第二候选PDCCH所在的span的序号,当然也可以是其他方式,此处不在一一列举。
一个实施方式中,该指示第一终端设备基于时间跨度监听候选PDCCH的信息,与第一候选PDCCH和第二候选PDCCH的配置信息可以是一条消息发送的,也可以是两条消息发送的。
步骤902:所述网络设备向所述第一终端设备发送所述第一配置信息,相应地,所述第一终端设备从所述网络设备接收所述第一配置信息。
可选的,所述第一配置信息包含的指示所述第二终端设备基于时间跨度监听候选PDCCH的信息可以通过参数R16监听能力(r16monitoringcapability)配置,或者所述第一配置信息即为该参数,或者所述第一配置信息还可以通过其它方式实现,本申请对此不作限定。
由于网络设备对应的多个终端设备中可能会一部分终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断,这一部分终端设备本申请称为第一类终端设备;另一部分终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断,这一部分终端设备本申请称为第二类终端设备。在实际中,所述第一终端设备可能是上述第一类终端设备,也可以是上述第二类终端设备,本申请对所述第一终端设备不作限定。
其中,上述描述中的第一类终端设备和第二类终端设备仅是为了描述简单而引入的描述,还可以有其它描述,该描述并不作为对终端设备的限定。在本申请中,描述一个终端设备属于第一类终端设备时,实际是表示该终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断;描述一个终端设备属于第二类终端设备时,实际是表示该终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
在一种可能的实现方式中,无论所述第一终端设备属于第一类终端设备还是属于第二类终端设备,所述第一终端设备在接收到所述第一配置信息后,可以执行下面步骤903a。
在又一种可能的实现方式中,当所述第一终端设备属于所述第二类终端设备时,所述第一终端设备在接收到所述第一配置信息后,执行下面步骤903a;当所述第一终端设备属于所述第一类终端设备时,所述第一终端设备在接收到所述第一配置信息后,执行下面步骤903b。
可选的,在所述第一终端设备执行步骤903a或步骤903b之前,所述第一终端设备还可以判断所述第一候选PDCCH和所述第二候选PDCCH是否在Scell上或一个时隙内除第 一个span以外的其他span上。一个实施例中,上述判断span的方式可能有多种,例如可以是判断所述第一候选PDCCH和所述第二候选PDCCH所在的span的起始OFDM符号或结束OFDM符号位置,也可以是判断所述第一候选PDCCH和所述第二候选PDCCH所在的span的序号,当然也可以是其他方式,此处不在一一列举。
可选的,当所述第一终端设备属于所述第二类终端设备时,在所述第一终端设备从所述网络设备接收所述第一配置信息之前,所述第一终端设备向所述网络设备发送第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
需要说明的是,上述涉及的“两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断”中的两个候选PDCCH,可以是指在除所述第一个时间跨度以外的任一个时间跨度上的所有候选PDCCH中的两个候选PDCCH。下文涉及的地方原理相同,下文可以互相参考。
步骤903a:所述第一终端设备对所述第一候选PDCCH和所述第二候选PDCCH进行译码。
需要说明的是,本申请中,对某个候选PDCCH进行译码,也可以理解为根据所述某个候选PDCCH所属的SSS的配置信息在所述某个候选PDCCH上进行译码。下文涉及地方同理,可互相参见。
步骤903b:所述第一终端设备确定所述第一候选PDCCH和所述第二候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中部分条件时,确定所述第一配置信息包含的所述第一候选PDCCH和所述第二候选PDCCH的配置信息为错误信息。
其中,所述时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中部分条件,可以是所述网络设备和所述第一终端设备协商确定的条件,或者为通信协议预定义的条件。
在该情况下,第一终端设备不期待第一候选PDCCH和所述第二候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中部分条件。
需要说明的是,步骤903b中的方法,第一终端设备只判断部分条件,可以使得所述第一终端设备节省开销。可选的,所述第一终端设备也可以确定所述第一候选PDCCH和所述第二候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中全部条件时,确定所述第一配置信息包含的所述第一候选PDCCH和所述第二候选PDCCH的配置信息为错误信息。
在一种可选的实施方式中,在所述第一终端设备确定所述第一配置信息包含的所述第一候选PDCCH和所述第二候选PDCCH的配置信息为错误信息后,所述第一终端设备对所述第一候选PDCCH和/或所述第二候选PDCCH不进行译码;或者,所述第一终端设备对所述用于重复传输的关联候选PDCCH均不进行译码。
这种情况可以理解为网络设备没有按照协议约束配置,第一终端设备可以认为这个场景是一个不期待处理的场景。从而,所述第一终端设备可以不监听用于独立传输的候选PDCCH(即所述第一候选PDCCH);或,所述第一终端设备可以不监听用于重复传输的关 联候选PDCCH中的一个候选PDCCH(即所述第二候选PDCCH);或,所述第一终端设备可以不监听用于独立传输的候选PDCCH(即所述第一候选PDCCH)以及用于重复传输的关联候选PDCCH中的一个候选PDCCH(即所述第二候选PDCCH);或,所述第一终端设备可以不按照用于独立传输的候选PDCCH所属的SSS的配置信息对用于独立传输的候选PDCCH进行译码或监听行为;或,所述第一终端设备可以不按照用于重复传输的关联候选PDCCH中的一个候选PDCCH所属的SSS的配置信息对用于重复传输的关联候选PDCCH中的一个候选PDCCH进行译码或监听行为。此种情况下,所述用于独立传输的候选PDCCH和用于重复传输的关联候选PDCCH中的一个候选PDCCH满足“count one”条件。或者,第一终端设备也可以不监听用于重复传输的关联候选PDCCH(即两个候选PDCCH)。
需要说明的是,不监听(not monitor)也可以替换为不译码(not decode)或不尝试译码(not attempt to decode)或跳过译码(skip decoding)。
采用本申请提供的通信方法,第一终端设备可以准确地确定监听到的DCI是PDCCH重复传输的还是PDCCH独立传输的,避免对调度数据的参考点判断出现模糊的问题。
图10示出了本申请实施例提供的另一种通信方法,该方法适用于图1a-图1d所示的场景。参阅图10所示,该方法的具体流程可以包括:
步骤1001:网络设备向第二终端设备发送第二配置信息,相应地,所述第二终端设备从所述网络设备接收所述第二配置信息。
一个实施例中,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选PDCCH的信息,以及包含第三候选PDCCH和第四候选PDCCH的配置信息;所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的一个候选PDCCH,本申请实施方式中,第四候选PDCCH可以为用于重复传输的关联候选PDCCH中的任一候选PDCCH。
其中,所述第二配置信息包含的指示所述第二终端设备基于时间跨度监听候选PDCCH的信息可以通过参数r16monitoringcapability配置。
在一种可选的实施方式中,在所述第二终端设备从所述网络设备接收所述第二配置信息之前,所述第二终端设备可以向所述网络设备发送第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。进而,所述网络设备可以根据所述第二能力信息确定所述第二配置信息。
可选的,由于所述第二终端设备具备上述第二能力信息,因此,所述第二配置信息中所述第三候选PDCCH和所述第四候选PDCCH的配置信息,除了配置成所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同以外,还可以配置成所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的部分条件,或者,还可以配置成所述第三候选PDCCH和所述第四候选 PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的全部条件。
一个实施方式中,该第二终端设备基于时间跨度监听候选PDCCH的信息,与第三候选PDCCH和第四候选PDCCH的配置信息可以是一条消息发送的,也可以是两条或者多条配置信息发送的。
步骤1002:所述第二终端设备根据所述第二配置信息,确定所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件。
在该场景中,当所述第二终端设备确定所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件时,表示所述第二终端设备确定所述第三候选PDCCH和所述第四候选PDCCH可以记为一次盲检,这样第二终端设备可以通过判断部分条件即可确定,可以减少第二终端设备的开销。
示例性的,所述第三候选PDCCH和所述第四候选PDCCH满足的时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件,可以为所述网络设备和所述第二终端设备协商确定的条件,或者可以为通信协议预定义的条件。
在一种可选的实施方式中,所述第二终端设备在执行步骤1002之前,所述第二终端设备还可以判断所述第三候选PDCCH和所述第四候选PDCCH是否在Scell上或一个时隙内除第一个span以外的其他span上。一个实施例中,上述判断span的方式可能有多种,例如可以是判断所述第三候选PDCCH和所述第四候选PDCCH所在的span的起始OFDM符号或结束OFDM符号位置,也可以是判断所述第三候选PDCCH和所述第四候选PDCCH所在的span的序号,当然也可以是其他方式,此处不在一一列举。
可选的,所述第二终端设备也可以根据所述第二配置信息,确定所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的全部条件,进而所述第二终端设备确定所述第三候选PDCCH和所述第四候选PDCCH可以记为一次盲检。
需要说明的是,所述第二终端设备判断所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件,或者全部条件时,所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的具体的内容可以参见上述步骤901中涉及的相关描述,可以相互参见,此处不再详细描述。
步骤1003:所述第二终端设备对所述第三候选PDCCH和/或所述第四候选PDCCH进行译码。
示例性的,所述第二终端设备假设所述网络设备在所述第三候选PDCCH上发送PDCCH,对所述第三候选PDCCH进行译码;或者所述第二终端设备假设所述网络设备在第四候选PDCCH上发送PDCCH,对所述第四候选PDCCH进行译码。
采用本申请提供的通信方法,第二终端设备可以准确地确定监听到的DCI是PDCCH重复传输的还是PDCCH独立传输的,避免对调度数据的参考点判断出现模糊的问题。
图11示出了本申请实施例提供的另一种通信方法,该方法适用于图1a-图1d所示的场景。参阅图11所示,该方法的具体流程可以包括:
步骤1101:终端设备向网络设备发送能力信息,所述能力信息指示所述终端设备是否支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
也即,所述能力信息指示所述终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断,或者,所述能力信息指示所述终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
步骤1102:所述网络设备根据所述能力信息确定配置信息。
这样,网络设备可以针对不同的终端设备发送不同的配置信息。
在第一种可选的实施方式中,当所述能力信息指示所述终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断时,所述网络设备可以按照目前协议R17的方法确定所述配置信息。此时,所述配置信息可以参见图10所示的实施例中第二配置信息的相关描述。
也就是说,所述配置信息包含的第三候选PDCCH和第四候选PDCCH的配置信息中,所述第三候选PDCCH和所述第四候选PDCCH可以满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同;或者,所述第三候选PDCCH和所述第四候选PDCCH可以满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的部分条件;或者,所述第三候选PDCCH和所述第四候选PDCCH可以不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的全部条件。
相应地,所述终端设备在接收到所述配置信息之后,可以按照目前R17中的方法执行相应操作,例如,所述终端设备判断所述第三候选PDCCH和所述第四候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同。可选的,所述终端设备也可以执行图10所示的实施例中第二终端设备的操作,可以相互参见,此处不再详细描述。
在第二种可选的实施方式中,当所述能力信息指示所述终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断时,所述网络设备可以按照图9所示的实施例中的方法确定所述配置信息。此时,所述配置信息可以参见图9所示的实施例中第一配置信息的相关描述。
相应地,所述终端设备在接收到所述配置信息后,可以执行图9所示的实施例中步骤903a的操作。具体的,可以相互参见,此处不再详细描述。
采用本申请提供的通信方法,终端设备可以准确地确定监听到的DCI是PDCCH重复传输的还是PDCCH独立传输的,避免对调度数据的参考点判断出现模糊的问题。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图12所示,通信装置1200可以包括收发单元1201和处理单元1202。其中,所述收发单元1201用于所述通信装置1200接收信息(消息或数据)或发送信息(消息或数据),所述处理单元1202用于对所述通信装置1200的动作进行控制管理。所述处理单元1202还可以控制所述收发单元 1201执行的步骤。
示例性地,该通信装置1200具体可以是上述实施例中的网络设备、所述网络设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该通信装置1200具体可以是上述实施例中的第一终端设备、所述第一终端设备中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该通信装置1200具体可以是上述实施例中的第二终端设备、所述第二终端设备中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置1200用于实现上述图9-图10所述的实施例中网络设备的功能时,具体可以包括:
所述处理单元1202用于根据第一条件确定第一配置信息;所述第一配置信息包含指示第一终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息,所述第一条件为所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的至少一个;所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;所述收发单元1201用于向所述第一终端设备发送所述第一配置信息。
在一种可选的实施方式中,所述收发单元1201还用于:在所述处理单元1202根据所述第一条件确定所述第一配置信息之前,从所述第一终端设备接收第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
示例性的,所述收发单元1201还用于从第二终端设备接收第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断;进而,所述处理单元1202还用于根据所述第二能力信息确定第二配置信息,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选PDCCH,以及包含第三候选PDCCH和第四候选PDCCH的配置信息,所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于所述一个时隙中除所述第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH。
在又一个实施例中,所述通信装置1200用于实现上述图9所述的实施例中第一终端设备的功能时,具体可以包括:
所述收发单元1201用于从网络设备接收第一配置信息,所述第一配置信息包含指示所述第一终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息,所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负 载大小相同中的至少一个;所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;所述处理单元1202用于对所述第一候选PDCCH和所述第二候选PDCCH分别进行译码。
在一种可选的实施方式中,所述收发单元1201在从所述网络设备接收所述第一配置信息之前,还用于向所述网络设备发送第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
在又一个实施例中,所述通信装置1200用于实现上述图10所述的实施例中第二终端设备的功能时,具体可以包括:
所述收发单元1201用于从网络设备接收第二配置信息,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第三候选PDCCH和第四候选PDCCH的配置信息;所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;所述处理单元1202用于根据所述第二配置信息,确定所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件;以及对所述第三候选PDCCH和/或所述第四候选PDCCH进行译码。
在一种可选的实施方式中,所述收发单元1201在从所述网络设备接收所述第二配置信息之前,还用于向所述网络设备发送第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
示例性的,所述第三候选PDCCH和所述第四候选PDCCH满足的时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件,为所述网络设备和所述第二终端设备协商确定的条件,或者为通信协议预定义的条件。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或 者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图13所示,通信装置1300可以包括收发器1301和处理器1302。可选的,所述通信装置1300中还可以包括存储器1303。其中,所述存储器1303可以设置于所述通信装置1300内部,还可以设置于所述通信装置1300外部。其中,所述处理器1302可以控制所述收发器1301接收和发送信息、消息或数据等。
具体地,所述处理器1302可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1302还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器1301、所述处理器1302和所述存储器1303之间相互连接。可选的,所述收发器1301、所述处理器1302和所述存储器1303通过总线1304相互连接;所述总线1304可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器1303,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1303可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器1302执行所述存储器1303所存放的应用程序,实现上述功能,从而实现通信装置1300的功能。
示例性地,该通信装置1300可以是上述实施例中的网络设备;还可以是上述实施例中的第一终端设备;还可以是上述实施例中的第二终端设备。
在一个实施例中,所述通信装置1300在实现图9或图10所示的实施例中网络设备的功能时,收发器1301可以实现图9或图10所示的实施例中的由网络设备执行的收发操作;处理器1302可以实现图9或图10所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图9或图10所示的实施例中的相关描述,此处不再详细介绍。
在又一个实施例中,所述通信装置1300在实现图9所示的实施例中第一终端设备的功能时,收发器1301可以实现图9所示的实施例中的由第一终端设备执行的收发操作;处理器1302可以实现图9所示的实施例中由第一终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图9所示的实施例中的相关描述,此处不再详细介绍。
在又一个实施例中,所述通信装置1300在实现图10所示的实施例中第二终端设备的功能时,收发器1301可以实现图10所示的实施例中的由第二终端设备执行的收发操作;处理器1302可以实现图10所示的实施例中由第二终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图10所示的实施例中的相关描述,此处不再详 细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的网络设备、第一终端设备和第二终端设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    网络设备根据第一条件确定第一配置信息;所述第一配置信息包含指示第一终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息,所述第一条件为所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的至少一个;
    所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;
    所述网络设备向所述第一终端设备发送所述第一配置信息。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备根据所述第一条件确定所述第一配置信息之前,所述方法还包括:
    所述网络设备从所述第一终端设备接收第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备从第二终端设备接收第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断;
    所述网络设备根据所述第二能力信息确定第二配置信息,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选PDCCH,以及包含第三候选PDCCH和第四候选PDCCH的配置信息,所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于所述一个时隙中除所述第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH。
  4. 一种通信方法,其特征在于,包括:
    第一终端设备从网络设备接收第一配置信息,所述第一配置信息包含指示所述第一终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息,所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的至少一个;
    所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;
    所述第一终端设备对所述第一候选PDCCH和所述第二候选PDCCH分别进行译码。
  5. 如权利要求4所述的方法,其特征在于,在所述第一终端设备从所述网络设备接收所述第一配置信息之前,所述方法还包括:
    所述第一终端设备向所述网络设备发送第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
  6. 一种通信方法,其特征在于,包括:
    第二终端设备从网络设备接收第二配置信息,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第三候选PDCCH和第四候选PDCCH的配置信息;所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;
    所述第二终端设备根据所述第二配置信息,确定所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件;
    所述第二终端设备对所述第三候选PDCCH和/或所述第四候选PDCCH进行译码。
  7. 如权利要求6所述的方法,其特征在于,在所述第二终端设备从所述网络设备接收所述第二配置信息之前,所述方法还包括:
    所述第二终端设备向所述网络设备发送第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
  8. 如权利要求6或7所述的方法,其特征在于,所述第三候选PDCCH和所述第四候选PDCCH满足的时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件,为所述网络设备和所述第二终端设备协商确定的条件,或者为通信协议预定义的条件。
  9. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一条件确定第一配置信息;所述第一配置信息包含指示第一终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息,所述第一条件为所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的至少一个;
    所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;
    收发单元,用于向所述第一终端设备发送所述第一配置信息。
  10. 如权利要求9所述的装置,其特征在于,所述收发单元还用于:
    在所述处理单元根据所述第一条件确定所述第一配置信息之前,从所述第一终端设备接收第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
  11. 如权利要求9或10所述的装置,其特征在于,所述收发单元还用于:
    从第二终端设备接收第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断;
    所述处理单元还用于:
    根据所述第二能力信息确定第二配置信息,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选PDCCH,以及包含第三候选PDCCH和第四候选PDCCH的配置信息,所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于所述一个时隙中除所述第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH。
  12. 一种通信装置,其特征在于,包括:
    收发单元,用于从网络设备接收第一配置信息,所述第一配置信息包含指示所述第一终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第一候选PDCCH和第二候选PDCCH的配置信息,所述第一候选PDCCH和所述第二候选PDCCH不满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同中的至少一个;
    所述第一候选PDCCH和所述第二候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第一候选PDCCH和所述第二候选PDCCH位于同一个时间跨度上,所述第一候选PDCCH为用于独立传输的PDCCH,所述第二候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;
    处理单元,用于对所述第一候选PDCCH和所述第二候选PDCCH分别进行译码。
  13. 如权利要求12所述的装置,其特征在于,所述收发单元,在从所述网络设备接收所述第一配置信息之前,还用于:
    向所述网络设备发送第一能力信息,所述第一能力信息指示所述第一终端设备不支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
  14. 一种通信装置,其特征在于,包括:
    收发单元,用于从网络设备接收第二配置信息,所述第二配置信息包含指示所述第二终端设备基于时间跨度监听候选物理下行控制信道PDCCH的信息,以及包含第三候选PDCCH和第四候选PDCCH的配置信息;所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、下行控制信息DCI负载大小相同;所述第三候选PDCCH和所述第四候选PDCCH位于一个时隙中除第一个时间跨度以外的时间跨度上,所述第三候选PDCCH和所述第四候选PDCCH位于同一个时间跨度上,所 述第三候选PDCCH为用于独立传输的PDCCH,所述第四候选PDCCH为用于重复传输的关联候选PDCCH中的任一个候选PDCCH;
    处理单元,用于根据所述第二配置信息,确定所述第三候选PDCCH和所述第四候选PDCCH满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件;以及
    对所述第三候选PDCCH和/或所述第四候选PDCCH进行译码。
  15. 如权利要求14所述的装置,其特征在于,所述收发单元,在从所述网络设备接收所述第二配置信息之前,还用于:
    向所述网络设备发送第二能力信息,所述第二能力信息指示所述第二终端设备支持在除所述第一个时间跨度以外的时间跨度上,进行两个候选PDCCH是否满足时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同的判断。
  16. 如权利要求14或15所述的装置,其特征在于,所述第三候选PDCCH和所述第四候选PDCCH满足的时频资源相同、扰码序列相同、控制资源集合相同、DCI负载大小相同中的部分条件,为所述网络设备和所述第二终端设备协商确定的条件,或者为通信协议预定义的条件。
  17. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器用于接收和发送信息;
    所述处理器与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求1-3任一项所述的方法。
  18. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器,用于接收和发送信息;
    所述处理器,与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求4-5任一项所述的方法。
  19. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器,用于接收和发送信息;
    所述处理器,与所述存储器耦合,用于调用所述存储器中的计算机指令,以通过所述收发器执行如权利要求6-8任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时以执行如权利要求1-3中任一项所述的方法,或者执行如权利要求4-5中任一项所述的方法,或者执行如权利要求6-8中任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得如权利要求1-3中任一项所述的方法,或如权利要求4-5中任一项所述的方法,或如权利要求6-8中任一项所述的方法被执行。
  22. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-3中任一项所述的方法,或者实现如述权利要求4-5中任一项所述的方法,或者实现如述权利要求6-8中任一项所述的方法。
PCT/CN2022/143218 2021-12-31 2022-12-29 一种通信方法及装置 WO2023125762A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22915012.3A EP4447585A1 (en) 2021-12-31 2022-12-29 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111672841.3 2021-12-31
CN202111672841.3A CN116437475A (zh) 2021-12-31 2021-12-31 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/760,708 Continuation US20240357615A1 (en) 2021-12-31 2024-07-01 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2023125762A1 true WO2023125762A1 (zh) 2023-07-06

Family

ID=86998104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143218 WO2023125762A1 (zh) 2021-12-31 2022-12-29 一种通信方法及装置

Country Status (3)

Country Link
EP (1) EP4447585A1 (zh)
CN (1) CN116437475A (zh)
WO (1) WO2023125762A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029310A1 (en) * 2018-07-20 2020-01-23 Qualcomm Incorporated Downlink control for multiple transmit receive point configurations
CN111093270A (zh) * 2019-04-30 2020-05-01 中兴通讯股份有限公司 门限值、资源确定方法、装置、网络设备及存储介质
CN112399580A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种通信方法及装置
CN112399618A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 通信方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029310A1 (en) * 2018-07-20 2020-01-23 Qualcomm Incorporated Downlink control for multiple transmit receive point configurations
CN111093270A (zh) * 2019-04-30 2020-05-01 中兴通讯股份有限公司 门限值、资源确定方法、装置、网络设备及存储介质
CN112399580A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种通信方法及装置
CN112399618A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 通信方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Feature lead summery on initial access signals and channels for NR-U", 3GPP TSG RAN WG1 MEETING #96BIS R1-1905785, 15 April 2019 (2019-04-15), XP051707833 *

Also Published As

Publication number Publication date
EP4447585A1 (en) 2024-10-16
CN116437475A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US11751206B2 (en) Method and apparatus for sending and receiving downlink control information
US20220255588A1 (en) Method for measurement and report of channel state information for network cooperative communication
US20170135127A1 (en) User equipments, base stations and methods
CN111200871B (zh) 接收数据的方法和通信装置
CN111148260B (zh) 发送和接收数据的方法以及通信装置
JP7366889B2 (ja) 端末、無線通信方法、基地局及びシステム
EP3641438B1 (en) User terminal and wireless communication method
US20160338023A1 (en) User equipments, base stations and methods for license assisted access (laa)
JP7233432B2 (ja) アップリンク制御情報(uci)セグメント化のためのコード化ビット割振り
US10085158B2 (en) User equipments, base stations and methods
CN112771915A (zh) 无线通信系统中监视无线电链路的方法和装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2020207333A1 (zh) 链路失败恢复的方法和装置
US20210204312A1 (en) Downlink control information transmission method and apparatus
WO2018201504A1 (zh) 数据反馈方法及相关设备
EP4311355A1 (en) Communication method and communication apparatus
WO2022213960A1 (zh) 信息检测的方法和装置
WO2023125762A1 (zh) 一种通信方法及装置
WO2018218539A1 (zh) 一种调度系统信息块的方法及装置
US11882429B2 (en) Uplink resource determination apparatus, method and computer program
WO2020156002A1 (zh) 通信方法及通信装置
US20240357615A1 (en) Communication Method and Apparatus
WO2020087982A1 (zh) 通信方法、装置及存储介质
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
WO2023051420A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022915012

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022915012

Country of ref document: EP

Effective date: 20240710

NENP Non-entry into the national phase

Ref country code: DE