WO2022213960A1 - 信息检测的方法和装置 - Google Patents

信息检测的方法和装置 Download PDF

Info

Publication number
WO2022213960A1
WO2022213960A1 PCT/CN2022/085230 CN2022085230W WO2022213960A1 WO 2022213960 A1 WO2022213960 A1 WO 2022213960A1 CN 2022085230 W CN2022085230 W CN 2022085230W WO 2022213960 A1 WO2022213960 A1 WO 2022213960A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
candidate
candidate pdcch
search space
space set
Prior art date
Application number
PCT/CN2022/085230
Other languages
English (en)
French (fr)
Other versions
WO2022213960A9 (zh
Inventor
高飞
刘显达
焦淑蓉
纪刘榴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22784026.1A priority Critical patent/EP4311339A1/en
Publication of WO2022213960A1 publication Critical patent/WO2022213960A1/zh
Publication of WO2022213960A9 publication Critical patent/WO2022213960A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for information detection.
  • the base station will configure the radio resource control (RRC) parameters or the media access control layer control element (media access control control element, MAC CE) explicitly configures an association relationship for the two search space sets (search space set, SS set) used to transmit the same PDCCH or PDCCH repeated transmission. If this association relationship is considered, consider retaining the PDCCH repeated transmission function as much as possible.
  • RRC radio resource control
  • MAC CE media access control control element
  • the present application provides a method and apparatus for information detection, which can improve the utilization rate of candidate PDCCH resources.
  • a method for information detection is provided, and the method can be executed by a terminal device or a chip or a chip system on the terminal side.
  • the method includes: according to a first rule, determining that the first number of times of the candidate physical downlink control channel PDCCH that needs to be monitored on the first search space set and the second search space set is greater than a first threshold, wherein the first search space The set is associated with the second search space set; according to a second rule, determine whether the second number of times of the candidate PDCCHs that need to be monitored on the first search space set is greater than the first threshold; or, determine at least Whether the third number of candidate PDCCHs that need to be monitored on a third search space set is greater than the first threshold.
  • the first search space set and the second search space set may not be discarded, or the first search space set and the second search space set may not be discarded.
  • the first search space set and the second search space set are discarded as a whole, or the first search space set, the second search space set and the remaining search space sets are not discarded, which can improve the utilization rate of the candidate PDCCH resources.
  • the second rule it is determined whether the second number of times of the candidate PDCCH that needs to be monitored on the first search space set is greater than the first threshold, Including: if the second number of times is less than the first threshold, determining, according to the second rule, whether the fourth number of candidate PDCCHs that need to be monitored on the second search space set is greater than the second threshold, wherein, The second threshold is equal to the first threshold minus the second number of times.
  • the method further includes: if the fourth number of times is less than the second threshold, determining that monitoring is required on the at least one third search space set Whether the fifth number of candidate PDCCHs is greater than a third threshold, where the third threshold is equal to the second threshold minus the fourth number.
  • the determining whether the third number of times of the candidate physical downlink control channel PDCCH that needs to be monitored on at least one third search space set is greater than the first threshold including : According to the first rule or the second rule, determine whether the third number of times of the candidate PDCCH that needs to be monitored on the at least one third search space set is greater than the first threshold.
  • the first threshold includes: if the third number of times is less than the first threshold, determining, according to the second rule, whether the sixth number of times of candidate PDCCHs that need to be monitored on the fourth search space set is greater than the fourth threshold, Wherein, the fourth threshold is equal to the first threshold minus the third number of times.
  • the index value of the third search space set is greater than the index value of the first search space set and/or the index value of the second search space set .
  • the first rule is a monitoring counting rule of PDCCH used for repeated transmission; the second rule is a monitoring counting rule of PDCCH used for independent transmission.
  • a method for information detection is provided, and the method can be executed by a terminal device or a chip or a chip system on the terminal side.
  • the method includes: determining that the time-frequency resources corresponding to the first candidate physical downlink control channel PDCCH overlap with the time-frequency resources corresponding to the second candidate PDCCH, and the first candidate PDCCH is used for first downlink control information (downlink control information, Repeated transmission of DCI), the second candidate PDCCH is used for repeated transmission of the second DCI; the first DCI is detected on the first candidate PDCCH, wherein the first search space to which the first candidate PDCCH belongs The index value of the set is smaller than the index value of the second search space set to which the second candidate PDCCH belongs.
  • the terminal equipment According to the index value of the first SS set to which the first candidate PDCCH belongs and the index value of the second SS set to which the second candidate PDCCH belongs (the index value of the first SS set is smaller than the index value of the second SS set, that is, the first The priority of the SS set is higher than the priority of the second SS set), and it is determined to detect the first DCI on the first candidate PDCCH, so that the PDCCH detected by the terminal device can be consistent with the PDCCH sent by the base station, thereby improving the reception of the PDCCH by the terminal device. Success rate.
  • the detecting the first DCI on the first candidate PDCCH includes: detecting the first DCI on the first candidate PDCCH and the third candidate PDCCH The first DCI, wherein a third search space set to which the third candidate PDCCH belongs is associated with the first search space set.
  • the method further includes: detecting the second DCI on a fourth candidate PDCCH, where the fourth search space set to which the fourth candidate PDCCH belongs is associated with the second set of search spaces.
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships: the first candidate PDCCH and the second candidate PDCCH have The same scrambling sequence; the first candidate PDCCH and the second candidate PDCCH are associated with the same control resource set; the first candidate PDCCH and the second candidate PDCCH carry the same bit size of downlink control information.
  • a method for information detection is provided, and the method can be performed by a terminal device or a chip or a chip system on the terminal side.
  • the method includes: determining that the time-frequency resources corresponding to the first candidate physical downlink control channel PDCCH overlap with the time-frequency resources corresponding to the second candidate PDCCH, the time-frequency resources corresponding to the third candidate PDCCH and the time-frequency resources corresponding to the fourth candidate PDCCH Overlapping, the first candidate PDCCH and the third candidate PDCCH are used for repeated transmission of the first downlink control information DCI, and the second candidate PDCCH and the fourth candidate PDCCH are used for the second downlink control information DCI.
  • the terminal device when the terminal device determines that the time-frequency resource corresponding to the first candidate PDCCH used for the first DCI repeated transmission and the time-frequency resource corresponding to the second candidate PDCCH used for the second DCI repeated transmission overlap, When the time-frequency resources corresponding to the third candidate PDCCH for repeated DCI transmission overlap with the time-frequency resources corresponding to the fourth candidate PDCCH for the second DCI repeated transmission, the terminal device shall use the index of the second SS set to which the second candidate PDCCH belongs.
  • the index value of the second SS set to which the fourth candidate PDCCH belongs the index value of the first SS set to which the first candidate PDCCH belongs, and the index value of the first SS set to which the first candidate PDCCH belongs (the size of the first SS set
  • the index value and/or the index value of the third SS set is smaller than the index value of the second SS set and the index value of the fourth SS set)
  • the PDCCH detected by the terminal device is consistent with the PDCCH sent by the base station, thereby improving the success rate of the terminal device receiving the PDCCH.
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships: the first candidate PDCCH and the second candidate PDCCH have The same scrambling sequence; the first candidate PDCCH and the second candidate PDCCH are associated with the same control resource set; the first candidate PDCCH and the second candidate PDCCH carry the same bit size of downlink control information.
  • a method for information detection is provided, and the method can be executed by a terminal device or a chip or a chip system on the terminal side.
  • the method includes: determining that the time-frequency resources corresponding to the first candidate physical downlink control channel PDCCH overlap with the time-frequency resources corresponding to the second candidate PDCCH, and the second candidate PDCCH belongs to the second search space set; according to the first rule, determining The number of candidate PDCCHs that need to be monitored on the first candidate PDCCH and the third candidate PDCCH.
  • the first search space set to which the first candidate PDCCH belongs is associated with the third search space set to which the third candidate PDCCH belongs.
  • the second search space set is used for PDCCH independent transmission, and the first rule is a monitoring counting rule of PDCCH used for repeated transmission.
  • the terminal device determines that the time-frequency resources corresponding to the first candidate PDCCH used for repeated transmission overlap with the time-frequency resources corresponding to the second candidate PDCCH used for independent transmission.
  • the terminal device determines that the time-frequency resources corresponding to the first candidate PDCCH for repeated transmission overlap.
  • the number of candidate PDCCHs that need to be monitored on the first candidate PDCCH and the third candidate PDCCH can prevent the terminal equipment from monitoring the candidate PDCCHs from being inconsistent with the counting result of the base station, thereby improving the reliability of PDCCH transmission.
  • the index value of the first set of search spaces is greater than the index value of the second set of search spaces.
  • the index value of the third set of search spaces is greater than the index value of the second set of search spaces.
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships: the first candidate PDCCH and the second candidate PDCCH have The same scrambling sequence; the first candidate PDCCH and the second candidate PDCCH are associated with the same control resource set; the first candidate PDCCH and the second candidate PDCCH carry the same bit size of downlink control information.
  • a communication device comprising: a processing unit configured to: determine, according to a first rule, the first time of the candidate physical downlink control channel PDCCH that needs to be monitored on the first search space set and the second search space set The number is greater than the first threshold, wherein the first search space set is associated with the second search space set; according to the second rule, determine the second PDCCH candidate PDCCH that needs to be monitored on the first search space set whether the number of times is greater than the first threshold; or, determine whether the third number of times of candidate PDCCHs that need to be monitored on at least one third search space set is greater than the first threshold.
  • the processing unit is specifically configured to: if the second number of times is less than the first threshold, determine, according to the second rule Whether the fourth number of times of candidate PDCCHs to be monitored on the second search space set is greater than a second threshold, where the second threshold is equal to the first threshold minus the second number of times.
  • the processing unit is further configured to: if the fourth number of times is less than the second threshold, determine that the at least one third search space set is on the set Whether the fifth number of candidate PDCCHs to be monitored is greater than a third threshold, where the third threshold is equal to the second threshold minus the fourth number.
  • the processing unit is specifically configured to: determine, according to the first rule or the second rule, that the at least one third search space set needs to be Whether the third number of monitored candidate PDCCHs is greater than the first threshold.
  • the processing unit is further configured to: if the third number of times is less than the first threshold, determine, according to the second rule, to perform a fourth search Whether the sixth number of candidate PDCCHs to be monitored on the spatial set is greater than a fourth threshold, where the fourth threshold is equal to the first threshold minus the third number of times.
  • the index value of the third search space set is greater than the index value of the first search space set and/or the index value of the second search space set .
  • the first rule is a monitoring counting rule of PDCCH used for repeated transmission; the second rule is a monitoring counting rule of PDCCH used for independent transmission.
  • the communication apparatus is a terminal device, and the processing unit may be a processor.
  • the communication device is a chip or a chip system
  • the processing unit may be a processing circuit, a logic circuit, or the like.
  • a communication apparatus comprising: a processing unit configured to: determine that the time-frequency resources corresponding to the first candidate physical downlink control channel PDCCH overlap with the time-frequency resources corresponding to the second candidate PDCCH, the first candidate PDCCH used for repeated transmission of the first downlink control information DCI, the second candidate PDCCH is used for repeated transmission of the second DCI; the first DCI is detected on the first candidate PDCCH, wherein the first candidate The index value of the first search space set to which the PDCCH belongs is smaller than the index value of the second search space set to which the second candidate PDCCH belongs.
  • the processing unit is specifically configured to: detect the first DCI on the first candidate PDCCH and the third candidate PDCCH, wherein the third The third set of search spaces to which the candidate PDCCH belongs is associated with the first set of search spaces.
  • the processing unit is further configured to: detect the second DCI on a fourth candidate PDCCH, where the fourth search to which the fourth candidate PDCCH belongs A set of spaces is associated with the second set of search spaces.
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships: the first candidate PDCCH and the second candidate PDCCH have The same scrambling sequence; the first candidate PDCCH and the second candidate PDCCH are associated with the same control resource set; the first candidate PDCCH and the second candidate PDCCH carry the same bit size of downlink control information.
  • the communication apparatus is a terminal device, and the processing unit may be a processor.
  • the communication device is a chip or a chip system
  • the processing unit may be a processing circuit, a logic circuit, or the like.
  • a communication device comprising: a processing unit configured to: determine that the time-frequency resources corresponding to the first candidate physical downlink control channel PDCCH overlap with the time-frequency resources corresponding to the second candidate PDCCH, and the time-frequency resources corresponding to the third candidate PDCCH The time-frequency resources and the time-frequency resources corresponding to the fourth candidate PDCCH overlap, the first candidate PDCCH and the third candidate PDCCH are used for repeated transmission of the first downlink control information DCI, and the second candidate PDCCH and the The fourth candidate PDCCH is used for repeated transmission of the second downlink control information DCI; the first DCI is detected on the first candidate PDCCH and the third candidate PDCCH, wherein the first candidate PDCCH to which the first candidate PDCCH belongs The index value of the search space set and/or the index value of the third search space set to which the third candidate PDCCH belongs is smaller than the index value of the second search space set to which the second candidate PDCCH belongs and the index value of the fourth candidate PDCCH
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships: the first candidate PDCCH and the second candidate PDCCH have The same scrambling sequence; the first candidate PDCCH and the second candidate PDCCH are associated with the same control resource set; the first candidate PDCCH and the second candidate PDCCH carry the same bit size of downlink control information.
  • the communication apparatus is a terminal device, and the processing unit may be a processor.
  • the communication device is a chip or a chip system
  • the processing unit may be a processing circuit, a logic circuit, or the like.
  • a communication device comprising: a processing unit configured to: determine that a time-frequency resource corresponding to a first candidate physical downlink control channel PDCCH overlaps with a time-frequency resource corresponding to a second candidate PDCCH, the second candidate PDCCH belongs to the second search space set; according to the first rule, determine the number of candidate PDCCHs that need to be monitored on the first candidate PDCCH and the third candidate PDCCH, and the first search space set to which the first candidate PDCCH belongs is the same as the first candidate PDCCH.
  • the third search space set to which the third candidate PDCCH belongs is associated, the second search space set is used for independent PDCCH transmission, and the first rule is a monitoring counting rule for PDCCHs that are repeatedly transmitted.
  • the index value of the first search space set is greater than the index value of the second search space set.
  • the index value of the third search space set is greater than the index value of the second search space set.
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships: the first candidate PDCCH and the second candidate PDCCH have The same scrambling sequence; the first candidate PDCCH and the second candidate PDCCH are associated with the same control resource set; the first candidate PDCCH and the second candidate PDCCH carry the same bit size of downlink control information.
  • the communication apparatus is a terminal device, and the processing unit may be a processor.
  • the communication device is a chip or a chip system
  • the processing unit may be a processing circuit, a logic circuit, or the like.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute the instructions in the memory, so as to implement the communication method of the first aspect to the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect.
  • the communication apparatus is a terminal device, and the processing unit may be a processor.
  • the communication device is a chip or a chip system
  • the processing unit may be a processing circuit, a logic circuit, or the like.
  • the communication device further includes a communication interface.
  • the communication device is a terminal device, and the communication interface may be a transceiver, a receiver or a transmitter, etc.; optionally, the communication device is a chip or a chip system, and the communication interface is an interface circuit, Input and/or output interfaces, or, input and/or output circuits, etc.
  • the communication apparatus further includes the memory.
  • a tenth aspect provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, enables the communication device to implement the above-mentioned first to fourth aspects and the first to fourth aspects
  • the communication method in any one of the four possible implementations.
  • a computer program product comprising instructions, which, when executed by a computer, cause a communication device to implement any of the first to fourth aspects and any possible implementation manners of the first to fourth aspects. communication method.
  • FIG. 1 is a schematic flowchart of PDCCH repeated transmission definition.
  • FIG. 2 is a schematic diagram of repeated transmission of PDCCH based on multiple transmission and reception points.
  • FIG. 3 is a schematic diagram of repeated transmission of candidate PDCCHs for two search space sets.
  • FIG. 4 is a flowchart of UE monitoring candidate PDCCH.
  • FIG. 5 is a schematic diagram of PDCCH repeated transmission performed by four search space sets.
  • FIG. 6 is a schematic flow chart of a method for information detection.
  • FIG. 7 is a schematic diagram of 4 candidate PDCCHs for repeated transmission.
  • FIG. 8 is a schematic flow chart of another method for information detection
  • FIG. 9 is a schematic diagram of another 4 candidate PDCCHs used for repeated transmission.
  • FIG. 10 is a schematic flow chart of another method for information detection.
  • FIG. 11 is a schematic diagram of three candidate PDCCH transmissions.
  • FIG. 12 is a schematic diagram of another 3 candidate PDCCH transmission.
  • FIG. 13 is a schematic flow chart of another method for information detection.
  • FIG. 14 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of another communication apparatus according to an embodiment of the present application.
  • the embodiments of the present application may be applied to various communication systems, such as a wireless local area network (WLAN), a narrowband Internet of things (NB-IoT), a global system for mobile communications (global system for mobile communications, GSM), enhanced data rate for GSM evolution (enhanced data rate for gsm evolution, EDGE), wideband code division multiple access (WCDMA), code division multiple access 2000 system (code division multiple access) access, CDMA2000), time division-synchronization code division multiple access (TD-SCDMA), long term evolution (LTE), satellite communication, 5th generation (5G) system or a new communication system that will appear in the future.
  • WLAN wireless local area network
  • NB-IoT narrowband Internet of things
  • GSM global system for mobile communications
  • GSM global system for mobile communications
  • enhanced data rate for GSM evolution enhanced data rate for gsm evolution, EDGE
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access 2000 system
  • TD-SCDMA time division-synchronization
  • a communication system applicable to this application includes one or more transmitters and one or more receivers.
  • the signal transmission between the sending end and the receiving end can be transmitted through radio waves, or through transmission media such as visible light, laser, infrared, and optical fibers.
  • one of the sending end and the receiving end may be a terminal device, and the other may be a network device.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), user equipment (user equipment, UE), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant ( personal digital assistant, PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • the network device may be an evolved Node B (evolved Node B, eNB), a radio network controller (RNC), a Node B (Node B, NB), a base station controller (base station controller, BSC) ), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system connection Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc. It can also be a new air interface (new radio, gNB or transmission point (e.g.
  • TRP or TP in NR
  • a network node such as a baseband unit that constitutes a gNB or transmission point (building baseband unit, BBU) or distributed unit (distributed unit, DU), or the like
  • the network device can also be a vehicle-mounted device, a wearable device, a network device in a 5G network, or a network device in a future evolved PLMN network etc., without limitation.
  • the BBU can be integrated with a radio frequency unit (Radio Frequency Unit, RFU) in the same device, and the device is connected to the antenna array through a cable (such as but not limited to a feeder).
  • RFU Radio Frequency Unit
  • the BBU can also be set apart from the RFU, and the two are connected by optical fibers, and communicate through, for example, but not limited to, the Common Public Radio Interface (Common Public Radio Interface, CPRI) protocol.
  • the RFU is usually called an RRU (Remote Radio Unit), which is connected to the antenna array through a cable.
  • the RRU can also be integrated with the antenna array.
  • the active antenna unit (Active Antenna Unit, AAU) product currently on the market adopts this structure.
  • the BBU can be further broken down into multiple parts.
  • the BBU can be further subdivided into a centralized unit (Centralized Unit, CU) and a distributed unit (Distribute Unit, DU) according to the real-time nature of the processed services.
  • the CU is responsible for processing non-real-time protocols and services
  • the DU is responsible for processing physical layer protocols and real-time services.
  • some physical layer functions can also be separated from the BBU or DU and integrated in the AAU.
  • downlink control information is divided into many formats, such as random access identifier, paging identifier, etc., physical downlink control channel (PDCCH) of different users.
  • the information is distinguished by its corresponding cell-radio network temporary identity (C-RNTI) information, that is, the cyclic redundancy check (CRC) of the DCI is masked by the C-RNTI.
  • C-RNTI cell-radio network temporary identity
  • the base station configures a set of candidate PDCCHs (PDCCH candidates) that need to monitor DCI to the UE through high-layer signaling, such as radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the UE Since the UE does not know in advance which PDCCH set or sets the base station will send DCI on, but the user knows what downlink control information it currently expects to receive according to the base station configuration information, the UE must try each PDCCH in the candidate PDCCH set according to the configuration information. Decoding, that is, the UE uses the corresponding RNTI to perform a CRC check on the information on the PDCCH set. If the CRC check is successful, the user successfully decodes and obtains the DCI information. All candidate PDCCH sets form a search space set (search space set, SS set). The behavior that the UE attempts to decode on each candidate PDCCH to determine whether the corresponding DCI is received is called blind detection (BD).
  • BD blind detection
  • two candidate PDCCHs counted as one blind detection need to satisfy one or more of the following four conditions at the same time:
  • control resource set control resource set, CORESET
  • the above four conditions can be understood as four conditions optionally included in the blind detection counting rule. It can also be understood that the two candidate PDCCHs are counted as one blind detection, and the two candidate PDCCHs obtain one candidate PDCCH for monitoring according to the blind detection counting rule.
  • the number of blind detection times of a search space set can be understood as the number of candidate PDCCHs to be monitored obtained after a search space set passes the counting rule of the number of blind detection times. It is worth noting that the four conditions included in the above blind inspection counting rules are only examples. This application does not limit the number of blind inspections to be counted as 1. The conditions only include the above conditions, and any one of them can be added, deleted or changed. item or multiple items.
  • condition may further include: the first candidate PDCCH and the second candidate PDCCH are respectively associated with the same CORESET, or correspond to different CORESETs but have the same scrambling code, or correspond to different CORESETs but have the same quasi-co-location characteristics.
  • condition may further include: CORESETs corresponding to the first candidate PDCCH and the second candidate PDCCH respectively are single-symbol (symbol) and non-interleaved CORESETs.
  • using the same set of CCEs indicates that the first candidate PDCCH and the second candidate PDCCH have the same aggregation level and the same CCE time-frequency position.
  • Non-overlapping control channel elements (non-overlapping CCE)
  • the aggregation level indicates the number of CCEs occupied by one PDCCH.
  • New radio (NR) supports 5 aggregation levels ⁇ 1, 2, 4, 8, 16 ⁇ .
  • the base station configures one or more search space sets (search space sets, SS sets) for the UE through high-level signaling (up to 10 SS sets are configured on one bandwidth part (BWP)), which requires blind
  • the detected DCI format is bound to the SS set.
  • the UE will attempt to decode the bundled DCI format on each candidate PDCCH of all configured SS sets until all candidate PDCCHs have been checked. Since the blind detection will bring great complexity and power consumption to the UE, the UE cannot be blindly checked all the time, and an upper limit will be set. After the number of blind detections reaches this upper limit, the blind detection will be stopped regardless of whether the expected DCI is detected or not. .
  • the number of non-overlapping channel estimation CCEs also has an upper limit, otherwise it will increase the complexity and storage burden of UE channel estimation processing.
  • the upper limit of blind detection and the upper limit of non-overlapping CCEs are fixed values bound to the subcarrier spacing.
  • the network device may adopt a manner of repeatedly sending the PDCCH.
  • PDCCH There are multiple ways to repeatedly transmit PDCCH. Multiple PDCCHs carrying the same DCI can be sent from different times, different frequencies or through different beams, or multiple PDCCHs carrying the same DCI can be sent to a terminal simultaneously through multiple transmission points. For example, that the PDCCH is repeatedly transmitted twice means that the same DCI is repeatedly transmitted twice.
  • the PDCCH repeated transmission may be defined as follows: multiple PDCCHs use the same aggregation level (aggregation level, AL) to transmit the same DCI, and the encoded bits carried in the multiple PDCCHs are also the same.
  • AL aggregation level
  • PDCCH for independent transmission of DCI may also be referred to as “individual PDCCH” (individual PDCCH) or “PDCCH for independent transmission”
  • a candidate PDCCH that can be used as an independent PDCCH may be referred to as "individual candidate PDCCH” (individual PDCCH) PDCCH candidate)
  • the SS set including the individual PDCCH candidate can be called an independent SS set (individual SS set).
  • the independent PDCCH does not need to perform PDCCH repetition or soft combining with other PDCCHs.
  • Different search space sets may be configured with association relationships (linkage) for PDCCH repeated transmission, and the association relationship may be indicated to the terminal by the network device through indication information, such as adding another associated one to the configuration information of one search space set.
  • the association between the two search space sets means that the candidate PDCCHs in one search space set are in one-to-one correspondence with the candidate PDCCHs in the other search space set and are used for PDCCH repeated transmission.
  • a candidate PDCCH in one search space set may be associated with a corresponding candidate PDCCH in another search space set, and used for transmitting the same DCI.
  • the corresponding candidate PDCCHs may be candidate PDCCHs in search spaces under the same aggregation level in different search space sets.
  • sequence numbers of the corresponding candidate PDCCHs are the same, or there is another preset association relationship between the sequence numbers of the corresponding candidate PDCCHs, for example, there is a predefined offset between the sequence numbers of the candidate PDCCHs.
  • the associated candidate PDCCH for PDCCH repeated transmission is referred to as linked PDCCH candidate(s)
  • the search space set including the associated candidate PDCCH for PDCCH repeated transmission is referred to as linked SS set(s).
  • two associated candidate PDCCHs may be used for repeated PDCCH transmission.
  • These two candidate PDCCHs may be referred to as a linked PDCCH candidate pair or a pair of linked PDCCH candidates, and the SS sets to which the two candidate PDCCHs belong may be referred to as A pair of linked SS sets, or a pair of linked SS sets, the number of PDCCH candidates contained in a pair of linked SS sets is the same, and there is a one-to-one correspondence between PDCCH candidates.
  • a pair of linked SS sets may contain one or more pairs of linked PDCCH candidates, each pair of linked PDCCH candidates is used to transmit one DCI respectively, and the DCI transmitted by different pairs of linked PDCCH candidates may be the same or different.
  • the network device selects a pair of linked PDCCH candidates to transmit DCI#1 and selects another pair of linked PDCCH candidates to transmit DCI#2; for another example, the network device selects a pair of linked PDCCH candidates during the first transmission of DCI#1 to transmit DCI#1, and during the second transmission of DCI#1, select another pair of linked PDCCH candidates to transmit DCI#1.
  • the present application does not limit the number of candidate PDCCHs used for repeated DCI transmission, and the above linked PDCCH candidates are not limited to only two, and there may be more than two linked PDCCH candidates to transmit the same DCI, correspondingly, more than two linked PDCCH candidates belong to two or more linked SS sets.
  • PDCCH repeat transmission The coding/rate matching operation is based on 1 PDCCH repeat transmission, and other PDCCH repeat transmission of the same coded bits, each time Repeated transmissions use the same aggregation level (AL) or the same number of CCEs, repeat the transmission of the same coded bits, and the same DCI load information (the content of the DCI bits is the same), as shown in Figure 1, showing A schematic flowchart of the definition of PDCCH repeated transmission.
  • the process may also contain other functional modules, only the more relevant modules are listed here. Among them, the DCI load bits, CRC attachment, coding and rate matching are the places that need to be guaranteed to be the same for PDCCH repeated transmission.
  • the joint transmission mechanism of multiple transmission and reception points can be used to improve the reliability of DCI transmission.
  • multiple TRPs send them on the same or different time-frequency resources, respectively, and the UE can receive multiple bits on the above-mentioned time-frequency resources.
  • perform joint decoding operation to obtain DCI information bits (sources), for example, perform channel estimation on the above time-frequency resources and demodulate the received signals to obtain likelihood values (soft information) for combining.
  • the above operations can be equivalently understood as improving the signal to interference plus noise ratio (SINR) of transmission, thereby improving reliability.
  • SINR signal to interference plus noise ratio
  • TRP1 and TRP2 serve as cooperative base stations for one UE at the same time.
  • the DCI delivered by TRP1 corresponds to CORESET1 (where the first quasi-co-location or the first quasi-co-location feature (QCL) is configured, assuming the channel characteristics from the terminal to TRP1)
  • the DCI delivered by TRP2 corresponds to CORESET2 (wherein The second QCL hypothesis is configured to correspond to the channel characteristics of the terminal to TRP2).
  • Two CORESETs may be configured with complete/partial overlap to improve the flexibility of DCI transmission and ensure the gain of frequency selective scheduling.
  • the DCIs issued by the two CORESETs have a linkage, that is, the above-mentioned soft combining operation can be performed.
  • an association relationship between candidate PDCCHs associated with two CORESETs needs to be defined. The purpose of this is to prevent the UE from performing too many soft combining operations to reduce the complexity of the UE.
  • the current protocol supports that all candidate PDCCHs in one SS set are used for PDCCH repeated transmission, excluding candidate PDCCHs for sending independent PDCCHs.
  • FIG. 3 a schematic diagram of repeated transmission of candidate PDCCHs of two search space sets is shown.
  • the base station configures the association relationship through RRC parameters or media access control-control element (MAC CE) on the two SS sets used for PDCCH repeated transmission, that is, SS set#i and SS set#j can be It is called the linked search space set (linked SS set).
  • the candidate PDCCHs used for PDCCH repeated transmission are divided between the two candidate PDCCHs of the two SS sets. Assuming that 1 SS set#i includes aggregation levels AL4 and AL8, the number of corresponding candidate PDCCHs is 4 and 2 respectively. According to the definition of PDCCH repeated transmission, the PDCCH repeated transmission of AL4 can only be realized by two PDCCH candidates of AL4, but not one PDCCH candidate of AL4 and one PDCCH candidate of AL8.
  • the association shown in FIG. 3 can be obtained.
  • the candidate PDCCH sequence number 1 of SS set#i and the candidate PDCCH sequence number 1 of SS set#j perform PDCCH repeated transmission together, and the PDCCH candidate sequence number 2 of SS set#i and the PDCCH candidate sequence number 2 of SS set#j together Repeated transmission of PDCCH is performed, which are respectively referred to as associated candidate PDCCHs.
  • the candidate PDCCH sequence number 1 of SS set#i is used for PDCCH repeated transmission together with the candidate PDCCH sequence number 1 of SS set#j.
  • the number of candidate PDCCHs corresponding to each aggregation level (aggregation level, AL) configured for blind detection of PDCCH is fixed, as shown in Table 1, which shows the number of candidate PDCCHs monitored by the UE.
  • the number of DCI formats that need to be monitored in CSS and USS is at most 4 DCI format X bound to transmission mode (TM) in USS, DCI format 1C in CSS, and both in USS and CSS.
  • Some DCI formats are 1A, so the maximum number of blind checks can be calculated as 44 times.
  • the calculation method is the number of blind checks of CSS (4+2)*2 plus the number of blind checks of USS (6+6+2+2)*2 , the candidate PDCCH configured by the base station will not cause the UE to blindly detect more than 44 times.
  • the number of PDCCH candidates corresponding to CSS and USS configured by the base station is flexibly configured, not a predefined value, so overbooking may occur, that is, according to the configuration of PDCCH and BD
  • the number of monitored PDCCH candidates and the number of non-overlapping CCEs calculated by the /CCE counting rule can exceed the BD/CCE limit. At this time, if all PDCCH candidates are blindly checked according to the configuration, it will cause great complexity for UE implementation. .
  • NR introduces a mechanism to ensure that the UE will only monitor those candidate PDCCHs that do not exceed its own PDCCH monitoring capability, that is, through the three rules of BD counting rules, non-overlapping CCE counting rules and PDCCH mapping rules, the overall process is shown in Figure 4 As shown, a flow chart of UE monitoring candidate PDCCH is shown. Among them, the three functional modules in the dotted line may be executed sequentially. For example, input the PDCCH configuration into the "BD counting rule" module and the "CCE counting module” respectively for operation, and then input the two obtained results together into the "PDCCH mapping rule".
  • the PDCCH mapping rule (PDCCH mapping rule) is defined in Protocol 38.213 to screen the PDCCH candidates configured by the base station, and screen the number of PDCCH candidates that need to be blindly checked within a range, so as to ensure the achievability of the UE.
  • the "blind detection upper limit” is equivalent to the "maximum number of detected PDCCH candidates”.
  • Priority The concept of "priority" in this application may be manifested explicitly or implicitly. Explicit, that is, to specifically determine the priority; Implicit, that is, not to specifically determine the priority, but from the order of processing, the priority can be reflected, such as the count of the number of blind checks or the number of candidate PDCCHs for monitoring. Count, according to the order of the count as the priority.
  • the priority rule may be related to the index (for example, the smaller the index value of the search space set, the higher the priority of the search space set, or the smaller the index value of the control resource set associated with the search space set is , the higher the priority of the search space set), it can also be related to the nature, for example, the transmission nature (including independent transmission and repeated transmission), the transmission priority can be divided according to the independent transmission and repeated transmission, for example, the priority of repeated transmission The priority is higher than that of independent transmission, or the priority of independent transmission is higher than that of repeated transmission.
  • the associated candidate PDCCH (linked PDCCH candidate) is used for PDCCH repeated transmission, and different UE decoding behaviors will lead to different blind detection counting results.
  • Option 1 The UE reports one or more blind detection values required to monitor two linked PDCCH candidates. Possible candidates are 2, X, where X is a value between 1 and 3. "2" indicates that the UE needs 2 blind checks to monitor 2 linked PDCCH candidates.
  • Option 2 The UE reports whether soft combining is supported. If the report supports soft combining, the UE further reports one or more blind detection values required for monitoring two linked PDCCH candidates. Possible candidates are 2, X, where X is a value between 1 and 3. Compared with option 1, option 2 has one more report on whether soft merging is supported.
  • Option 3 The UE needs to report 1 or more of the 4 decoding assumptions.
  • the protocol will define 1 blind detection times corresponding to each decoding option.
  • the decoding assumption is that the UE monitors the decoding of 2 linked PDCCH candidates.
  • Behavior compared to other options, this option has a definition and indication for the behavior of the UE.
  • Decoding Assumption 1 The number of blind checks is 2, or a value between 1 and 2. Under this assumption, the UE will not independently decode the two linked PDCCH candidates, but will only combine and decode the two linked PDCCH candidates once.
  • Decoding Assumption 2 The number of blind detections is 2. Under this assumption, the UE performs an independent decoding on each of the two linked PDCCH candidates.
  • Decoding Assumption 3 The number of blind checks is 2, or other values. Under this assumption, the UE performs independent decoding on the first PDCCH candidate among the two linked PDCCH candidates, and then combines and decodes the two linked PDCCH candidates once.
  • Decoding Assumption 4 The number of blind checks is 3, or other values. Under this assumption, the UE performs independent decoding on the two linked PDCCH candidates respectively, and then combines and decodes the two linked PDCCH candidates once.
  • Option 4 Regardless of the UE's decoding assumption, the number of blind checks required for the UE to monitor 2 linked PDCCH candidates is always defined as 2 times.
  • Option 5 Regardless of the UE's decoding assumption, the number of blind checks required for the UE to monitor 2 linked PDCCH candidates is always defined as 3 times.
  • option 1 since the UE may report multiple values, when the UE reports multiple values, the base station will configure one of them for blind detection count definition.
  • mapping priority is also referred to as "PDCCH mapping priority” or “search space set mapping priority”.
  • FIG. 5 a schematic diagram of PDCCH repeated transmission with four search space sets is shown.
  • search space set 3 (SS set 3) and SS set 5 are associated, that is, SS set 3 and SS set 5 are used for PDCCH repeated transmission; SS set 4 and SS set 6 are also associated.
  • the PDCCH mapping priority is arranged from high to low according to the search space set index from small to large, then if the greater than symbol ">" indicates the high or low PDCCH mapping priority, then SS set 3>SS set 4>SS set 5 >SS set 6. For these 4 SS sets, start from SS set 3 and enter the PDCCH mapping rule one by one for calculation.
  • the current mapping operation will not be performed, that is, the UE will not monitor the candidate PDCCHs in SS set 4 to SS set 6, but only monitor the candidate PDCCH in SS set 3. candidate PDCCH, then the repeated transmission of PDCCH cannot be realized.
  • the base station will explicitly configure an association relationship between the two SS sets used to transmit the same PDCCH or PDCCH repeated transmission through RRC parameter configuration or MAC CE. If this association relationship is considered, consider as much as possible
  • a natural idea is that two SS sets with an associated relationship participate in the BD count and PDCCH mapping rule judgment operations together. If the number of BDs corresponding to a pair of linked SS sets exceeds the upper limit of the remaining BDs, if the whole is discarded. Generally speaking, the number of BDs corresponding to the linked SS set will be greater than the number of BDs corresponding to the individual SS set. Therefore, discarding the linked SS set as a whole will result in loss of PDCCH resources, resulting in reduced utilization of PDCCH resources and affecting the flexibility of base station scheduling.
  • an embodiment of the present application proposes a method for information detection, which can improve the utilization rate of PDCCH resources, thereby improving the flexibility of base station scheduling.
  • FIG. 6 a schematic flowchart of a method 600 for information detection is shown.
  • the specific process of this method includes:
  • the terminal device determines, according to the first rule, that the first number of times that the candidate physical downlink control channel PDCCH needs to be monitored on the first search space set and the second search space set is greater than the first threshold, where the first search space set is the same as the first search space set.
  • Two sets of search spaces are associative.
  • the first search space set and the second search space set are associated, and it can be understood that the first search space set and the second search space set are used for repeated PDCCH transmission, or for transmission of the same PDCCH.
  • the first threshold is the upper limit of the remaining monitoring times, and the monitoring times can be understood as the blind detection times or decoding times or the times of monitoring candidate PDCCHs.
  • the first rule is a monitoring counting rule for the PDCCH used for repeated transmission, including the monitoring counting rule defined in any one of option 1 to option 5.
  • the terminal device receives Resource configuration information sent by a base station or a network device, where the resource configuration information may include indication information or signaling for indicating that the first search space set and the second search space set are associated.
  • the resource configuration information includes not only indication information indicating the first search space set and the second search space set, but also indication information indicating at least a third search space set and a fourth search space set.
  • the terminal device determines, according to the second rule, whether the second number of candidate PDCCHs that need to be monitored on the first search space set is greater than the first threshold; or, the terminal device determines at least one candidate PDCCH that needs to be monitored on the third search space set. Whether the third number of PDCCHs is greater than the first threshold.
  • the second rule is the monitoring counting rule of PDCCH used for independent transmission, that is, the candidate PDCCH to be monitored is used for independent transmission of DCI, and each DCI is only transmitted once instead of multiple times.
  • the second rule may also be other preset rules, which are not specifically limited in this application.
  • the terminal device may, according to the second rule, only It is determined whether the second number of candidate PDCCHs that need to be monitored on the first set of search spaces is greater than a first threshold. At this time, the terminal device considers that the first search space set is used for PDCCH independent transmission (or the first search space set is regarded/assumed to be used for PDCCH independent transmission), and is no longer used for PDCCH repeated transmission.
  • the index value of the first search space set is smaller than the index value of the second search space set, that is, the priority of the first search space set is higher than the priority of the second search space set.
  • the smaller the index value for defining the search space set the higher the priority of the search space set. It should be understood that it can also be defined that the larger the index value of the search space set, the higher the priority of the search space set, which is not limited.
  • the terminal device may discard the first search space set and the second search space set, and at the same time, the first search space set and The remaining search space sets other than the second search space set that do not participate in the operation of the PDCCH mapping rule are also discarded. Discarding the first search space set and the second search space set, it can be understood that the candidate PDCCH is not monitored on the first search space set and the second search space set, and the upper limit of the remaining monitoring times is not subtracted from the first search space set and The number of listening times corresponding to the second search space set.
  • the terminal device determines that the candidate PDCCH for independent transmission can be monitored on the first search space set.
  • the upper limit value is subtracted from the listening times corresponding to the first search space set, the second search space set is discarded, and the remaining search space sets except the second search space set and the second search space set are also discarded. Discarding the second search space set can be understood as not monitoring the candidate PDCCH on the second search space set, and the upper limit of the remaining monitoring times is not subtracted from the monitoring times corresponding to the second search space set.
  • the terminal device determines, according to the resource configuration information sent by the base station or the network device, that SS set 3 and SS set 5 are a pair of SS sets used for PDCCH repeat transmission, and SS set 4 and SS set 6 are another pair used for PDCCH repeat transmission.
  • SS set 3 and SS set 5 participate in the calculation of mapping rules together, which can be understood as the mapping priority of SS set 5
  • the level is the same as SS set 3, or the mapping priority is next to SS set 3.
  • the smallest index in the remaining SS sets is SS set 4.
  • the mapping priority of SS set 6 is the same as that of SS set 4, or the mapping priority of SS set 6 is second only to SS set 4.
  • the protocol adopts the monitoring count method of option 5 to determine the monitoring times of the two associated candidate PDCCHs (linked PDCCH candidates), that is, the monitoring times of the two associated candidate PDCCHs is 3 times.
  • 3 candidate PDCCHs are configured in SS set 3, and the associated candidate PDCCHs defined by the current protocol are in one-to-one correspondence, then 3 candidate PDCCHs are also configured in SS set 5.
  • SS set 4 is configured with 1 candidate PDCCH
  • SS set 6 is also configured with only 1 candidate PDCCH.
  • the number of monitoring times corresponding to this pair of associated candidate PDCCHs is 3, that is, SS set 4 and SS set 6 are one A total of 3 monitoring sessions.
  • the upper limit of the remaining monitoring times is 8 times, that is, the first threshold is 8 times
  • the monitoring count result (the first time) of the associated SS set 3 and SS set 5 exceeds the upper limit of the remaining monitoring times (the first time). threshold).
  • the priority of SS set 3 is higher than that of SS set 5.
  • the other SS sets which can also be called the remaining SS sets, can be understood as the SS sets that have not yet participated in the PDCCH mapping rule operation, including SS set 4 and SS set 6. It can also be understood that the indices of the SS sets that have not yet participated in the operation of the PDCCH mapping rule at this time are all larger than the indices of SS set 3.
  • SS set 3 Since the terminal device considers that SS set 3 is used for PDCCH independent transmission, and 3 candidate PDCCHs are configured in SS set 3, then SS set 3 is counted as 3 times of monitoring (the second time), and if it does not exceed 8 times, the terminal device determines that the The candidate PDCCH for independent transmission is monitored on SS set 3, and SS set 5 and other SS sets are discarded.
  • the terminal device may determine according to the second rule Whether the second number of candidate PDCCHs that need to be monitored on the first search space set is greater than the first threshold; if the second number of times is less than the first threshold, the terminal device determines, according to the second rule, the candidate PDCCHs that need to be monitored on the second search space set. Whether the fourth number of candidate PDCCHs is greater than a second threshold, where the second threshold is equal to the first threshold minus the second number. At this time, the terminal device considers that both the first search space set and the second search space set are used for PDCCH independent transmission, and are no longer used for PDCCH repeated transmission.
  • the terminal device may monitor the PDCCH for independent transmission on the first search space set, discard the second search space set, and at the same time remove the first search space set
  • the remaining search space sets other than the space set and the second search space set are also discarded, and the difference between the upper limit value of the remaining listening times minus the listening times corresponding to the first search space set is taken as the updated upper limit value of the remaining listening times .
  • the terminal device may monitor the PDCCH for independent transmission on the first search space set and the second search space set, while dividing the first The remaining search space sets other than the search space set and the second search space set are discarded, and the difference between the upper limit value of the remaining listening times minus the listening times corresponding to the first search space set and the second search space set is used as the updated The upper limit of the remaining monitoring times.
  • the terminal device determines, according to the resource configuration information sent by the base station or the network device, that SS set 3 and SS set 5 are a pair of SS sets used for PDCCH repeat transmission, and SS set 4 and SS set 6 are another pair used for PDCCH repeat transmission.
  • SS set 3 and SS set 5 participates in the calculation of mapping rules together, which can be understood as the mapping priority of SS set 5 is the same as that of SS set 3, or the mapping priority is second only to SS set 3.
  • the smallest index in the remaining SS sets is SS set 4.
  • the mapping priority of SS set 6 is the same as that of SS set 4, or the mapping priority of SS set 6 is second only to SS set 4.
  • 3 candidate PDCCHs are configured in SS set 3, and the associated candidate PDCCHs defined by the current protocol are in one-to-one correspondence, then 3 candidate PDCCHs are also configured in SS set 5.
  • SS set 4 is configured with 1 candidate PDCCH
  • SS set 6 is also configured with only 1 candidate PDCCH.
  • the number of monitoring times corresponding to this pair of associated candidate PDCCHs is 3, that is, SS set 4 and SS set 6 are one A total of 3 monitoring sessions. Assuming that the upper limit of the remaining monitoring times is 8 times, that is, the first threshold is 8 times, the monitoring count results (the first times) of the associated SS set 3 and SS set 5 are greater than the upper limit of the remaining monitoring times (the first time threshold).
  • the terminal device considers that SS set 3 and SS set 5 are used for PDCCH independent transmission.
  • the priority of SS set 3 is higher than that of SS set 5, and the candidates to be monitored are determined on SS set 3.
  • the terminal device determines whether the fourth number of candidate PDCCHs that need to be monitored on SS set 5 exceeds a second threshold, and the second threshold is equal to the first threshold minus the second number of times.
  • the terminal device determines to monitor candidate PDCCHs for independent transmission on SS set 3 and SS set 5, and discards other SS sets, such as discarding SS set 4 and SS set 6; if the fourth number of times is greater than the second threshold, the terminal device determines to monitor the candidate PDCCH for independent transmission on SS set 3, and discards SS set 5, SS set 4, SS set 6 and other SS sets.
  • the terminal device may determine according to the second rule Whether the second number of candidate PDCCHs that need to be monitored on the first search space set is greater than the first threshold; if the second number of times is less than the first threshold, the terminal device determines, according to the second rule, the candidate PDCCHs that need to be monitored on the second search space set. Whether the fourth number of candidate PDCCHs is greater than a second threshold, where the second threshold is equal to the first threshold minus the second number.
  • the terminal device may determine whether the fifth number of times of the candidate PDCCHs that need to be monitored on at least one third search space set is greater than the third threshold. , where the third threshold is equal to the second threshold minus the fourth number of times.
  • the index value of the third search space set may be greater than the index value of the first search space set and the index value of the second search space set; in the case where the index value of the first search space set is smaller than the index value of the second search space set
  • the index value of the third search space set may also be only greater than the index value of the first search space set and less than the index value of the second search space set. It should be understood that if the index value of the second search space set is smaller than the index value of the first search space set, the index value of the third search space set may also be only greater than the index value of the second search space set, and less than the first search space set. index value of .
  • Sub-mode 3.1 Specifically, the terminal device may determine, according to the second rule, whether the fifth number of times of candidate PDCCHs to be monitored on at least one third search space set is greater than a third threshold, wherein the at least one third search space set The spatial set is used for PDCCH independent transmission. In other words, the terminal device only determines whether the fifth number of times the candidate PDCCH needs to be monitored is greater than the third threshold on at least one third set of search spaces for independent transmission.
  • the terminal device determines that SS set 3 and SS set 5 are a pair of SS sets used for PDCCH repeated transmission, and SS set 4 and SS set 6 are both used for PDCCH independent transmission.
  • SS set Since SS set 3 is the SS set with the smallest search space set index among the four SS sets, the mapping priority is the highest, and SS set 5 is the SS set associated with SS set 3 for PDCCH repeated transmission.
  • SS set 3 and SS set 5 participates in the calculation of mapping rules together, which can be understood as the mapping priority of SS set 5 is the same as that of SS set 3, or the mapping priority is second only to SS set 3.
  • the smallest index among the remaining SS sets is SS set 4.
  • the protocol adopts the monitoring count method of option 5 to determine the monitoring times of the two associated candidate PDCCHs (linked PDCCH candidates), that is, the monitoring times of the two associated candidate PDCCHs is 3 times.
  • 3 candidate PDCCHs are configured in SS set 3, and the associated candidate PDCCHs defined by the current protocol are in one-to-one correspondence, then 3 candidate PDCCHs are also configured in SS set 5.
  • SS set 4 is configured with 1 candidate PDCCH
  • SS set 6 is also configured with only 1 candidate PDCCH.
  • the monitoring times corresponding to these two candidate PDCCHs are 1 respectively, that is, SS set 4 and SS set 6 are a total of 2 monitoring.
  • the monitoring count results (the first times) of the associated SS set 3 and SS set 5 are greater than the upper limit of the remaining monitoring times (the first time threshold).
  • the terminal device may determine whether the fifth number of times of the candidate PDCCH that needs to be monitored on SS set 4 (a third search space set) is greater than the third threshold, and SS set 4 is: SS set for PDCCH independent transmission. If the fifth number of times is less than or equal to the third threshold, it is determined that candidate PDCCHs for independent transmission are monitored on SS set 3, SS set 5 and SS set 4, and other SS sets are discarded. If the fifth number of times is greater than the third threshold, it is determined that only candidate PDCCHs for independent transmission are monitored on SS set 3 and SS set 5, and other SS sets are discarded.
  • the fourth time is equal to 3
  • the second threshold is 5
  • the terminal device may also determine whether the seventh number of times of the candidate PDCCH that needs to be monitored on SS set 6 (another third search space set) is greater than the upper limit of the remaining monitoring times (1 time), because SS set 6 It is used for PDCCH independent transmission, and SS set 6 is configured with 1 candidate PDCCH, that is, the seventh time is equal to 1, and the seventh time is equal to the upper limit of the remaining monitoring times (1 time), then the terminal device determines that the SS set 3, SS Candidate PDCCHs for independent transmission are monitored on set 5, SS set 4 and SS set 6.
  • Sub-mode 3.2 Specifically, the terminal device may determine, according to the first rule, whether the fifth number of candidate PDCCHs to be monitored on at least one third search space set is greater than a third threshold, where the third search space set is used for The PDCCH is repeatedly transmitted.
  • the terminal device may determine, according to the second rule, that the at least one third Whether the number of candidate PDCCHs that need to be monitored on the search space set is greater than the third threshold (at this time, the third search space set is regarded/assumed to be used for PDCCH independent transmission).
  • the terminal device determines, according to the resource configuration information sent by the base station or the network device, that SS set 3 and SS set 5 are a pair of SS sets used for PDCCH repeat transmission, and SS set 4 and SS set 6 are another pair used for PDCCH repeat transmission.
  • SS set 3 and SS set 5 participates in the calculation of the mapping rules together, which can be understood as the mapping priority of SS set 5 is the same as that of SS set 3, or the mapping priority is second only to SS set 3.
  • the smallest index in the remaining SS sets is SS set 4.
  • the mapping priority of SS set 6 is the same as that of SS set 4, or the mapping priority of SS set 6 is second only to SS set 4.
  • 3 candidate PDCCHs are configured in SS set 3, and the associated candidate PDCCHs defined by the current protocol are in one-to-one correspondence, then 3 candidate PDCCHs are also configured in SS set 5.
  • SS set 4 is configured with 1 candidate PDCCH
  • SS set 6 is also configured with only 1 candidate PDCCH.
  • the number of monitoring times corresponding to this pair of associated candidate PDCCHs is 3, that is, SS set 4 and SS set 6 are one A total of 3 monitoring sessions. Assuming that the upper limit of the remaining monitoring times is 8 times, that is, the first threshold is 8 times, the monitoring count results (the first times) of the associated SS set 3 and SS set 5 are greater than the upper limit of the remaining monitoring times (the first time threshold).
  • the terminal device may determine whether the fifth number of times of the candidate PDCCHs that need to be monitored on SS set 4 and SS set 6 is greater than the third threshold according to the first rule. If the fifth number of times is less than or equal to the third threshold, the terminal device determines to monitor candidate PDCCHs for repeated transmission on SS set 4 and SS set 6, and does not discard SS set 4 and SS set 6; if the fifth number of times is greater than the third threshold, the terminal device can consider that SS set 4 and SS set 6 are used for PDCCH independent transmission, and according to the second rule, determine whether the number of candidate PDCCHs that need to be monitored on SS set 4 or SS set 4 and SS set 6 is whether greater than the third threshold.
  • the fourth number of times is equal to 3, the second threshold is 5, the third threshold is 2, the resource configuration information indicates that SS set 4 and SS set 6 are used for PDCCH repeated transmission, and SS set 4 and SS set 6 are respectively configured with 1 candidate PDCCH, then the fifth time is equal to 3, that is, the fifth time is greater than the third threshold.
  • the terminal device can consider that SS set 4 and SS set 6 are used for PDCCH independent transmission, and determine the SS set according to the second rule. Whether the fifth number of candidate PDCCHs to be monitored on 4 and SS set 6 is greater than the third threshold.
  • the terminal device can determine to monitor candidate PDCCHs for independent transmission on SS set 3, SS set 5, SS set 4 and SS set 6.
  • the number of at least one third search space set may be one, two, or even more, which is not limited in this application.
  • the terminal device may determine that at least one third Whether the third number of candidate PDCCHs to be monitored on the search space set is greater than the first threshold. The terminal device discards the first set of search spaces and the second set of search spaces.
  • the terminal device may determine, according to the first rule, whether the third number of times of candidate PDCCHs that need to be monitored on the at least one third search space set is greater than the first threshold.
  • the terminal device may determine, according to the second rule, that the two associated Whether the number of candidate PDCCHs that need to be monitored on the third search space set is greater than the first threshold (at this time, the third search space set is regarded/assumed to be used for PDCCH independent transmission).
  • the terminal device may determine, according to the second rule, whether the third number of times the candidate PDCCH needs to be monitored on at least one third search space set is greater than the first threshold, wherein at least one third search space set is used for PDCCH independent transmission. Specifically, if the third number of times is less than the first threshold, the terminal device may determine, according to the second rule, whether the sixth number of times of candidate PDCCHs that need to be monitored on the fourth search space set is greater than the fourth threshold, where the first The four thresholds are equal to the first threshold minus the third number of times.
  • the terminal device determines, according to the resource configuration information sent by the base station or the network device, that SS set 3 and SS set 5 are a pair of SS sets used for PDCCH repeat transmission, and SS set 4 and SS set 6 are another pair used for PDCCH repeat transmission.
  • SS set 3 and SS set 5 participates in the calculation of mapping rules together, which can be understood as the mapping priority of SS set 5 is the same as that of SS set 3, or the mapping priority is second only to SS set 3.
  • the smallest index in the remaining SS sets is SS set 4.
  • the mapping priority of SS set 6 is the same as that of SS set 4, or the mapping priority of SS set 6 is second only to SS set 4.
  • 3 candidate PDCCHs are configured in SS set 3, and the associated candidate PDCCHs defined by the current protocol are in one-to-one correspondence, then 3 candidate PDCCHs are also configured in SS set 5.
  • SS set 4 is configured with 1 candidate PDCCH
  • SS set 6 is also configured with only 1 candidate PDCCH.
  • the number of monitoring times corresponding to this pair of associated candidate PDCCHs is 3, that is, SS set 4 and SS set 6 are one A total of 3 monitoring sessions. Assuming that the upper limit of the remaining monitoring times is 8 times, that is, the first threshold is 8 times, the monitoring count results (the first times) of the associated SS set 3 and SS set 5 are greater than the upper limit of the remaining monitoring times (the first time threshold). At this point, the terminal device discards SS set 3 and SS set 5.
  • the terminal device can determine whether the third number of times of the candidate PDCCH to be monitored exceeds 8 times on SS set 4 and SS set 6 according to the first rule, If it exceeds 8 times, SS set 4, SS set 6 and other SS sets are discarded, or the terminal device can determine SS set 4 and SS set 6 according to the second rule (at this time, the third search space set is regarded as / It is assumed to be used for PDCCH independent transmission) to determine whether the number of candidate PDCCHs that need to be monitored exceeds 8 times. If not more than 8 times, the terminal device may determine to monitor candidate PDCCHs for repeated transmission on SS set 4 and SS set 6.
  • the terminal device discards SS set 4 and SS set 6, or SS set 4 and SS set 6 are regarded/assumed for PDDCCH independent transmission.
  • the terminal device determines that the number of candidate PDCCHs to be monitored on both SS set 4 and SS set 6 exceeds 8 times, then it is determined on SS set 7 whether the third number of candidate PDCCHs to be monitored exceeds 8 times, and if it exceeds 8 times , then discard SS set 7 and other SS sets. If not more than 8 times, the terminal device may determine to monitor the candidate PDCCH for independent transmission on SS set 7. In this case, the terminal device can still determine on SS set 8 whether the number of candidate PDCCHs to be monitored exceeds the remaining number of times.
  • the first search space set and the second search space set may not be discarded, or Not discarding the first search space set and the second search space set as a whole, or not discarding all of the first search space set, the second search space set, and the remaining search space sets, can improve the utilization rate of the candidate PDCCH resources.
  • a candidate PDCCH of an associated search space set and a candidate PDCCH of another associated search space set may appear together in a certain time slot.
  • the time-frequency resources corresponding to the two candidate PDCCHs overlap, And when it is counted as a blind detection, if the terminal device monitors a PDCCH on this time-frequency resource, it cannot distinguish which linked PDCCH this PDCCH is, which affects the correct reception of the PDCCH.
  • the received PDCCH is combined and decoded, which may cause combined decoding to fail.
  • candidate PDCCH 1 belongs to SS set 1
  • candidate PDCCH 2 belongs to SS set 2
  • candidate PDCCH 3 belongs to SS set 3
  • candidate PDCCH 4 belongs to SS set 4
  • the base station indicates SS set 1 and SS set through resource configuration information or high-level parameter configuration.
  • SS set 3 and SS set 4 are associated, that is, SS set 1 and SS set 2 are used together for PDCCH repeated transmission of the same DCI, SS set 3 and SS set 4 are used together for PDCCH repeated transmission of the same DCI , candidate PDCCH 1 and candidate PDCCH 2 may send the same first PDCCH, and candidate PDCCH 3 and candidate PDCCH 4 may also send the same second PDCCH.
  • the terminal device cannot determine whether the base station sends the first PDCCH or the second PDCCH, which affects the correct reception of the PDCCH, resulting in decoding failure.
  • an embodiment of the present application proposes a method for information detection.
  • the terminal device or the base station determines that the time-frequency resources of the candidate PDCCH 2 and the candidate PDCCH 4 overlap and the count is one blind detection
  • the terminal device is pre-defined by the protocol. It is only necessary to decode the candidate PDCCH of the SS set with the smallest SS set index value in the overlapping resources, that is, the terminal device only needs to decode the candidate PDCCH 2.
  • the terminal device decodes the PDCCH 2 according to the configuration information of the SS set 2, because Candidate PDCCH 2 belongs to SS set 2.
  • the base station sends DCI only through the candidate PDCCH of the SS set with the smallest index value of the SS set in the overlapping resources.
  • the terminal device when the time-frequency resources corresponding to the two candidate PDCCHs overlap and meet the condition of being counted as a blind detection, the terminal device is defined according to the configuration of the minimum index value of the search space set to which the two candidate PDCCHs belong.
  • the base station sends the DCI according to the configuration information with the smallest index value of the search space set to which the two candidate PDCCHs belong.
  • the terminal device may also be defined to receive DCI according to the configuration information with the largest index value of the search space set.
  • the base station sends DCI according to the configuration information with the largest index value of the search space set, and do not do this. limited.
  • the terminal device receives DCI according to the SS set configuration information associated with the CORESET with the smallest CORESET index to which the two candidate PDCCHs belong. In this case, the base station receives the DCI according to the minimum CORESET index to which the two candidate PDCCHs belong.
  • the SS set configuration information associated with the CORESET can be used to send DCI, or it can be defined to receive or send DCI according to the SS set configuration information associated with the CORESET with a larger index.
  • the method can improve the success rate of terminal equipment receiving PDCCH, and specifically includes:
  • the terminal device determines that the time-frequency resources corresponding to the first candidate physical downlink control channel PDCCH overlap with the time-frequency resources corresponding to the second candidate PDCCH.
  • the first candidate PDCCH is associated with the third candidate PDCCH, and is used for repeated transmission of the first DCI
  • the second candidate PDCCH is associated with the fourth candidate PDCCH, and is used for the repeated transmission of the second DCI.
  • the first candidate PDCCH belongs to the first SS set
  • the second candidate PDCCH belongs to the second SS set
  • the third candidate PDCCH belongs to the third SS set
  • the fourth candidate PDCCH belongs to the fourth SS set.
  • the first SS set and the third SS set are associated, and the second SS set and the fourth SS set are associated.
  • the time-frequency resources corresponding to the first candidate PDCCH and the time-frequency resources corresponding to the second candidate PDCCH overlap, and the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships:
  • the first candidate PDCCH and the second candidate PDCCH have the same scrambling sequence
  • the first candidate PDCCH is associated with the same control resource set as the second candidate PDCCH;
  • the bit size of the downlink control information DCI carried by the first candidate PDCCH and the second candidate PDCCH is the same.
  • the terminal device detects the first DCI on the first candidate PDCCH, where the index value of the first SS set to which the first candidate PDCCH belongs is smaller than the index value of the second SS set to which the second candidate PDCCH belongs. Specifically, the terminal device detects the first DCI on the first candidate PDCCH and the third candidate PDCCH.
  • the number of blind detections of the terminal device on the first candidate PDCCH and the third candidate PDCCH is 3 times.
  • the terminal device may only detect the first DCI on the first candidate PDCCH and the third candidate PDCCH, and not detect the second DCI on the second candidate PDCCH and the fourth candidate PDCCH.
  • the base station will not send the PDCCH configured by the second SS set to which the second candidate PDCCH belongs, so the terminal device will not combine and decode the second candidate PDCCH and the fourth candidate PDCCH, and these two candidate PDCCHs cannot perform the first If the two DCIs are repeatedly sent, the terminal device will not monitor the two candidate PDCCHs.
  • the terminal device may detect the first DCI on the first candidate PDCCH and the third candidate PDCCH, and detect the independently sent second DCI on the fourth candidate PDCCH.
  • the protocol can predefine that the associated candidate PDCCH in this case becomes the candidate PDCCH for independent transmission, and the base station will not send the PDCCH configured in the second SS set to which the second candidate PDCCH belongs, but still sends the fourth candidate PDCCH The PDCCH configured by the fourth SS set to which it belongs.
  • the terminal device does not detect the second DCI on the second candidate PDCCH, but detects the second DCI sent independently on the fourth candidate PDCCH, and does not perform any combining operation, which is counted as a blind detection or monitoring.
  • the terminal device when the terminal device determines that the time-frequency resource corresponding to the first candidate PDCCH used for the first DCI repeated transmission and the time-frequency resource corresponding to the second candidate PDCCH used for the second DCI repeated transmission overlap and When it is counted as one blind detection, the terminal device is based on the index value of the first SS set to which the first candidate PDCCH belongs and the index value of the second SS set to which the second candidate PDCCH belongs (the index value of the first SS set is smaller than the index value of the second SS set).
  • the index value of the second SS set that is, the mapping priority of the first SS set is higher than the mapping priority of the second SS set
  • the PDCCHs are consistent with each other, thereby improving the success rate of receiving the PDCCH by the terminal device.
  • candidate PDCCH 1 belongs to SS set 1
  • candidate PDCCH 2 belongs to SS set 2
  • candidate PDCCH 3 belongs to SS set 3
  • candidate PDCCH 4 belongs to SS set 4
  • the base station indicates SS set 1 and SS set through resource configuration information or high-level parameter configuration.
  • candidate PDCCH 1 and candidate PDCCH 2 may transmit the same first PDCCH
  • candidate PDCCH 3 and candidate PDCCH 4 may also transmit the same second PDCCH.
  • the time-frequency resources of the candidate PDCCH 1 and the candidate PDCCH 3 overlap, and the terminal equipment cannot determine whether the base station sends the first PDCCH or the second PDCCH on the time-frequency resources; the time-frequency resources of the candidate PDCCH 2 and the candidate PDCCH 4 overlap. On the time-frequency resources, the terminal equipment cannot determine whether the base station sends the first PDCCH or the second PDCCH; the terminal equipment cannot receive the PDCCH correctly, resulting in decoding failure.
  • an embodiment of the present application proposes a method for information detection.
  • a terminal device or a base station determines that the time-frequency resources of candidate PDCCH 1 and candidate PDCCH 3 overlap and satisfy the condition of being counted as a blind detection, candidate PDCCH 2 and candidate PDCCH 3 overlap with each other.
  • the terminal equipment only needs to decode the candidate PDCCH of the SS set with the smallest SS set index value in the overlapping resources and the candidate PDCCH associated with it. That is, the terminal device only needs to decode the candidate PDCCH 1 and the candidate PDCCH 2.
  • the base station sends DCI only through the SS set with the smallest index value of the SS set in the overlapping resources and the candidate PDCCH of the SS set associated with it.
  • the method can improve the success rate of terminal equipment receiving PDCCH, and specifically includes:
  • the terminal device determines that the time-frequency resource corresponding to the first candidate physical downlink control channel PDCCH overlaps the time-frequency resource corresponding to the second candidate PDCCH, and the time-frequency resource corresponding to the third candidate PDCCH and the time-frequency resource corresponding to the fourth candidate PDCCH overlap. Overlapping, the first candidate PDCCH and the third candidate PDCCH are used for repeated transmission of the first downlink control information DCI, and the second candidate PDCCH and the fourth candidate PDCCH are used for the repeated transmission of the second downlink control information DCI.
  • the first candidate PDCCH belongs to the first SS set
  • the second candidate PDCCH belongs to the second SS set
  • the third candidate PDCCH belongs to the third SS set
  • the fourth candidate PDCCH belongs to the fourth SS set.
  • the first SS set and the third SS set are associated
  • the second SS set and the fourth SS set are associated.
  • the time-frequency resources corresponding to the first candidate PDCCH and the time-frequency resources corresponding to the second candidate PDCCH overlap, and the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships:
  • the first candidate PDCCH and the second candidate PDCCH have the same scrambling sequence
  • the first candidate PDCCH is associated with the same control resource set as the second candidate PDCCH;
  • the bit size of the downlink control information DCI carried by the first candidate PDCCH and the second candidate PDCCH is the same.
  • the terminal device detects the first DCI on the first candidate PDCCH and the third candidate PDCCH, where the index value of the first search space set to which the first candidate PDCCH belongs is smaller than the index of the second search space set to which the second candidate PDCCH belongs.
  • the mapping priority of the first search space set is higher than the mapping priority of the second search space set and the fourth search space set; or, the third candidate The index value of the third search space set to which the PDCCH belongs is smaller than the index value of the second search space set to which the second candidate PDCCH belongs and the index value of the fourth search space set to which the fourth candidate PDCCH belongs; or, the index of the first search space set Both the index value and the index value of the third search space set are smaller than the index value of the second search space set and the index value of the fourth search space set.
  • the network device configuration information is as follows: 4 candidate PDCCHs are used for PDCCH repeated transmission, candidate PDCCH 1 belongs to SS set 1, candidate PDCCH 2 belongs to SS set 2, candidate PDCCH 3 belongs to SS set 3, candidate PDCCH 4 belongs to SS set 4,
  • the base station indicates through resource configuration information or high-level parameter configuration that SS set 1 and SS set 2 are associated, and SS set 3 and SS set 4 are associated, that is, SS set 1 and SS set 2 are used together for PDCCH repeated transmission, SS set 3 Together with the SS set 4, it is used for the repeated transmission of PDCCH, the candidate PDCCH 1 and the candidate PDCCH 2 are used for the repeated transmission of the first DCI, and the candidate PDCCH 3 and the candidate PDCCH 4 are used for the repeated transmission of the second DCI.
  • the terminal equipment determines that the time-frequency resources of the candidate PDCCH 1 and the candidate PDCCH 3 overlap and meet the conditions of being counted as a blind detection, and the time-frequency resources of the candidate PDCCH 2 and the candidate PDCCH 4 overlap and meet the conditions of being counted as a blind detection, because the SS
  • the index value of set 1 is smaller than the index value of SS set 3 and SS set 4, and the index value of SS set 2 is also smaller than the index value of SS set 3 and SS set 4. Therefore, the terminal device is on candidate PDCCH 1 and candidate PDCCH 2.
  • the first DCI is detected without detecting the second DCI.
  • the base station or network device configuration information is as follows: 4 candidate PDCCHs are used for PDCCH repeated transmission, candidate PDCCH 1 belongs to SS set 1, candidate PDCCH 2 belongs to SS set 2, candidate PDCCH 3 belongs to SS set 3, and candidate PDCCH 4 belongs to SS set 4.
  • SS set 1 is associated with CORESET2
  • SS set 2 is associated with CORESET1
  • SS set 3 is associated with CORESET3
  • SS set 4 is associated with CORESET4.
  • the network device indicates through resource configuration information or high-level parameter configuration that SS set 1 and SS set 2 are associated, and SS set 3 and SS set 4 are associated, that is, SS set 1 and SS set 2 are used together for PDCCH repeated transmission, SS set 3 and SS set 4 are used together for PDCCH repeated transmission, candidate PDCCH 1 and candidate PDCCH 2 are used for repeated transmission of the first DCI, and candidate PDCCH 3 and candidate PDCCH 4 are used for repeated transmission of the second DCI.
  • the terminal device determines that the time-frequency resources of the candidate PDCCH 1 and the candidate PDCCH 3 overlap and meet the conditions of being counted as a blind check, and the time-frequency resources of the candidate PDCCH 2 and the candidate PDCCH 4 overlap and meet the conditions of being counted as a blind check, because CORESET1
  • the index value of CORESET3 and CORESET4 is smaller than the index value of CORESET3 and CORESET4, and/or the index value of CORESET2 is also smaller than the index value of CORESET3 and CORESET4. Therefore, the terminal device detects the first DCI on candidate PDCCH 1 and candidate PDCCH 2 without detecting the second DCI. DCI.
  • the terminal device when the terminal device determines that the time-frequency resources corresponding to the first candidate PDCCH used for the first DCI repeated transmission and the time-frequency resources corresponding to the second candidate PDCCH used for the second DCI repeated transmission overlap, And when the time-frequency resources corresponding to the third candidate PDCCH used for the first DCI repeated transmission and the time-frequency resources corresponding to the fourth candidate PDCCH used for the second DCI repeated transmission overlap, the terminal device will use the second candidate PDCCH to The index value of the SS set, the index value of the second SS set to which the fourth candidate PDCCH belongs, the index value of the first SS set to which the first candidate PDCCH belongs, and the size of the index value of the first SS set to which the first candidate PDCCH belongs ( The index value of the first SS set and/or the index value of the third SS set is smaller than the index value of the second SS set and the index value of the fourth SS set), it is determined to detect the first candidate PDCCH and the third candidate PDCCH
  • the protocol supports independent candidate PDCCH (individual PDCCH candidate) and associated candidate A scenario in which PDCCH (linked PDCCH candidate) exists at the same time and satisfies a blind check (count one).
  • PDCCH linked PDCCH candidate
  • candidate PDCCH 1 belongs to SS set 1
  • candidate PDCCH 2 belongs to SS set 2
  • candidate PDCCH 3 belongs to SS set 3.
  • the base station indicates through resource configuration information or high-level parameter configuration that SS set 1 and SS set 2 are related, and SS set 3 It is used for PDCCH independent transmission, that is, SS set 1 and SS set 2 are used together for PDCCH repeated transmission.
  • candidate PDCCH 1 and candidate PDCCH 2 may transmit the same first PDCCH
  • candidate PDCCH 3 may transmit the second PDCCH.
  • the terminal device determines that the time-frequency resources of candidate PDCCH 2 and candidate PDCCH 3 overlap and satisfy one blind detection.
  • the priority of the SS set is determined according to the index value of the SS set.
  • the terminal device determines that the number of times to determine the candidate PDCCH that needs to be monitored on the candidate PDCCH 1 and the candidate PDCCH 2 is 3 times, and it is determined not to monitor the PDCCH on the candidate PDCCH 3. It is understandable
  • the configuration information of SS set 3 is not used to monitor candidate PDCCHs on overlapping resources.
  • candidate PDCCH 1 belongs to SS set 1
  • candidate PDCCH 2 belongs to SS set 3
  • candidate PDCCH 3 belongs to SS set 2.
  • the base station indicates through resource configuration information or high-level parameter configuration that SS set 1 and SS set 3 are related, and SS set 2 It is used for PDCCH independent transmission, that is, SS set 1 and SS set 3 are used together for PDCCH repeated transmission.
  • candidate PDCCH 1 and candidate PDCCH 2 may transmit the same first PDCCH
  • candidate PDCCH 3 may transmit the second PDCCH.
  • the terminal device determines that the time-frequency resources of candidate PDCCH 2 and candidate PDCCH 3 overlap and satisfy one blind detection.
  • the priority of the SS set is determined according to the index value of the SS set.
  • the terminal device determines that the number of times to determine the second PDCCH to be monitored on the candidate PDCCH 3 is 1, and the number of times to determine the first PDCCH to be monitored on the candidate PDCCH 1 is 1 time, a total of 2 times of monitoring, and it is determined not to monitor the first PDCCH on the candidate PDCCH 2, it can be understood that the configuration information of the SS set 2 is not used to monitor the candidate PDCCH on the overlapping resources.
  • the time-frequency resources corresponding to an individual PDCCH candidate and a linked PDCCH candidate overlap and are counted as one blind detection, the number of listening times of the candidate PDCCH is not fixed, which may lead to different blind detection counting results between the terminal device and the base station. Thus, the correct transmission of the PDCCH is affected.
  • the present application proposes a method for information detection, which can improve the reliability of PDCCH transmission.
  • FIG. 13 a schematic flowchart of a method 1300 for information detection is shown. Specifically, the method includes:
  • the terminal device determines that the time-frequency resources corresponding to the first candidate physical downlink control channel PDCCH overlap with the time-frequency resources corresponding to the second candidate PDCCH.
  • the first candidate PDCCH belongs to the first search space set
  • the second candidate PDCCH belongs to the second search space set
  • the third candidate PDCCH belongs to the third search space set
  • the first search space set and the third search space set are used for PDCCH repetition Transmission, that is, the first set of search spaces is associated with the third set of search spaces
  • the second set of search spaces is used for PDCCH independent transmission.
  • the time-frequency resources corresponding to the first candidate PDCCH and the time-frequency resources corresponding to the second candidate PDCCH overlap, and the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships:
  • the first candidate PDCCH and the second candidate PDCCH have the same scrambling sequence
  • the first candidate PDCCH is associated with the same control resource set as the second candidate PDCCH;
  • the bit size of the downlink control information DCI carried by the first candidate PDCCH and the second candidate PDCCH is the same.
  • the terminal device determines the number of candidate PDCCHs that need to be monitored on the first candidate PDCCH and the third candidate PDCCH according to the first rule, that is, the terminal device does not need to monitor the second candidate PDCCH; wherein the first rule is used for repeated transmission.
  • PDCCH monitoring counting rules PDCCH monitoring counting rules. It should be understood that, in this case, the transmission priority of the candidate PDCCH for repeated transmission is pre-defined by the protocol to be higher than the transmission priority of the candidate PDCCH for independent transmission.
  • the index value of the first search space set may be smaller than the index value of the second search space set, and the index value of the first search space set may also be greater than the index value of the second search space set.
  • the index value of the third search space set may be smaller than the index value of the second search space set, and the index value of the third search space set may also be greater than the index value of the second search space set.
  • the base station or network device configuration information is as follows: three SS sets for PDCCH transmission, assuming that each SS set is configured with only one candidate PDCCH. Among them, candidate PDCCH 1 belongs to SS set 1, candidate PDCCH 2 belongs to SS set 2, and candidate PDCCH 3 belongs to SS set 3.
  • the base station indicates through resource configuration information or high-level parameter configuration that SS set 1 and SS set 3 are related, and SS set 2 It is used for PDCCH independent transmission, that is, SS set 1 and SS set 3 are used together for PDCCH repeated transmission.
  • candidate PDCCH 1 and candidate PDCCH 3 may transmit the same first PDCCH
  • candidate PDCCH 2 may transmit the second PDCCH.
  • the terminal device When the terminal device determines that the time-frequency resources of the candidate PDCCH 3 and the candidate PDCCH 2 overlap and meet the condition of being counted as a blind detection, the terminal device can detect the first PDCCH on the candidate PDCCH 1 and the candidate PDCCH 3 without detecting the second PDCCH .
  • the protocol predefines the priority of repeated transmissions higher than that of independent transmissions.
  • the protocol adopts the monitoring count method of option 5 to determine the monitoring times of two associated candidate PDCCHs (linked PDCCH candidates), that is, the monitoring times of the two associated candidate PDCCHs is 3, and among the two associated candidate PDCCHs
  • the one candidate PDCCH with an earlier time domain position is counted as one blind detection or one candidate PDCCH for monitoring, and the one candidate PDCCH with a later time domain position among the two associated candidate PDCCHs is counted as 2 blind detections or counts as 2 candidate PDCCHs for monitoring.
  • the PDCCH mapping priority corresponding to candidate PDCCH 2 is higher, and blind detection and counting are performed first according to the blind detection and counting rules. It is assumed that the terminal device determines that the number of blind detections corresponding to the candidate PDCCH 2 is 1 according to the blind detection counting rule.
  • the PDCCH mapping priority of candidate PDCCH 3 is second only to that of candidate PDCCH 2. Since the priority of repeated transmissions predefined by the protocol is higher than that of independent transmission, the base station or network device will locate the overlapping resources where candidate PDCCH 2 and candidate PDCCH 3 are located.
  • Repeated PDCCH transmission is performed on the PDCCH, that is, the first PDCCH is sent. Therefore, the number of blind detections corresponding to the overlapping resources should be counted as 2 blind detections according to the second rule. The number of blind detections is increased by one blind detection to the results after the number of detections, to 2 times.
  • the terminal device determines that the time-frequency resources corresponding to the third candidate physical downlink control channel PDCCH overlap with the time-frequency resources corresponding to the second candidate PDCCH.
  • the first candidate PDCCH belongs to the first search space set
  • the second candidate PDCCH belongs to the second search space set
  • the third candidate PDCCH belongs to the third search space set
  • the first search space set and the third search space set are used for PDCCH repetition Transmission, that is, the first set of search spaces is associated with the third set of search spaces
  • the second set of search spaces is used for PDCCH independent transmission.
  • the terminal device determines the number of candidate PDCCHs that need to be monitored on the second candidate PDCCH according to the second rule, that is, the terminal device does not need to monitor the first candidate PDCCH and the third candidate PDCCH for repeated transmission; wherein, the protocol pre-defines the second rule It is the monitoring count rule for PDCCH for independent transmission.
  • the base station or network device configuration information is as follows: three SS sets for PDCCH transmission, assuming that each SS set is configured with only one candidate PDCCH. Among them, candidate PDCCH 1 belongs to SS set 1, candidate PDCCH 2 belongs to SS set 2, and candidate PDCCH 3 belongs to SS set 3.
  • the base station indicates through resource configuration information or high-level parameter configuration that SS set 1 and SS set 3 are related, and SS set 2 It is used for PDCCH independent transmission, that is, SS set 1 and SS set 3 are used together for PDCCH repeated transmission.
  • candidate PDCCH 1 and candidate PDCCH 3 may transmit the same first PDCCH
  • candidate PDCCH 2 may transmit the second PDCCH.
  • the terminal device can detect the second PDCCH on the candidate PDCCH 2 according to the rules predefined in the protocol, without the need to detect the second PDCCH. a PDCCH.
  • the pre-defined rule of the protocol is that the priority of independent transmission is higher than that of repeated transmission.
  • the base station or the network device sends the second PDCCH on the overlapping resource, and the terminal side determines the number of blind detections on the overlapping resource or the number or the number of times for monitoring the candidate PDCCH according to the second rule.
  • the overlapping resource count is 1 blind detection
  • the candidate PDCCH 2 and the candidate PDCCH 3 are a total of 1 blind detection (or the count is 1 candidate PDCCH for monitoring). This application does not limit this.
  • the terminal device determines that the time-frequency resources corresponding to the first candidate PDCCH used for repeated transmission overlap with the time-frequency resources corresponding to the second candidate PDCCH used for independent transmission, the terminal device determines that the The number of candidate PDCCHs to be monitored on the repeatedly transmitted first candidate PDCCH and the third candidate PDCCH can avoid inconsistency between the terminal device's monitoring of the candidate PDCCH and the base station's count result, thereby improving the reliability of PDCCH transmission.
  • priority rules given above are only examples.
  • the priority of a small index is higher than that of a large index
  • the priority of repeated transmission is higher than that of independent transmission.
  • the priority rules in this application may be preset. , or pre-agreed in the agreement.
  • FIG. 14 a schematic block diagram of a communication apparatus 1400 according to an embodiment of the present application is shown.
  • the apparatus may be applied to the terminal device in the embodiments of the present application.
  • the communication device 1400 includes: a processing unit 1410 for:
  • the first rule it is determined that the first number of times the candidate physical downlink control channel PDCCH needs to be monitored on the first search space set and the second search space set is greater than the first threshold, wherein the first search space set and the The second set of search spaces is associative;
  • the second rule determine whether the second number of times of the candidate PDCCHs that need to be monitored on the first search space set is greater than the first threshold
  • the processing unit 1410 is specifically configured to: if the second number of times is less than the first threshold, determine the number of candidate PDCCHs that need to be monitored on the second search space set according to the second rule. Whether the fourth number of times is greater than a second threshold, wherein the second threshold is equal to the first threshold minus the second number of times.
  • the processing unit 1410 is further configured to: if the fourth number of times is less than the second threshold, determine whether the fifth number of times of the candidate PDCCH that needs to be monitored on the at least one third search space set is greater than A third threshold, wherein the third threshold is equal to the second threshold minus the fourth number of times.
  • the processing unit 1410 is specifically configured to: determine, according to the first rule or the second rule, whether the third number of times of the candidate PDCCHs that need to be monitored on the at least one third search space set is greater than the specified number of times. the first threshold.
  • the processing unit 1410 is further configured to: if the third number of times is less than the first threshold, determine, according to the second rule, the sixth number of candidate PDCCHs that need to be monitored on the fourth search space set. Whether the number of times is greater than a fourth threshold, where the fourth threshold is equal to the first threshold minus the third number of times.
  • the index value of the third search space set is greater than the index value of the first search space set and/or the index value of the second search space set.
  • the first rule is a monitoring counting rule of PDCCH used for repeated transmission; the second rule is a monitoring counting rule of PDCCH used for independent transmission.
  • FIG. 15 a schematic block diagram of a communication apparatus 1500 according to an embodiment of the present application is shown.
  • the apparatus may be applied to the terminal device in the embodiments of the present application.
  • the communication device 1500 includes: a processing unit 1510 for:
  • the first candidate PDCCH is used for repeated transmission of the first downlink control information DCI
  • the second candidate PDCCH The PDCCH is used for repeated transmission of the second DCI; the first DCI is detected on the first candidate PDCCH, wherein the index value of the first search space set to which the first candidate PDCCH belongs is smaller than the second candidate PDCCH The index value of the second search space set to which it belongs.
  • the processing unit 1510 is specifically configured to: detect the first DCI on the first candidate PDCCH and the third candidate PDCCH, where the third search space set to which the third candidate PDCCH belongs is the same as the third candidate PDCCH. associated with the first set of search spaces.
  • the processing unit 1510 is further configured to: detect the second DCI on a fourth candidate PDCCH, where the fourth search space set to which the fourth candidate PDCCH belongs and the second search space set are Associated.
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships:
  • the first candidate PDCCH and the second candidate PDCCH have the same scrambling sequence
  • the first candidate PDCCH is associated with the same control resource set as the second candidate PDCCH;
  • the bit size of the downlink control information carried by the first candidate PDCCH and the second candidate PDCCH is the same.
  • FIG. 16 a schematic block diagram of a communication apparatus 1600 according to an embodiment of the present application is shown.
  • the apparatus may be applied to the terminal device in the embodiments of the present application.
  • the communication device 1600 includes: a processing unit 1610 for:
  • a candidate PDCCH and the third candidate PDCCH are used for repeated transmission of the first downlink control information DCI, and the second candidate PDCCH and the fourth candidate PDCCH are used for the repeated transmission of the second downlink control information DCI;
  • the first DCI is detected on the first candidate PDCCH and the third candidate PDCCH, wherein the index value of the first search space set to which the first candidate PDCCH belongs and/or the third candidate PDCCH belongs to
  • the index value of the third search space set is smaller than the index value of the second search space set to which the second candidate PDCCH belongs and the index value of the fourth search space set to which the fourth candidate PDCCH belongs.
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships:
  • the first candidate PDCCH and the second candidate PDCCH have the same scrambling sequence
  • the first candidate PDCCH is associated with the same control resource set as the second candidate PDCCH;
  • the bit size of the downlink control information carried by the first candidate PDCCH and the second candidate PDCCH is the same.
  • FIG. 17 a schematic block diagram of a communication apparatus 1700 according to an embodiment of the present application is shown.
  • the apparatus may be applied to the terminal device in the embodiments of the present application.
  • the communication device 1700 includes: a processing unit 1710 for:
  • the first rule determine the number of candidate PDCCHs that need to be monitored on the first candidate PDCCH and the third candidate PDCCH, the first search space set to which the first candidate PDCCH belongs and the third candidate PDCCH to which the third candidate PDCCH belongs.
  • the three search space sets are associated, the second search space set is used for independent PDCCH transmission, and the first rule is a monitoring counting rule for PDCCHs that are repeatedly transmitted.
  • the index value of the first search space set is greater than the index value of the second search space set.
  • the index value of the third search space set is greater than the index value of the second search space set.
  • the first candidate PDCCH and the second candidate PDCCH have at least one of the following relationships:
  • the first candidate PDCCH and the second candidate PDCCH have the same scrambling sequence
  • the first candidate PDCCH is associated with the same control resource set as the second candidate PDCCH;
  • the bit size of the downlink control information carried by the first candidate PDCCH and the second candidate PDCCH is the same.
  • An embodiment of the present application provides a communication apparatus 1800. As shown in FIG. 18, a schematic block diagram of a communication apparatus 1800 according to an embodiment of the present application is shown.
  • the communication device 1800 includes: at least one processor 1810, the processor is connected to a memory 1820, the memory 1820 is used for storing a computer program, and the processor 1810 is used for executing the computer program stored in the memory 1820, so as to The apparatus is caused to execute the method in any possible implementation manner in the embodiments of the present application.
  • the above-mentioned processor 1810 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other possible solutions. Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices, discrete gate or transistor logic devices, discrete hardware components The methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the embodiments of the present application further provide a computer-readable storage medium, on which a computer program for implementing the methods in the foregoing method embodiments is stored.
  • a computer program for implementing the methods in the foregoing method embodiments is stored.
  • the computer program runs on a computer, the computer can implement the methods in the above method embodiments.
  • Embodiments of the present application further provide a computer program product, where the computer program product includes computer program code, and when the computer program code runs on a computer, causes the methods in the above method embodiments to be executed.
  • An embodiment of the present application further provides a chip, including a processor, where the processor is connected to a memory, where the memory is used for storing a computer program, and the processor is used for executing the computer program stored in the memory, so that all The chip executes the methods in the above method embodiments.
  • the term "and/or” in this application is only an association relationship to describe associated objects, which means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, and A and B exist at the same time. , there are three cases of B alone.
  • the character "/" in this document generally indicates that the contextual object is an "or” relationship; the term “" in this application can indicate "one” and "two or more", for example, A, B In and C, it can be expressed that A exists alone, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, C and B exist simultaneously, and A and B and C exist simultaneously, these seven situations.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息检测的方法和装置,能够提高候选PDCCH资源的利用率。该方法包括:根据第一规则,确定在第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,其中,第一搜索空间集合与第二搜索空间集合是关联的;根据第二规则,确定在该第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于第一阈值;或,确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于第一阈值。

Description

信息检测的方法和装置
本申请要求于2021年4月6日提交中国专利局、申请号为202110368936.X、申请名称为“信息检测的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信息检测的方法和装置。
背景技术
目前,在物理下行共享信道(physical downlink control channel,PDCCH)重复传输讨论中,基站会通过无线资源控制(radio resource control,RRC)参数配置或媒体接入控制层控制单元(media access control control element,MAC CE)显式对用于传输相同PDCCH或PDCCH重复传输的两个搜索空间集合(search space set,SS set)配置一个关联关系,如果考虑这个关联关系,那么考虑尽可能保留PDCCH重复传输功能,一个比较自然的想法就是具有关联关系的2个SS set一起参与盲检测(bind detection,BD)计数和PDCCH映射规则的判断操作。如果当一对关联的SS set对应的BD个数超过剩余BD上限时,如何处理能够不会降低PDCCH资源的利用率是亟待解决的技术问题。
发明内容
本申请提供了一种的信息检测的方法和装置,能够提高候选PDCCH资源的利用率。
第一方面,提供一种信息检测的方法,该方法可以由终端设备或终端侧的芯片或芯片系统执行。该方法包括:根据第一规则,确定在第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,其中,所述第一搜索空间集合与所述第二搜索空间集合是关联的;根据第二规则,确定在所述第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于所述第一阈值;或,确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
基于上述技术方案,当关联的第一搜索空间集合和第二搜索空间集合对应的监听次数超过剩余监听次数的上限时,可以不丢弃第一搜索空间集合和第二搜索空间集合,或不将第一搜索空间集合和第二搜索空间集合整体丢弃,或不将第一搜索空间集合、第二搜索空间集合以及剩余的搜索空间集合都丢弃,可以提高候选PDCCH资源的利用率。
结合第一方面,在第一方面的某些实现方式中,所述根据第二规则,确定在所述第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于所述第一阈值,包括:若所述第二次数小于所述第一阈值,则根据所述第二规则,确定在所述第二搜索空间集合上需要监听的候选PDCCH的第四次数是否大于第二阈值,其中,所述第二阈值等于所述第一阈值减去所述第二次数。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:若所述第四次数小于所述第二阈值,则确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的 第五次数是否大于第三阈值,其中,所述第三阈值等于所述第二阈值减去所述第四次数。
结合第一方面,在第一方面的某些实现方式中,所述确定在至少一个第三搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第三次数是否大于所述第一阈值,包括:根据所述第一规则或所述第二规则,确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第二规则,确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值,包括:若所述第三次数小于所述第一阈值,则根据所述第二规则,确定在第四搜索空间集合上需要监听的候选PDCCH的第六次数是否大于第四阈值,其中,所述第四阈值等于所述第一阈值减去所述第三次数。
结合第一方面,在第一方面的某些实现方式中,所述第三搜索空间集合的索引值大于所述第一搜索空间集合的索引值和/或所述第二搜索空间集合的索引值。
结合第一方面,在第一方面的某些实现方式中,所述第一规则为用于重复传输的PDCCH的监听计数规则;所述第二规则为用于独立传输的PDCCH的监听计数规则。
第二方面,提供了一种信息检测的方法,该方法可以由终端设备或终端侧的芯片或芯片系统执行。所述方法包括:确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,所述第一候选PDCCH用于第一下行控制信息(downlink control information,DCI)的重复传输,所述第二候选PDCCH用于第二DCI的重复传输;在所述第一候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值。
基于上述技术方案,当终端设备确定用于第一DCI重复传输的第一候选PDCCH对应的时频资源重叠和用于第二DCI重复传输的第二候选PDCCH对应的时频资源重叠时,终端设备根据第一候选PDCCH所属的第一SS set的索引值和第二候选PDCCH所属的第二SS set的索引值的大小(第一SS set的索引值小于第二SS set的索引值,即第一SS set的优先级高于第二SS set的优先级),确定在第一候选PDCCH上检测第一DCI,可以使终端设备检测的PDCCH与基站发送的PDCCH一致,从而提高终端设备对PDCCH的接收成功率。
结合第二方面,在第二方面的某些实现方式中,所述在所述第一候选PDCCH上检测所述第一DCI,包括:在所述第一候选PDCCH和第三候选PDCCH上检测所述第一DCI,其中,所述第三候选PDCCH所属的第三搜索空间集合与所述第一搜索空间集合相关联。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:在第四候选PDCCH上检测所述第二DCI,其中,所述第四候选PDCCH所属的第四搜索空间集合与所述第二搜索空间集合是关联的。
结合第二方面,在第二方面的某些实现方式中,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
第三方面,提供了一种信息检测的方法,该方法可以由终端设备或终端侧的芯片或芯 片系统执行。所述方法包括:确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,第三候选PDCCH对应的时频资源和第四候选PDCCH对应的时频资源重叠,所述第一候选PDCCH和所述第三候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH和所述第四候选PDCCH用于第二下行控制信息DCI的重复传输;在所述第一候选PDCCH和所述第三候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值和/或所述第三候选PDCCH所属的第三搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值和所述第四候选PDCCH所属的第四搜索空间集合的索引值。
基于上述技术方案,当终端设备确定用于第一DCI重复传输的第一候选PDCCH对应的时频资源和用于第二DCI重复传输的第二候选PDCCH对应的时频资源重叠,且用于第一DCI重复传输的第三候选PDCCH对应的时频资源和用于第二DCI重复传输的第四候选PDCCH对应的时频资源重叠时,终端设备根据第二候选PDCCH所属的第二SS set的索引值、第四候选PDCCH所属的第二SS set的索引值、第一候选PDCCH所属的第一SS set的索引值、第一候选PDCCH所属的第一SS set的索引值的大小(第一SS set的索引值和/或第三SS set的索引值小于第二SS set的索引值和第四SS set的索引值),确定在第一候选PDCCH和第三候选PDCCH上检测第一DCI,可以使终端设备检测的PDCCH与基站发送的PDCCH一致,从而提高终端设备对PDCCH的接收成功率。
结合第三方面,在第三方面的某些实现方式中,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
第四方面,提供了一种信息检测的方法,该方法可以由终端设备或终端侧的芯片或芯片系统执行。所述方法包括:确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,所述第二候选PDCCH属于第二搜索空间集合;根据第一规则,确定在所述第一候选PDCCH和第三候选PDCCH上需要监听的候选PDCCH的次数,所述第一候选PDCCH所属的第一搜索空间集合与所述第三候选PDCCH所属的第三搜索空间集合是关联的,所述第二搜索空间集合用于PDCCH独立传输,所述第一规则为用于重复传输的PDCCH的监听计数规则。
基于上述技术方案,当终端设备确定用于重复传输的第一候选PDCCH对应的时频资源和用于独立传输的第二候选PDCCH对应的时频资源重叠时,终端设备确定在用于重复传输的第一候选PDCCH和第三候选PDCCH上需要监听的候选PDCCH的次数,可以避免终端设备对候选PDCCH的监听次数与基站的计数结果不一致,从而提高PDCCH传输的可靠性。
结合第四方面,在第四方面的某些实现方式中,所述第一搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
结合第四方面,在第四方面的某些实现方式中,所述第三搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
结合第四方面,在第四方面的某些实现方式中,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:所述第一候选PDCCH与所述第二候选PDCCH具有 相同的扰码序列;所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
第五方面,提供一种通信装置,包括:处理单元,用于:根据第一规则,确定在第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,其中,所述第一搜索空间集合与所述第二搜索空间集合是关联的;根据第二规则,确定在所述第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于所述第一阈值;或,确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
结合第五方面,在第五方面的某些实现方式中,所述处理单元具体用于:若所述第二次数小于所述第一阈值,则根据所述第二规则,确定在所述第二搜索空间集合上需要监听的候选PDCCH的第四次数是否大于第二阈值,其中,所述第二阈值等于所述第一阈值减去所述第二次数。
结合第五方面,在第五方面的某些实现方式中,所述处理单元还用于:若所述第四次数小于所述第二阈值,则确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第五次数是否大于第三阈值,其中,所述第三阈值等于所述第二阈值减去所述第四次数。
结合第五方面,在第五方面的某些实现方式中,所述处理单元具体用于:根据所述第一规则或所述第二规则,确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
结合第五方面,在第五方面的某些实现方式中,所述处理单元还用于:若所述第三次数小于所述第一阈值,则根据所述第二规则,确定在第四搜索空间集合上需要监听的候选PDCCH的第六次数是否大于第四阈值,其中,所述第四阈值等于所述第一阈值减去所述第三次数。
结合第五方面,在第五方面的某些实现方式中,所述第三搜索空间集合的索引值大于所述第一搜索空间集合的索引值和/或所述第二搜索空间集合的索引值。
结合第五方面,在第五方面的某些实现方式中,所述第一规则为用于重复传输的PDCCH的监听计数规则;所述第二规则为用于独立传输的PDCCH的监听计数规则。
结合第五方面,在第五方面的某些实现方式中,所述通信装置为终端设备,所述处理单元可以是处理器。
结合第五方面,在第五方面的某些实现方式中,所述通信装置为芯片或芯片系统,所述处理单元可以是处理电路、逻辑电路等。
第六方面,提供一种通信装置,包括:处理单元,用于:确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,所述第一候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH用于第二DCI的重复传输;在所述第一候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值。
结合第六方面,在第六方面的某些实现方式中,所述处理单元具体用于:在所述第一候选PDCCH和第三候选PDCCH上检测所述第一DCI,其中,所述第三候选PDCCH所 属的第三搜索空间集合与所述第一搜索空间集合相关联。
结合第六方面,在第六方面的某些实现方式中,所述处理单元还用于:在第四候选PDCCH上检测所述第二DCI,其中,所述第四候选PDCCH所属的第四搜索空间集合与所述第二搜索空间集合是关联的。
结合第六方面,在第六方面的某些实现方式中,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
结合第六方面,在第六方面的某些实现方式中,所述通信装置为终端设备,所述处理单元可以是处理器。
结合第六方面,在第六方面的某些实现方式中,所述通信装置为芯片或芯片系统,所述处理单元可以是处理电路、逻辑电路等。
第七方面,提供一种通信装置,包括:处理单元,用于:确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,第三候选PDCCH对应的时频资源和第四候选PDCCH对应的时频资源重叠,所述第一候选PDCCH和所述第三候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH和所述第四候选PDCCH用于第二下行控制信息DCI的重复传输;在所述第一候选PDCCH和所述第三候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值和/或所述第三候选PDCCH所属的第三搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值和所述第四候选PDCCH所属的第四搜索空间集合的索引值。
结合第七方面,在第七方面的某些实现方式中,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
结合第七方面,在第七方面的某些实现方式中,所述通信装置为终端设备,所述处理单元可以是处理器。
结合第七方面,在第七方面的某些实现方式中,所述通信装置为芯片或芯片系统,所述处理单元可以是处理电路、逻辑电路等。
第八方面,提供一种通信装置,包括:处理单元,用于:确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,所述第二候选PDCCH属于第二搜索空间集合;根据第一规则,确定在所述第一候选PDCCH和第三候选PDCCH上需要监听的候选PDCCH的次数,所述第一候选PDCCH所属的第一搜索空间集合与所述第三候选PDCCH所属的第三搜索空间集合是关联的,所述第二搜索空间集合用于PDCCH独立传输,所述第一规则为用于重复传输的PDCCH的监听计数规则。
结合第八方面,在第八方面的某些实现方式中,所述第一搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
结合第八方面,在第八方面的某些实现方式中,所述第三搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
结合第八方面,在第八方面的某些实现方式中,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
结合第八方面,在第八方面的某些实现方式中,所述通信装置为终端设备,所述处理单元可以是处理器。
结合第八方面,在第八方面的某些实现方式中,所述通信装置为芯片或芯片系统,所述处理单元可以是处理电路、逻辑电路等。
第九方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的通信方法。
结合第九方面,在第九方面的某些实现方式中,所述通信装置为终端设备,所述处理单元可以是处理器。
结合第九方面,在第九方面的某些实现方式中,所述通信装置为芯片或芯片系统,所述处理单元可以是处理电路、逻辑电路等。
结合第九方面,在第九方面的某些实现方式中,所述通信装置还包括通信接口。可选的,所述通信装置为终端设备,所述通信接口可以是收发器、接收机或发射机等;可选的,所述通信装置为芯片或芯片系统,所述通信接口为接口电路、输入和/或输出接口,或,输入和/或输出电路等。
结合第九方面,在第九方面的某些实现方式中,所述通信装置还包括所述存储器。
第十方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的通信方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的通信方法。
附图说明
图1是PDCCH重复传输定义的流程示意图。
图2是基于多个传输接收点传输的PDCCH重复传输示意图。
图3是两个搜索空间集合的候选PDCCH重复传输示意图。
图4是UE监听候选PDCCH的流程图。
图5是4个搜索空间集合进行PDCCH重复传输的示意图。
图6是一种信息检测的方法的示意性流程图。
图7是一种4个候选PDCCH用于重复传输的示意图。
图8是另一种信息检测的方法的示意性流程图
图9是另一种4个候选PDCCH用于重复传输的示意图。
图10是另一种信息检测的方法的示意性流程图。
图11是一种3个候选PDCCH传输的示意图。
图12是另一种3个候选PDCCH传输的示意图。
图13是另一种信息检测的方法的示意性流程图。
图14是本申请实施例的一种通信装置的示意性框图。
图15是本申请实施例的另一种通信装置的示意性框图。
图16是本申请实施例的另一种通信装置的示意性框图。
图17是本申请实施例的另一种通信装置的示意性框图。
图18是本申请实施例的另一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(wireless local area network,WLAN)、窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for gsm evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、卫星通信、第五代(5th generation,5G)系统或者将来出现的新的通信系统等。
适用于本申请的通信系统,包括一个或多个发送端,以及一个或多个接收端。其中,发送端和接收端之间的信号传输,可以是通过无线电波来传输,也可以通过可见光、激光、红外以及光纤等传输媒介来传输。
示例性地,发送端和接收端中的一个可以为终端设备,另一个可以为网络设备。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动台(mobile station,MS)、用户单元(subscriber unit)、用户设备(user equipment,UE)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
示例性地,网络设备可以是演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为新空口(new radio,NR)中的gNB或传输点(例如,TRP或TP),NR中的基站的一个或一组(包括多个)天线面板,或者,还可以为构成gNB或传输点的网络节点,例如基带单元(building baseband unit,BBU)或分布式单元(distributed unit,DU)等,或者,网络设备还可以为车载设备、可穿戴设备以及5G网络中的网络设备,或者未来演进的PLMN网络中的网络设 备等,不作限定。
网络设备的产品形态十分丰富。例如,在产品实现过程中,BBU可以与射频单元(Radio Frequency Unit,RFU)集成在同一设备内,该设备通过线缆(例如但不限于馈线)连接至天线阵列。BBU还可以与RFU分离设置,二者之间通过光纤连接,通过例如但不限于,通用公共射频接口(Common Public Radio Interface,CPRI)协议进行通信。在这种情况下,RFU通常称为RRU(Remote Radio Unit,射频拉远单元),其通过线缆连接至天线阵列。此外,RRU还可以与天线阵列集成在一起,例如,目前市场上的有源天线单元(Active Antenna Unit,AAU)产品就采用了这种结构。
此外,BBU可以进一步分解为多个部分。例如,可以按照所处理业务的实时性将BBU进一步细分为集中单元(Centralized Unit,CU)和分布单元(Distribute Unit,DU)。CU负责处理非实时协议和服务,DU负责处理物理层协议和实时服务。更进一步的,部分物理层功能还可以从BBU或者DU中分离出来,集成在AAU中。
为了方便对本申请实施例的理解,对与本申请实施例相关的现有技术进行简单介绍。
1、盲检测
根据不同的用途和内容,下行控制信息(downlink control information,DCI)被分为很多种格式,例如随机接入标识、寻呼标识等,不同用户的物理下行共享信道(physical downlink control channel,PDCCH)信息通过其对应的小区无线网络临时标识符(cell-radio network temporary identity,C-RNTI)信息进行区分,即DCI的循环冗余校验(cyclic redundancy check,CRC)由C-RNTI加掩。基站通过高层信令给UE配置需要监听DCI的候选PDCCH集合(PDCCH candidate),例如无线资源控制(radio resource control,RRC)信令。由于UE事先并不知道基站会在哪个或者哪些PDCCH集合上发送DCI,但是用户根据基站配置信息知道自己当前期待接收什么下行控制信息,所以UE必须根据配置信息对候选PDCCH集合中的每个PDCCH尝试解码,即UE采用相应的RNTI对PDCCH集合上的信息做CRC校验,如果CRC校验成功,那么用户就成功解码获得了DCI信息。所有的候选PDCCH集合组成搜索空间集合(search space set,SS set)。UE尝试在每个候选PDCCH上解码来确定是否接收到对应DCI的行为称为盲检测(bind detection,BD)。
示例性的,计数为1次盲检的两个候选PDCCH需要同时满足以下4个条件中的一项或多项:
(1)相同的聚集级别(aggregation level,AL)以及相同的控制信道单元(control channel element,CCE)集合;
(2)相同的扰码序列;
(3)相同的控制资源集(control resource set,CORESET);
(4)承载的下行控制信息的比特大小相同。
上述4个条件可以理解为盲检计数规则中可选包含的4个条件。两个候选PDCCH计数为1次盲检也可以理解为两个候选PDCCH根据盲检计数规则得到用于监听的候选PDCCH的个数为1个。一个搜索空间集合的盲检次数可以理解为一个搜索空间集合通过盲检次数的计数规则后得到的待监听的候选PDCCH个数。值得注意的是,以上盲检计数规则包含的4个条件仅为举例,本申请不限定盲检次数计为1次的条件仅包含上述几项条件,可以增加、删减或者改变其中的任意一项或多项。例如,所述条件还可以包括:第一 候选PDCCH与第二候选PDCCH分别关联相同的CORESET,或者对应不同的CORESET但扰码相同,或对应不同的CORESET但准共址特性相同。又例如,所述条件还可以包括:第一候选PDCCH与第二候选PDCCH分别对应的CORESET为单符号(symbol)且非交织的CORESET。此外,使用相同的CCE集合表示第一候选PDCCH与第二候选PDCCH具有相同的聚合等级以及相同的CCE时频位置。
2、不重叠的控制信道单元(non-overlapping CCE)
控制信息的资源分配以控制信道单元CCE为单位,1CCE=6资源单元组(resource element group,REG),1个REG定义为在1个正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号上的1个物理资源块PRB(physical resource block,PRB)。聚集级别表示1个PDCCH占用的CCE个数。新无线(new radio,NR)支持5种聚集级别{1,2,4,8,16}。
本申请中描述的“监听”也可以被理解为“尝试译码”,“监听PDCCH”也可以被理解为“对PDCCH尝试译码”,“监听到PDCCH”可以被理解为“对PDCCH译码成功”。此外,本申请中描述的“监听PDCCH”的含义与“监听候选PDCCH”的含义相同,后文不再说明。
3、盲检上限或CCE上限
在NR中,基站通过高层信令给UE配置1个或多个搜索空间集合(search space set,SS set)(1个带宽部分(bandwidth part,BWP)上至多配置10个SS set),需要盲检的DCI格式与SS set绑定。UE会在所有配置的SS set的每一个候选PDCCH上尝试解码绑定的DCI格式,直到检完所有的候选PDCCH。由于盲检会给UE带来极大的复杂度和功耗,因此不能让UE一直盲检下去,会设置一个上限,盲检次数到了这个上限以后,无论是否检到期待的DCI都停止盲检。不重叠的信道估计CCE的个数也有一个上限,否则会增加UE信道估计处理的复杂度和存储负担。盲检上限和不重叠CCE上限值是与子载波间隔绑定的一个固定值。
4、PDCCH重复传输
为了提高PDCCH的接收性能,网络设备可以采用重复发送PDCCH的方式。PDCCH的重复发送有多种方式,可以从不同时间、不同频率或者通过不同波束来发送承载相同DCI的多个PDCCH,也可以通过多个传输点同时给一个终端发送承载相同DCI的多个PDCCH。例如,PDCCH重复发送两次是指相同的DCI被重复发送了两次。对于PDCCH重复传输可以有如下定义:多个PDCCH采用相同的聚集级别(aggregation level,AL)传输相同的DCI,该多个PDCCH中承载的编码后的比特也相同。本申请中,“PDCCH的重复发送”也被称为“PDCCH重复”(PDCCH repetition)或“PDCCH重复传输”(PDCCH repetition),“用于重复传输DCI的PDCCH”也可以称为“重复传输的PDCCH”。与PDCCH重复传输对应地,还存在独立传输DCI的PDCCH(可称为单独传输DCI的PDCCH),即承载某个DCI的PDCCH在调度初次数据传输时仅由网络设备向终端发送一次。本申请中,“用于独立传输DCI的PDCCH”也可以称为“独立PDCCH”(individual PDCCH)或者“独立传输的PDCCH”,可作为独立PDCCH的候选PDCCH可称为“独立候选PDCCH”(individual PDCCH candidate),包括individual PDCCH candidate的SS set可称为独立SS set(individual SS set)。独立PDCCH不需要与其他PDCCH一起进行 PDCCH重复发送,或软合并操作。
不同的搜索空间集合可以被配置关联关系(linkage)以用于PDCCH重复传输,所述关联关系可以通过指示信息由网络设备指示给终端,例如在一个搜索空间集合的配置信息中增加关联的另一个搜索空间集合的标识。两个搜索空间集合之间有关联关系意味着一个搜索空间集合中的候选PDCCH与另一个搜索空间集合中的候选PDCCH一一对应且用于PDCCH重复传输。具体地,一个搜索空间集合内的一个候选PDCCH可以被关联到另一个搜索空间集合中的对应的候选PDCCH,被用于传输相同的DCI。所述对应的候选PDCCH可以是不同搜索空间集合中同一个聚合等级下的搜索空间中的候选PDCCH。可选地,所述对应的候选PDCCH的序号相同,或者,所述对应的候选PDCCH的序号之间有预设的其他关联关系,例如候选PDCCH的序号之间有预定义的偏移量。此外,本申请中将用于PDCCH重复传输的关联的候选PDCCH称为linked PDCCH candidate(s),将包含用于PDCCH重复传输的关联的候选PDCCH的搜索空间集合称为linked SS set(s)。
例如,可以采用两个关联的候选PDCCH进行PDCCH重复传输,这两个候选PDCCH可以称为linked PDCCH candidate对(pair)或者一对linked PDCCH candidate,这两个候选PDCCH分别所属的SS set可以称为linked SS set对,或者一对linked SS set,一对linked SS set中包含的PDCCH candidate的数量相同,且PDCCH candidate之间是一一对应的。一对linked SS set可以包含一对或多对linked PDCCH candidate,每对linked PDCCH candidate分别用于传输一个DCI,不同对linked PDCCH candidate传输的DCI可以相同,也可以不同。例如,网络设备选择一对linked PDCCH candidate传输DCI#1并选择另一对linked PDCCH candidate传输DCI#2;又例如,网络设备在第一次传输DCI#1的过程中,选择一对linked PDCCH candidate来传输DCI#1,且在第二次传输DCI#1的过程中,选择另一对linked PDCCH candidate来传输DCI#1。可以理解,本申请并不限定用于重复传输DCI的候选PDCCH的数量,以上linked PDCCH candidate不限制为只有两个,可以有两个以上linked PDCCH candidate来传输相同的DCI,相应地,两个以上linked PDCCH candidate分别属于两个以上linked SS set。
在NR版本17(Release-17,Rel-17)的讨论中,对于PDCCH重复传输有如下定义:编码/速率匹配操作是基于1个PDCCH重复传输,其他的PDCCH重复传输相同的编码比特,每次重复传输都是采用相同的聚集级别(aggregation level,AL)或相同的CCE个数,重复传输相同的编码比特,和相同的DCI负载信息(DCI比特内容相同),如图1所示,出示了PDCCH重复传输定义的流程示意图。流程中可能还包含其他的功能模块,这里仅列出了比较相关的模块。其中,DCI负载比特、CRC附着、编码和速率匹配为PDCCH重复传输需要保证一样的地方。
可以利用多个传输接收点(transmission and reception point,TRP)联合发送机制提升DCI传输的可靠性。具体地,对于同一个DCI信息比特(信源),经过上述编码方式形成编码比特后,由多个TRP分别在相同或不同的时频资源上发送,UE可以分别在上述时频资源上接收多份编码比特,然后进行联合译码操作获取DCI信息比特(信源),例如,分别在上述时频资源上做信道估计并对接收信号进行解调获取似然值(软信息)进行合并。上述操作可以等价的理解为提升了传输的信干噪比(signal to interference plus noise ratio,SINR),从而可以提升可靠性。
同时,考虑到UE到某一个TRP的传输链路可能由于信道变化而发生中断,该传输方案可以防止这个情况的发生。如图2所示,出示了基于多个传输接收点传输的PDCCH重复传输示意图。TRP1和TRP2作为协作基站同时为一个UE服务。TRP1下发的DCI对应CORESET1(其中配置了第一准同位或第一准共址特性(quasi-co-location,QCL)假设对应终端到TRP1的信道特征),TRP2下发的DCI对应CORESET2(其中配置了第二QCL假设对应终端到TRP2的信道特征)。两个CORESET可能配置完全/部分重叠以提升DCI发送灵活性,保证频选调度增益。两个CORESET上下发的DCI存在关联关系(linkage),即可以执行上述软合并操作。
进一步的,需要定义两个CORESET分别关联的候选PDCCH之间的关联关系。这样做的目的是,防止UE执行过多的软合并操作降低UE复杂度。对于PDCCH重复传输,目前协议支持1个SS set内的所有候选PDCCH都用于PDCCH重复传输,不包含发送独立PDCCH的候选PDCCH。如图3所示,出示了两个搜索空间集合的候选PDCCH重复传输示意图。基站在用于PDCCH重复发送的两个SS set上通过RRC参数或者介质接入控制-控制元素(media access control-control element,MAC CE)配置关联关系,即SS set#i和SS set#j可以称之为关联的搜索空间集合(linked SS set)。用于PDCCH重复传输的候选PDCCH分属于两个SS set的2个候选PDCCH之间。假设1个SS set#i包含聚集级别AL4和AL8,分别对应的候选PDCCH的个数为4个和2个。根据PDCCH重复传输的定义,那么AL4的PDCCH重复传输只能通过两个AL4的PDCCH备选来实现,而不能是1个AL4的PDCCH备选和1个AL8的PDCCH备选。因此,假设存在某种预定义的PDCCH重复传输映射关系,可以得到图3中所示的关联关系。对于AL8而言,SS set#i的候选PDCCH序号1与SS set#j的候选PDCCH序号1一起进行PDCCH重复传输,SS set#i的PDCCH候选序号2与SS set#j的PDCCH候选序号2一起进行PDCCH重复传输,分别称之为关联的候选PDCCH。对于AL16而言,SS set#i的候选PDCCH序号1与SS set#j的候选PDCCH序号1一起进行PDCCH重复传输。从上述两个子场景可以看出,1个SS set内的所有候选PDCCH都是用于PDCCH重复传输的,而不包含用于发送独立PDCCH的候选PDCCH。如果基站要发送独立PDCCH,只能通过配置其他SS set来实现,例如配置SS set#k。
5、PDCCH映射规则
在LTE中,配置用于盲检PDCCH的各个聚集级别(aggregation level,AL)对应的候选PDCCH个数是固定的,如表1所示,出示了UE监听候选PDCCH的个数。而且在CSS和USS中需要监听的DCI格式的个数至多为4个分别为USS中的传输模式(transmission mode,TM)绑定的DCI format X、CSS中的DCI format 1C、USS和CSS中都有的DCI format 1A,因此最大盲检次数可以计算为44次,计算方法为CSS的盲检次数(4+2)*2加上USS的盲检次数(6+6+2+2)*2,基站配置的候选PDCCH不会导致UE盲检超过44次。
表1
Figure PCTCN2022085230-appb-000001
Figure PCTCN2022085230-appb-000002
在NR中,与LTE不同,基站配置CSS和USS对应的PDCCH candidate个数是灵活配置的,不是预定义的值,因此这样就可能出现超配置(Overbooking)的情况,即根据PDCCH的配置以及BD/CCE计数规则计算出的监听的PDCCH备选个数和不重叠的CCE个数可以超过BD/CCE limit,这时如果按照配置盲检完所有的PDCCH candidate,会造成极大的UE实现复杂度。因此,NR引入了一个机制来保证UE只会监听不超过自己PDCCH监听能力的那些候选PDCCH,即通过BD计数规则、不重叠的CCE计数规则以及PDCCH映射规则这三个规则,整体流程如图4所示,出示了UE监听候选PDCCH的流程图。其中,虚线内的三个功能模块可能是顺序执行的,例如将PDCCH配置分别输入“BD计数规则”模块和“CCE计数模块”进行操作,然后将得到的两个结果一起输入到“PDCCH映射规则”模块进行运算;也有可能是三个功能模块配合在一起执行的,例如先取整套PDCCH配置中的一个搜索空间集合分别通过两种计数规则得到所述搜索空间集合对应的盲检个数和不重叠CCE的个数,然后一起输入到“PDCCH映射规则”模块进行操作,再取下一个搜索空间集合重复上述操作。其中,“两种计数规则”在现有技术已描述,在此不做赘述。但本申请中并不涉及计数规则的细节,而且两种计数规则可能存在新的改动,因此如果遇到则可以上位地描述。
因此,协议38.213中定义了PDCCH映射规则(PDCCH mapping rule)来对基站配置的PDCCH candidate进行筛选,把需要盲检的PDCCH candidate个数筛选到一个范围内,从而保证UE的可实现性。注意这里“盲检上限”等同于“检测的PDCCH备选的最大个数”。
6、优先级:本申请中“优先级”概念可以是显式体现或是隐式体现。显式体现,即要特地确定优先级;隐式体现,即并非特地确定优先级,但是从处理的先后顺序上,能够体现优先级,例如盲检次数的计数或用于监听的候选PDCCH次数的计数,按计数的先后顺序作为优先级的排序。
本申请中,优先级的规则,可以与索引有关(例如,搜索空间集合的索引值越小,该搜索空间集合的优先级越高,或者,搜索空间集合关联的控制资源集的索引值越小,该搜索空间集合的优先级越高),也可以与性质有关,例如,传输性质(包括独立传输和重复传输),传输优先级可以根据独立传输和重复传输进行划分,例如,重复传输的优先级高于独立传输的优先级,或独立传输的优先级高于重复传输的优先级。
7、关联的候选PDCCH盲检计数规则/监听计数规则
关联的候选PDCCH(linked PDCCH candidate)用于PDCCH重复传输,不同的UE译码行为会导致不同的盲检计数结果。目前,会议讨论有以下5种可能的盲检计数方式,会选择其中一种作为最终的盲检计数方案:
选项1:UE上报1个或多个监听2个linked PDCCH candidate所需要的盲检值。可能的候选值有2,X,X是一个1到3之间的值。“2”表示UE监听2个linked PDCCH candidate需要2次盲检次数。
选项2:UE上报是否支持软合并。如果上报支持软合并,那么UE进一步上报1个或 多个监听2个linked PDCCH candidate所需要的盲检值。可能的候选值有2,X,X是一个1到3之间的值。相较于选项1,选项2多一个上报是否支持软合并。
选项3:UE需要上报4个译码假设中的1个或多个,其中协议会定义每个译码选项对应的1个盲检次数,译码假设是UE监听2个linked PDCCH candidate的译码行为,相较于其他的选项,该选项对于UE的行为存在一种定义和指示。
译码假设1:盲检次数为2次,或一个1到2次之间的值。在这种假设下,UE不会对2个linked PDCCH candidate分别进行独立译码,只会将两个linked PDCCH candidate合并译码一次。
译码假设2:盲检次数为2次。在这种假设下,UE对2个linked PDCCH candidate分别进行一次独立译码。
译码假设3:盲检次数为2次,或其他值。在这种假设下,UE对2个linked PDCCH candidate中第一个PDCCH candidate进行独立译码,然后再将两个linked PDCCH candidate合并译码一次。
译码假设4:盲检次数为3次,或其他值。在这种假设下,UE对2个linked PDCCH candidate分别进行一次独立译码,然后再将两个linked PDCCH candidate合并译码一次。
选项4:不考虑UE的译码假设,UE监听2个linked PDCCH candidate所需要的盲检次数总是定义为2次。
选项5:不考虑UE的译码假设,UE监听2个linked PDCCH candidate所需要的盲检次数总是定义为3次。
对于选项1、选项2和选项3,由于UE可能会上报多个值,那么当UE上报多个值时,基站会配置其中1个用于盲检计数定义。
目前,在Rel-17中PDCCH重复传输,基站对用于重复传输的候选PDCCH或搜索空间集合配置一种显式的关联关系。根据PDCCH映射规则(PDCCH mapping rule)中搜索空间集合映射优先级的现有技术,具有关联关系的搜索空间集合可能一起被丢弃,导致损失很多监听的PDCCH资源,影响基站调度灵活性。本申请中,“映射优先级”也被称为“PDCCH映射优先级”或“搜索空间集合映射优先级”。
如图5所示,出示了一种4个搜索空间集合进行PDCCH重复传输的示意图。其中,搜索空间集合3(SS set 3)和SS set 5是关联的,即SS set 3和SS set 5用于PDCCH重复传输;SS set 4和SS set 6也是关联的。在现有技术中,PDCCH映射优先级从高到低按照搜索空间集合索引从小到大排列,那么如果大于符号“>”表示PDCCH映射优先级高低,则SS set 3>SS set 4>SS set 5>SS set 6。对于这4个SS set,从SS set 3开始逐个进入PDCCH mapping rule进行计算。如果当计算到SS set 4时,发现已经超过了BD/CCE上限,则不再进行当前映射操作,即UE不会监听SS set 4到SS set 6中的候选PDCCH,只会监听SS set 3中的候选PDCCH,那么就无法实现PDCCH重复传输。
目前的PDCCH重复传输讨论中,基站会通过RRC参数配置或MAC CE显式对用于传输相同PDCCH或PDCCH重复传输的两个SS set配置一个关联关系,,如果考虑这个关联关系,那么考虑尽可能保留PDCCH重复传输功能,一个比较自然的想法就是具有关联关系的2个SS set一起参与BD计数和PDCCH映射规则的判断操作。如果当一对linked SS set对应的BD个数超过剩余BD上限时,如果整体丢弃。一般来说,linked SS set对应 的BD个数会大于individual SS set对应的BD个数。因此linked SS set整体丢弃会造成PDCCH资源损失,导致PDCCH资源的利用率降低,影响基站调度的灵活性。
为此,本申请实施例提出了一种信息检测的方法,能够提高PDCCH资源的利用率,从而可以提高基站调度的灵活性。
如图6所示,出示了一种信息检测的方法600的示意性流程图。该方法的具体流程包括:
610,终端设备根据第一规则,确定第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,其中,第一搜索空间集合与第二搜索空间集合是关联的。第一搜索空间集合与第二搜索空间集合是关联的,可以理解为,第一搜索空间集合与第二搜索空间集合用于PDCCH重复传输,或者是用于传输相同的PDCCH。第一阈值为剩余监听次数的上限值,监听次数可以理解为盲检次数或解码次数或者监听的候选PDCCH次数。
可选的,第一规则为用于重复传输的PDCCH的监听计数规则,包括选项1至选项5中任一项定义的监听计数规则。
可选的,在终端设备根据第一规则,确定第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值之前,该终端设备接收到基站或网络设备发送的资源配置信息,该资源配置信息中可以包括用于指示第一搜索空间集合和第二搜索空间集合是关联的指示信息或信令。应理解,资源配置信息中不仅包括指示第一搜索空间集合和第二搜索空间集合的指示信息,还可以包括指示至少一个第三搜索空间集合以及第四搜索空间集合的指示信息。
620,终端设备根据第二规则,确定在第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于第一阈值;或,终端设备确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于第一阈值。
其中,第二规则为用于独立传输的PDCCH的监听计数规则,即需要监听的候选PDCCH用于DCI的独立传输,每个DCI只会传输一次,而不会传输多次。第二规则也可以为预设的其他规则,本申请不做具体限定。
实现方式一:
若终端设备根据第一规则,确定第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,则终端设备可以根据第二规则,仅确定在第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于第一阈值。此时,终端设备认为第一搜索空间集合用于PDCCH独立传输(或者说第一搜索空间集合被看作/被假设用于PDCCH独立传输),而不再用于PDCCH重复传输。其中,第一搜索空间集合的索引值小于第二搜索空间集合的索引值,即第一搜索空间集合的优先级高于第二搜索空间集合的优先级。在本申请实施例中定义搜索空间集合的索引值越小,该搜索空间集合的优先级越高。应理解,也可以定义搜索空间集合的索引值越大,该搜索空间集合的优先级越高,对此不做限定。
若确定在第一搜索空间集合上需要监听的候选PDCCH的第二次数大于第一阈值,则终端设备可以丢弃第一搜索空间集合和第二搜索空间集合,同时,将除第一搜索空间集合和第二搜索空间集合之外的剩余未参与PDCCH映射规则操作的搜索空间集合也丢弃。丢 弃第一搜索空间集合和第二搜索空间集合,可以理解为,不在第一搜索空间集合和第二搜索空间集合上监听候选PDCCH,剩余监听次数的上限值不减去第一搜索空间集合和第二搜索空间集合对应的监听次数。
若确定在第一搜索空间集合上需要监听的候选PDCCH的第二次数小于或等于第一阈值,则终端设备确定可以在第一搜索空间集合上监听用于独立传输的候选PDCCH,剩余监听次数的上限值减去第一搜索空间集合对应的监听次数,丢弃第二搜索空间集合,同时将除第二搜索空间集合和第二搜索空间集合之外的剩余的搜索空间集合也丢弃。丢弃第二搜索空间集合,可以理解为,不在第二搜索空间集合上监听候选PDCCH,剩余监听次数的上限值不减去第二搜索空间集合对应的监听次数。
例如,终端设备根据基站或网络设备发送的资源配置信息,确定SS set 3和SS set 5是一对用于PDCCH重复传输的SS set,SS set 4和SS set 6是另一对用于PDCCH重复传输的SS set。由于SS set 3是所述4个SS set中搜索空间集合索引最小的SS set,因此映射优先级最高(此仅为示例,本申请对优先级规则不做限制,例如,也可以是索引最大的搜索空间集合映射优先级最高),而SS set 5是和SS set 3关联用于PDCCH重复传输的SS set,SS set 3和SS set 5一起参与映射规则计算,可以理解为SS set 5的映射优先级同SS set 3,或映射优先级仅次于SS set 3。剩余的SS set中索引最小是SS set 4,同理SS set 6的映射优先级同SS set 4,或SS set 6的映射优先级仅次于SS set 4。4个SS set的优先级为SS set 3=SS set 5>SS set 4=SS set 6,或SS set 3>SS set 5>SS set 4>SS set 6,基站或网络设备可能还配置了其他搜索空间集合。假设协议采用选项5的监听计数方式来确定2个关联的候选PDCCH(linked PDCCH candidate)的监听次数,即2个关联的候选PDCCH的监听次数为3次。其中,SS set 3中配置了3个候选PDCCH,根据目前协议定义的关联的候选PDCCH是一一对应的,那么SS set 5中也配置了3个候选PDCCH。一对(2个)关联的候选PDCCH的监听次数为3次,那么3对关联的候选PDCCH对应的监听次数一共是3*3=9次,也就是SS set 3和SS set 5一共计为9次监听。而SS set 4配置了1个候选PDCCH,同理SS set 6也只配置了1个候选PDCCH,这一对关联的候选PDCCH对应的监听次数为3次,也就是SS set 4和SS set 6一共计为3次监听。假设剩余的监听次数的上限值为8次,即第一阈值为8次,则关联的SS set 3和SS set 5的监听计数结果(第一次数)超过剩余监听次数的上限(第一阈值)。
此时,终端设备认为SS set 3用于PDCCH独立传输,仅在SS set 3上确定需要监听的候选PDCCH的第二次数是否超过8次,若超过8次,则丢弃SS set 3、SS set 5以及其他的SS set,剩余的监听次数上限值仍为8次;若不超过8次,则终端设备确定在SS set 3上监听用于独立传输的候选PDCCH,丢弃SS set 5以及其他的SS set,剩余的监听次数上限值要减去SS set 3对应的监听次数,即8-3=5次,剩余的监听次数上限值更新为5次。应理解,此时,SS set 3的优先级高于SS set 5的优先级。所述其他的SS set,也可以叫做剩余的SS set,可以理解为仍未参与PDCCH映射规则操作的SS set,包括SS set 4,SS set 6。也可以理解为,此时仍未参与PDCCH映射规则操作的SS set的索引均大于SS set 3的索引。
由于终端设备认为SS set 3用于PDCCH独立传输,且SS set 3中配置了3个候选PDCCH,则SS set 3计为3次监听(第二次数),未超过8次,则终端设备确定在SS set  3上监听用于独立传输的候选PDCCH,丢弃SS set 5以及其他的SS set。
实现方式二:
若终端设备根据第一规则,确定第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,则终端设备可以根据第二规则,确定在第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于第一阈值;若第二次数小于第一阈值,则终端设备根据第二规则,确定在第二搜索空间集合上需要监听的候选PDCCH的第四次数是否大于第二阈值,其中,第二阈值等于第一阈值减去第二次数。此时,终端设备认为第一搜索空间集合和第二搜索空间集合都用于PDCCH独立传输,而不再用于PDCCH重复传输。
若第二次数小于第一阈值,且第四次数大于第二阈值,则终端设备可以在第一搜索空间集合上监听用于独立传输的PDCCH,丢弃第二搜索空间集合,同时将除第一搜索空间集合和第二搜索空间集合之外的剩余的搜索空间集合也丢弃,剩余的监听次数上限值减去第一搜索空间集合对应的监听次数的差值作为更新后的剩余监听次数上限值。
若第二次数小于第一阈值,且第四次数小于或等于第二阈值,则终端设备可以在第一搜索空间集合和第二搜索空间集合上监听用于独立传输的PDCCH,同时将除第一搜索空间集合和第二搜索空间集合之外的剩余的搜索空间集合丢弃,剩余的监听次数上限值减去第一搜索空间集合和第二搜索空间集合对应的监听次数的差值作为更新后的剩余监听次数上限值。
例如,终端设备根据基站或网络设备发送的资源配置信息,确定SS set 3和SS set 5是一对用于PDCCH重复传输的SS set,SS set 4和SS set 6是另一对用于PDCCH重复传输的SS set。由于SS set 3是所述4个SS set中搜索空间集合索引最小的SS set,因此映射优先级最高,而SS set 5是和SS set 3关联用于PDCCH重复传输的SS set,SS set 3和SS set 5一起参与映射规则计算,可以理解为SS set 5的映射优先级同SS set 3,或映射优先级仅次于SS set 3。剩余的SS set中索引最小是SS set 4,同理SS set 6的映射优先级同SS set 4,或SS set 6的映射优先级仅次于SS set 4。4个SS set的优先级为SS set 3=SS set 5>SS set 4=SS set 6,或SS set 3>SS set 5>SS set 4>SS set 6,基站或网络设备可能还配置了其他搜索空间集合。假设协议采用选项5的监听计数方式来确定2个关联的候选PDCCH(linked PDCCH candidate)的监听次数,即2个关联的候选PDCCH的监听次数为3次。其中,SS set 3中配置了3个候选PDCCH,根据目前协议定义的关联的候选PDCCH是一一对应的,那么SS set 5中也配置了3个候选PDCCH。一对(2个)关联的候选PDCCH的监听次数为3次,那么3对关联的候选PDCCH对应的监听次数一共是3*3=9次,也就是SS set 3和SS set 5一共计为9次监听。而SS set 4配置了1个候选PDCCH,同理SS set 6也只配置了1个候选PDCCH,这一对关联的候选PDCCH对应的监听次数为3次,也就是SS set 4和SS set 6一共计为3次监听。假设剩余的监听次数的上限值为8次,即第一阈值为8次,则关联的SS set 3和SS set 5的监听计数结果(第一次数)大于剩余监听次数的上限(第一阈值)。
此时,终端设备认为SS set 3和SS set 5用于PDCCH独立传输,根据PDCCH映射优先级,SS set 3的优先级高于SS set 5的优先级,在SS set 3上确定需要监听的候选PDCCH的第二次数是否超过8次,若超过8次,则丢弃SS set 3、SS set 5以及其他的SS set。若 不超过8次,则终端设备确定在SS set 5上需要监听的候选PDCCH的第四次数是否超过第二阈值,第二阈值等于第一阈值减去第二次数。
若第四次数不超过(小于或等于)第二阈值,则终端设备确定在SS set 3和SS set 5上监听用于独立传输的候选PDCCH,丢弃其他的SS set,例如丢弃SS set 4和SS set 6;若第四次数大于第二阈值,则终端设备确定在SS set 3上监听用于独立传输的候选PDCCH,丢弃SS set 5、SS set 4、SS set 6以及其他的SS set。
由于终端设备认为SS set 3和SS set 5用于PDCCH独立传输,且SS set 3和和SS set 5中都配置了3个候选PDCCH,则SS set 3和SS set 5分别计为3次监听,即第二次数为3次,第四次数也为3次,第二阈值为5次(8次减去3次),第四次数未超过第二阈值,则终端设备确定在SS set 3和SS set 5上监听用于独立传输的候选PDCCH,并更新剩余监听次数的上限值为8-3-3=2次,丢弃其他的SS set,例如丢弃SS set 4和SS set 6。
实现方式三:
若终端设备根据第一规则,确定第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,则终端设备可以根据第二规则,确定在第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于第一阈值;若第二次数小于第一阈值,则终端设备根据第二规则,确定在第二搜索空间集合上需要监听的候选PDCCH的第四次数是否大于第二阈值,其中,第二阈值等于第一阈值减去第二次数。可选的,若第二次数小于第一阈值,且第四次数小于第二阈值,则终端设备可以确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第五次数是否大于第三阈值,其中,第三阈值等于所述第二阈值减去第四次数。
其中,第三搜索空间集合的索引值可以大于第一搜索空间集合的索引值和第二搜索空间集合的索引值;在第一搜索空间集合的索引值小于第二搜索空间集合的索引值的情况下,第三搜索空间集合的索引值也可以仅大于第一搜索空间集合的索引值,小于第二搜索空间集合的索引值。应理解,若第二搜索空间集合的索引值小于第一搜索空间集合的索引值,则第三搜索空间集合的索引值也可以仅大于第二搜索空间集合的索引值,小于第一搜索空间集合的索引值。
子方式3.1:具体而言,终端设备可以根据第二规则,确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第五次数是否大于第三阈值,其中,所述至少一个第三搜索空间集合用于PDCCH独立传输。换言之,终端设备仅在用于独立传输的至少一个第三搜索空间集合上确定需要监听的候选PDCCH的第五次数是否大于第三阈值。
例如,终端设备根据基站或网络设备发送的资源配置信息,确定SS set 3和SS set 5是一对用于PDCCH重复传输的SS set,SS set 4和SS set 6是都用于PDCCH独立传输的SS set。由于SS set 3是所述4个SS set中搜索空间集合索引最小的SS set,因此映射优先级最高,而SS set 5是和SS set 3关联用于PDCCH重复传输的SS set,SS set 3和SS set 5一起参与映射规则计算,可以理解为SS set 5的映射优先级同SS set 3,或映射优先级仅次于SS set 3。剩余的SS set中索引最小是SS set 4。4个SS set的优先级为SS set 3=SS set 5>SS set 4>SS set 6,或SS set 3>SS set 5>SS set 4>SS set 6,基站或网络设备可能还配置了其他搜索空间集合。假设协议采用选项5的监听计数方式来确定2个关联的候选PDCCH(linked PDCCH candidate)的监听次数,即2个关联的候选PDCCH的监听次数为3次。其中, SS set 3中配置了3个候选PDCCH,根据目前协议定义的关联的候选PDCCH是一一对应的,那么SS set 5中也配置了3个候选PDCCH。一对(2个)关联的候选PDCCH的监听次数为3次,那么3对关联的候选PDCCH对应的监听次数一共是3*3=9次,也就是SS set 3和SS set 5一共计为9次监听。而SS set 4配置了1个候选PDCCH,SS set 6也只配置了1个候选PDCCH,这两个候选PDCCH对应的监听次数分别为1次,也就是SS set 4和SS set 6一共计为2次监听。假设剩余的监听次数的上限值为8次,即第一阈值为8次,则关联的SS set 3和SS set 5的监听计数结果(第一次数)大于剩余监听次数的上限(第一阈值)。
此时,终端设备认为SS set 3和SS set 5用于PDCCH独立传输,在SS set 3上确定需要监听的候选PDCCH的第二次数是否超过8次,若超过8次,则丢弃SS set 3、SS set 5以及其他的SS set,剩余的监听次数上限值仍为8次。若不超过8次,则终端设备确定在SS set 5上需要监听的候选PDCCH的第四次数是否超过第二阈值,第二阈值等于第一阈值减去第二次数,即第二阈值为8-3=5次。
可选地,若第四次数小于第二阈值,则终端设备可以确定在SS set 4(一个第三搜索空间集合)上需要监听的候选PDCCH的第五次数是否大于第三阈值,SS set 4为用于PDCCH独立传输的SS set。若第五次数小于或等于第三阈值,则确定在SS set 3、SS set 5和SS set 4上监听用于独立传输的候选PDCCH,丢弃其他的SS set。若第五次数大于第三阈值,则确定仅在SS set 3和SS set 5上监听用于独立传输的候选PDCCH,丢弃其他的SS set。
此时,第四次数等于3,第二阈值为5,则第三阈值为2,由于SS set 4用于PDCCH独立传输,且SS set 4配置了1个候选PDCCH,则第五次数等于1,即第五次数小于第三阈值,则终端设备确定在SS set 3、SS set 5和SS set 4上监听用于独立传输的候选PDCCH,剩余的监听次数上限值更新为第三阈值减去第五次数,即2-1=1次。
可选的,终端设备还可以确定在SS set 6(另一个第三搜索空间集合)上需要监听的候选PDCCH的第七次数是否大于剩余的监听次数上限值(1次),由于SS set 6用于PDCCH独立传输,且SS set 6配置了1个候选PDCCH,即第七次数等于1,第七次数等于剩余的监听次数上限值(1次),则终端设备确定在SS set 3、SS set 5、SS set 4和SS set 6上监听用于独立传输的候选PDCCH。
子方式3.2:具体而言,终端设备可以根据第一规则,确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第五次数是否大于第三阈值,其中,第三搜索空间集合用于PDCCH重复传输。
可选的,若终端设备根据第一规则,确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第五次数大于第三阈值,则可以根据第二规则,确定在该至少一个第三搜索空间集合上需要监听的候选PDCCH的次数是否大于第三阈值(此时,第三搜索空间集合被看作/被假设用于PDCCH独立传输)。
例如,终端设备根据基站或网络设备发送的资源配置信息,确定SS set 3和SS set 5是一对用于PDCCH重复传输的SS set,SS set 4和SS set 6是另一对用于PDCCH重复传输的SS set。由于SS set 3是所述4个SS set中搜索空间集合索引最小的SS set,因此映射优先级最高,而SS set 5是和SS set 3关联用于PDCCH重复传输的SS set,SS set 3和SS  set 5一起参与映射规则计算,可以理解为SS set 5的映射优先级同SS set 3,或映射优先级仅次于SS set 3。剩余的SS set中索引最小是SS set 4,同理SS set 6的映射优先级同SS set 4,或SS set 6的映射优先级仅次于SS set 4。4个SS set的优先级为SS set 3=SS set 5>SS set 4=SS set 6,或SS set 3>SS set 5>SS set 4>SS set 6,基站或网络设备可能还配置了其他搜索空间集合。假设协议采用选项5的监听计数方式来确定2个关联的候选PDCCH(linked PDCCH candidate)的监听次数,即2个关联的候选PDCCH的监听次数为3次。其中,SS set 3中配置了3个候选PDCCH,根据目前协议定义的关联的候选PDCCH是一一对应的,那么SS set 5中也配置了3个候选PDCCH。一对(2个)关联的候选PDCCH的监听次数为3次,那么3对关联的候选PDCCH对应的监听次数一共是3*3=9次,也就是SS set 3和SS set 5一共计为9次监听。而SS set 4配置了1个候选PDCCH,同理SS set 6也只配置了1个候选PDCCH,这一对关联的候选PDCCH对应的监听次数为3次,也就是SS set 4和SS set 6一共计为3次监听。假设剩余的监听次数的上限值为8次,即第一阈值为8次,则关联的SS set 3和SS set 5的监听计数结果(第一次数)大于剩余监听次数的上限(第一阈值)。
此时,终端设备认为SS set 3和SS set 5用于PDCCH独立传输,在SS set 3上确定需要监听的候选PDCCH的第二次数是否超过8次,若超过8次,则丢弃SS set 3、SS set 5以及其他的SS set,剩余的监听次数上限值仍为8次。若不超过8次,则终端设备确定在SS set 5上需要监听的候选PDCCH的第四次数是否超过第二阈值,第二阈值等于第一阈值减去第二次数,即第二阈值为8-3=5次。
若第四次数小于第二阈值,则终端设备可以根据第一规则,确定在SS set 4和SS set 6上需要监听的候选PDCCH的第五次数是否大于第三阈值。若第五次数小于或等于第三阈值,则终端设备确定在SS set 4和SS set 6上监听用于重复传输的候选PDCCH,不丢弃SS set 4和SS set 6;若第五次数大于第三阈值,则终端设备可以认为SS set 4和SS set 6用于PDCCH独立传输,并根据第二规则,确定在SS set 4,或者,SS set 4和SS set 6上需要监听的候选PDCCH的次数是否大于第三阈值。
此时,第四次数等于3,第二阈值为5,则第三阈值为2,资源配置信息指示SS set 4和SS set 6用于PDCCH重复传输,且SS set 4和SS set 6分别配置了1个候选PDCCH,则第五次数等于3,即第五次数大于第三阈值,此时,终端设备可以认为SS set 4和SS set 6用于PDCCH独立传输,并根据第二规则确定在SS set 4和SS set 6上需要监听的候选PDCCH的第五次数是否大于第三阈值。SS set 4和SS set 6分别配置了1个候选PDCCH,则第五次数等于2,即第五次数等于第三阈值。因此,终端设备可以确定在SS set 3、SS set 5、SS set 4和SS set 6上监听用于独立传输的候选PDCCH。
独立传输
应理解,至少一个第三搜索空间集合的数量可以为一个,可以为两个,甚至可以为更多个,本申请对此不做限定。
实现方式四:
若终端设备根据第一规则,确定第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,则终端设备可以确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于第一阈值。终端设备 丢弃第一搜索空间集合和第二搜索空间集合。
可选的,终端设备可以根据第一规则,确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于第一阈值。
若终端设备根据第一规则,确定在两个关联的第三搜索空间集合上需要监听的候选PDCCH的第三次数大于第一阈值,则终端设备可以根据第二规则,确定在该两个关联的第三搜索空间集合上需要监听的候选PDCCH的次数是否大于第一阈值(此时,第三搜索空间集合被看作/被假设用于PDCCH独立传输)。
可选的,终端设备可以根据第二规则,确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于第一阈值,其中,至少一个第三搜索空间集合用于PDCCH独立传输。具体而言,若第三次数小于第一阈值,则终端设备可以根据所述第二规则,确定在第四搜索空间集合上需要监听的候选PDCCH的第六次数是否大于第四阈值,其中,第四阈值等于第一阈值减去第三次数。
例如,终端设备根据基站或网络设备发送的资源配置信息,确定SS set 3和SS set 5是一对用于PDCCH重复传输的SS set,SS set 4和SS set 6是另一对用于PDCCH重复传输的SS set。由于SS set 3是所述4个SS set中搜索空间集合索引最小的SS set,因此映射优先级最高,而SS set 5是和SS set 3关联用于PDCCH重复传输的SS set,SS set 3和SS set 5一起参与映射规则计算,可以理解为SS set 5的映射优先级同SS set 3,或映射优先级仅次于SS set 3。剩余的SS set中索引最小是SS set 4,同理SS set 6的映射优先级同SS set 4,或SS set 6的映射优先级仅次于SS set 4。4个SS set的优先级为SS set 3=SS set 5>SS set 4=SS set 6,或SS set 3>SS set 5>SS set 4>SS set 6,基站或网络设备可能还配置了其他搜索空间集合,例如用于PDCCH独立传输的SS set 7和SS set 8。假设协议采用选项5的监听计数方式来确定2个关联的候选PDCCH(linked PDCCH candidate)的监听次数,即2个关联的候选PDCCH的监听次数为3次。其中,SS set 3中配置了3个候选PDCCH,根据目前协议定义的关联的候选PDCCH是一一对应的,那么SS set 5中也配置了3个候选PDCCH。一对(2个)关联的候选PDCCH的监听次数为3次,那么3对关联的候选PDCCH对应的监听次数一共是3*3=9次,也就是SS set 3和SS set 5一共计为9次监听。而SS set 4配置了1个候选PDCCH,同理SS set 6也只配置了1个候选PDCCH,这一对关联的候选PDCCH对应的监听次数为3次,也就是SS set 4和SS set 6一共计为3次监听。假设剩余的监听次数的上限值为8次,即第一阈值为8次,则关联的SS set 3和SS set 5的监听计数结果(第一次数)大于剩余监听次数的上限(第一阈值)。此时,终端设备丢弃SS set 3和SS set 5。
可选的,由于SS set 4和SS set 6用于PDCCH重复传输,终端设备可以根据第一规则,在SS set 4和SS set 6上确定需要监听的候选PDCCH的第三次数是否超过8次,若超过8次,则丢弃SS set 4、SS set 6以及其他的SS set,或者终端设备可以根据第二规则,确定SS set 4和SS set 6(此时,第三搜索空间集合被看作/被假设用于PDCCH独立传输)上确定需要监听的候选PDCCH的次数是否超过8次。若不超过8次,则终端设备可以确定在SS set 4和SS set 6上监听用于重复传输的候选PDCCH。
可选的,由于SS set 4和SS set 6用于PDCCH重复传输,则终端设备丢弃SS set 4和SS set 6,或者SS set 4和SS set 6被看作/被假设用于PDDCCH独立传输,根据第二规则 确定SS set 4和SS set 6上需监听的候选PDCCH的次数均超过8次,则在SS set 7上确定需要监听的候选PDCCH的第三次数是否超过8次,若超过8次,则丢弃SS set 7以及其他的SS set。若不超过8次,则终端设备可以确定在SS set 7上监听用于独立传输的候选PDCCH。该情况下,终端设备仍可在SS set 8上确定需要监听的候选PDCCH的次数是否超过剩余次数。
在本申请的技术方案中,当关联的第一搜索空间集合和第二搜索空间集合对应的监听次数超过剩余监听次数的上限时,可以不丢弃第一搜索空间集合和第二搜索空间集合,或不将第一搜索空间集合和第二搜索空间集合整体丢弃,或不将第一搜索空间集合、第二搜索空间集合以及剩余的搜索空间集合都丢弃,可以提高候选PDCCH资源的利用率。
由于搜索空间集合周期配置不同,一个关联的搜索空间集合的一个候选PDCCH与另一个关联的搜索空间集合的一个候选PDCCH可能在某个时隙一起出现,当两个候选PDCCH对应的时频资源重叠且满足计为一次盲检时,如果终端设备在这个时频资源上监听到一个PDCCH,则无法区分这个PDCCH是哪个linked PDCCH,影响PDCCH的正确接收,如果终端设备尝试与在前面的资源上监听到的PDCCH合并译码,可能会导致合并译码失败。
如图7所示,出示了4个候选PDCCH用于重复传输的示意图。其中,候选PDCCH 1属于SS set 1,候选PDCCH 2属于SS set 2,候选PDCCH 3属于SS set 3,候选PDCCH 4属于SS set 4,基站通过资源配置信息或高层参数配置指示SS set 1和SS set 2是关联的,SS set 3和SS set 4是关联的,即SS set 1和SS set 2一起用于PDCCH重复传输相同的DCI,SS set 3和SS set 4一起用于PDCCH重复传输相同的DCI,候选PDCCH 1和候选PDCCH 2可能发送相同的第一PDCCH,候选PDCCH 3和候选PDCCH 4也可能发送相同的第二PDCCH。候选PDCCH 2与候选PDCCH 4的时频资源重叠且满足计数为一次盲检时,则终端设备无法确定基站发送的是第一PDCCH还是第二PDCCH,则影响PDCCH的正确接收,导致译码失败。
为此,本申请实施例提出了一种信息检测的方法,当终端设备或基站判断出候选PDCCH 2与候选PDCCH 4的时频资源重叠且满足计数为一次盲检时,由协议预定义终端设备只需对重叠资源中SS set索引值最小的SS set的候选PDCCH进行解码,即终端设备只需译码候选PDCCH 2,具体而言,终端设备根据SS set 2的配置信息来解码PDCCH 2,因为候选PDCCH 2是属于SS set 2的。该情况下基站仅通过重叠资源中SS set的索引值最小的SS set的候选PDCCH发送DCI。在本申请实施例中定义当两个候选PDCCH对应的时频资源重叠且满足计为一次盲检的条件时,定义终端设备根据所述两个候选PDCCH所属的搜索空间集合的索引值最小的配置信息来接收DCI,该情况下基站根据所述两个候选PDCCH所属的搜索空间集合的索引值最小的配置信息来发送DCI。应理解,也可以定义终端设备根据所述搜索空间集合的索引值最大的配置信息来接收DCI,该情况下基站根据所述搜索空间集合的索引值最大的配置信息来发送DCI,对此不做限定。还有一种可能的实现方式,终端设备根据所述两个候选PDCCH所属的CORESET索引最小的CORESET关联的SS set配置信息来接收DCI,该情况下基站根据所述两个候选PDCCH所属的CORESET索引最小的CORESET关联的SS set配置信息来发送DCI,也可以定义根据其中索引较大的CORESET关联的SS set配置信息来接收或发送DCI。
如图8所示,出示了一种信息检测的方法800的示意性流程图。该方法能够提高终端设备对PDCCH的接收成功率,具体包括:
810,终端设备确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠。其中,第一候选PDCCH与第三候选PDCCH是关联的,用于第一DCI的重复传输;第二候选PDCCH与第四候选PDCCH是关联的,用于第二DCI的重复传输。第一候选PDCCH属于第一SS set,第二候选PDCCH属于第二SS set,第三候选PDCCH属于第三SS set,第四候选PDCCH属于第四SS set。第一SS set和第三SS set是关联的,第二SS set和第四SS set是关联的。
具体而言,第一候选PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,并且,第一候选PDCCH与第二候选PDCCH具有以下至少一种关系:
所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息DCI的比特大小相同。
820,终端设备在第一候选PDCCH上检测第一DCI,其中,第一候选PDCCH所属的第一SS set的索引值小于第二候选PDCCH所属的第二SS set的索引值。具体而言,终端设备在第一候选PDCCH上和第三候选PDCCH上检测第一DCI。
假设两个关联的候选PDCCH对应的监听/盲检次数通过选项5来定义,那么终端设备在第一候选PDCCH上和第三候选PDCCH上的盲检次数为3次。
在一种实现方式中,终端设备可以仅在第一候选PDCCH上和第三候选PDCCH上检测第一DCI,不在第二候选PDCCH与第四候选PDCCH上检测第二DCI。
该情况下基站不会发送第二候选PDCCH所属的第二SS set配置的PDCCH,那么终端设备就不会将第二候选PDCCH与第四候选PDCCH合并译码,这两个候选PDCCH就不能进行第二DCI的重复发送,终端设备就不会在这两个候选PDCCH上监听了。
在另一种实现方式中,终端设备可以在第一候选PDCCH上和第三候选PDCCH上检测第一DCI,在第四候选PDCCH上检测独立发送的第二DCI。
此时,协议可以预定义在该情况下关联的候选PDCCH变为用于独立传输的候选PDCCH,基站不会发送第二候选PDCCH所属的第二SS set配置的PDCCH,但是仍然发送第四候选PDCCH所属的第四SS set配置的PDCCH。终端设备不在第二候选PDCCH上检测第二DCI,但在第四候选PDCCH上检测独立发送的第二DCI,且不会进行任何的合并操作,计为一次盲检或监听。
在本申请提供的技术方案中,当终端设备确定用于第一DCI重复传输的第一候选PDCCH对应的时频资源和用于第二DCI重复传输的第二候选PDCCH对应的时频资源重叠且满足计为一次盲检时,终端设备根据第一候选PDCCH所属的第一SS set的索引值和第二候选PDCCH所属的第二SS set的索引值的大小(第一SS set的索引值小于第二SS set的索引值,即第一SS set的映射优先级高于第二SS set的映射优先级),确定在第一候选PDCCH上检测第一DCI,可以使终端设备检测的PDCCH与基站发送的PDCCH一致,从而提高终端设备对PDCCH的接收成功率。
如图9所示,出示了另一种4个候选PDCCH用于重复传输的示意图。其中,候选 PDCCH 1属于SS set 1,候选PDCCH 2属于SS set 2,候选PDCCH 3属于SS set 3,候选PDCCH 4属于SS set 4,基站通过资源配置信息或高层参数配置指示SS set 1和SS set 2是关联的,SS set 3和SS set 4是关联的,即SS set 1和SS set 2一起用于PDCCH重复传输,SS set 3和SS set 4一起用于PDCCH重复传输,候选PDCCH 1和候选PDCCH 2可能发送相同的第一PDCCH,候选PDCCH 3和候选PDCCH 4也可能发送相同的第二PDCCH。候选PDCCH 1与候选PDCCH 3的时频资源重叠,在该时频资源上终端设备无法确定基站发送的是第一PDCCH还是第二PDCCH;候选PDCCH 2与候选PDCCH 4的时频资源重叠,在该时频资源上终端设备也无法确定基站发送的是第一PDCCH还是第二PDCCH;会使终端设备不能正确接收PDCCH,导致译码失败。
为此,本申请实施例提出了一种信息检测的方法,当终端设备或基站判断出候选PDCCH 1与候选PDCCH 3的时频资源重叠并满足计为一次盲检的条件、候选PDCCH 2与候选PDCCH 4的时频资源重叠并满足计为一次盲检的条件时,由协议预定义终端设备只需对重叠资源中SS set索引值最小的SS set的候选PDCCH以及与其关联的候选PDCCH进行解码,即终端设备只需对候选PDCCH 1和候选PDCCH 2进行译码。该情况下基站仅通过重叠资源中SS set的索引值最小的SS set以及与其关联的SS set的候选PDCCH发送DCI。
如图10所示,出示了一种信息检测的方法1000的示意性流程图。该方法能够提高终端设备对PDCCH的接收成功率,具体包括:
1010,终端设备确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,且第三候选PDCCH对应的时频资源和第四候选PDCCH对应的时频资源重叠,第一候选PDCCH和所述第三候选PDCCH用于第一下行控制信息DCI的重复传输,第二候选PDCCH和所述第四候选PDCCH用于第二下行控制信息DCI的重复传输。
其中,第一候选PDCCH属于第一SS set,第二候选PDCCH属于第二SS set,第三候选PDCCH属于第三SS set,第四候选PDCCH属于第四SS set。第一SS set和第三SS set是关联的,第二SS set和第四SS set是关联的。
具体而言,第一候选PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,并且第一候选PDCCH与第二候选PDCCH具有以下至少一种关系:
所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息DCI的比特大小相同。
1020,终端设备在第一候选PDCCH和第三候选PDCCH上检测第一DCI,其中,第一候选PDCCH所属的第一搜索空间集合的索引值小于第二候选PDCCH所属的第二搜索空间集合的索引值和第四候选PDCCH所属的第四搜索空间集合的索引值,即第一搜索空间集合的映射优先级高于第二搜索空间集合和第四搜索空间集合的映射优先级;或,第三候选PDCCH所属的第三搜索空间集合的索引值小于第二候选PDCCH所属的第二搜索空间集合的索引值和第四候选PDCCH所属的第四搜索空间集合的索引值;或,第一搜索空间集合的索引值和第三搜索空间集合的索引值都小于第二搜索空间集合的索引值和第四 搜索空间集合的索引值。
例如,网络设备配置信息如下:4个候选PDCCH用于PDCCH重复传输,候选PDCCH 1属于SS set 1,候选PDCCH 2属于SS set 2,候选PDCCH 3属于SS set 3,候选PDCCH 4属于SS set 4,基站通过资源配置信息或高层参数配置指示SS set 1和SS set 2是关联的,SS set 3和SS set 4是关联的,即SS set 1和SS set 2一起用于PDCCH重复传输,SS set 3和SS set 4一起用于PDCCH重复传输,候选PDCCH 1和候选PDCCH 2用于第一DCI的重复传输,候选PDCCH 3和候选PDCCH 4用于第二DCI的重复传输。
终端设备确定候选PDCCH 1与候选PDCCH 3的时频资源重叠并满足计为一次盲检的条件,且候选PDCCH 2与候选PDCCH 4的时频资源重叠并满足计为一次盲检的条件,由于SS set 1的索引值小于SS set 3和SS set 4的索引值,且SS set 2的索引值也小于SS set 3和SS set 4的索引值,因此,终端设备在候选PDCCH 1和候选PDCCH 2上检测第一DCI,而无需检测第二DCI。
在本申请实施例中根据预定义规则预定义搜索空间集合的索引值越小,该搜索空间集合的映射优先级越高。应理解,也可以根据预定义规则预定义搜索空间集合的索引值越大,该搜索空间集合的映射优先级越高,对此不做限定。
除此之外,还通过预定义规则预定义搜索空间集合关联的CORESET索引值越小,该搜索空间集合的映射优先级越高;或者,预定义搜索空间集合所属的CORESET索引值越大,该搜索空间集合的映射优先级越高。
例如,基站或网络设备配置信息如下:4个候选PDCCH用于PDCCH重复传输,候选PDCCH 1属于SS set 1,候选PDCCH 2属于SS set 2,候选PDCCH 3属于SS set 3,候选PDCCH 4属于SS set 4,SS set 1关联CORESET2,SS set 2关联CORESET1,SS set 3关联CORESET3,SS set 4关联CORESET4。网络设备通过资源配置信息或高层参数配置指示SS set 1和SS set 2是关联的,SS set 3和SS set 4是关联的,即SS set 1和SS set 2一起用于PDCCH重复传输,SS set 3和SS set 4一起用于PDCCH重复传输,候选PDCCH 1和候选PDCCH 2用于第一DCI的重复传输,候选PDCCH 3和候选PDCCH 4用于第二DCI的重复传输。
终端设备确定候选PDCCH 1与候选PDCCH 3的时频资源重叠并满足计为一次盲检的条件,且候选PDCCH 2与候选PDCCH 4的时频资源重叠并满足计为一次盲检的条件,由于CORESET1的索引值小于CORESET3和CORESET4的索引值,和/或CORESET2的索引值也小于CORESET3和CORESET4的索引值,因此,终端设备在候选PDCCH 1和候选PDCCH 2上检测第一DCI,而无需检测第二DCI。
在本申请提供的技术方案中,当终端设备确定用于第一DCI重复传输的第一候选PDCCH对应的时频资源和用于第二DCI重复传输的第二候选PDCCH对应的时频资源重叠,且用于第一DCI重复传输的第三候选PDCCH对应的时频资源和用于第二DCI重复传输的第四候选PDCCH对应的时频资源重叠时,终端设备根据第二候选PDCCH所属的第二SS set的索引值、第四候选PDCCH所属的第二SS set的索引值、第一候选PDCCH所属的第一SS set的索引值、第一候选PDCCH所属的第一SS set的索引值的大小(第一SS set的索引值和/或第三SS set的索引值小于第二SS set的索引值和第四SS set的索引值),确定在第一候选PDCCH和第三候选PDCCH上检测第一DCI,可以使终端设备检 测的PDCCH与基站发送的PDCCH一致,从而提高终端设备对PDCCH的接收成功率。
由于搜索空间集合周期配置不同,用于PDCCH独立传输的SS set和用于PDCCH重复传输的SS set可能在某个时隙一起出现,目前协议支持独立的候选PDCCH(individual PDCCH candidate)和关联的候选PDCCH(linked PDCCH candidate)同时存在且满足一次盲检(count one)的场景。当一个individual PDCCH candidate和一个linked PDCCH candidate对应的时频资源重叠且满足计为一次盲检时,现有技术是不增加额外的监听次数。
如图11所示,出示了一种3个候选PDCCH传输的示意图。假设SS set都只配置了1个候选PDCCH。其中,候选PDCCH 1属于SS set 1,候选PDCCH 2属于SS set 2,候选PDCCH 3属于SS set 3,基站通过资源配置信息或高层参数配置指示SS set 1和SS set 2是关联的,SS set 3用于PDCCH独立传输,即SS set 1和SS set 2一起用于PDCCH重复传输。候选PDCCH 1和候选PDCCH 2可能发送相同的第一PDCCH,候选PDCCH 3发送第二PDCCH。终端设备确定候选PDCCH 2与候选PDCCH 3的时频资源重叠且满足一次盲检。根据SS set的索引值大小确定SS set的优先级,终端设备确定在候选PDCCH 1和候选PDCCH 2上确定需要监听的候选PDCCH的次数为3次,且确定不在候选PDCCH 3上监听PDCCH,可以理解不采用SS set 3的配置信息来监听重叠资源上的候选PDCCH。
如图12所示,出示了另一种3个候选PDCCH传输的示意图。假设SS set都只配置了1个候选PDCCH。其中,候选PDCCH 1属于SS set 1,候选PDCCH 2属于SS set 3,候选PDCCH 3属于SS set 2,基站通过资源配置信息或高层参数配置指示SS set 1和SS set 3是关联的,SS set 2用于PDCCH独立传输,即SS set 1和SS set 3一起用于PDCCH重复传输。候选PDCCH 1和候选PDCCH 2可能发送相同的第一PDCCH,候选PDCCH 3发送第二PDCCH。终端设备确定候选PDCCH 2与候选PDCCH 3的时频资源重叠且满足一次盲检。根据SS set的索引值大小确定SS set的优先级,终端设备确定在候选PDCCH 3上确定需要监听的第二PDCCH的次数为1次,在候选PDCCH 1上确定需要监听的第一PDCCH的次数为1次,共需监听2次,且确定不在候选PDCCH 2上监听第一PDCCH,可以理解不采用SS set 2的配置信息来监听重叠资源上的候选PDCCH。
因此,当一个individual PDCCH candidate和一个linked PDCCH candidate对应的时频资源重叠且满足计为一次盲检时,候选PDCCH的监听次数不是固定的,可能导致终端设备和基站的盲检计数结果不一样,从而影响PDCCH的正确传输。
为此,本申请提出了一种信息检测的方法,能够提高PDCCH传输的可靠性。
如图13所示,出示了一种信息检测的方法1300的示意性流程图。该方法具体包括:
1310,终端设备确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠。其中,第一候选PDCCH属于第一搜索空间集合,第二候选PDCCH属于第二搜索空间集合,第三候选PDCCH属于第三搜索空间集合;第一搜索空间集合与第三搜索空间集合用于PDCCH重复传输,即第一搜索空间集合与第三搜索空间集合是关联的,第二搜索空间集合用于PDCCH独立传输。
具体而言,第一候选PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,并且,第一候选PDCCH与第二候选PDCCH具有以下至少一种关系:
所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息DCI的比特大小相同。
1320,终端设备根据第一规则,确定在第一候选PDCCH和第三候选PDCCH上需要监听的候选PDCCH的次数,即终端设备无需监听第二候选PDCCH;其中,第一规则为用于重复传输的PDCCH的监听计数规则。应理解,该情况下协议预定义用于重复传输的候选PDCCH的传输优先级高于用于独立传输的候选PDCCH的传输优先级。
可选的,第一搜索空间集合的索引值可以小于第二搜索空间集合的索引值,第一搜索空间集合的索引值也可以大于第二搜索空间集合的索引值。
可选的,第三搜索空间集合的索引值可以小于第二搜索空间集合的索引值,第三搜索空间集合的索引值也可以大于第二搜索空间集合的索引值。
例如,基站或网络设备配置信息如下:三个用于PDCCH传输的SS set,假设每个SS set都只配置了1个候选PDCCH。其中,候选PDCCH 1属于SS set 1,候选PDCCH 2属于SS set 2,候选PDCCH 3属于SS set 3,基站通过资源配置信息或高层参数配置指示SS set 1和SS set 3是关联的,SS set 2用于PDCCH独立传输,即SS set 1和SS set 3一起用于PDCCH重复传输。候选PDCCH 1和候选PDCCH 3可能发送相同的第一PDCCH,候选PDCCH 2发送第二PDCCH。
当终端设备确定候选PDCCH 3与候选PDCCH 2的时频资源重叠并满足计为一次盲检的条件时,终端设备可以在候选PDCCH 1和候选PDCCH 3上检测第一PDCCH,而无需检测第二PDCCH。该情况下,协议预定义重复传输的优先级高于独立传输的优先级。假设协议采用选项5的监听计数方式来确定2个关联的候选PDCCH(linked PDCCH candidate)的监听次数,即2个关联的候选PDCCH的监听次数为3次,其中所述2个关联的候选PDCCH中时域位置较早的1个候选PDCCH计数为1次盲检或计数为1个用于监听的候选PDCCH,其中所述2个关联的候选PDCCH中时域位置较晚的1个候选PDCCH计数为2次盲检或计数为2个用于监听的候选PDCCH。由于候选PDCCH 2对应的搜索空间集合索引小于候选PDCCH 3对应的搜索空间集合索引,因此候选PDCCH 2对应的PDCCH映射优先级较高,先根据盲检计数规则对其进行盲检测计数。假设终端设备根据盲检计数规则确定候选PDCCH 2对应的盲检测次数为1次。候选PDCCH 3的PDCCH映射优先级仅次于候选PDCCH 2,由于协议预定义重复传输的优先级高于独立传输的优先级,即基站或网络设备会在候选PDCCH 2和候选PDCCH 3所在的重叠资源上进行PDCCH重复传输,即发送第一PDCCH,因此所述重叠资源上对应的盲检测次数要按照第二规则进行盲检测计数为2次,即终端设备针对所述重叠资源,在候选PDCCH 2盲检计数后的结果上增加一次盲检测次数,增加到2次。
可选的,终端设备确定第三候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠。其中,第一候选PDCCH属于第一搜索空间集合,第二候选PDCCH属于第二搜索空间集合,第三候选PDCCH属于第三搜索空间集合;第一搜索空间集合与第三搜索空间集合用于PDCCH重复传输,即第一搜索空间集合与第三搜索空间集合是关联的,第二搜索空间集合用于PDCCH独立传输。
终端设备根据第二规则,确定在第二候选PDCCH上需要监听的候选PDCCH的次数,即终端设备无需监听用于重复传输的第一候选PDCCH和第三候选PDCCH;其中,协议 预定义第二规则为用于独立传输的PDCCH的监听计数规则。
例如,基站或网络设备配置信息如下:三个用于PDCCH传输的SS set,假设每个SS set都只配置了1个候选PDCCH。其中,候选PDCCH 1属于SS set 1,候选PDCCH 2属于SS set 2,候选PDCCH 3属于SS set 3,基站通过资源配置信息或高层参数配置指示SS set 1和SS set 3是关联的,SS set 2用于PDCCH独立传输,即SS set 1和SS set 3一起用于PDCCH重复传输。候选PDCCH 1和候选PDCCH 3可能发送相同的第一PDCCH,候选PDCCH 2发送第二PDCCH。
当终端设备确定候选PDCCH 3与候选PDCCH 2的时频资源重叠并满足计为一次盲检的条件时,终端设备根据协议预定义的规则可以在候选PDCCH 2上检测第二PDCCH,而无需检测第一PDCCH。该情况下,协议预定义的规则为独立传输的优先级高于重复传输的优先级。可以理解为,基站或网络设备在重叠资源上发送第二PDCCH,终端侧根据第二规则确定所述重叠资源上的盲检测次数或确定用于监听候选PDCCH的个数或次数。本例中,所述重叠资源计数为1次盲检,或候选PDCCH 2和候选PDCCH 3一共计为1次盲检(或计数为1个用于监听的候选PDCCH)。本申请对此不做限定。
在本申请提供的技术方案中,当终端设备确定用于重复传输的第一候选PDCCH对应的时频资源和用于独立传输的第二候选PDCCH对应的时频资源重叠时,终端设备确定在用于重复传输的第一候选PDCCH和第三候选PDCCH上需要监听的候选PDCCH的次数,可以避免终端设备对候选PDCCH的监听次数与基站的计数结果不一致,从而提高PDCCH传输的可靠性。
应理解,上文中给出的所有优先级规则仅为示例,例如索引小的优先级高于索引大的,重复传输的优先级高于独立传输的,本申请中优先级规则可以是预设的,或者协议预先约定的。
本申请实施例提出了一种通信装置,如图14所示,出示了本申请实施例的一种通信装置1400的示意性框图。该装置可以应用于本申请实施例中的终端设备。该通信装置1400包括:处理单元1410,用于:
根据第一规则,确定在第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,其中,所述第一搜索空间集合与所述第二搜索空间集合是关联的;
根据第二规则,确定在所述第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于所述第一阈值;或,
确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
可选的,所述处理单元1410具体用于:若所述第二次数小于所述第一阈值,则根据所述第二规则,确定在所述第二搜索空间集合上需要监听的候选PDCCH的第四次数是否大于第二阈值,其中,所述第二阈值等于所述第一阈值减去所述第二次数。
可选的,所述处理单元1410还用于:若所述第四次数小于所述第二阈值,则确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第五次数是否大于第三阈值,其中,所述第三阈值等于所述第二阈值减去所述第四次数。
可选的,所述处理单元1410具体用于:根据所述第一规则或所述第二规则,确定在 所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
可选的,所述处理单元1410还用于:若所述第三次数小于所述第一阈值,则根据所述第二规则,确定在第四搜索空间集合上需要监听的候选PDCCH的第六次数是否大于第四阈值,其中,所述第四阈值等于所述第一阈值减去所述第三次数。
可选的,所述第三搜索空间集合的索引值大于所述第一搜索空间集合的索引值和/或所述第二搜索空间集合的索引值。
可选的,所述第一规则为用于重复传输的PDCCH的监听计数规则;所述第二规则为用于独立传输的PDCCH的监听计数规则。
本申请实施例提出了一种通信装置,如图15所示,出示了本申请实施例的一种通信装置1500的示意性框图。该装置可以应用于本申请实施例中的终端设备。该通信装置1500包括:处理单元1510,用于:
确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,所述第一候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH用于第二DCI的重复传输;在所述第一候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值。
可选的,所述处理单元1510具体用于:在所述第一候选PDCCH和第三候选PDCCH上检测所述第一DCI,其中,所述第三候选PDCCH所属的第三搜索空间集合与所述第一搜索空间集合相关联。
可选的,所述处理单元1510还用于:在第四候选PDCCH上检测所述第二DCI,其中,所述第四候选PDCCH所属的第四搜索空间集合与所述第二搜索空间集合是关联的。
可选的,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:
所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
本申请实施例提出了一种通信装置,如图16所示,出示了本申请实施例的一种通信装置1600的示意性框图。该装置可以应用于本申请实施例中的终端设备。该通信装置1600包括:处理单元1610,用于:
确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,第三候选PDCCH对应的时频资源和第四候选PDCCH对应的时频资源重叠,所述第一候选PDCCH和所述第三候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH和所述第四候选PDCCH用于第二下行控制信息DCI的重复传输;
在所述第一候选PDCCH和所述第三候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值和/或所述第三候选PDCCH所属的第三搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值和所述第四候选PDCCH所属的第四搜索空间集合的索引值。
可选的,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:
所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
本申请实施例提出了一种通信装置,如图17所示,出示了本申请实施例的一种通信装置1700的示意性框图。该装置可以应用于本申请实施例中的终端设备。该通信装置1700包括:处理单元1710,用于:
确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,所述第二候选PDCCH属于第二搜索空间集合;
根据第一规则,确定在所述第一候选PDCCH和第三候选PDCCH上需要监听的候选PDCCH的次数,所述第一候选PDCCH所属的第一搜索空间集合与所述第三候选PDCCH所属的第三搜索空间集合是关联的,所述第二搜索空间集合用于PDCCH独立传输,所述第一规则为用于重复传输的PDCCH的监听计数规则。
可选的,所述第一搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
可选的,所述第三搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
可选的,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:
所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
本申请实施例提供了一种通信装置1800,如图18所示,出示了本申请实施例的一种通信装置1800的示意性框图。
该通信装置1800包括:至少一个处理器1810,所述处理器与存储器1820相连,所述存储器1820用于存储计算机程序,所述处理器1810用于执行所述存储器1820中存储的计算机程序,以使得所述装置执行本申请实施例中任意可能的实现方式中的方法。
上述的处理器1810可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机上运行时,使得该计算机可以实现上述方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得上述方法实施例中的方法被执行。
本申请实施例还提供了一种芯片,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述芯片执行上述方法实施例中的方法。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的搜索空间集合,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (49)

  1. 一种信息检测的方法,其特征在于,包括:
    确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠;
    根据第一规则,确定在所述第一候选PDCCH和第三候选PDCCH上需要监听的候选PDCCH的个数,其中,所述第一候选PDCCH所属的第一搜索空间集合与所述第三候选PDCCH所属的第三搜索空间集合是关联的;其中,所述第一规则为用于重复传输的PDCCH的监听计数规则;
    其中,第二候选PDCCH属于第二搜索空间集合,所述所述第二搜索空间集合用于PDCCH独立传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一搜索空间集合与所述第三搜索空间集合的关联关系是通过高层参数配置的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:
    所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
    所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
    所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特数相同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,确定在所述第一候选PDCCH和所述第三候选PDCCH上需要监听的候选PDCCH的个数为3,其中,在所述第一候选PDCCH上需要监听的候选PDCCH的个数为2,在所述第三候选PDCCH上需要监听的候选PDCCH的个数为1。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,针对所述第一候选PDCCH和所述第二候选PDCCH重叠的时频资源,在所述第一候选PDCCH上确定需要监听的候选PDCCH的个数。
  6. 根据权利要求1所述的方法,其特征在于,
    所述第一搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
  7. 根据权利要求1所述的方法,其特征在于,
    所述第三搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
  8. 一种信息检测的方法,其特征在于,包括:
    根据第一规则,确定在第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,其中,所述第一搜索空间集合与所述第二搜索空间集合是关联的;
    根据第二规则,确定在所述第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于所述第一阈值;或,
    确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
  9. 根据权利要求8所述的方法,其特征在于,所述根据第二规则,确定在所述第一 搜索空间集合上需要监听的候选PDCCH的第二次数是否大于所述第一阈值,包括:
    若所述第二次数小于所述第一阈值,则根据所述第二规则,确定在所述第二搜索空间集合上需要监听的候选PDCCH的第四次数是否大于第二阈值,其中,所述第二阈值等于所述第一阈值减去所述第二次数。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    若所述第四次数小于所述第二阈值,则确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第五次数是否大于第三阈值,其中,所述第三阈值等于所述第二阈值减去所述第四次数。
  11. 根据权利要求8所述的方法,其特征在于,所述确定在至少一个第三搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第三次数是否大于所述第一阈值,包括:
    根据所述第一规则或所述第二规则,确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述第二规则,确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值,包括:
    若所述第三次数小于所述第一阈值,则根据所述第二规则,确定在第四搜索空间集合上需要监听的候选PDCCH的第六次数是否大于第四阈值,其中,所述第四阈值等于所述第一阈值减去所述第三次数。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,
    所述第三搜索空间集合的索引值大于所述第一搜索空间集合的索引值和/或所述第二搜索空间集合的索引值。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,
    所述第一规则为用于重复传输的PDCCH的监听计数规则;
    所述第二规则为用于独立传输的PDCCH的监听计数规则。
  15. 一种信息检测的方法,其特征在于,包括:
    确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,所述第一候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH用于第二DCI的重复传输;
    在所述第一候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值。
  16. 根据权利要求15所述的方法,其特征在于,所述在所述第一候选PDCCH上检测所述第一DCI,包括:
    在所述第一候选PDCCH和第三候选PDCCH上检测所述第一DCI,其中,所述第三候选PDCCH所属的第三搜索空间集合与所述第一搜索空间集合相关联。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    在第四候选PDCCH上检测所述第二DCI,其中,所述第四候选PDCCH所属的第四搜索空间集合与所述第二搜索空间集合是关联的。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述第一候选PDCCH 与所述第二候选PDCCH具有以下至少一种关系:
    所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
    所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
    所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
  19. 一种信息检测的方法,其特征在于,包括:
    确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,第三候选PDCCH对应的时频资源和第四候选PDCCH对应的时频资源重叠,所述第一候选PDCCH和所述第三候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH和所述第四候选PDCCH用于第二下行控制信息DCI的重复传输;
    在所述第一候选PDCCH和所述第三候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值和/或所述第三候选PDCCH所属的第三搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值和所述第四候选PDCCH所属的第四搜索空间集合的索引值。
  20. 根据权利要求19所述的方法,其特征在于,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:
    所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
    所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
    所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
  21. 一种通信的装置,其特征在于,包括:处理单元,用于:
    确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠;
    根据第一规则,确定在所述第一候选PDCCH和第三候选PDCCH上需要监听的候选PDCCH的个数,其中,所述第一候选PDCCH所属的第一搜索空间集合与所述第三候选PDCCH所属的第三搜索空间集合是关联的;其中,所述第一规则为用于重复传输的PDCCH的监听计数规则;
    其中,第二候选PDCCH属于第二搜索空间集合,所述所述第二搜索空间集合用于PDCCH独立传输。
  22. 根据权利要求21所述的装置,其特征在于,所述第一搜索空间集合与所述第三搜索空间集合的关联关系是通过高层参数配置的。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:
    所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
    所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
    所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特数相同。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,所述处理单元具体用于:
    确定在所述第一候选PDCCH和所述第三候选PDCCH上需要监听的候选PDCCH的个数为3,其中,在所述第一候选PDCCH上需要监听的候选PDCCH的个数为2,在所述 第三候选PDCCH上需要监听的候选PDCCH的个数为1。
  25. 根据权利要求21至24任一项所述的装置,其特征在于,针对所述第一候选PDCCH和所述第二候选PDCCH重叠的时频资源,在所述第一候选PDCCH上确定需要监听的候选PDCCH的个数。
  26. 根据权利要求21所述的装置,其特征在于,
    所述第一搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
  27. 根据权利要求21所述的装置,其特征在于,
    所述第三搜索空间集合的索引值大于所述第二搜索空间集合的索引值。
  28. 根据权利要求21至27中任一项所述的装置,其特征在于,所述处理单元为处理器。
  29. 一种通信的装置,其特征在于,包括:处理单元,用于:
    根据第一规则,确定在第一搜索空间集合和第二搜索空间集合上需要监听的候选物理下行控制信道PDCCH的第一次数大于第一阈值,其中,所述第一搜索空间集合与所述第二搜索空间集合是关联的;
    根据第二规则,确定在所述第一搜索空间集合上需要监听的候选PDCCH的第二次数是否大于所述第一阈值;或,
    确定在至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
  30. 根据权利要求29所述的装置,其特征在于,所述处理单元具体用于:
    若所述第二次数小于所述第一阈值,则根据所述第二规则,确定在所述第二搜索空间集合上需要监听的候选PDCCH的第四次数是否大于第二阈值,其中,所述第二阈值等于所述第一阈值减去所述第二次数。
  31. 根据权利要求29或30所述的装置,其特征在于,所述处理单元还用于:
    若所述第四次数小于所述第二阈值,则确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第五次数是否大于第三阈值,其中,所述第三阈值等于所述第二阈值减去所述第四次数。
  32. 根据权利要求29所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一规则或所述第二规则,确定在所述至少一个第三搜索空间集合上需要监听的候选PDCCH的第三次数是否大于所述第一阈值。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元还用于:
    若所述第三次数小于所述第一阈值,则根据所述第二规则,确定在第四搜索空间集合上需要监听的候选PDCCH的第六次数是否大于第四阈值,其中,所述第四阈值等于所述第一阈值减去所述第三次数。
  34. 根据权利要求29至33中任一项所述的装置,其特征在于,
    所述第三搜索空间集合的索引值大于所述第一搜索空间集合的索引值和/或所述第二搜索空间集合的索引值。
  35. 根据权利要求29至34中任一项所述的装置,其特征在于,
    所述第一规则为用于重复传输的PDCCH的监听计数规则;
    所述第二规则为用于独立传输的PDCCH的监听计数规则。
  36. 根据权利要求29至35中任一项所述的装置,其特征在于,所述处理单元为处理器。
  37. 一种通信的装置,其特征在于,包括:处理单元,用于:
    确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,所述第一候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH用于第二DCI的重复传输;
    在所述第一候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值。
  38. 根据权利要求37所述的装置,其特征在于,所述处理单元具体用于:
    在所述第一候选PDCCH和第三候选PDCCH上检测所述第一DCI,其中,所述第三候选PDCCH所属的第三搜索空间集合与所述第一搜索空间集合相关联。
  39. 根据权利要求37或38所述的装置,其特征在于,所述处理单元还用于:
    在第四候选PDCCH上检测所述第二DCI,其中,所述第四候选PDCCH所属的第四搜索空间集合与所述第二搜索空间集合是关联的。
  40. 根据权利要求37至39中任一项所述的装置,其特征在于,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:
    所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
    所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
    所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
  41. 根据权利要求37至40中任一项所述的装置,其特征在于,所述处理单元为处理器。
  42. 一种通信的装置,其特征在于,包括:处理单元,用于:
    确定第一候选物理下行控制信道PDCCH对应的时频资源和第二候选PDCCH对应的时频资源重叠,第三候选PDCCH对应的时频资源和第四候选PDCCH对应的时频资源重叠,所述第一候选PDCCH和所述第三候选PDCCH用于第一下行控制信息DCI的重复传输,所述第二候选PDCCH和所述第四候选PDCCH用于第二下行控制信息DCI的重复传输;
    在所述第一候选PDCCH和所述第三候选PDCCH上检测所述第一DCI,其中,所述第一候选PDCCH所属的第一搜索空间集合的索引值和/或所述第三候选PDCCH所属的第三搜索空间集合的索引值小于所述第二候选PDCCH所属的第二搜索空间集合的索引值和所述第四候选PDCCH所属的第四搜索空间集合的索引值。
  43. 根据权利要求42所述的装置,其特征在于,所述第一候选PDCCH与所述第二候选PDCCH具有以下至少一种关系:
    所述第一候选PDCCH与所述第二候选PDCCH具有相同的扰码序列;
    所述第一候选PDCCH与所述第二候选PDCCH关联相同的控制资源集;
    所述第一候选PDCCH与所述第二候选PDCCH承载的下行控制信息的比特大小相同。
  44. 根据权利要求42或43所述的装置,其特征在于,所述处理单元为处理器。
  45. 一种通信装置,其特征在于,包括:至少一个处理器,所述至少一个处理器用于 执行权利要求1至20中任一项所述的方法。
  46. 根据权利要求45所述的装置,其特征在于,所述装置还包括存储器,所述存储器与所述至少一个处理器耦合,所述存储器用于存储程序或指令。
  47. 根据权利要求45或46所述的装置,其特征在于,所述装置为芯片。
  48. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至20中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被执行时,使得如权利要求1至20任一项所述的方法被实现。
PCT/CN2022/085230 2021-04-06 2022-04-06 信息检测的方法和装置 WO2022213960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22784026.1A EP4311339A1 (en) 2021-04-06 2022-04-06 Information detection method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110368936.XA CN115175211A (zh) 2021-04-06 2021-04-06 信息检测的方法和装置
CN202110368936.X 2021-04-06

Publications (2)

Publication Number Publication Date
WO2022213960A1 true WO2022213960A1 (zh) 2022-10-13
WO2022213960A9 WO2022213960A9 (zh) 2023-11-09

Family

ID=83475907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085230 WO2022213960A1 (zh) 2021-04-06 2022-04-06 信息检测的方法和装置

Country Status (3)

Country Link
EP (1) EP4311339A1 (zh)
CN (1) CN115175211A (zh)
WO (1) WO2022213960A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167036A (zh) * 2018-02-14 2019-08-23 华硕电脑股份有限公司 无线通信考虑波束故障恢复的监听控制资源的方法和设备
CN110166203A (zh) * 2018-02-13 2019-08-23 中兴通讯股份有限公司 物理下行控制信道的确定、检测方法及装置、基站和终端
CN110351002A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 候选pdcch的优先级确定及监听方法、装置、存储介质、基站、终端
CN110351841A (zh) * 2018-04-04 2019-10-18 中国移动通信有限公司研究院 一种物理下行控制信道的检测方法、发送方法及设备
CN110536451A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信息增强方法、装置、设备和存储介质
CN110831185A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种通信方法及设备
US20200351682A1 (en) * 2019-05-02 2020-11-05 Ali Cagatay Cirik Radio Link Monitoring in New Radio
US20210058970A1 (en) * 2019-11-08 2021-02-25 Intel Corporation Mechanisms to operate on a downlink wideband carrier in unlicensed band

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166203A (zh) * 2018-02-13 2019-08-23 中兴通讯股份有限公司 物理下行控制信道的确定、检测方法及装置、基站和终端
CN110167036A (zh) * 2018-02-14 2019-08-23 华硕电脑股份有限公司 无线通信考虑波束故障恢复的监听控制资源的方法和设备
CN110351002A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 候选pdcch的优先级确定及监听方法、装置、存储介质、基站、终端
CN110351841A (zh) * 2018-04-04 2019-10-18 中国移动通信有限公司研究院 一种物理下行控制信道的检测方法、发送方法及设备
CN110831185A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种通信方法及设备
US20200351682A1 (en) * 2019-05-02 2020-11-05 Ali Cagatay Cirik Radio Link Monitoring in New Radio
CN110536451A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信息增强方法、装置、设备和存储介质
US20210058970A1 (en) * 2019-11-08 2021-02-25 Intel Corporation Mechanisms to operate on a downlink wideband carrier in unlicensed band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-TRP for reliability and robustness in Rel-17", 3GPP DRAFT; R1-2100209, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, 19 January 2021 (2021-01-19), pages 1 - 14, XP051970841 *

Also Published As

Publication number Publication date
CN115175211A (zh) 2022-10-11
EP4311339A1 (en) 2024-01-24
WO2022213960A9 (zh) 2023-11-09

Similar Documents

Publication Publication Date Title
US11533150B2 (en) Feedback information transmission method and communication device
US11863492B2 (en) Communications method, apparatus, and device
US20190053209A1 (en) Method and Apparatus for Sending and Receiving Downlink Control Information
US11032778B2 (en) Uplink channel power allocation method and apparatus
CN111200871B (zh) 接收数据的方法和通信装置
CN108631951B (zh) 重传处理方法和设备
US20210219300A1 (en) Communication method and communications apparatus
US11219003B2 (en) Downlink control information sending method, downlink control information receiving method, and device
CN116684051A (zh) 用于在无线通信系统中发送和接收控制信息的方法和装置
WO2019037695A1 (zh) 一种通信方法及装置
US11431462B2 (en) Indication method, network device, and user equipment
WO2021088039A1 (zh) 通信方法和通信装置
US20200067644A1 (en) Data feedback method and related device
US20230254831A1 (en) Resource determining method and apparatus
US11463207B2 (en) Data transmission method, receive end device, and non-transitory computer-readable storage medium
US20200022115A1 (en) Method and apparatus for transmitting control information in wireless cellular communication system
US20220159507A1 (en) Data transmission method, apparatus, device and storage medium
WO2019080555A1 (zh) 免授权数据传输的确认方法和装置
CN113890699A (zh) Pdcch监听方法、发送方法及相关设备
WO2022213960A1 (zh) 信息检测的方法和装置
US20220015147A1 (en) Control information transmission method and apparatus
WO2020143743A1 (zh) 接收数据的方法和装置
TWI741089B (zh) 傳輸信息的方法、終端設備和網絡設備
WO2019157920A1 (zh) 传输反馈信息的方法和通信设备
WO2023125762A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022784026

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022784026

Country of ref document: EP

Effective date: 20231019

NENP Non-entry into the national phase

Ref country code: DE