WO2023125542A1 - 超透镜阵列、波前探测系统 - Google Patents

超透镜阵列、波前探测系统 Download PDF

Info

Publication number
WO2023125542A1
WO2023125542A1 PCT/CN2022/142371 CN2022142371W WO2023125542A1 WO 2023125542 A1 WO2023125542 A1 WO 2023125542A1 CN 2022142371 W CN2022142371 W CN 2022142371W WO 2023125542 A1 WO2023125542 A1 WO 2023125542A1
Authority
WO
WIPO (PCT)
Prior art keywords
metalens
array
detector
wavefront
unit
Prior art date
Application number
PCT/CN2022/142371
Other languages
English (en)
French (fr)
Inventor
郝成龙
谭凤泽
朱健
Original Assignee
深圳迈塔兰斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈塔兰斯科技有限公司 filed Critical 深圳迈塔兰斯科技有限公司
Publication of WO2023125542A1 publication Critical patent/WO2023125542A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the invention relates to wavefront detection and correction, in particular to a metalens array and a wavefront detection system.
  • the wavefront sensor is a device used to obtain the wavefront information of the incident light wave. It is widely used in the evaluation of the quality of optical components, and is also used in high-energy laser evaluation systems, laser shaping systems, adaptive astronomical observation systems, and ophthalmic disease analysis systems. . With the rapid development of the adaptive optics field, the wavefront sensor has also highlighted its importance and has become an indispensable and important component in the adaptive optics system. Among the various existing wavefront detection techniques, the Shack-Hartman method is the most effective and robust technique.
  • a typical Shaker-Hartmann wavefront detector consists of a single microlens array combined with a single image detector.
  • the microlens array decomposes the incident wavefront into microbeam arrays, and each beam of microbeams is focused onto an image detector (placed at the focal plane of the microlens array).
  • each microlens forms a light spot along its optical axis, which will generate a regular light spot array on the image detector, and the light spot array can be used as a calibration position.
  • the incident wavefront is distorted, it will cause the shift of the focused spot on the focal plane, which will cause the spot to deviate from the optical axis of the microlens, or even be missing.
  • the metalens Due to the advantages of low cost, simple structure, light weight and high productivity in replacing the microlens array, the metalens has replaced the microlens array in the Shack Hartmann sensor in recent years, and measures such as wavefront distortion, polarization degree, etc. and many other parameters.
  • the present invention has been made in view of the above problems.
  • a metalens array including: at least one super-array unit, the super-array unit includes: a plurality of transmission metalens with different working wavelengths, the focal lengths of the multiple transmission metalens are the same, and are used to convert incident light into Light with different wavelengths is focused to different positions on the first plane.
  • a wavefront detection system including: a metalens array and a first detector.
  • the superlens array includes at least one superarray unit.
  • the super-array unit includes a plurality of transmissive super-lenses with different working wavelengths.
  • the plurality of transmissive metalens have the same focal length and are used to focus light of different wavelengths in the incident light onto corresponding first detector units in the first detector.
  • the first detector includes a plurality of first detector units, the arrangement of the first detector units corresponds to the arrangement of the super array units one by one, and each of the first detector units includes a focus reference point,
  • the first detector is used to detect the deviation between the actual focus of each transmission metalens and each focus reference point, and the focus reference point is the theoretical focus point of the transmission metalens on the corresponding detector unit.
  • multiple transmissive metalens with different working wavelengths can focus light of different wavelengths to different positions of the focal plane, thereby obtaining focal shifts of different wavelengths, so that wavefronts of multiple wavelengths can be calculated.
  • Fig. 1 shows a schematic representation of a metalens array according to an embodiment of the invention.
  • FIG. 2 exemplarily shows a schematic diagram of another superarray structure.
  • Figure 3 shows the specific structure that the metalens can adopt.
  • Figure 4 shows the structure of the reflective metasurface.
  • Figure 5(a), (b) shows a schematic representation of the wavefront detection system.
  • Fig. 6 shows the specific arrangement of the first detector.
  • FIG. 7(a), (b) and (c) show the embodiment of adding wavelength filters and the specific arrangement of the wavelength filters.
  • Fig. 8 shows a schematic diagram of the wavefront detection system after adding an aperture array.
  • Figure 9(a), (b) and (c) respectively show the positions and vectors of the actual point and the reference point on the detector at 700nm, 780nm and 860nm.
  • Figure 10(a), (b) and (c) respectively show the assumed incident light wavefront distortion at 700nm, 780nm and 860nm and the recovered wavefront distortion provided by the embodiment of the present invention.
  • Fig. 11(a), (b) shows the distorted image received on the second detector and the image restored by applying wavefront distortion.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more features. In the description of the present application, “plurality” means two or more, unless otherwise specifically defined.
  • a metalens array which can realize wavefront detection at different wavelengths.
  • Fig. 1 shows a schematic representation of a metalens array according to an embodiment of the invention.
  • the superlens array includes: at least one superarray unit.
  • An enlarged view of a super array unit is exemplarily shown on the right side of FIG. 1 .
  • the number of super-array units that may be included in the super-lens array is not limited, for example, it may be 10 ⁇ 10.
  • the super-array unit includes: a plurality of transmissive super-lenses with different operating wavelengths, and the focal lengths of the multiple transmissive super-lenses are the same, and are used to focus light of different wavelengths in the incident light onto the first plane at different locations.
  • Four metalens are exemplarily shown on the right side of FIG. 1 , however, the number of metalens that can be included in the superarray unit is not limited thereto, and those skilled in the art can use other numbers of transmission metalens according to actual needs.
  • multiple transmissive metalens with different working wavelengths can focus light of different wavelengths to different positions of the focal plane, thereby obtaining focus shifts of light of different wavelengths, so that wavefronts of multiple wavelengths can be calculated.
  • the super-array unit may further include: at least one reflective super-lens, configured to reflect incident light onto a second plane different from the first plane.
  • the reflective metalens may preferably be a full-spectrum reflective metalens. The number of reflective metalens that can be included is also not limited.
  • the metalens array contains a reflective metasurface array, which can image the incident light off-axis, so as to obtain image information at the same time.
  • the distorted image caused by the wavefront distortion can be corrected in real time through the result obtained by the wavefront detection (digital image processing), so as to obtain a clear image.
  • the specific calculation manners of the focus offset and the wavefront will be described in detail below with reference to FIG. 6 . Therefore, the metalens array according to the embodiment of the present invention can perform reflection imaging and real-time correction of the image.
  • the metalens is processed by semiconductor technology, which has the advantages of low cost and high productivity. Therefore, the use of metalens for wavefront detection can make the wavefront detection and correction system have a cost advantage compared with traditional systems.
  • the reflective metalens for example, in the super-array unit shown in FIG. 1 , it can be set as follows: No. 1, 2, and 3 are transmissive metalens, and No. 4 metalens are reflective. Among them, transmission metalens No. 1, No. 2 and No. 3 respectively focus the wavelengths of wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 to the focal point on the focal plane with the same focal length. The wavefronts of ⁇ 1 , ⁇ 2 , and ⁇ 3 of incident light waves under the super array can be calculated by the offset between the focus point and the reference point.
  • the No. 4 reflective metalens reflects the incident light wave off-axis to the detector for focusing and imaging. Because the wavefront of the incident light is distorted, the image of No. 4 reflective metalens is distorted. The wavefront distortion calculated by the transmission metalens can correct the image formed by No. 4 reflective metalens to obtain a clear image.
  • FIG. 1 schematically shows an example in which super-array units are arranged periodically in a square.
  • four square metalens constitute a super array unit. What is shown in FIG. 1 is only an example, and the number, shape and position of the transmission and reflection metalens are not limited.
  • FIG. 2 exemplarily shows a schematic diagram of another superarray structure.
  • the metalens array can be a periodic arrangement composed of a plurality of regular hexagons.
  • seven regular hexagonal metalens constitute a super-array unit.
  • No. 1, No. 2, No. 3, No. 4, No. 5, and No. 6 transmissive metalens focus the wavelengths of wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , and ⁇ 6 to the same The focal point on the focal plane of the focal length.
  • the wavefronts of ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , and ⁇ 6 of the incident light waves in the super array can be calculated by the offset between the focal point and the reference point.
  • the No. 0 reflective metalens reflects the incident light wave off-axis to the detector for focusing and imaging. Since the wavefront of the incident light is distorted, the image formed by the No. 0 reflective metalens is distorted.
  • the wavefront distortion calculated by the transmission metalens can correct the image formed by the No. 0 reflective metalens to obtain a clear image. Compared with the square arrangement, the regular hexagonal arrangement will use 13% less lens units to fill the same area.
  • the reflective metalens can also be placed in other positions.
  • the seamless connection between the super-lenses and super-array units shown in FIG. 1 and FIG. 2 is not limited thereto, and those skilled in the art can set the presence/size of gaps according to actual needs.
  • Figure 3 shows the specific structure that the metalens can adopt.
  • Fig. 3 shows the layout diagram of the metasurface structure units.
  • a metasurface is a layer of subwavelength artificial nanostructure film that can modulate incident light according to the metasurface structural units (nanostructural units) on it.
  • the nanostructure units are arranged in an array, and the nanostructure units are regular hexagons and/or squares or other shapes.
  • Figure 3 provides an arrangement diagram of regular hexagons and square metasurface structural units.
  • a nanostructure is provided at the central position of each metasurface structure unit, or at the center position and apex position of each metasurface structure unit.
  • the metasurface structure unit contains all-dielectric or plasmonic nano-antennas, which can directly adjust the phase, amplitude and polarization of light.
  • the nanostructure is an all-dielectric structural unit with high transmittance in the working band.
  • Optional materials include: titanium oxide, silicon nitride, fused silica, aluminum oxide, gallium nitride, and gallium phosphide , amorphous silicon, crystalline silicon, germanium, chalcogenide glass, etc. Wherein the amorphous silicon may be hydrogenated amorphous silicon.
  • the working bands of the transmissive metasurface can be visible light (380-760nm), near-infrared, mid-infrared and far-infrared bands.
  • the nanostructures can be filled with air or other transparent or translucent materials in the working light band. It should be noted that the absolute value of the difference between the refractive index of this material and the refractive index of the nanostructure must be greater than or equal to 0.5.
  • the structure of the reflective metasurface is shown in Figure 4, which includes a base layer (can be opaque), a reflective layer, a dielectric layer and a nanostructure layer.
  • a wavefront detection system is provided.
  • Figure 5(a) shows a schematic illustration of the wavefront detection system.
  • the wavefront detection system includes:
  • the metalens array 510 includes at least one of the above-mentioned super-array units, the super-array unit includes: a plurality of transmission metalens with different working wavelengths, and the focal lengths of the multiple transmission metalens are the same, and are used to focus light with different wavelengths in the incident light to on the corresponding detector unit in the first detector.
  • the first detector 520 includes a plurality of first detector units, the arrangement of the first detector units corresponds to the arrangement of the super array units one by one, and the first detector unit Contains focus reference points.
  • the focus reference point is: each transmissive metalens focuses parallel light with different wavelengths onto different detector units in the first detector 520 , and the theoretical position where it should be focused is the focus reference point, which can be located at the center.
  • the focus position of light generally deviates from the focus reference point, and the actual focus position is called the actual focus. From the deviation between the actual focus and the focus reference point, the wavefront distortion for different wavelengths of light can be calculated.
  • the first detector 520 is used to detect the deviation between each actual focus point and each focus reference point.
  • the first detector 520 is located on the focal plane of the transmissive metalens in the reflective and transmissive metalens array.
  • the super-array unit in the wavefront detection system may also include: at least one reflective super-lens for reflecting incident light to the second detector.
  • the wavefront detection system may further include a second detector 530 for imaging the light reflected by the reflective metalens of the super-array unit.
  • the first detector 520 and the second detector 530 may be any image sensors that respond in the working band, for example, they may be CMOS or CCD in the case of visible light and near-infrared.
  • the distorted image can be obtained by reflecting the metalens and the second detector, so that the image can be further restored by applying the wavefront distortion.
  • the wavefront detection systems shown in Fig. 5(a) and Fig. 5(b) can also add computing devices respectively, and the computing devices use the position and focus of the light of different wavelengths in the incident light to focus on the first detector The deviation between the reference points is used to calculate the wavefront distortion of light of different wavelengths in the incident light.
  • the computing device can also obtain an image restored by applying the wavefront distortion by applying the calculated wavefront distortion to the imaging of the second detector.
  • the calculation process may be: deriving a point spread function through wavefront distortion, and deconvoluting the point spread function from the distorted image obtained by the second detector, so as to obtain a deblurred image.
  • the aforementioned computing device may be a traditional computing device such as a computer, or may be an MCU integrated in the wavefront detection system, etc.
  • FIG. 6 shows a specific arrangement of the first detector 520 .
  • the superarray unit used is a square unit composed of a plurality of square metalens as shown in FIG. 1 .
  • the arrangement of multiple first detector units corresponds to the super-array unit one by one: the light passing through the transmission super-lenses 1, 2, and 3 is respectively focused on the upper left, lower left, and right sides of the first detector unit. in the lower unit block.
  • the incident wavefront is focused on the three off-center focus points on the first detector 520 through the transmission metalens, and by calculating the deviation between the focal point and the reference point located in the center, it can be inversely calculated at the wavelengths ⁇ 1 , ⁇ 2.
  • the wave front under ⁇ 3 .
  • the first detector unit has a focus reference point (that is, a total of three focus reference points) in each unit block corresponding to the transmission metalens.
  • the present invention is not limited thereto.
  • a focus reference point is set in the detector unit, and the wavefront etc. are reversely calculated by the deviation between each actual focus point and the focus reference point.
  • the slope of the wavefront at each wavelength can be derived by partial differentiation of the wavefront from the displacement between the reference point and the focal point:
  • the distorted wavefront can be decomposed into orthogonal Zernike polynomials, as shown in formula (3):
  • M is the order of the Zernike polynomial
  • Z i (x, y) is the i-th order Zernike polynomial
  • a i is the i-th order Zernike polynomial coefficient
  • Formula (4) can be written in matrix form, as follows:
  • d is a 2N ⁇ 1 offset
  • N vector dimension
  • a is a Zernike polynomial coefficient of M ⁇ 1 dimension
  • matrix B Is the differential of the Zernike formula
  • the dimension is 2N ⁇ M.
  • the Zernike polynomial coefficient a can be obtained from formula (6)
  • the reflective metalens focuses light on the focal point (x f , y f , z f ) of the detector, then the phase of the reflective metalens is:
  • f is the focal length of the reflective metalens.
  • Equation (8) The surface phase of a single transmissive metalens is given by Equation (8):
  • ⁇ i is the working wavelength of the transmitted metalens
  • f ML is the focal length of the metalens
  • (x f , y f ) is the coordinate corresponding to the center of the metalens.
  • a wavefront detection solution integrating light filtering and a metalens array.
  • multiple transmission metalens with different working wavelengths can focus light of different wavelengths to different positions of the focal plane, thereby obtaining The focus shift of different wavelengths enables the calculation of wavefronts of multiple wavelengths;
  • the metalens array contains a reflective metasurface array, which can image the incident light off-axis to obtain image information at the same time.
  • the distorted image caused by the wavefront distortion can be corrected in real time through the result obtained by the wavefront detection (digital image processing), so as to obtain a clear image.
  • the metalens is smaller in size and can be packaged at the wafer level together with the image detector, so that the entire system is smaller in size and lighter in weight; at the same time, the metalens is processed by semiconductor technology, which has low cost and high productivity. Therefore, the wavefront detection and correction system using metalens has a cost advantage compared with traditional systems.
  • a wavelength filter can also be installed before the above-mentioned super-lens array to filter the light before it reaches the super-array unit, so as to remove the influence of other wavelengths and only detect the wavefront of the target wavelength.
  • Fig. 7(a) shows a schematic diagram of the wavefront detection system after adding a wavelength filter.
  • Metalenses can be packaged at the wafer level together with wavelength filters and image detectors.
  • FIG. 7( a ) the wavelength filter and the transmissive and reflective metalens arrays are shown to be installed close together, but the embodiment is not limited thereto.
  • the wavelength filter may include a filter array, and the filter array is installed in a one-to-one correspondence with the transmission metalens and the reflection metalens.
  • the optical filter may be a narrow-band optical filter. The specific arrangement of the wavelength filters will be described below by taking the narrow-band optical filter as an example.
  • Figure 7(b), (c) shows the specific arrangement of the wavelength filters.
  • the narrow-band filter corresponds to the transmissive and reflective metalens arrays one by one. This one-to-one correspondence manner is described in detail below.
  • the filters are also arranged in a square cycle, and No. 1', No. 2' and No. 3' filters are the center Narrowband filters with wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 .
  • the ratio of the bandwidth to the central wavelength ⁇ / ⁇ may be less than 5%.
  • Unit 4' is a flat light window, which transmits incident light to the corresponding reflective hyperlens unit 4 without absorption and without selection.
  • the reflective metalens 4 reflects the incident light off-axis to the focal plane of the second detector for imaging to obtain an image of the entire incident scene.
  • the arrangement of the narrow-band filters can also correspond one-to-one to the arrangement of the regular hexagon in FIG. 2 , as shown in FIG. 7( c ).
  • the shape of the filter array is not limited to that shown in Fig. 7(b) and (c), and those skilled in the art can also adopt other shapes and arrangements according to actual needs.
  • an aperture array may be installed in front of the first detector shown in Fig. 5(a) and (b).
  • Fig. 8 shows a schematic diagram of the wavefront detection system after an aperture array is installed in front of the first detector shown in Fig. 5(b).
  • Adding an aperture array can eliminate crosstalk. An example of a phenomenon that may cause crosstalk is described below.
  • int() means rounding
  • p is the transmission metalens period
  • is the working wavelength of the metalens
  • f ML is the focal length of the metalens.
  • the transmission metalens is a small F number (focal length ratio aperture F/D) lens
  • F/D focal length ratio aperture
  • this kind of wavefront detector is preferably Suitable for wavefront detection with wavefront curvature greater than this threshold.
  • an aperture array can be installed in front of the detector as shown in Figure 8 to eliminate crosstalk.
  • the working band is 700-860nm
  • the center wavelength is 780nm.
  • the reflective and transmissive metalens arrays are arranged in the manner shown in Figure 1.
  • the side length of each superarray unit in the reflective and transmissive metalens array is 100 ⁇ m, and the side length of each single reflective and transmissive superlens unit is 25 ⁇ m.
  • the center wavelengths of the corresponding wavelength filters are 700nm, 780nm and 860nm respectively, and the bandwidths are all 10nm.
  • the first detector is a CMOS detector with a pixel size of 3 ⁇ m and a number of pixels of 1000 ⁇ 1000.
  • Figure 9(a)-(c) shows the positions and vectors of the actual point and the reference point on the first detector at wavelengths of 700nm, 780nm and 860nm respectively, wherein the left figure shows the reference point position, and the right figure The offset of the actual point relative to the reference point is shown.
  • Figure 10(a)-(c) respectively show the assumed wavefront distortion after filtering the incident light at 700nm, 780nm and 860nm wavelength (left figure) and the recovered wavefront (right figure) provided by the embodiment of the present invention, the maximum difference between the two The value is 5.8%.
  • Fig. 11(a)-(b) respectively show the distorted image received on the second detector and the image restored by applying wavefront distortion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种超透镜阵列和波前探测系统,其中,超透镜阵列包括至少一个超阵列单元,超阵列单元包括多个工作波长不同的透射超透镜(1、2、3),多个透射超透镜(1、2、3)焦距相同,用于将入射光中波长不同的光聚焦到第一平面上不同的位置处。工作波长不同的多个透射超透镜(1、2、3)能够将不同波长的光聚焦到焦平面不同位置处,进而获得不同波长的焦点偏移,使得能够计算多个波长的波前。

Description

超透镜阵列、波前探测系统 技术领域
本发明涉及波前探测与校正,尤其涉及一种超透镜阵列、波前探测系统。
背景技术
波前传感器是一种用于获得入射光波波前信息的器件,广泛地应用于光学元件质量的评估,也应用于高能激光评估系统、激光整形系统、自适应天文观测系统以及眼科疾病分析系统等。随着自适应光学领域的快速发展,波前传感器也突显出其重要性,已经成为自适应光学系统中不可或缺的重要元件。在现有的各类波前探测技术中,夏克哈特曼方法是最为有效、最具稳健性的技术。
典型的夏克哈特曼波前探测器由单个微透镜阵列与单个图像探测器组合而成。其中,微透镜阵列将入射波前分解成微光束阵列,每束微光聚焦至图像探测器上(放置于微透镜阵列的焦平面处)。若是均匀平面波前入射到夏克哈特曼传感器上,每个微透镜沿其光轴形成一个光斑,这将在图像探测器上产生规则的光斑阵列,此时光斑阵列可作为标定位置。然而,若是畸变波前入射,将会引起焦平面上聚焦光斑的偏移,该类偏移会使光斑偏离微透镜的光轴方向,甚至缺失。
由于超透镜在替代微透镜阵列方面具有成本低、结构简、重量轻和产能高的优势,近年来超透镜在代替夏克哈特曼传感器中的微透镜阵列,测量如波前畸变、偏振度等多个参数。
虽然超透镜在夏克哈特曼波前检测领域已经有了应用,但不同波长下波前的探测、反射成像、实时校正都没有涉及。
发明内容
鉴于以上问题,做出本发明。
根据本发明一方面,提供一种超透镜阵列,包括:至少一个超阵列单元,超阵列单元包括:多个工作波长不同的透射超透镜,多个透射超透镜焦距相同,用于将入射光中波长不同的光聚焦到第一平面上不同的位置处。
根据本发明另一方面,提供一种波前探测系统,包括:超透镜阵列和第一探测器。所述超透镜阵列包括至少一个超阵列单元。所述超阵列单元包括多个工作波长不同的透射超透镜。所述多个透射超透镜焦距相同,用于将入射光中波长不同的光聚焦到所述第一探测器中的相应第一探测器单元上。所述第一探测器包含多个第一探测器单元,所述第一探测器单元的布置与所述超阵列单元的布置一一对应,且所述第一探测器单元各包含焦点参考点,所述第一探测器用于探测各透射超透镜聚焦的实际焦点与各焦点参考点之间的偏差,所述焦点参考点是透射超透镜在相应探测器单元上的理论聚焦点。
根据本发明技术方案,工作波长不同的多个透射超透镜能够将不同波长的光聚焦到焦平面不同位置处,进而获得不同波长的焦点偏移,使得能够计算多个波长的波前。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本发明的优选实施方式和解释本发明的原理和优点。其中:
图1示出根据本发明实施方式的超透镜阵列的示意性图示。
图2示例性示出了另一超阵列结构的示意性图示。
图3示出了超透镜可以采用的具体结构。
图4示出了反射式超表面的结构。
图5(a)、(b)示出了波前探测系统的示意性图示。
图6示出了第一探测器的具体布置方式。
图7(a)、(b)和(c)示出了增设波长滤波器的实施例以及波长滤波器的具体排布方式。
图8示出了加装光阑阵列之后的波前探测系统的示意图。
图9(a)、(b)、(c)分别示出700nm、780nm和860nm下的探测器上实际点与参考点的位置与向量。
图10(a)、(b)、(c)分别示出700nm、780nm和860nm下假定入射光波前畸变和由本发明实施方式提供的恢复波前畸变。
图11(a)、(b)示出了第二探测器上接收到的畸变图像和应用波前畸变恢复的图像。
本领域技术人员应当理解,附图中的元件仅仅是为了简单和清楚起见而示出的,而且不一定是按比例绘制的。例如,附图中某些元件 的尺寸可能相对于其他元件放大了,以便有助于提高对本发明实施方式的理解。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施方式不一定被解释为比其它实施方式更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描 述变得晦涩。因此,本申请并非旨在限于所示的实施方式,而是与符合本申请所公开的原理和特征的最广范围相一致。
超透镜阵列
根据本发明实施方式,提供一种超透镜阵列,其能够实现不同波长下波前的探测。图1示出根据本发明实施方式的超透镜阵列的示意性图示。如图1所示,该超透镜阵列包括:至少一个超阵列单元。在图1右侧示例性示出一个超阵列单元的放大图。该超透镜阵列可以包括的超阵列单元的数目不受限制,比如可以是10×10等。
如图1右侧所示,该超阵列单元包括:多个工作波长不同的透射超透镜,所述多个透射超透镜焦距相同,用于将入射光中波长不同的光聚焦到第一平面上不同的位置处。在图1右侧示例性示出了四个超透镜,然而超阵列单元可以包含的超透镜数目不受此限制,本领域技术人员可以根据实际需要采用其他数目的透射超透镜。
根据本实施方式,工作波长不同的多个透射超透镜能够将不同波长的光聚焦到焦平面不同位置处,进而获得不同波长光的焦点偏移,使得能够计算多个波长的波前。
在一可选实施方式中,上述超阵列单元还可以包括:至少一个反射超透镜,用于将入射光反射到与第一平面不同的第二平面上。其中反射超透镜优选地可以是全光谱反射超透镜。可以包含的反射超透镜数目也不受限制。
也就是说,超透镜阵列上包含反射超表面阵列,可以对入射光离轴反射成像,从而同时获得图像信息。且由于波前畸变导致的失真图像可以通过波前探测得到的结果实时校正(数字图像处理),从而得到清晰图像。关于焦点偏移和波前的具体计算方式,以下将参考图6进行详细说明。从而,根据本发明实施方式的超透镜阵列可以进行反射 成像和对图像的实时校正。
此外,超透镜采用半导体工艺加工,具有成本低和产能高的优点,所以采用超透镜进行波前探测,可以使得波前探测校正系统和传统系统相比具有成本优势。
关于反射超透镜的设置,比如在图1所示的超阵列单元中,可以如下设置:1、2、3号超透镜为透射超透镜,4号超透镜为反射超透镜。其中,1号、2号、3号透射超透镜分别将波长为λ 1、λ 2、λ 3的波长聚焦到相同焦距的焦平面上的焦点。通过聚焦焦点和参考点的偏移量可算出入射光波在此超级阵列下λ 1、λ 2、λ 3的波前。4号反射超透镜将入射的光波离轴反射到探测器上聚焦成像。由于入射光波波前有畸变,故4号反射超透镜成像是失真的,通过透射超透镜计算出的波前失真可校正4号反射超透镜成的图像,从而获得清晰图像。
其中超阵列单元可以按照周期排列。比如,图1示意性示出了超阵列单元按照正方形周期排列的示例。在图1中,四个正方形超透镜构成一个超阵列单元。图1中所示仅是示例,透射超透镜、反射超透镜的数目,以及透射超透镜和反射超透镜的形状、位置不受限制。
比如,图2示例性示出了另一超阵列结构的示意性图示。如图2所示,超透镜阵列可以是多个正六边形组成的周期排列。在图3中,七个正六边形超透镜构成一个超阵列单元。示例性地,1号、2号、3号、4号、5号、6号透射超透镜分别将波长为λ 1、λ 2、λ 3、λ 4、λ 5、λ 6的波长聚焦到相同焦距的焦平面上的焦点。通过聚焦焦点和参考点的偏移量可计算出入射光波在此超级阵列下λ 1、λ 2、λ 3、λ 4、λ 5、λ 6的波前。0号反射超透镜将入射的光波离轴反射到探测器上聚焦成像。由于入射光波波前有畸变,故0号反射超透镜成像是失真的,通过透射超透镜计算出的波前失真可校正0号反射超透镜成的图像, 从而获得清晰图像。相比于正方形排布,正六边形排布排满相同面积会少用13%的透镜单元。
本领域技术人员还可以根据实际需要采用其他形状的超透镜,或者采用两个以上的反射超透镜,本发明在此不受限制。
除了图1和图2所示位置之外,反射超透镜也可以被设置在其他位置。另外,图1和图2中所示的超透镜之间以及超阵列单元之间无缝连接,本发明不限于此,本领域技术人员可以根据实际需要设置缝隙的有无/大小。
超透镜具体结构
图3示出了超透镜可以采用的具体结构。
图3示出了超表面结构单元排布图。超表面是一层亚波长的人工纳米结构膜,可根据其上的超表面结构单元(纳米结构单元)来调制入射光。其中纳米结构单元呈阵列排布,所述纳米结构单元为正六边形和/或正方形或者其他形状,图3提供了正六边形、正方形的超表面结构单元排布图。
每个超表面结构单元的中心位置,或者每个超表面结构单元的中心位置和顶点位置分别设有一个纳米结构。其中超表面结构单元包含全介质或等离子的纳米天线,可直接调控光的相位、幅度和偏振等特性。在本申请实施方式中,纳米结构是全介质结构单元,在工作波段具有高透过率,可选的材料包括:氧化钛、氮化硅、熔融石英、氧化铝、氮化镓、磷化镓、非晶硅、晶体硅、锗、硫系玻璃等。其中非晶硅可以是氢化非晶硅。
透射超表面的工作波段可以为可见光(380~760nm)、近红外、中红外以及远红外波段。纳米结构之间可以是空气填充或者其他工作光 波段透明或半透明的材料,需要注意的是,此材料的折射率与纳米结构的折射率差值的绝对值需大于等于0.5。
反射式超表面的结构如图4所示,包含基底层(可不透光),反射层,介质层和纳米结构层。
波前探测系统
根据本发明实施方式,提供一种波前探测系统。图5(a)示出了该波前探测系统的示意性图示。如图5(a)所示,该波前探测系统包括:
超透镜阵列510,包括至少一个上述超阵列单元,所述超阵列单元包括:多个工作波长不同的透射超透镜,多个透射超透镜焦距相同,用于将入射光中波长不同的光聚焦到第一探测器中相应的探测器单元上。
第一探测器520,所述第一探测器包含多个第一探测器单元,所述第一探测器单元的布置与所述超阵列单元的布置一一对应,且所述第一探测器单元包含焦点参考点。焦点参考点是:各个透射超透镜将波长不同的平行光聚焦到第一探测器520中的不同探测器单元上,应聚焦至的理论位置为焦点参考点,其可以位于中心位置。然而实际上,光聚焦的位置一般会与焦点参考点有偏差,实际聚焦的位置被称为实际焦点。通过实际焦点和焦点参考点之间的偏差,可以计算不同波长光的波前畸变。第一探测器520用于探测各实际焦点与各焦点参考点之间的偏差。
应理解第一探测器520位于反射、透射超透镜阵列中透射超透镜的焦平面上。
进一步地,所述波前探测系统内的超阵列单元还可以包括:至 少一个反射超透镜,用于将入射光反射到第二探测器上。相应地,如图5(b)所示,波前探测系统还可以包括第二探测器530,用于对所述超阵列单元的反射超透镜反射的光进行成像。
其中,第一探测器520和第二探测器530可以是在工作波段有响应的任何图像传感器,例如在可见光和近红外的情况下可以是CMOS或者CCD。
根据图5(b)所示波前探测系统,可以通过反射超透镜和第二探测器得到失真的图像,使得能够进一步应用波前畸变恢复图像。
进一步地,图5(a)和图5(b)所示的波前探测系统还可以分别增设计算设备,该计算设备使用入射光中波长不同的光聚焦在第一探测器上的位置和焦点参考点之间的偏差,来计算入射光中不同波长的光的波前畸变。
进一步地,该计算设备还可以通过将计算出的波前畸变应用于第二探测器的成像,来得到应用波前畸变恢复的图像。计算过程可以是:通过波前失真推出点扩散函数,第二探测器得到的失真图像反卷积点扩散函数,从而得到去模糊图像。
上述计算设备可以是传统计算设备比如计算机,也可以是集成在波前探测系统内的MCU等。
下面描述该计算设备计算波前畸变的具体过程。
图6示出了第一探测器520的具体布置方式。在图6所示的示例中,假设采用的超阵列单元如图1所示为多个正方形超透镜组成的正方形单元。如图6所示,多个第一探测器单元的布置方式与超阵列单元一一对应:透过透射超透镜1、2、3的光分别聚焦到第一 探测器单元的左上、左下、右下单元块内。
其中,入射波前经透射超透镜聚焦在第一探测器520上的三个偏离中心的聚焦点上,通过计算焦点与位于中心的参考点之间的偏差可反计算出在波长λ 1、λ 2、λ 3下的波前。图6中示出了第一探测器单元在与透射超透镜对应的每个单元块内具有焦点参考点(即一共三个焦点参考点),本发明不限于此,比如还可以在第一探测器单元内设置一个焦点参考点,通过每个实际聚焦点与该焦点参考点之间的偏差来反计算波前等。
波前计算过程
下面描述通过图6所示焦点和参考点之间偏差计算波前的具体过程。
每个波长下的波前斜率可以根据参考点和聚焦点之间的位移通过对波前的偏微分推出:
Figure PCTCN2022142371-appb-000001
式中,
Figure PCTCN2022142371-appb-000002
为参考点相位,
Figure PCTCN2022142371-appb-000003
为畸变波前(Aberrated Wavefront,AW),f ML是透射超透镜的焦距,
Figure PCTCN2022142371-appb-000004
Figure PCTCN2022142371-appb-000005
分别为x,y方向的偏移分量。
畸变波前可分解成正交的泽尼克多项式,如公式(3)所示:
Figure PCTCN2022142371-appb-000006
式中,M为泽尼克多项式的阶数,Z i(x,y)为第i阶泽尼克多项式,a i为第i阶泽尼克多项式系数。将公式(3)应用于(2),可得:
Figure PCTCN2022142371-appb-000007
公式(4)可写成矩阵形式,如下:
Figure PCTCN2022142371-appb-000008
式中,d是一个2N×1的偏移量,N(向量维度)是某一波长下用于抽样波前的透射超透镜数量,a是一个M×1维度的泽尼克多项式系数,矩阵B是泽尼克公式的微分,维度为2N×M。从公式(6)可得到泽尼克多项式系数a
a=(B T·B) -1·B T·d          (6)
反射超透镜将光聚焦在探测器的焦点(x f,y f,z f)上,则反射超透镜的相位为:
Figure PCTCN2022142371-appb-000009
其中,f为反射超透镜的焦距。
单个透射超透镜的表面相位由公式(8)给出:
Figure PCTCN2022142371-appb-000010
式中,λ i为此透射超透镜的工作波长,f ML为超透镜的焦距,(x f,y f)点为此超透镜中心对应的坐标。
根据本实施方式,提供一种集成了滤光和超透镜阵列的波前探测方案,一方面,工作波长不同的多个透射超透镜能够将不同波长的光聚焦到焦平面不同位置处,进而获得不同波长的焦点偏移,使得能够计算多个波长的波前;另一方面,超透镜阵列上包含反射超表面阵列,可以对入射光离轴反射成像,从而同时获得图像信息。且由于波前畸变导致的失真图像可以通过波前探测得到的结果实时校正(数字图像处理),从而得到清晰图像。
在加工方面,超透镜的体积更小,可以和图像探测器一起进行晶圆级封装,从而使整个系统的体积更小,重量更轻;同时,超透镜采用半导体工艺加工,具有成本低和产能高的优点,所以采用超透镜的波前探测校正系统和传统系统相比具有成本优势。
根据本发明实施方式,在上述超透镜阵列之前,还可以加装波长滤波器,用于在光到达超阵列单元之前对光进行滤波,从而去除其他波长影响,仅对目标波长探测其波前。图7(a)示出了加装波长滤波器后的波前探测系统的示意图。
超透镜可以和波长滤波器、图像探测器一起进行晶圆级封装。在图7(a)中,将波长滤波器和透射、反射超透镜阵列示为紧贴在一起安装,然而实施方式不限于此。
其中波长滤波器可以包括滤光片阵列,滤光片阵列与透射超透镜、 反射超透镜一一对应地安装。滤光片可以是窄带滤光片,下面以窄带滤光片为例来描述波长滤波器的具体排布方式。
图7(b)、(c)示出了波长滤波器的具体排布方式。在图7(b)、(c)中,窄带滤光片和透射、反射超透镜阵列一一对应。下面具体描述这种一一对应的方式。在图7(b)中,与图1中所示超透镜阵列的排布相对应地,滤光片也以正方形周期布置,1’号、2’号、3’号滤光片分别是中心波长为λ 1、λ 2、λ 3的窄带滤光片。可选地,带宽与中心波长Δλ/λ的比例可以小于5%。经过窄带滤光片后,入射波前经对应的透射超透镜聚焦在同一焦平面上(如上所述,各透射超透镜焦距相同)。4’号单元为平板光窗,无吸收无选择地将入射光透射到所对应的反射超透镜单元4上。反射超透镜4将入射光离轴反射至第二探测器的焦平面上成像,获得整个入射场景的像。类似地,窄带滤光片的布置也可以与图2的正六边形排布一一对应,如图7(c)所示。
与之前类似,滤光片阵列的形状不限于图7(b)、(c)所示,本领域技术人员还可以根据实际需要采用其他形状和排布方式。
光阑阵列
根据本发明实施方式,可在图5(a)、(b)所示第一探测器前加装光阑阵列。图8示出了在图5(b)所示第一探测器前加装光阑阵列之后的波前探测系统的示意图。加装光阑阵列可以去除串扰现象。下面描述有可能导致串扰现象的一个示例。
透射超透镜的周期p与超透镜焦距构成一个比例因子H,由公式(1)给出,
Figure PCTCN2022142371-appb-000011
式中,int()表示取整,p为透射超透镜周期,λ为超透镜工作波长,f ML为超透镜焦距。
当透射超透镜为小F数(焦距比口径F/D)透镜,H大于20时,相邻超透镜之间无串扰(超透镜1的焦点在任何波前曲率的情况下都不会聚焦到相邻超透镜2对应的焦平面上)。
当H小于20(最常见的取值是4左右)时,当入射波前曲率(1/R,R为半径)小于某个阈值Φ时,会出现串扰现象,此种波前探测器优选地适用于波前曲率大于此阈值的波前探测。或者,可如图8所示在探测器前加装光阑阵列来去除串扰。
应用示例
下面参考图9-11描述本发明实施方式的一个应用示例,以便于理解本发明实施方式的原理和技术效果。在本应用示例中,工作波段为700~860nm,中心波长为780nm。反射、透射超透镜阵列按照图1所示方式排布,反射、透射超透镜阵列的每个超阵列单元的边长为100μm,每个单个反射、透射超透镜单元的边长为25μm。透射超透镜的焦距为1mm,反射透镜的焦距为10mm。其中λ 1=700nm,λ 2=780nm,λ 3=860nm,反射超透镜的工作波段为700~860nm。
因此,与之对应的波长滤波器(本示例中为窄带滤光片阵列)的中心波长分别为700nm、780nm和860nm,带宽均为10nm。
第一探测器为CMOS探测器,像素大小为3μm,像素数为1000×1000。
图9(a)-(c)分别示出了在700nm、780nm和860nm波长下的第一探测器上实际点与参考点的位置与向量,其中左图示出了参考点位置,右图示出了实际点相对于参考点的偏移。图10(a)-(c)分 别示出700nm、780nm和860nm波长下入射光滤波后假定波前畸变(左图)和由本发明实施方式提供的恢复波前(右图),两者最大差值为5.8%。图11(a)-(b)分别示出了第二探测器上接收到的畸变图像和应用波前畸变恢复的图像。
所属领域的普通技术人员应当理解:以上任何实施方式的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施方式或者不同实施方式中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素或组件的存在或附加。涉及序数的术语“第一”,“第二”等并不表示这些术语所限定的特征、要素、步骤或组件的实施顺序或者重要性程度,而仅仅是为了描述清楚起见而用于在这些特征、要素、步骤或组件之间进行标识。
尽管根据有限数量的实施方式描述了本发明,但是受益于上面的描述,本技术领域内的技术人员明白,在由此描述的本发明的范围内,可以设想其它实施方式。此外,应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。

Claims (13)

  1. 一种超透镜阵列,其特征在于,包括:
    至少一个超阵列单元,所述超阵列单元包括:
    多个工作波长不同的透射超透镜,所述多个透射超透镜焦距相同,用于将入射光中波长不同的光聚焦到第一平面上不同的位置。
  2. 根据权利要求1所述的超透镜阵列,所述超阵列单元还包括:
    至少一个反射超透镜,用于将入射光反射到与所述第一平面不同的第二平面上。
  3. 根据权利要求2所述的超透镜阵列,其中所述反射超透镜是全光谱反射超透镜。
  4. 根据权利要求2所述的超透镜阵列,其中,所述超阵列单元包括三个正方形透射超透镜,和一个正方形反射超透镜。
  5. 根据权利要求2所述的超透镜阵列,所述超阵列单元包括六个六边形透射超透镜,和一个六边形反射超透镜。
  6. 一种波前探测系统,其特征在于,包括:
    超透镜阵列和第一探测器;
    其中,所述超透镜阵列,包括至少一个超阵列单元,所述超阵列单元包括:多个工作波长不同的透射超透镜;
    所述第一探测器包含多个第一探测器单元;
    所述多个透射超透镜焦距相同,用于将入射光中波长不同的光 聚焦到所述第一探测器中的相应第一探测器单元上;
    所述第一探测器单元的布置与所述超阵列单元的布置一一对应,且所述第一探测器各单元包含焦点参考点,所述第一探测器用于探测各个透射超透镜聚焦的实际焦点与各焦点参考点之间的偏差,所述焦点参考点是透射超透镜在相应探测器单元上的理论聚焦点。
  7. 根据权利要求6所述的波前探测系统,其中所述超阵列单元还包括:至少一个反射超透镜;所述波前探测系统还包括:第二探测器;
    所述至少一个反射超透镜用于将入射光反射到所述第二探测器上;
    所述第二探测器用于对所述反射超透镜反射的光进行成像。
  8. 根据权利要求6所述的波前探测系统,还包括:
    计算设备,用于使用实际焦点和焦点参考点之间的偏差,来计算入射光中不同波长的光的波前畸变,其中,通过以下公式得到所述波前畸变:
    Figure PCTCN2022142371-appb-100001
    Figure PCTCN2022142371-appb-100002
    式中,
    Figure PCTCN2022142371-appb-100003
    为波前畸变,
    Figure PCTCN2022142371-appb-100004
    为焦点参考点的相位,f ML是透射超透镜的焦距,
    Figure PCTCN2022142371-appb-100005
    Figure PCTCN2022142371-appb-100006
    分别为x,y方向的偏移分量。
  9. 根据权利要求7所述的波前探测系统,还包括:
    计算设备,用于使用实际焦点和焦点参考点之间的偏差,来计 算入射光中不同波长的光的波前畸变,并通过将计算出的波前畸变应用于所述第二探测器的成像,来得到应用波前畸变恢复的图像。
  10. 根据权利要求7或9所述的波前探测系统,还包括波长滤波器,用于在光到达所述超阵列单元之前对光进行滤波,从而仅允许特定波长的光入射到所述超阵列单元。
  11. 根据权利要求10所述的波前探测系统,其中所述波长滤波器包括滤光片阵列,所述滤光片阵列与所述透射超透镜、所述反射超透镜一一对应地安装。
  12. 根据权利要求7或9所述的波前探测系统,其中,所述超阵列单元包括三个正方形透射超透镜,和一个正方形反射超透镜,或者包括:六个六边形透射超透镜,和一个六边形反射超透镜。
  13. 根据权利要求6-9中任一项所述的波前探测系统,其中在所述超透镜阵列和所述第一探测器之间安装有光阑阵列。
PCT/CN2022/142371 2021-12-28 2022-12-27 超透镜阵列、波前探测系统 WO2023125542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111633102.3 2021-12-28
CN202111633102.3A CN114280704B (zh) 2021-12-28 2021-12-28 超透镜阵列、波前探测系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/731,338 Continuation US20240319016A1 (en) 2021-12-28 2024-06-02 Metalens array and wavefront sensor system

Publications (1)

Publication Number Publication Date
WO2023125542A1 true WO2023125542A1 (zh) 2023-07-06

Family

ID=80877513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142371 WO2023125542A1 (zh) 2021-12-28 2022-12-27 超透镜阵列、波前探测系统

Country Status (2)

Country Link
CN (1) CN114280704B (zh)
WO (1) WO2023125542A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174768A (zh) * 2023-11-02 2023-12-05 长春理工大学 一种探测器、探测器制作方法及波前校正方法
CN117870883A (zh) * 2024-03-08 2024-04-12 中国航天三江集团有限公司 基于几何相位超表面的圆偏振哈特曼波前探测设计方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019046827A1 (en) 2017-08-31 2019-03-07 Metalenz, Inc. INTEGRATION OF TRANSMISSIVE METASURFACE LENS
US11978752B2 (en) 2019-07-26 2024-05-07 Metalenz, Inc. Aperture-metasurface and hybrid refractive-metasurface imaging systems
CN114280704B (zh) * 2021-12-28 2023-07-07 深圳迈塔兰斯科技有限公司 超透镜阵列、波前探测系统
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device
CN115047653A (zh) * 2022-06-14 2022-09-13 深圳迈塔兰斯科技有限公司 一种可调超表面系统
CN116559856A (zh) * 2023-07-10 2023-08-08 中国人民解放军战略支援部队航天工程大学 一种基于超表面的光学微波一体化探测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160306079A1 (en) * 2015-04-14 2016-10-20 California Institute Of Technology Multi-wavelength optical dielectric metasurfaces
US20170059446A1 (en) * 2015-08-26 2017-03-02 Canon Kabushiki Kaisha Lens array, wavefront sensor, wavefront measurement apparatus, shape measurement apparatus, aberration measurement apparatus, manufacturing method of optical element, and manufacturing method of optical device
CN112505009A (zh) * 2020-11-12 2021-03-16 中国科学院长春光学精密机械与物理研究所 超表面透镜及其构成的荧光信号收集系统
CN113589535A (zh) * 2021-08-16 2021-11-02 北京京东方技术开发有限公司 光学成像系统及头戴式显示设备
WO2021226544A1 (en) * 2020-05-08 2021-11-11 President And Fellows Of Harvard College Wavelength tunable metasurface based external cavity laser
WO2021233416A1 (zh) * 2020-05-22 2021-11-25 深圳迈塔兰斯科技有限公司 一种超透镜与折射和或反射透镜的混合光学系统
CN215010478U (zh) * 2021-03-12 2021-12-03 深圳迈塔兰斯科技有限公司 一种基于惠更斯-超透镜的近红外成像系统
CN114280704A (zh) * 2021-12-28 2022-04-05 深圳迈塔兰斯科技有限公司 超透镜阵列、波前探测系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292910B (zh) * 2012-02-29 2017-05-24 深圳光启高等理工研究院 基于超材料的哈特曼波前传感器
CN106847849B (zh) * 2016-12-30 2019-01-15 中国科学院西安光学精密机械研究所 一种基于超表面窄带滤光的多光谱芯片及其制备方法
CN106949971A (zh) * 2017-03-27 2017-07-14 华中科技大学 一种基于介质超表面的紧凑偏振态测量仪
WO2018195309A1 (en) * 2017-04-19 2018-10-25 California Institute Of Technology Highly scattering metasurface phase masks for complex wavefront engineering
CN111307286B (zh) * 2019-11-29 2023-03-31 中国科学院光电技术研究所 一种基于介质柱结构的大角度偏振探测超表面
CN111025671B (zh) * 2019-12-23 2021-05-14 中国科学院长春光学精密机械与物理研究所 一种多功能超透镜阵列及光学系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160306079A1 (en) * 2015-04-14 2016-10-20 California Institute Of Technology Multi-wavelength optical dielectric metasurfaces
US20170059446A1 (en) * 2015-08-26 2017-03-02 Canon Kabushiki Kaisha Lens array, wavefront sensor, wavefront measurement apparatus, shape measurement apparatus, aberration measurement apparatus, manufacturing method of optical element, and manufacturing method of optical device
WO2021226544A1 (en) * 2020-05-08 2021-11-11 President And Fellows Of Harvard College Wavelength tunable metasurface based external cavity laser
WO2021233416A1 (zh) * 2020-05-22 2021-11-25 深圳迈塔兰斯科技有限公司 一种超透镜与折射和或反射透镜的混合光学系统
CN112505009A (zh) * 2020-11-12 2021-03-16 中国科学院长春光学精密机械与物理研究所 超表面透镜及其构成的荧光信号收集系统
CN215010478U (zh) * 2021-03-12 2021-12-03 深圳迈塔兰斯科技有限公司 一种基于惠更斯-超透镜的近红外成像系统
CN113589535A (zh) * 2021-08-16 2021-11-02 北京京东方技术开发有限公司 光学成像系统及头戴式显示设备
CN114280704A (zh) * 2021-12-28 2022-04-05 深圳迈塔兰斯科技有限公司 超透镜阵列、波前探测系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174768A (zh) * 2023-11-02 2023-12-05 长春理工大学 一种探测器、探测器制作方法及波前校正方法
CN117174768B (zh) * 2023-11-02 2024-04-02 长春理工大学 一种探测器、探测器制作方法及波前校正方法
CN117870883A (zh) * 2024-03-08 2024-04-12 中国航天三江集团有限公司 基于几何相位超表面的圆偏振哈特曼波前探测设计方法

Also Published As

Publication number Publication date
CN114280704A (zh) 2022-04-05
CN114280704B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2023125542A1 (zh) 超透镜阵列、波前探测系统
JP7328232B2 (ja) フルカラー撮像のためのメタ表面およびシステムならびに撮像の方法
US8908087B2 (en) Multiband camera, and multiband image capturing method
US9104018B2 (en) Imaging apparatus having a curved image surface
US5751492A (en) Diffractive/Refractive lenslet array incorporating a second aspheric surface
JP4274602B2 (ja) 対物光学系
JPH1054935A (ja) 回折・屈折レンズレットアレー
CN106324828A (zh) 液晶‑变形镜的混合式自适应光学系统设计方法
US20230177655A1 (en) System and method for digital optical aberration correction and spectral imaging
CN216901317U (zh) 基于超透镜的人造仿生复眼
JP2024028237A (ja) 分光カメラ、撮像方法、プログラム及び記録媒体
CN109855594A (zh) 摄像装置、距离测量设备、车载系统和移动设备
CN104155000A (zh) 一种基于二次成像的线性渐变滤光片型多光谱成像仪
CN204044432U (zh) 一种折反式太赫兹波成像装置
JP4821057B2 (ja) 軸外し反射光学系
JPWO2021085368A5 (zh)
Lukin et al. Wavefront sensors for adaptive optical systems
US20240319016A1 (en) Metalens array and wavefront sensor system
CN111795800B (zh) 一种视觉散斑对比度测量装置及方法
JPH10505432A (ja) 高速光学システム
JPH10142497A (ja) 赤外用光学系
CN209979996U (zh) 一种离轴超短焦投影镜头
Curatu et al. Lens design and system optimization for foveated imaging
KR20100122346A (ko) 촬영 렌즈 광학계
CN110196101A (zh) 一种宽谱段单光路光谱成像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE