CN111025671B - 一种多功能超透镜阵列及光学系统 - Google Patents

一种多功能超透镜阵列及光学系统 Download PDF

Info

Publication number
CN111025671B
CN111025671B CN201911335563.5A CN201911335563A CN111025671B CN 111025671 B CN111025671 B CN 111025671B CN 201911335563 A CN201911335563 A CN 201911335563A CN 111025671 B CN111025671 B CN 111025671B
Authority
CN
China
Prior art keywords
light
superlens
array
super lens
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911335563.5A
Other languages
English (en)
Other versions
CN111025671A (zh
Inventor
王灵杰
赵尚男
刘涛
张新
闫磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201911335563.5A priority Critical patent/CN111025671B/zh
Publication of CN111025671A publication Critical patent/CN111025671A/zh
Application granted granted Critical
Publication of CN111025671B publication Critical patent/CN111025671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4244Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in wavelength selecting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明涉及光学领域,尤其是一种超透镜,具体为一种多功能超透镜阵列及其光学系统。所述多功能超透镜阵列包括形成于同一基板上的n个紧密排列的超透镜单元,n为大于1的正整数,每一所述超透镜单元具有离轴菲涅尔透镜结构和平面超透镜结构,所述平面超透镜结构用于将入射光波进行聚焦,所述离轴菲涅尔透镜结构用于实现不同波长光波的分光;光学系统包括多功能超透镜阵列、光子集成回路和探测器阵列。本发明将离轴菲涅尔透镜和平面超透镜结合在一起,将二者的的功能加以融合,从而在平面超透镜上引入分光位相,使之既可实现光波聚焦,还可实现不同波长光波的分光,构成具有色散分光和聚焦光谱的多功能超透镜。

Description

一种多功能超透镜阵列及光学系统
技术领域
本发明涉及光学领域,具体为一种多功能超透镜阵列及光学系统。
背景技术
超透镜是一种衍射光学元件,可实现纯光学的远场超衍射极限聚焦和成像。与传统的光学透镜相比,平面超透镜具有聚焦能力强,结构紧凑,设计灵活,方便集成等优点,而超透镜所实现的功能可超越传统透镜,可使用一片超透镜取代传统相机中的透镜组,超透镜作为一种有望颠覆传统光学的新兴技术在光学系统小型化和轻量化方面有这巨大的潜在应用。
近年来,基于干涉成像原理的探测技术已成为当前国际上的一个前沿研究领域,而将超透镜在干涉成像系统中可发挥重要作用。
目前,在干涉成像系统中,为使光线满足干涉条件,通常需使用多个透镜与分离光元件进行光线聚焦和分色,而后端分离光元件(准直和收集曲面镜、衍射光栅)的使用会导致后端集成难度大、能量损耗高、价格昂贵。
发明内容
针对以上问题,本发明提出了一种多功能超透镜阵列,同时具有分色和聚焦功能,从而简化干涉成像系统的结构,提高系统集成度并降低能量损耗和成本,
本发明是这样实现的:
提供一种多功能超透镜阵列,所述多功能超透镜阵列包括形成于同一基板上的n个紧密排列的超透镜单元,n为大于1的正整数,每一所述超透镜单元具有离轴菲涅尔透镜结构和平面超透镜结构,所述平面超透镜结构用于将入射光波进行聚焦,所述离轴菲涅尔透镜结构用于实现不同波长光波的分光。
更进一步的,所述离轴菲涅尔透镜结构是在轴对称型菲涅尔透镜上偏离中心截取一部分,使不同波长光束的的轴线分开,相互分离地聚焦在原光轴上不同的点。
更进一步的,所述多功能超透镜阵列是采用离子蚀刻机在基板上进行蚀刻形成N个均包含离轴菲涅尔透镜结构和平面超透镜结构的超透镜单元。
更进一步的,所述超透镜单元的透过率为以下关系:
u(x,y)=f(x,y)g(x,y);
其中,f(x,y)为所述离轴菲涅尔透镜的透过率,所述g(x,y)为平面超透镜的透过率;
Figure BDA0002330836510000021
Figure BDA0002330836510000022
其中,x和y分别为入射光的x轴坐标值和y轴坐标值,r为径向坐标,exp()为欧拉函数,i为欧拉函数中的固定用法,N为离轴菲涅尔透镜的台阶总数,L为离轴菲涅尔透镜的位相台阶总数,k表示离轴菲涅尔透镜的第k个台阶,且k≤L,rf为位相分布周期,rect()是矩形函数,
Figure BDA0002330836510000031
Figure BDA0002330836510000032
为光波周期,f0为离轴菲涅尔透镜的主焦距,m为衍射级次,λ是入射光的波长。
更进一步的,超透镜单元的光强分布为以下关系:
I(0,0,z)=|u-1(0,0,z)|2
其中,z为平面坐标,u-1为-1级衍射光复振幅;
Figure BDA0002330836510000033
其中,A-1为-1级衍射光光强,x'、y'为入射光在光轴外的坐标,erf()是误差函数,
Figure BDA0002330836510000034
a为所述多功能超透镜单元的半宽度,q为离轴菲涅尔透镜的离轴量。
本发明还提供了一种光学系统,包括多功能超透镜阵列、光子集成回路和探测器阵列,所述多功能超透镜阵列为如上任一项所述的多功能超透镜阵列,所述多功能超透镜阵列用于收集光信息获取目标光学信息,入射光通过每一超透镜单元后分成多个窄波段光束,光子集成回路用于聚焦耦合窄波段光束以及对其进行相位调整使来自不同超透镜单元的同一波长的两束光成为满足干涉条件的相干光,探测器阵列获取相干光信息并进行图像复原获得高分辨率图像。
更进一步的,所述光子集成回路包括波导阵列和相位延迟器,所述多个窄波段光束聚焦耦合进波导阵列中后通过相位延迟器实现相位调整使来自不同超透镜单元的同一波长的两束光满足干涉条件。
上述方案的有益效果:
本发明将离轴菲涅尔透镜结构和平面超透镜结构结合在一起,将二者的功能加以融合,从而在平面超透镜上引入分光位相,使之既可实现将入射光波聚焦,还可利用离轴菲涅尔透镜结构实现不同波长光波的分光,构成具有色散分光和聚焦光谱的多功能超透镜阵列。
本发明提供的光学系统为干涉成像系统,本系统将具有色散分光和聚焦光谱的多功能超透镜应用于干涉成像系统中,入射光线通过多功能超透镜后即可实现分色聚焦,使光线满足干涉条件,无需再增加光纤波导及后端分离光元件。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明提供的超透镜单元工作示意图;
图2是本发明提供的光学系统结构示意图。
其中:
1-超透镜单元;11-多功能超透镜阵列;
2-光子集成回路;21-波导阵列;22-相位延迟器;
3-探测器阵列。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
请参阅图1和图2,其中,图1为本发明多功能超透镜单元1实现光线聚焦和分光的示意图,入射光线通过具有色散分光和聚焦光谱的多功能超透镜后即可实现分色聚焦,使光线满足干涉条件,无需再增加光纤波导及后端分离光元件。
多功能超透镜阵列11,包括形成于同一基板上的n个紧密排列的超透镜单元1,n为大于1的正整数,每一超透镜单元1具有离轴菲涅尔透镜结构和平面超透镜结构,平面超透镜结构用于将入射光波进行聚焦,离轴菲涅尔透镜结构用于实现不同波长光波的分光,将平面超透镜和离轴菲涅耳透镜集成在一起,制备出可应用于光学成像系统的具有分色和聚焦复合功能的超透镜阵列。
在本实施例中,离轴菲涅尔透镜结构是在轴对称型菲涅尔透镜上偏离中心截取一部分,使不同波长光束的的轴线分开,相互分离地聚焦在原光轴上不同的点;而平面超透镜是一种利用纳米光学结构对光进行控制的衍射光学元件,具有超衍射极限的聚焦能力。
本实施例中将两个元件的功能加以融合,通过将离轴菲涅耳透镜结构和平面超透镜结构制作在同一块模板上,从而在平面超透镜上引入分光位相,使之既可实现光波聚焦,还可实现不同波长光波的分光,构成具有色散分光和聚焦光谱的多功能超透镜单元1。
在本实施例中,多功能超透镜阵列11是采用离子蚀刻机在基板上进行蚀刻形成N个均包含离轴菲涅尔透镜结构和平面超透镜结构的超透镜单元1。
参阅图1可知,多功能超透镜单元1将入射的两组光中不同波长的光波进行分光,即分为了λ1、λ2和λ3即三原色,并且还将两组光中相同的波长的分光后的光波实现了光波的聚焦。
多功能超透镜阵列对入射光进行分色和聚焦的数学模型如下:
超透镜单元的透过率为以下关系:
u(x,y)=f(x,y)g(x,y);
其中,f(x,y)为菲涅尔透镜的透过率,g(x,y)为平面超透镜的透过率;
Figure BDA0002330836510000071
Figure BDA0002330836510000074
式中,x和y分别为入射光的x轴坐标值和y轴坐标值,r为径向坐标,exp()为欧拉函数,i为欧拉函数中的固定用法,N为离轴菲涅尔透镜的台阶总数,L为离轴菲涅尔透镜的位相台阶总数,k表示离轴菲涅尔透镜的第k个台阶,且k≤L,rf为位相分布周期,rect()是矩形函数,
Figure BDA0002330836510000072
Figure BDA0002330836510000073
为光波周期,f0为离轴菲涅尔透镜的主焦距,m为衍射级次,λ是入射光的波长。其中,每个台阶是位相相同的同心圆环,相邻两个台阶的位相差为2π/L。
将离轴菲涅尔透镜和平面超透镜组合起来,制作在同一块模板上,可构成同时具有色散分光和聚焦光谱功能的分色聚焦型平面超透镜,也即本实施例中的超透镜单元1,超透镜单元1的光强分布为以下关系:
I(0,0,z)=|u-1(0,0,z)|2
其中,z为平面坐标,u-1为-1级衍射光复振幅。
在本实施例中,将组合元件置于z=0平面上,并用平面光波照明,则在z>0的任意平面上的衍射光的复振幅可由菲涅尔积分求得:
Figure BDA0002330836510000081
略去光强较小的高级次衍射,-1级衍射光的复振幅为:
Figure BDA0002330836510000082
因而,在z轴上,
Figure BDA0002330836510000083
其中,A-1为-1级衍射光光强,x'、y'为入射光在光轴外的坐标,erf()是误差函数,
Figure BDA0002330836510000084
a为多功能超透镜单元的半宽度,q为离轴菲涅尔透镜的离轴量。
得出,z轴上的光强分布为:
I(0,0,z)=|u-1(0,0,z)|2
本实施例将离轴菲涅尔透镜和平面超透镜结合在一起,将二者的的功能加以融合,从而在平面超透镜上引入分光位相,使之既可实现将入射光波聚焦,还可利用离轴菲涅尔透镜结构实现不同波长光波的分光,构成具有色散分光和聚焦光谱的多功能超透镜。
实施例2
请继续参阅图1和图2,图2为多功能超透镜阵列在光学系统中的应用示意图,光学系统包括多功能超透镜阵11、光子集成回路2和探测器阵列3,多功能超透镜阵列为实施例1提出的多功能超透镜阵列11,多功能超透镜阵列11用于收集光信息获取目标光学信息,入射光通过每一超透镜单元1后分成多个窄波段光束,光子集成回路2用于聚焦耦合窄波段光束以及对其进行相位调整使来自不同超透镜单元1的同一波长的两束光成为满足干涉条件的相干光,探测器阵列3获取相干光信息并进行图像复原获得高分辨率图像。
在本实施例中,光子集成回路2包括波导阵列21和相位延迟器22,多个窄波段光束聚焦耦合进波导阵列21中后通过相位延迟器22实现相位调整使来自不同超透镜单元1的同一波长的两束光满足干涉条件。
在本实施例中,多功能超透镜阵列11由4个超透镜单元1组成得到,相位延迟器22的数量为6,本实施例中对入射的两组光中不同波长的光波进行分光,即分为了λ1、λ2和λ3即三原色,所以相位延迟器与超透镜单元1的数量关系并非是1:1的关系。
而在其他实施例中,分光结果不是三原色,相位延迟器22与超透镜单元1的数量关系可以是1:1,当然相位延迟器22与超透镜单元1的数量关系也不局限于1:1的数量关系,可以根据分光的结果进行设置。
在本实施例中,探测器阵列3包括多个探测器,多个探测器共同组成探测器阵列3,单个探测器与单个相位延迟器22对应设置。
本实施例提供的光学系统的工作过程为:多功能超透镜阵列11用于收集光信息获取目标光学信息,对应的光波通过超透镜后分成多个窄波段光束并聚焦耦合进波导阵列21中。耦合进波导阵列21中的光束通过相位延迟器22实现相位调整,使两束光满足干涉条件,再将相干光输入到探测器阵列3中,在本实施例中,探测器阵列3中设置有信息处理模块,信息处理模块对图像进行复原获得高分辨率图像。
本实施例提供的光学系统,运用具有色散分光和聚焦光谱的多功能超透镜阵列11,入射光线通过多功能超透镜阵列11后即可实现分色聚焦,使光线满足干涉条件,无需再增加光纤波导及后端分离光元件。本发明在光学系统中采用具有分色聚焦复合功能的超透镜取代传统透镜和后端分离光元件,简化了干涉成像系统结构,提高了系统集成度;使用简化了的光学系统结构,缩短了波导传输距离,使得光子传输效率和能量利用率得以提升;缩短波导传输距离,避免分离光元件的制备与加工,从而减小光学系统的尺寸重量和功耗。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种多功能超透镜阵列,其特征在于,所述多功能超透镜阵列包括形成于同一基板上的n个紧密排列的超透镜单元,n为大于1的正整数,每一所述超透镜单元具有离轴菲涅尔透镜结构和平面超透镜结构,所述平面超透镜结构用于将入射光波进行聚焦,所述离轴菲涅尔透镜结构用于实现不同波长光波的分光;所述离轴菲涅尔透镜结构是在轴对称型菲涅尔透镜上偏离中心截取一部分,使不同波长光束的的轴线分开,相互分离地聚焦在原光轴上不同的点;所述多功能超透镜阵列是采用离子蚀刻机在基板上进行蚀刻形成N个均包含离轴菲涅尔透镜结构和平面超透镜结构的超透镜单元。
2.根据权利要求1所述的多功能超透镜阵列,其特征在于,所述超透镜单元的透过率为以下关系:
u(x,y)=f(x,y)g(x,y);
其中,f(x,y)为离轴菲涅尔透镜的透过率,所述g(x,y)为平面超透镜的透过率;
Figure FDA0002845735340000011
Figure FDA0002845735340000012
其中,x和y分别为入射光的x轴坐标值和y轴坐标值,r为径向坐标,exp()为欧拉函数,i为欧拉函数中的固定用法,N为离轴菲涅尔透镜的台阶总数,L为离轴菲涅尔透镜的位相台阶总数,k表示离轴菲涅尔透镜的第k个台阶,且k≤L,rf为位相分布周期,rect()是矩形函数,
Figure FDA0002845735340000021
Figure FDA0002845735340000022
为光波周期,f0为离轴菲涅尔透镜的主焦距,m为衍射级次,λ是入射光的波长。
3.根据权利要求2所述的多功能超透镜阵列,其特征在于,所述超透镜单元的光强分布为以下关系:
I(0,0,z)=|u-1(0,0,z)|2
其中,z为平面坐标,u-1为-1级衍射光复振幅;
Figure FDA0002845735340000023
其中,A-1为-1级衍射光光强,x'、y'为入射光在光轴外的坐标,erf()是误差函数,
Figure FDA0002845735340000024
a为所述多功能超透镜单元的半宽度,q为所述离轴菲涅尔透镜的离轴量。
4.一种光学系统,其特征在于,所述光学系统包括多功能超透镜阵列、光子集成回路和探测器阵列,所述多功能超透镜阵列为如权利要求1-3任一项所述的多功能超透镜阵列,所述多功能超透镜阵列用于收集光信息获取目标光学信息,入射光通过每一超透镜单元后分成多个窄波段光束,光子集成回路用于聚焦耦合窄波段光束以及对其进行相位调整使来自不同超透镜单元的同一波长的两束光成为满足干涉条件的相干光,探测器阵列获取相干光信息并进行图像复原获得高分辨率图像。
5.根据权利要求4所述的光学系统,其特征在于,所述光子集成回路包括波导阵列和相位延迟器,所述多个窄波段光束聚焦耦合进波导阵列中后通过相位延迟器实现相位调整使来自不同超透镜单元的同一波长的两束光满足干涉条件。
CN201911335563.5A 2019-12-23 2019-12-23 一种多功能超透镜阵列及光学系统 Active CN111025671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911335563.5A CN111025671B (zh) 2019-12-23 2019-12-23 一种多功能超透镜阵列及光学系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911335563.5A CN111025671B (zh) 2019-12-23 2019-12-23 一种多功能超透镜阵列及光学系统

Publications (2)

Publication Number Publication Date
CN111025671A CN111025671A (zh) 2020-04-17
CN111025671B true CN111025671B (zh) 2021-05-14

Family

ID=70211518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911335563.5A Active CN111025671B (zh) 2019-12-23 2019-12-23 一种多功能超透镜阵列及光学系统

Country Status (1)

Country Link
CN (1) CN111025671B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045219A (zh) * 2019-12-28 2020-04-21 中国科学院长春光学精密机械与物理研究所 基于分色聚焦衍射光学元件的平面光电探测系统
CN112684522B (zh) * 2020-11-26 2021-12-31 中国科学院上海微系统与信息技术研究所 紫外和可见光共透镜双光路成像探测系统及其制作方法
CN112462497A (zh) * 2020-12-07 2021-03-09 中国科学院长春光学精密机械与物理研究所 光子集成干涉大视场成像系统
CN112637525B (zh) * 2020-12-11 2023-05-26 中国人民解放军战略支援部队航天工程大学 一种硅基光电子一体化成像系统
CN112946789B (zh) * 2021-01-29 2023-03-21 中国科学院长春光学精密机械与物理研究所 一种基于超透镜阵列与光子集成芯片干涉平板成像系统
US11808934B2 (en) 2021-04-20 2023-11-07 Eagle Technology, Llc Planar optical telescope and related methods
CN113332582B (zh) * 2021-06-22 2023-04-07 中山大学 一种给药装置、给药系统、给药方法及应用
CN114280704B (zh) * 2021-12-28 2023-07-07 深圳迈塔兰斯科技有限公司 超透镜阵列、波前探测系统
CN114637120A (zh) * 2022-03-31 2022-06-17 天津山河光电科技有限公司 一种多功能超表面分束器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026592A (ja) * 2006-07-21 2008-02-07 Sony Corp 光学シートおよびその製造方法ならびに表示装置
CN101470269A (zh) * 2007-12-26 2009-07-01 中国科学院微电子研究所 激光远距离传输中央光斑的超分辨压缩振幅光调制器
CN102023386A (zh) * 2009-09-16 2011-04-20 中国科学院微电子研究所 阵列全环光子筛匀光器及其制作方法
CN107272217A (zh) * 2017-08-10 2017-10-20 深港产学研基地(北京大学香港科技大学深圳研修院) 智能车用相干检测激光雷达小型光源及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026592A (ja) * 2006-07-21 2008-02-07 Sony Corp 光学シートおよびその製造方法ならびに表示装置
CN101470269A (zh) * 2007-12-26 2009-07-01 中国科学院微电子研究所 激光远距离传输中央光斑的超分辨压缩振幅光调制器
CN102023386A (zh) * 2009-09-16 2011-04-20 中国科学院微电子研究所 阵列全环光子筛匀光器及其制作方法
CN107272217A (zh) * 2017-08-10 2017-10-20 深港产学研基地(北京大学香港科技大学深圳研修院) 智能车用相干检测激光雷达小型光源及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《用于光束整形与超分辨率成像的衍射光学元件的设计和实验》;李珂;《中国科学技术大学博士学位论文》;20111031;35-60页 *

Also Published As

Publication number Publication date
CN111025671A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN111025671B (zh) 一种多功能超透镜阵列及光学系统
Shalaginov et al. Single-element diffraction-limited fisheye metalens
CN110954966B (zh) 基于超透镜阵列的平面光电探测系统
Decker et al. Imaging performance of polarization-insensitive metalenses
EP3427094A1 (en) Array-based camera lens system
CN108279508B (zh) 一种涡旋光束复用和解复用的方法及装置
CN101377569B (zh) 棱镜-光栅-棱镜光谱成像系统
CN109716434B (zh) 基于非再入型二次扭曲(nrqd)光栅和棱栅的四维多平面宽带成像系统
CN105137513B (zh) 一种位相编码的宽带光子筛
CN108444600B (zh) 一种高通量宽谱段小型化成像光谱仪
CN103888051A (zh) 全息聚光分光太阳能发电模块
CN101118315A (zh) 折/衍混合长焦深成像透镜的消色差方法
Yang et al. Multiwavelength high-order optical vortex detection and demultiplexing coding using a metasurface
CN110187442B (zh) 一种cvb信道解复用系统、方法及多路同轴cvb通信系统
Guo et al. Design of single-layer color echelle grating optical waveguide for augmented-reality display
Shrestha et al. Multi-element metasurface system for imaging in the near-infrared
Peng et al. Metalens in improving imaging quality: advancements, challenges, and prospects for future display
CN111045219A (zh) 基于分色聚焦衍射光学元件的平面光电探测系统
JPS626354B2 (zh)
CN115265784A (zh) 一种基于超表面衍射元件的计算层析成像光谱仪
Cheng et al. Broadband achromatic imaging of a metalens with optoelectronic computing fusion
Zhao et al. Circular-target-style bifocal zoom metalens
CN112763066B (zh) 一种基于轴向色差的光谱信息获取装置
Patel et al. Multi-mode fiber coarse WDM grating router using broadband add/drop filters for wavelength re-use
CN220019930U (zh) 波分复用器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant