WO2023125124A1 - 一种数据交换的方法、交换装置和处理装置 - Google Patents

一种数据交换的方法、交换装置和处理装置 Download PDF

Info

Publication number
WO2023125124A1
WO2023125124A1 PCT/CN2022/140212 CN2022140212W WO2023125124A1 WO 2023125124 A1 WO2023125124 A1 WO 2023125124A1 CN 2022140212 W CN2022140212 W CN 2022140212W WO 2023125124 A1 WO2023125124 A1 WO 2023125124A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
ecpri
unit
tunnel
switching device
Prior art date
Application number
PCT/CN2022/140212
Other languages
English (en)
French (fr)
Inventor
程浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125124A1 publication Critical patent/WO2023125124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/10Packet switching elements characterised by the switching fabric construction

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a data exchange method, exchange device and processing device.
  • the deterministic delay of data transmission between two communication parties is an important parameter to realize reliable scheduling of data transmission.
  • data transmission is based on the asynchronous transmission mode of receiving, storing and forwarding messages or data packets. There is no fixed communication link between the two parties in communication. to send. Therefore, in a communication system using an Ethernet structure, for example, in a fronthaul communication system using an enhanced common public radio interface (eCPRI), the definite value of the time delay for transmitting data cannot be obtained, which is highly reliable for data The need for transmission cannot be met.
  • eCPRI enhanced common public radio interface
  • the present application provides a data exchange method, exchange device and processing device, which can improve the reliability of data transmission.
  • a data exchange method which can be executed by a switching device or a chip in the switching device, and the method includes: the switching device determines a first rate, and the first rate is used to represent the first rate in a unit time.
  • the tunnel can transmit the unit data amount of data, and the first tunnel is used to transmit the enhanced common radio interface eCPRI data; the switching device sends the eCPRI data to the processing device at the first rate in the unit time through the first tunnel.
  • the switching device establishes a first tunnel with a first rate, and the first rate is used to indicate that the first tunnel can transmit data unit data volume per unit time, and the first tunnel is used to transmit eCPRI data; the switching device passes through the first tunnel Sending eCPRI data to the processing device at the first rate within the unit time.
  • the switching device may establish a first tunnel with a first rate for transmitting eCPRI data, and send the eCPRI data to the processing device through the first tunnel, thereby obtaining a deterministic delay for transmitting the eCPRI data, The reliability of data transmission can be improved.
  • the method further includes: the switching device determines a first data amount, where the first data amount is a difference between the unit data amount minus the second data amount, The second data amount is the data amount of the eCPRI data in the unit time; the switching device sends the non-eCPRI data in the unit time according to the first data amount.
  • the switching device can count the amount of data actually sent by the eCPRI data per unit time, and then can realize that the part not occupied by the eCPRI data in the resources originally allocated to the eCPRI data is used to send non-eCPRI data, and the resources can be improved. utilization rate.
  • the unit time is a time slot.
  • eCPRI data can be transmitted at the granularity of time slots, and eCPRI data and non-eCPRI data can be transmitted in multiplexed time slots, which improves the flexibility of data transmission.
  • the eCPRI data includes first data and second data
  • the switching device sending the eCPRI data includes: the switching device sending the first data to the first processing device A data; the switching device sends the second data to the second processing device.
  • one switching device can be directly connected to multiple processing devices for data transmission, which improves the flexibility of data transmission.
  • the eCPRI data includes first data and second data
  • the switching device sending the eCPRI data includes: the switching device sending the eCPRI data to the first processing device data; the method further includes: the switching device sending indication information to the first processing device, where the indication information is used to indicate the transmission path of the first data and the transmission path of the second data.
  • one switching device can be cascadedly connected with multiple processing devices for data transmission, providing flexibility in system data transmission.
  • a method for exchanging data may be executed by a processing device or a chip in the processing device, and the method includes: the processing device receives data from the switching device through the first tunnel at a first rate per unit time For the sent enhanced common radio interface eCPRI data, the first rate is used to indicate the unit data amount of data that can be transmitted by the first tunnel within the unit time, and the first tunnel is used to transmit the eCPRI data.
  • the switching device may establish a first tunnel with a first rate for transmitting eCPRI data, and send the eCPRI data to the processing device through the first tunnel, thereby obtaining a deterministic delay for transmitting the eCPRI data, The reliability of data transmission can be improved.
  • the method further includes: the processing device receives the non-eCPRI data sent within the unit time from the switching device.
  • the unit time is a time slot.
  • the eCPRI data includes first data and second data
  • the processing device receiving the eCPRI data from the control device includes: the processing device receiving the eCPRI data from the exchange The first data in the eCPRI data of the device.
  • the eCPRI data includes first data and second data
  • the method further includes: the processing device receives indication information from the switching device, and the indication information is used to indicate The transmission path of the first data and the transmission path of the second data.
  • a switching device in a third aspect, includes a processing unit and a transceiver unit, the processing unit is used to determine a first rate, and the first rate is used to indicate the unit data that can be transmitted by the first tunnel within a unit time
  • the first tunnel is used to transmit the enhanced common radio interface eCPRI data; the transceiver unit is used to send the eCPRI data to the processing device at the first rate through the first tunnel within the unit time.
  • the switching device may establish a first tunnel with a first rate for transmitting eCPRI data, and send the eCPRI data to the processing device through the first tunnel, thereby obtaining a deterministic delay for transmitting the eCPRI data, The reliability of data transmission can be improved.
  • the processing unit is further configured to determine a first data amount, where the first data amount is the difference between the unit data amount minus the second data amount, the The second data volume is the data volume of the eCPRI data in the unit time; the transceiver unit is further configured to send non-eCPRI data in the unit time according to the first data volume.
  • the unit time is a time slot.
  • the eCPRI data includes first data and second data
  • the transceiver unit is specifically configured to send the first data to the first processing device; the transceiver unit , specifically for sending the second data to the second processing device.
  • the eCPRI data includes first data and second data
  • the transceiver unit is specifically configured to send the eCPRI data to the first processing device; the transceiver unit, It is also used to send indication information to the first processing device, where the indication information is used to indicate the transmission path of the first data and the transmission path of the second data.
  • a processing device in a fourth aspect, includes a processing unit and a transceiver unit, the transceiver unit is used to receive from the switching device the enhanced Common radio interface eCPRI data, the first rate is used to indicate the unit data volume that the first tunnel can transmit data in the unit time, the first tunnel is used to transmit the eCPRI data; the processing unit is used to process the eCPRI data deal with.
  • the transceiver unit is used to receive from the switching device the enhanced Common radio interface eCPRI data
  • the first rate is used to indicate the unit data volume that the first tunnel can transmit data in the unit time
  • the first tunnel is used to transmit the eCPRI data
  • the processing unit is used to process the eCPRI data deal with.
  • the switching device may establish a first tunnel with a first rate for transmitting eCPRI data, and send the eCPRI data to the processing device through the first tunnel, thereby obtaining a deterministic delay for transmitting the eCPRI data, The reliability of data transmission can be improved.
  • the transceiving unit is further configured to receive the non-eCPRI data sent within the unit time from the switching device.
  • the unit time is a time slot.
  • the eCPRI data includes first data and second data
  • the transceiver unit is specifically configured to receive the first data in the eCPRI data from the switching device .
  • the eCPRI data includes first data and second data
  • the transceiver unit is further configured to receive indication information from the switching device, where the indication information is used to indicate The transmission path of the first data and the transmission path of the second data.
  • a communication device may include a processing unit, a sending unit, and a receiving unit.
  • the sending unit and the receiving unit may also be transceiver units.
  • the processing unit may be a processor, and the sending unit and the receiving unit may be transceivers; the device may also include a storage unit, which may be a memory; the storage unit is used to store instructions, The processing unit executes the instructions stored in the storage unit, so that the device executes any method of the first aspect.
  • the processing unit may be a processor, and the sending unit and the receiving unit may be input/output interfaces, pins or circuits, etc.; the processing unit executes the instructions stored in the storage unit to Make the chip execute any method of the first aspect.
  • the storage unit is used to store instructions, and the storage unit may be a storage unit (such as a register, a cache, etc.) in the chip, or a storage unit (such as a read-only memory, random access memory, etc.) located outside the chip in the device. access memory, etc.).
  • a storage unit such as a register, a cache, etc.
  • a storage unit such as a read-only memory, random access memory, etc. located outside the chip in the device. access memory, etc.
  • the processing unit may be a processor, and the sending unit and the receiving unit may be transceivers; the device may also include a storage unit, which may be a memory; the storage unit is used to store instructions, The processing unit executes the instructions stored in the storage unit, so that the device executes any method of the second aspect.
  • the processing unit may be a processor, and the sending unit and the receiving unit may be input/output interfaces, pins or circuits, etc.; the processing unit executes the instructions stored in the storage unit to The chip is made to execute any method of the second aspect.
  • the storage unit is used to store instructions, and the storage unit may be a storage unit (such as a register, a cache, etc.) in the chip, or a storage unit (such as a read-only memory, random access memory, etc.) located outside the chip in the device. access memory, etc.).
  • a storage unit such as a register, a cache, etc.
  • a storage unit such as a read-only memory, random access memory, etc. located outside the chip in the device. access memory, etc.
  • the present application provides a device, including a processor.
  • the processor is coupled with the memory, and can be used to execute the instructions in the memory, so as to realize the method in the above-mentioned first aspect or any one of the possible implementations of the first aspect, or realize the above-mentioned second aspect or any one of the second aspects Methods in Possible Implementations.
  • the device also includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is a switching device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a chip system configured in a switching device.
  • the communication interface may be an input/output interface.
  • the device is a processing device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a system-on-a-chip configured in a processing device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed, any one of the aforementioned first aspect or second aspect can be realized. method in a possible implementation.
  • a computer program product including instructions is provided, and when the instructions are executed, the method in any possible implementation manner of the aforementioned first aspect or second aspect is implemented.
  • a computer program includes codes or instructions, and when the codes or instructions are executed, implement the method in any possible implementation manner of the aforementioned first aspect or second aspect.
  • a chip system in a tenth aspect, includes a processor and may further include a memory, configured to implement the method in any possible implementation manner described in the foregoing first aspect or second aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a communication system is provided, and the system includes the device in any possible implementation manner of the third aspect or the fourth aspect.
  • the switching device is a baseband unit BU or a module or device in the BU
  • the processing device is a radio frequency unit RU or a module or device in the RU.
  • the processing device is a BU or a module or device in the BU
  • the switching device is a RU or a module or device in the RU.
  • Fig. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of several different baseband processing division methods applicable to the embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of various networking systems applicable to the embodiments of the present application.
  • Fig. 4 is a schematic structural diagram of the network architecture of the eCPRI protocol applicable to the embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a data exchange method provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of bandwidth occupancy of eCPRI data and non-eCPRI data.
  • FIG. 7 is a schematic structural diagram of a downlink switching system provided by an embodiment of the present application.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of possible devices provided by the embodiments of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, frequency division duplex (frequency division duplex, FDD) system, time division duplex (time division duplex, TDD) ) system, fifth generation (5th generation, 5G) system or new radio (new radio, NR), sixth generation (6th generation, 6G) system or future communication system, etc.
  • the 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (standalone, SA) 5G mobile communication system.
  • the communication system may also be a public land mobile network (PLMN), a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, or an Internet of Things (Internet of Things).
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • Internet of Things Internet of Things
  • IoT Internet of Things
  • V2X vehicle to everything
  • UAV unmanned aerial vehicle
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 To facilitate understanding of the embodiment of the present application, an application scenario of the embodiment of the present application is described in detail first with reference to FIG. 1 .
  • Fig. 1 is a schematic structural diagram of a communication system to which the embodiment of the present application is applicable. Firstly, the devices that may be involved in the communication system will be described.
  • Radio frequency unit (radio unit, RU) 110 can realize signal intermediate frequency processing, radio frequency processing, duplexing and other functions.
  • the RU 110 may be a remote radio unit (remote radio unit, RRU), an active antenna processing unit (active antenna unit, AAU), or other network elements or communication devices capable of processing intermediate frequency signals, radio frequency signals, or intermediate radio frequency signals .
  • the RU 110 may include a low-level baseband processing (baseband low, BBL) 111, and the baseband processing functions that may be included in the BBL 111 will be shown in FIG. 2 Introduced in conjunction with Figure 2.
  • the RU 110 may also include a switching unit, which can implement functions such as message exchange, distribution, scheduling, or control among various devices.
  • Baseband unit (baseband unit, BU) 120 the BU 120 can realize the processing function of the baseband signal.
  • the BU 120 may be a baseband unit (baseband unit, BBU), a centralized control unit (central unit, CU), a distributed control unit (distributed unit, DU), or other network elements or communication devices with baseband signal processing capabilities.
  • the BU 120 may include a high-level baseband processing (baseband high, BBH) 121, and the baseband processing functions that the BBH 121 may include will be introduced in conjunction with FIG. 2 in FIG. 2 .
  • the BU 120 may also include a switching unit, which can implement functions such as message exchange, distribution, scheduling, or control among various devices.
  • the communication interface between the BU 120 and the RU 110 may be called a fronthaul interface, for example, the fronthaul interface may be an eCPRI interface or another interface defined in the future for connecting the BU 120 and the RU 110.
  • the eCPRI interface can adopt multiple baseband processing division methods, adopt different baseband processing division methods, and BBL 111 and BBU 121 can have different baseband processing functions respectively.
  • Fig. 2 shows a schematic diagram of several different baseband processing division manners.
  • BBL can be BBL 111 shown in Fig. 1
  • BBH can be BBH 121 shown in Fig. 1.
  • the eCPRI interface can be divided using the baseband division method of mode 1.
  • the BBL can have inverse fast Fourier transformation (IFFT) and cyclic prefix addition (cyclic prefix addition) in the downlink direction. function, analog beam forming (analog beam forming), digital to analog conversion (digital to analog) function.
  • IFFT inverse fast Fourier transformation
  • cyclic prefix addition cyclic prefix addition
  • BBL can have fast Fourier transform (inverse fast transformation, FFT) and cyclic prefix removal (cyclic prefix removal), analog beam forming (analog beam forming), analog to digital conversion (analog to digital) in the uplink direction Function.
  • BBH can have coding (coding), rate matching (rate matching), scrambling (scrambling), modulation (modulation), layer mapping (layer mapping), pre-coding (pre-coding), resource mapping (resource element mapping) in the downlink direction ), digital beam forming (digital beam forming) function.
  • BBH can have decoding (de-coding), rate de-matching (rate de-matching), de-scrambling (de-scrambling), demodulation (de-modulation), channel estimation (channel estimation)/equalization ( equalization) and discrete Fourier transform (inverse discrete Fourier transform, IDFT), resource demapping (resource element de-mapping), digital beam forming (digital beam forming) functions.
  • the eCPRI interface can also be divided using the baseband division method of mode 2.
  • mode 2 compared with mode 1, the functions of precoding, resource mapping, and digital beamforming in the downlink direction are moved from BBH to BBL.
  • the functions of resource demapping and digital beamforming in the uplink direction are moved from BBH to BBL.
  • the eCPRI interface may also use other baseband division manners.
  • the baseband division may be symmetrical in the uplink direction and the downlink direction, or may be asymmetrical in the uplink direction and the downlink direction, which is not particularly limited in the present application.
  • the embodiment of the present application is applicable to communication systems with eCPRI interfaces in various baseband division modes.
  • a distributed base station generally includes at least one BU and at least one RU, each RU corresponds to a sector, and provides wireless access services of a single frequency band or multiple frequency bands.
  • the networking mode between the BU and the RU will be described below with reference to FIG. 2 .
  • FIG. 3 is a schematic structural diagram of various networking systems applicable to the embodiment of the present application, and the system includes BU 310, RU 320 and RU 330.
  • BU 310 is directly connected to RU 320 and RU 330 respectively to form a direct connection network, and BU and RU communicate directly through the fronthaul interface; see (b) in Figure 3, BU 310 and RU 320 is directly connected, RU 320 and RU 330 are directly connected to form a cascaded network, BU 310 and RU 320 communicate directly, and BU 310 and RU 330 can communicate through RU320 transparent transmission or forwarding.
  • Ethernet transmission mechanism is used for data transmission between BU and RU.
  • An eCPRI protocol network architecture is introduced below with reference to FIG. 4 .
  • Fig. 4 shows a schematic structural diagram of an eCPRI protocol network architecture.
  • the eCPRI service (eCPRI services) is carried on the eCPRI protocol layer, and the eCPRI service includes user data (user data), real-time control (real-time control) and other eCPRI services (other eCPRI services).
  • the eCPRI service can be carried at the transmission control protocol/internet protocol (transmission control protocol/internet protocol, TCP/IP) layer, or can skip the TCP/IP layer and be directly encapsulated at the Ethernet media access control (MAC) layer.
  • TCP/IP transmission control protocol/internet protocol
  • MAC Ethernet media access control
  • the eCPRI protocol network architecture belongs to the Ethernet structure, data is received, stored, and forwarded in the form of Ethernet frames, which cannot obtain deterministic delays and cannot meet the requirements for highly reliable data transmission. Therefore, there is an urgent need for a data exchange method that can improve the reliability of data transmission.
  • the switching device in the downlink direction (when eCPRI data is downlink data), the switching device may be the above-mentioned BU or a device or module in the above-mentioned BU, and the processing device may be the above-mentioned RU or a device or module in the above-mentioned RU .
  • the switching device In the uplink direction (when eCPRI data is uplink data), the switching device may be the above-mentioned RU or a device or module in the above-mentioned RU, and the processing device may be the above-mentioned BU or a device or module in the above-mentioned BU.
  • FIG. 5 shows a schematic flowchart of a data exchange method 500 .
  • the switching device determines a first rate, where the first rate is used to represent a unit data amount of data that can be transmitted by a first tunnel within a unit time, where the first tunnel is used to transmit eCPRI data.
  • the eCPRI data may be effective data in the Ethernet frame, for example, user data on the user plane, which may be presented as digital in-phase I and quadrature-phase IQ data of analog wireless channel signals in baseband processing or intermediate frequency processing.
  • the first tunnel may be a connection-oriented communication link between the switching means and the processing means.
  • the first rate (also referred to as bandwidth) may represent the capability of the first tunnel to transmit data per unit time.
  • the switching device may allocate a first tunnel with a fixed rate between the communication parties for transmitting eCPRI data, or in other words, allocate a channel resource with a fixed rate.
  • the eCRRI data is transmitted on the first tunnel with a periodically occurring time unit as a carrier. Therefore, the communication system can determine the deterministic delay of eCPRI data transmission.
  • the switching device may establish the first tunnel in a circuit switching manner.
  • the switching device may establish a circuit path for transmitting eCPRI data at the first rate inside the switching device, and the circuit path is connected to a transceiver unit (such as an eCPRI interface) for sending data in the switching device.
  • the eCPRI interface acquires eCPRI data through the circuit path, and sends the eCPRI data through the first tunnel at the first rate.
  • the unit time is a time slot.
  • the switching device may map the eCPRI data to one or more time slots, and send the eCPRI data through the eCPRI interface using the time slot as a carrier.
  • the switching device determines the first rate. In other words, when eCPRI data is included in one or more unit times, the switching device establishes the first tunnel.
  • the switching device may determine whether eCPRI data is included in one or more time slots. When the one or more time slots include eCPRI data, the switching device establishes a first tunnel for transmitting eCPRI data. When the one or more time slots do not include eCPRI data, the switching device does not establish the first tunnel, and may also release the existing first tunnel. In this case, the first rate originally configured for the first tunnel can be used to transmit other data.
  • the switching device determines the first rate according to the data volume of eCPRI data in one or more time units.
  • the switching device may determine the first rate of the first tunnel according to the peak or average value of the number of bytes of eCPRI data in each of the one or more time slots. It should be noted that if the switching device determines the first rate of the first tunnel according to the amount of eCPRI data in each of the multiple time slots, then the first tunnel can maintain the first rate in the multiple time slots. transmit eCPRI data at the same rate.
  • the switching device sends the eCPRI data to the processing device at the first rate within the time unit through the first tunnel, and correspondingly, the processing device receives the eCPRI data from the switching device through the first tunnel within the time unit at the second rate The eCPRI data sent at a rate.
  • the switching device sends the eCPRI data through the first tunnel at the first rate within one or more time slots through the eCPRI interface.
  • the switching device may time-division multiplex the multiple data, or That is, the switching device may send the eCPRI data in a time-division multiplexing manner through the first tunnel.
  • the amount of eCPRI data carried per unit time may be smaller than the unit data amount that the first tunnel can transmit. In other words, the eCPRI data may not fully occupy the first rate allocated to it. In this case, the time resources remaining in the unit time can also be used to transmit other data, which will be described below.
  • the switching device determines a first data amount, where the first data amount is a difference between a unit data amount minus a second data amount, and the second data amount is a data amount of the eCPRI data in a unit time.
  • the switching device can determine the unit data volume that can be carried in a time slot according to the first rate, and then the switching device can determine the data volume occupied by the eCPRI data carried by the time slot, and the data volume that can be carried by the time slot is the first data volume. quantity.
  • the switching device sends the non-eCPRI data within the unit time according to the first data volume.
  • non-eCPRI data may be invalid data or cooperative data in the Ethernet frame, such as real-time control signaling of the control plane or data of other eCPRI services, such as preamble, frame interval, and the like.
  • the switching device may send the first data amount or non-eCPRI data smaller than the first data amount.
  • FIG. 6 shows a schematic diagram of transmission of eCPRI data and non-eCPRI data in one time slot.
  • the switching device may send the non-eCPRI data to the processing device, or send the non-eCPRI data to other devices.
  • both eCPRI data and non-eCPRI data are transmitted through the eCPRI interface, and the first rate of the first tunnel occupies all or part of the first rate of the eCPRI interface.
  • the first rate of the first tunnel is not fully occupied, that is, when the resources originally allocated to eCPRI data transmission per unit time of the eCPRI interface are not fully occupied, non-eCPRI data can occupy this part of resources and transmit through the eCPRI interface.
  • the non-eCPRI data may be transmitted in a manner of Ethernet switching, or packet switching. It should be understood that, unlike circuit switching, in packet switching, there is no communication tunnel with a fixed rate for transmitting the non-eCPRI data, and the switching device can reassemble the data and send it only when it needs to send non-eCPRI data . Therefore, when the switching device sends eCPRI data, the eCPRI interface can obtain eCPRI data through a circuit path with a fixed rate, and send eCPRI data at the fixed rate in the first tunnel, which can be understood as a mode of synchronous data transmission. When the switching device sends non-eCPRI data, the eCPRI interface reassembles the data for sending when it needs to send non-eCPRI data, which can be understood as a mode of asynchronous data transmission.
  • the switching device may be connected to multiple processing devices, and different data in the eCPRI data may be sent to different processing devices. This is described below.
  • the switching device is a BU
  • the first processing device and the second processing device are both RUs, and they are connected in a direct-connected networking manner as shown in (a) of FIG. 3 .
  • the eCPRI data includes first data and second data.
  • the switching device sends the first data to the first processing device, and the switching device sends the second data to the second processing device.
  • the switching device is a BU, and the first processing device and the second processing device are both RUs, and they are connected in a cascaded networking manner as shown in (b) of FIG. 3 .
  • the first processing device is directly connected to the switching device, and the second processing device is connected to the switching device through the first processing device.
  • the eCPRI data includes first data and second data.
  • the switching device sends the eCPRI data and indication information to the first processing device.
  • the indication information is used to indicate the transmission path of the first data and the transmission path of the second data.
  • the indication information may indicate that the first processing device receives the first data, and the second processing device receives the second data.
  • the indication information may indicate the target address corresponding to the first data and the target address corresponding to the second data
  • the first processing device receives the eCPRI data, and obtains the first data from the eCPRI data according to the indication information.
  • the first processing device may send the eCPRI data and the indication information to the second processing device, and the second processing device obtains the second data from the eCPRI data according to the indication information.
  • the first processing device may also extract the first data, and then send the remaining data and indication information in the eCPRI data to the second processing device, and the second processing device receives the second data from the first processing device.
  • the above describes how the switching device sends eCPRI data to the processing device.
  • the following uses an example of a switching system in which the switching device and the processing device are BU and RU respectively. .
  • FIG. 7 shows a schematic structural diagram of a switching system 700 in the downlink direction.
  • the switching system 700 includes BU 710 (an example of a switching device), and RU 720 (an example of a processing device).
  • the BU 710 includes a circuit switching module 711 and a transceiver unit 712.
  • the circuit switching module 711 is used to determine a first rate, and the first rate is used to indicate the unit data volume that the first tunnel can transmit data in a unit time.
  • the first tunnel For transmitting eCPRI data; the transceiving unit 712 is used for sending the eCPRI data to the processing device at the first rate within the time unit through the first tunnel.
  • the circuit switching module may be an IQ switch, and when determining the first rate, fine-grained rate management of the increase or decrease rate may be implemented.
  • the BU 710 also includes a statistical multiplexing module 713, which is used to determine the first data volume, the first data volume is the difference between the unit data volume and the second data volume, and the second data volume The amount is the data amount of the eCPRI data per unit time.
  • the transceiving unit 712 is also configured to send non-eCPRI data within a unit time according to the first amount of data.
  • the BU 710 also includes an Ethernet switching module 714, and the Ethernet switching module 714 is used to determine the non-eCPRI data sent within the unit time.
  • the Ethernet switching module 714 assembles the non-eCPRI data into packets to determine the non-eCPRI data sent within the unit time.
  • the BU 710 also includes a baseband processing module 715, and the baseband processing module 715 can realize the functions of the above-mentioned BBH.
  • the circuit switching module 711, the statistical multiplexing module 713, the Ethernet switching module 714, and the baseband processing module 715 can be collectively referred to as a processing unit, and its specific implementation can refer to the description in the method 500. For simplicity, it is not described here Let me repeat.
  • the circuit switching module 711 is electrically connected to the baseband processing module 715 .
  • circuit switching module 711 and the baseband processing module 715 are encapsulated in the same hardware module.
  • circuit switching module 711 and the baseband processing module 715 are connected by an Ethernet.
  • the circuit switching module and the baseband processing module are packaged in different hardware modules, and different hardware modules are connected by optical fibers.
  • the RU 720 includes a processing unit 721 and a transceiver unit 722, the transceiver unit 722 is used to receive the eCPRI data sent from the switching device through the first tunnel at the first rate within the time unit, the processing unit 721
  • the processing function of the RU described in FIG. 2 can be realized.
  • the circuit switching module 715 can establish a first tunnel for transmitting eCPRI data between the BU 710 and the RU 720, and the eCPRI data is transmitted on the first tunnel at a fixed rate within a unit time.
  • the first tunnel can connect the transceiver unit 712 of the BU 710 and the transceiver unit 722 of the RU 720, and the transceiver unit 712 and the transceiver unit 722 can be corresponding eCPRI interfaces.
  • the transceiver unit 712 can obtain the eCPRI data from the circuit path with the fixed rate. Wherein, the circuit path may be established by the circuit switching module.
  • the circuit switching module 715 can establish a path for transmitting eCPRI data inside the BU 710, and the path is connected to the baseband processing module 715, the statistical multiplexing module 713, the circuit switching module 711, and the transceiver unit 712.
  • the path is composed of a circuit path.
  • the path can be composed of circuits and/or optical fibers, which is not particularly limited in this application .
  • the statistical multiplexing module 713 can count the second data volume of the eCPRI data per unit time in the channel, and determine the first data volume, so that the Ethernet switching module 714 can send non-eCPRI data according to the first data volume.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of possible devices provided by the embodiments of the present application. These devices can be used to implement the functions of the switching device and the processing device in the above method embodiments, and thus also realize the beneficial effects of the above method embodiments.
  • the device may be a switching device and a processing device, and may also be a module (such as a chip) applied in the switching device and the processing device.
  • the device 800 includes a processing unit 810 and a transceiver unit 820 .
  • the device 800 is configured to implement the functions of the processing device in the method embodiment shown in FIG. 5 above.
  • the device 800 may include a module for implementing any function or operation of the processing device in the method embodiment shown in FIG. 5 above, and the module may be implemented in whole or in part by software, hardware, firmware or any combination thereof .
  • the processing unit 810 is used to determine the first rate, which is used to represent the unit data that the first tunnel can transmit data in a unit time
  • the first tunnel is used to transmit the enhanced common radio interface eCPRI data
  • the transceiver unit 820 is used to send the eCPRI data to the processing device at the first rate within the unit time through the first tunnel.
  • processing unit 810 and the transceiver unit 820 can be directly obtained by referring to the relevant descriptions in the method embodiment shown in FIG. 5 , and will not be repeated here.
  • the transceiver unit 820 is used to receive from the switching device the enhanced data sent by the switching device through the first tunnel at the first rate per unit time.
  • Type universal radio interface eCPRI data the first rate is used to indicate the unit data volume that the first tunnel can transmit data in the unit time, the first tunnel is used to transmit the eCPRI data; the processing unit 810 is used for the eCPRI The data is processed.
  • the switching device may establish a first tunnel with a first rate for transmitting eCPRI data, and send the eCPRI data to the processing device through the first tunnel, thereby obtaining a deterministic delay for transmitting the eCPRI data, The reliability of data transmission can be improved.
  • processing unit 810 and the transceiver unit 820 can be directly obtained by referring to the relevant descriptions in the method embodiment shown in FIG. 5 , and will not be repeated here.
  • the device 900 includes a processor 910 , and optionally further includes an interface circuit 920 .
  • the processor 910 and the interface circuit 920 are coupled to each other.
  • the interface circuit 920 may be a transceiver or an input-output interface.
  • the device 900 may further include a memory 930 for storing instructions executed by the processor 910, or storing input data required by the processor 910 to execute the instructions, or storing data generated by the processor 910 after executing the instructions.
  • the processor 910 is used to realize the function of the above-mentioned processing unit 810
  • the interface circuit 920 is used to realize the function of the above-mentioned acquisition unit 820 .
  • the processor 910 is used to realize the functions of the above-mentioned processing unit 610
  • the interface circuit 920 is used to realize the functions of the above-mentioned transceiver unit 620 .
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • memory can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable Programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art .
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (solid state disk, SSD).
  • a corresponds to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the above is an example of the three elements of A, B and C to illustrate the optional items of the project.
  • the expression includes at least one of the following: A, B, ..., and X"
  • the applicable entries for this item can also be obtained according to the aforementioned rules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据交换的方法、交换装置和处理装置,该方法包括:交换装置确定第一速率,该第一速率用于表示单位时间内第一隧道能够传输数据的单位数据量,该第一隧道用于传输增强型通用无线接口eCPRI数据;交换装置通过该第一隧道在该单位时间内以该第一速率向处理装置发送eCPRI数据,进而能够提高数据传输的可靠性。

Description

一种数据交换的方法、交换装置和处理装置
本申请要求于2021年12月31日提交中国国家知识产权局、申请号为202111677329.8、申请名称为“一种数据交换的方法、交换装置和处理装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术的领域,并且更具体地,涉及一种数据交换的方法、交换装置和处理装置。
背景技术
通信双方传输数据的确定性时延是实现数据传输可靠调度的一项重要参数。但是,在以太网结构的通信系统中,数据传输是基于报文或者数据包的接收、存储与转发的异步传输方式,通信双方之间不具有固定的通信链路,仅在需要发数据的时候进行发送。因此,在采用以太网结构的通信系统,例如,采用增强型通用无线接口(enhanced common public radio interface,eCPRI)的前传通信系统中,传输数据的时延的确定值无法被获得,对数据高可靠传输的需求无法被满足。
因此,亟需一种数据交换的方法、交换装置和处理装置,能够提高数据传输的可靠性。
发明内容
本申请提供一种数据交换的方法、交换装置和处理装置,能够提高数据传输的可靠性。
第一方面,提供了一种数据交换的方法,该方法可以由交换装置或交换装置中的芯片执行,该方法包括:交换装置确定第一速率,该第一速率用于表示单位时间内第一隧道能够传输数据的单位数据量,该第一隧道用于传输增强型通用无线接口eCPRI数据;该交换装置通过该第一隧道在该单位时间内以该第一速率向处理装置发送该eCPRI数据。
或者,交换装置建立具有第一速率的第一隧道,该第一速率用于表示单位时间内第一隧道能够传输数据单位数据量,该第一隧道用于传输eCPRI数据;交换装置通过第一隧道在该单位时间内以该第一速率向处理装置发送eCPRI数据。
从而,在本申请中,交换装置可以为传输eCPRI数据建立具有第一速率的第一隧道,通过该第一隧道向处理装置发送该eCPRI数据,进而能够获得传输该eCPRI数据的确定性时延,能够提高数据传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该交换装置确定第一数据量,该第一数据量为该单位数据量减去第二数据量的差值,该第二数据量为该单位时间内该eCPRI数据的数据量;该交换装置根据该第一数据量在该单位时间内发送非eCPRI数据。
从而,在本申请中,交换装置可以统计单位时间内eCPRI数据实际发送的数据量,进 而可以实现将原本分配给该eCPRI数据的资源中eCPRI数据未占用的部分用于发送非eCPRI数据,提高资源的利用率。
结合第一方面,在第一方面的某些实现方式中,该单位时间为时隙。
从而,在本申请中,eCPRI数据可以在时隙的粒度上进行传输,并且,eCPRI数据和非eCPRI数据可以复用时隙进行传输,提高数据传输的灵活性。
结合第一方面,在第一方面的某些实现方式中,该eCPRI数据包括第一数据和第二数据,该交换装置发送该eCPRI数据,包括:该交换装置向该第一处理装置发送该第一数据;该交换装置向该第二处理装置发送该第二数据。
从而,在本申请中,一个交换装置可以分别与多个处理装置直接连接进行数据传输,提高数据传输的灵活性。
结合第一方面,在第一方面的某些实现方式中,该eCPRI数据包括第一数据和第二数据,该交换装置发送该eCPRI数据,包括:该交换装置向该第一处理装置发送该eCPRI数据;该方法还包括:该交换装置向该第一处理装置发送指示信息,该指示信息用于指示该第一数据的传输路径和该第二数据的传输路径。
从而,在本申请中,一个交换装置可以与多个处理装置级联连接进行数据传输,提供系统数据传输的灵活性。
第二方面,提供了一种数据交换的方法,该方法可以由处理装置或处理装置中的芯片执行,该方法包括:处理装置接收来自交换装置的通过第一隧道在单位时间内以第一速率发送的增强型通用无线接口eCPRI数据,该第一速率用于表示该单位时间内该第一隧道能够传输数据的单位数据量,该第一隧道用于传输该eCPRI数据。
从而,在本申请中,交换装置可以为传输eCPRI数据建立具有第一速率的第一隧道,通过该第一隧道向处理装置发送该eCPRI数据,进而能够获得传输该eCPRI数据的确定性时延,能够提高数据传输的可靠性。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该处理装置接收来自该交换装置的在该单位时间内发送的非eCPRI数据。
结合第二方面,在第二方面的某些实现方式中,该单位时间为时隙。
结合第二方面,在第二方面的某些实现方式中,该eCPRI数据包括第一数据和第二数据,该处理装置接收来自该控制装置的该eCPRI数据,包括:该处理装置接收来自该交换装置的该eCPRI数据中的该第一数据。
结合第二方面,在第二方面的某些实现方式中,该eCPRI数据包括第一数据和第二数据,该方法还包括:该处理装置从该交换装置接收指示信息,该指示信息用于指示该第一数据的传输路径和该第二数据的传输路径。
第三方面,提供了一种交换装置,该装置包括处理单元和收发单元,该处理单元,用于确定第一速率,该第一速率用于表示单位时间内第一隧道能够传输数据的单位数据量,该第一隧道用于传输增强型通用无线接口eCPRI数据;该收发单元,用于通过该第一隧道在该单位时间内以该第一速率向处理装置发送该eCPRI数据。
从而,在本申请中,交换装置可以为传输eCPRI数据建立具有第一速率的第一隧道,通过该第一隧道向处理装置发送该eCPRI数据,进而能够获得传输该eCPRI数据的确定性时延,能够提高数据传输的可靠性。
结合第三方面,在第三方面的某些实现方式中,该处理单元,还用于确定第一数据量,该第一数据量为该单位数据量减去第二数据量的差值,该第二数据量为该单位时间内该eCPRI数据的数据量;该收发单元,还用于根据该第一数据量在该单位时间内发送非eCPRI数据。
结合第三方面,在第三方面的某些实现方式中,该单位时间为时隙。
结合第三方面,在第三方面的某些实现方式中,该eCPRI数据包括第一数据和第二数据,该收发单元,具体用于向该第一处理装置发送该第一数据;该收发单元,具体用于向该第二处理装置发送该第二数据。
结合第三方面,在第三方面的某些实现方式中,该eCPRI数据包括第一数据和第二数据,该收发单元,具体用于向该第一处理装置发送该eCPRI数据;该收发单元,还用于向该第一处理装置发送指示信息,该指示信息用于指示该第一数据的传输路径和该第二数据的传输路径。
第四方面,提供了一种处理装置,该装置包括处理单元和收发单元,该收发单元,用于从交换装置接收来自交换装置的通过第一隧道在单位时间内以第一速率发送的增强型通用无线接口eCPRI数据,该第一速率用于表示该单位时间内该第一隧道能够传输数据的单位数据量,该第一隧道用于传输该eCPRI数据;该处理单元用于对该eCPRI数据进行处理。
从而,在本申请中,交换装置可以为传输eCPRI数据建立具有第一速率的第一隧道,通过该第一隧道向处理装置发送该eCPRI数据,进而能够获得传输该eCPRI数据的确定性时延,能够提高数据传输的可靠性。
结合第四方面,在第四方面的某些实现方式中,该收发单元,还用于接收来自该交换装置的在该单位时间内发送的非eCPRI数据。
结合第四方面,在第四方面的某些实现方式中,该单位时间为时隙。
结合第四方面,在第四方面的某些实现方式中,该eCPRI数据包括第一数据和第二数据,该收发单元,具体用于接收来自该交换装置的该eCPRI数据中的该第一数据。
结合第四方面,在第四方面的某些实现方式中,该eCPRI数据包括第一数据和第二数据,该收发单元,还用于接收来自该交换装置的指示信息,该指示信息用于指示该第一数据的传输路径和该第二数据的传输路径。
第五方面,提供了一种通信装置,该装置可以包括处理单元、发送单元和接收单元。可选的,发送单元和接收单元还可以为收发单元。
当该装置是交换装置时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该装置执行第一方面的任一方法。当该装置是交换装置内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第一方面的任一方法。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该装置内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
当该装置是处理装置时,该处理单元可以是处理器,该发送单元和接收单元可以是收 发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该装置执行第二方面的任一方法。当该装置是处理装置内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第二方面的任一方法。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该装置内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第六方面,本申请提供了一种装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法,或者实现上述第二方面或第二方面中任一种可能实现方式中的方法。其中,该装置还包括存储器。其中,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为交换装置。当装置为交换装置时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于交换装置中的芯片或芯片系统。当该装置为配置于交换装置中的芯片或芯片系统时,该通信接口可以是输入/输出接口。
在一种实现方式中,该装置为处理装置。当装置为处理装置时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于处理装置中的芯片或芯片系统。当该装置为配置于了处理装置中的芯片或芯片系统时,该通信接口可以是输入/输出接口。
其中,该收发器可以为收发电路。其中,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面或第二方面中的任意可能的实现方式中的方法。
第八方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面或第二方面的任意可能的实现方式中的方法。
第十方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述第一方面或第二方面描述的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,提供一种通信系统,该系统包括第三方面或第四方面任意可能的实现方式中的装置。
在一些实现方式中,该交换装置为基带单元BU或BU中的模块或装置,处理装置为射频单元RU或RU中的模块或装置。
在另一些实现方式中,该处理装置为BU或BU中的模块或装置,交换装置为RU或RU中的模块或装置。
附图说明
图1是适用本申请实施例提供的一种通信系统的示意性结构图。
图2是本申请实施例适用的几种不同的基带处理划分方式的示意图。
图3是本申请实施例适用的多种组网系统的示意性结构图。
图4是本申请实施例适用的eCPRI协议网络架构的示意性结构图。
图5是本申请实施例提供的一种数据交换的方法的示意性流程图。
图6是eCPRI数据和非eCPRI数据带宽占用的示意图。
图7是本申请实施例提供的一种下行方向的交换系统的示意性结构图。
图8和图9是本申请实施例提供的可能的装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、频分双工(frequency division duplex,FDD)系统、时分双工(time division duplex,TDD)系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、第六代(6th generation,6G)系统或未来的通信系统等。本申请中所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。通信系统还可以是公共陆地移动网络(public land mobile network,PLMN)、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of things,IoT)通信系统、车联万物(vehicle to everything,V2X)通信系统、无人机(unmanned aerial vehicle,UAV)通信系统或者其他通信系统。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先结合图1详细说明本申请实施例的一个应用场景。
图1是本申请实施例适用的一种通信系统的示意性结构图。首先对该通信系统中可能涉及的装置进行说明。
1、射频单元(radio unit,RU)110:RU 110可以实现信号的中频处理、射频处理、双工等功能。例如,RU 110可以是射频拉远单元(remote radio unit,RRU)、有源天线处理单元(active antenna unit,AAU)或者其它具有中频信号、射频信号或者中射频信号处理能力的网元或通信装置。在采用增强型通用无线接口(enhanced common public radio interface,eCPRI)的通信系统中,RU 110中可以包括低层基带处理(baseband low,BBL)111,BBL 111可能包括的基带处理的功能将在图2中结合图2进行介绍。在本申请实施例中,RU 110中还可以包括交换单元,该交换单元可以实现各个装置之间报文的交换、分发、调度或控制等功能。
2、基带单元(baseband unit,BU)120:BU 120可以实现基带信号的处理功能。例如,BU 120可以是基带单元(baseband unit,BBU)、集中控制单元(central unit,CU)、分布式控制单元(distributed unit,DU)或者其它具有基带信号处理能力的网元或通信装置。其中,BU 120中可以包括高层基带处理(baseband high,BBH)121,BBH 121可能 包括的基带处理的功能将在图2中结合图2进行介绍。在本申请实施例中,BU 120中还可以包括交换单元,该交换单元可以实现各个装置之间报文的交换、分发、调度或控制等功能。
BU 120与RU 110之间的通信接口可以称之为前传接口,例如,该前传接口可以是eCPRI接口或者未来定义的其他用于连接BU 120和RU 110之间的接口。eCPRI接口可以采用多种基带处理划分方式,采用不同的基带处理划分方式,BBL 111和BBU 121分别可以具有不同的基带处理功能。
图2示出了几种不同的基带处理划分方式的示意图。参见图2,其中BBL可以是图1所示的BBL 111,BBH可以是图1所示的BBH 121。首先eCPRI接口可以采用方式1的基带划分方式进行划分,在方式1中,BBL在下行方向上可以具有快速傅里叶反变换(inverse fast fourier transformation,IFFT)和带循环前缀添加(cyclic prefix addition)的功能、模拟波束赋形(analog beam forming)、数模转换(digital to analog)的功能。BBL在上行方向上可以具有快速傅里叶变换(inverse fast transformation,FFT)和带循环前缀移除(cyclic prefix removal)、模拟波束赋形(analog beam forming)、模数转换(analog to digital)的功能。BBH在下行方向上可以具有编码(coding)、速率匹配(rate matching)、加扰(scrambling)、调制(modulation)、层映射(layer mapping)、预编码(pre-coding)、资源映射(resource element mapping)、数字波束赋形(digital beam forming)的功能。BBH在上行方向上可以具有解码(de-coding)、速率解匹配(rate de-matching)、解加扰(de-scrambling)、解调制(de-modulation)、信道估计(channel estimation)/均衡(equlization)和离散傅里叶反变化(inverse discrete Fourier transform,IDFT)、资源解映射(resource element de-mapping)、数字波束赋形(digital beam forming)的功能。
eCPRI接口也可以采用方式2的基带划分方式进行划分,在方式2中,与方式1相比,将下行方向上的预编码、资源映射、数字波束赋形的功能移动从BBH移至BBL中,将上行方向的资源解映射、数字波束赋形的功能从BBH移至BBL中。
应理解,eCPRI接口还可以采用其他基带划分方式。其中,基带划分可以在上行方向和下行方向上对称,也可以在上行方向和下行方向不对称,本申请对此不作特别限定。本申请实施例适用于各种基带划分方式的eCPRI接口的通信系统。
分布式基站一般包括至少一个BU和至少一个RU,每个RU对应一个扇区,提供单频段或多个频段的无线接入服务。以下结合图2对BU与RU之间的组网方式进行说明。
图3是本申请实施例适用的多种组网系统的示意性结构图,该系统包括BU 310,RU 320和RU 330。参见图3的(a),BU 310分别与RU 320,RU 330直接相连,形成直连型组网,BU与RU之间通过前传接口直接进行通信;参见图3的(b),BU 310与RU 320直接相连,RU 320与RU 330直接相连,形成级联型组网,BU 310与RU 320之间直接进行通信,BU 310与RU 330可以通过RU320透传或转发的方式进行通信。
以上仅是对本申请实施例适用的几种组网系统进行说明,本申请实施例还可以适用于其他RU和BU可以通信的组网系统,本申请对此不作特别限定。
采用eCPRI协议的前传通信系统中,BU和RU之间是采用以太网传输机制进行数据传输的。以下结合图4对一种eCPRI协议网络架构进行介绍。
图4示出了一种eCPRI协议网络架构的示意性结构图。在eCPRI协议层之上承载 eCPRI业务(eCPRI services),eCPRI业务包括用户数据(user data),实时控制(real-time control)和其他eCPRI业务(other eCPRI services)。eCPRI业务可以承载在传输控制协议/互联网协议(transmission control protocol/internet protocol,TCP/IP)层,也可以跳过TCP/IP层直接封装在以太网媒体介入控制(media access control,MAC)层。eCPRI业务无论是承载在TCP/IP层,还是承载在MAC层,都属于以太网结构,支持以太帧的传输。
由于eCPRI协议网络架构属于以太网结构,采用以太帧的形式进行数据的接收、存储与转发,不能获取确定性时延,不能满足对于数据高可靠传输的需求。因此,亟需一种数据交换的方法,能够提高数据传输的可靠性。
在下述实施例中,在下行方向上(eCPRI数据为下行数据时),交换装置可以为上述的BU或者是上述BU中的装置或模块,处理装置可以为上述的RU或者上述RU中的装置或模块。在上行方向上(eCPRI数据为上行数据时),交换装置可以是上述的RU或者是上述RU中的装置或模块,处理装置可以是上述的BU或者是上述BU中的装置或模块。
图5示出了一种数据交换的方法500的示意性流程图。
S501,交换装置确定第一速率,该第一速率用于表示单位时间内第一隧道能够传输数据的单位数据量,该第一隧道用于传输eCPRI数据。
eCPRI数据可以是以太帧中的有效数据,例如,用户面的用户数据,该用户数据在基带处理中或中频处理中可以呈现为模拟无线信道信号的数字化同相I和正交相位Q的IQ数据。
第一隧道可以是交换装置和处理装置之间面向连接的通信链路。该第一速率(也可以称之为带宽)可以表示单位时间内第一隧道传输数据的能力。
例如,交换装置可以为传输eCPRI数据在通信双方之间分配一个具有固定速率的第一隧道,或者说,分配一个具有固定速率的信道资源。该eCRRI数据在该第一隧道上以周期出现的时间单元为载体进行传输。从而,通信系统可以确定eCPRI数据传输的确定性时延。
在一种可能的实现方式中,交换装置可以采用电路交换的方式建立第一隧道。例如,该交换装置可以在交换装置内部建立一条以该第一速率传输eCPRI数据的电路通路,该电路通路与交换装置中用于发送数据的收发单元(例如eCPRI接口)相连。该eCPRI接口通过该电路通路获取eCPRI数据,并通过第一隧道以该第一速率发送该eCPRI数据。
可选地,该单位时间为时隙。
例如,交换装置可以将eCPRI数据映射到一个或多个时隙上,通过该eCPRI接口以时隙为载体发送eCPRI数据。
可选地,当单位时间内包括eCPRI数据时,交换装置确定该第一速率。或者说,当一个或多个单位时间内包括eCPRI数据时,交换装置建立该第一隧道。
例如,交换装置可以确定一个或多个时隙内是否包括eCPRI数据。当该一个或多个时隙内包括eCPRI数据时,交换装置建立用于传输eCPRI数据的第一隧道。当该一个或多个时隙内不包括eCPRI数据时,交换装置则不建立该第一隧道,还可以释放已经存在的第一隧道。在这种情况下,原本配置给第一隧道的第一速率可以用于传输其它数据。
可选地,交换装置根据一个或多个时间单元内eCPRI数据的数据量确定该第一速率。
例如,交换装置可以根据一个或多个时隙中每个时隙内的eCPRI数据的字节数的峰值 或平均值确定第一隧道的第一速率。需要说明的是,如果交换装置根据多个时隙中每个时隙内eCPRI数据的数据量确定该第一隧道的第一速率,那么第一隧道可以在该多个时隙内保持该第一速率传输eCPRI数据。
S502,交换装置通过该第一隧道在该时间单元内以该第一速率向处理装置发送该eCPRI数据,对应地,处理装置接收来自交换装置的通过该第一隧道在该时间单元内以该第一速率发送的该eCPRI数据。
例如,交换装置通过eCPRI接口在一个或多个时隙内以该第一速率通过该第一隧道发送该eCPRI数据。
在一种可能的实现方式中,如果eCPRI数据包括多种eCPRI业务的数据,或者包括与多个小区对应的数据等多种数据时,那么交换装置可以对该多种数据进行时分复用,或者说,交换装置可以通过该第一隧道采用时分复用的方式发送该eCPRI数据。
需要说明的是,当单位时间对应的用于传输eCPRI数据的第一隧道具有固定的速率时,该第一隧道在该单位时间内能够传输的单位数据量与该单位时间与该第一速率的乘积对应。但是,单位时间内承载的eCPRI数据的数据量可能会小于该第一隧道能够传输的单位数据量,换句话说,该eCPRI数据可能没有占满分配给它的第一速率。在这种情况下,该单位时间剩余的时间资源还可以用于传输其它数据,以下对此进行说明。
可选地,S503,交换装置确定第一数据量,该第一数据量为单位数据量减去第二数据量的差值,第二数据量为单位时间内eCPRI数据的数据量。
例如,交换装置可以根据第一速率确定一个时隙内可以承载的单位数据量,交换装置再确定该时隙承载eCPRI数据占用的数据量,该时隙还能够承载的数据量为该第一数据量。
可选地,S504,交换装置根据第一数据量在该单位时间内发送非eCPRI数据。
其中,非eCPRI数据可以是以太帧中的无效数据或协同数据,例如控制面的实时控制信令或者其它eCPRI业务等数据,例如前导码、帧间隔等。
应理解,交换装置可以发送第一数据量或者小于该第一数据量的非eCPRI数据。以下结合图6进行举例,图6示出了eCPRI数据和非eCPRI数据在一个时隙内传输的示意图。在该时隙内eCPRI数据以固定速率传输完成后,参见图6的(a)和参见图6的(b),该时隙的剩余资源可以用于发送非eCPRI数据;如果该时隙内eCPRI数据占满了整个时隙,参见图6的(c),此时,非eCPRI数据将不会占用该时隙传输。
另外,需要说明的是,交换装置可以向处理装置发送该非eCPRI数据,也可以向其他装置发送该非eCPRI数据。例如,eCPRI数据和非eCPRI数据都经过eCPRI接口进行传输,该第一隧道的第一速率占用了该eCPRI接口的全部或者部分第一速率。当第一隧道的第一速率未被占满时,即eCPRI接口单位时间内原本分配给eCPRI数据传输的资源未被占满时,非eCPRI数据可以占用该部分资源通过该eCPRI接口传输。
在一种可能的实现方式中,该非eCPRI数据可以采用以太网交换,或者说分组交换的方式进行传输。应理解,与电路交换不同,在分组交换中,通信双方并不存在具有固定速率的用于传输该非eCPRI数据的通信隧道,交换装置可以仅在需要发送非eCPRI数据时,再组装数据进行发送。因此,当交换装置发送eCPRI数据时,eCPRI接口可以通过具有固定速率的电路通路获取eCPRI数据,在第一隧道以该固定速率发送eCPRI数据,可以理解为是一种同步数据发送的模式。当交换装置发送非eCPRI数据时,eCPRI接口在需要发 送非eCPRI数据时,再组装数据进行发送,可以理解为是一种异步数据传输的模式。
在一种可能的实现方式中,交换装置可以与多个处理装置相连接,eCPRI数据中的不同数据可以发送给不同的处理装置。以下对此进行介绍。
在第一实现方式中,交换装置为BU、第一处理装置和第二处理装置均为RU,它们之间采用图3的(a)所示的直连型组网方式进行连接。eCPRI数据包括第一数据和第二数据,在步骤S502中,交换装置向第一处理装置发送第一数据,交换装置向第二处理装置发送第二数据。
在第二实现方式中,交换装置为BU、第一处理装置和第二处理装置均为RU,它们之间采用图3的(b)所示的级联型组网方式进行连接。其中,第一处理装置与交换装置直接相连,第二处理装置通过第一处理装置与交换装置相连。eCPRI数据包括第一数据和第二数据,在步骤S502中,交换装置向第一处理装置发送eCPRI数据和指示信息,该指示信息用于指示第一数据的传输路径和第二数据的传输路径。
例如,该指示信息可以指示第一处理装置接收第一数据,第二处理装置接收第二数据。
或者再例如,该指示信息可以指示是第一数据对应的目标地址和第二数据对应的目标地址,第一处理装置接收到eCPRI数据,根据指示信息从eCPRI数据中获取第一数据。第一处理装置可以将eCPRI数据和指示信息发送给第二处理装置,第二处理装置根据指示信息从eCPRI数据中获取第二数据。第一处理装置也可以提取第一数据后,将eCPRI数据中的剩余数据和指示信息发送给第二处理装置,第二处理装置从第一处理装置接收该第二数据。
以上对交换装置向处理装置发送eCPRI数据进行了介绍,为了更加清楚的描述交换装置与处理装置之间传输eCPRI数据的方式,以下以交换装置和处理装置分别是BU和RU的交换系统进行举例说明。
图7示出了一种下行方向的交换系统700的示意性结构图。
该交换系统700包括BU 710(交换装置中的一例),RU 720(处理装置中的一例)。
其中,该BU 710包括电路交换模块711和收发单元712,电路交换模块711用于确定第一速率,该第一速率用于表示单位时间内第一隧道能够传输数据的单位数据量,第一隧道用于传输eCPRI数据;该收发单元712用于通过该第一隧道在该时间单元内以该第一速率向处理装置发送该eCPRI数据。其中,电路交换模块可以是IQ交换机,在确定第一速率时,可以实现增减速率细粒度的速率管理。
可选地,该BU 710还包括统计复用模块713,该统计复用模块713用于确定第一数据量,第一数据量为单位数据量减去第二数据量的差值,第二数据量为单位时间内eCPRI数据的数据量。该收发单元712还用于根据第一数据量在单位时间内发送非eCPRI数据。
可选地,该BU 710还包括以太网交换模块714,该以太网交换模块714用于确定在该单位时间内发送的非eCPRI数据。例如,该以太网交换模块714对非eCPRI数据进行分组组装,以确定在该单位时间内发送的非eCPRI数据。
可选地,该BU 710还包括基带处理模块715,该基带处理模块715可以实现上述BBH的功能。
其中,电路交换模块711、统计复用模块713、以太网交换模块714和基带处理模块715可以统一称之为处理单元,其具体的实现方式可参见方法500中的描述,为了简便, 在此不再赘述。
在一种可能的实现方式中,电路交换模块711与基带处理模块715之间电连接。
例如,电路交换模块711与基带处理模块715封装在同一个硬件模块中。
在另一种可能的实现方式中,电路交换模块711与基带处理模块715之间以太网链接。
或者说,电路交换模块711与基带处理模块715之间光纤连接。
例如,电路交换模块与基带处理模块封装在不同的硬件模块中,不同的硬件模块之间以光纤相连接。
类似地,RU 720包括处理单元721和收发单元722,该收发单元722用于接收来自交换装置的通过该第一隧道在该时间单元内以该第一速率发送的该eCPRI数据,该处理单元721用于对eCPRI数据进行处理,例如,可以实现图2所述的RU的处理功能。其具体的实现方式可参见方法500中的描述,为了简便,在此不再赘述。
可见,电路交换模块715可以在BU 710和RU 720之间建立用于传输eCPRI数据的第一隧道,eCPRI数据在单位时间内以固定速率在该第一隧道上传输。该第一隧道可以连接BU 710的收发单元712和RU 720的收发单元722,收发单元712和收发单元722可以是对应的eCPRI接口。该收发单元712可以从具有该固定速率的电路通路获取该eCPRI数据。其中,该电路通路可以由电路交换模块建立。另外,需要说明的是,电路交换模块715可以在BU 710的内部建立用于传输eCPRI数据的通路,该通路连接基带处理模块715、统计复用模块713、电路交换模块711和收发单元712,当连接的模块全部以电连接时,该通路由电路通路组成,当连接的模块部署在以光纤连接的不同硬件模块中时,该通路可以由电路和/或光纤组成,本申请对此不作特别限定。其中,统计复用模块713可以统计通道中单位时间内的eCPRI数据的第二数据量,并确定第一数据量,以实现以太网交换模块714可以根据第一数据量发送非eCPRI数据。
图8和图9为本申请实施例提供的可能的装置的结构示意图。这些装置可以用于实现上述方法实施例中交换装置和处理装置的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该装置可以是交换装置和处理装置,还可以是应用于交换装置和处理装置中的模块(如芯片)。
如图8所示,装置800包括处理单元810和收发单元820。装置800用于实现上述图5中所示的方法实施例中处理装置的功能。或者,装置800可以包括用于实现上述图5中所示的方法实施例中处理装置的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当装置800用于实现图5所示的方法实施例中交换装置的功能时,处理单元810用于确定第一速率,该第一速率用于表示单位时间内第一隧道能够传输数据的单位数据量,该第一隧道用于传输增强型通用无线接口eCPRI数据;该收发单元820用于通过该第一隧道在该单位时间内以该第一速率向处理装置发送该eCPRI数据。
有关上述处理单元810和收发单元820更详细的描述可以直接参考图5所示的方法实施例中相关描述直接得到,这里不加赘述。
当装置800用于实现图5所示的方法实施例中处理装置的功能时,该收发单元820用于从交换装置接收来自交换装置的通过第一隧道在单位时间内以第一速率发送的增强型通用无线接口eCPRI数据,该第一速率用于表示该单位时间内该第一隧道能够传输数据的 单位数据量,该第一隧道用于传输该eCPRI数据;该处理单元810用于对该eCPRI数据进行处理。
从而,在本申请中,交换装置可以为传输eCPRI数据建立具有第一速率的第一隧道,通过该第一隧道向处理装置发送该eCPRI数据,进而能够获得传输该eCPRI数据的确定性时延,能够提高数据传输的可靠性。
有关上述处理单元810和收发单元820更详细的描述可以直接参考图5所示的方法实施例中相关描述直接得到,这里不加赘述。
如图9所示,装置900包括处理器910,可选地还包括接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器或输入输出接口。可选的,装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。
当装置900用于实现图5的方法实施例中交换装置的功能时,处理器910用于实现上述处理单元810的功能,接口电路920用于实现上述获取单元820的功能。
当装置900用于实现图5的方法实施例中处理装置的功能时,处理器910用于实现上述处理单元610的功能,接口电路920用于实现上述收发单元620的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中存储器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (22)

  1. 一种数据交换的方法,其特征在于,所述方法包括:
    交换装置确定第一速率,所述第一速率用于表示单位时间内第一隧道能够传输数据的单位数据量,所述第一隧道用于传输增强型通用无线接口eCPRI数据;
    所述交换装置通过所述第一隧道在所述单位时间内以所述第一速率向处理装置发送所述eCPRI数据。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述交换装置确定第一数据量,所述第一数据量为所述单位数据量减去第二数据量的差值,所述第二数据量为所述单位时间内所述eCPRI数据的数据量;
    所述交换装置根据所述第一数据量在所述单位时间内发送非eCPRI数据。
  3. 如权利要求1或2所述的方法,其特征在于,所述单位时间为时隙。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述eCPRI数据包括第一数据和第二数据,所述交换装置发送所述eCPRI数据,包括:
    所述交换装置向所述第一处理装置发送所述第一数据;
    所述交换装置向所述第二处理装置发送所述第二数据。
  5. 如权利要求1至3中任一项所述的方法,其特征在于,所述eCPRI数据包括第一数据和第二数据,所述交换装置发送所述eCPRI数据,包括:
    所述交换装置向所述第一处理装置发送所述eCPRI数据;
    所述方法还包括:
    所述交换装置向所述第一处理装置发送指示信息,所述指示信息用于指示所述第一数据的传输路径和所述第二数据的传输路径。
  6. 一种数据交换的方法,其特征在于,所述方法包括:
    处理装置接收来自交换装置的通过第一隧道在单位时间内以第一速率发送的增强型通用无线接口eCPRI数据,所述第一速率用于表示所述单位时间内所述第一隧道能够传输数据的单位数据量,所述第一隧道用于传输所述eCPRI数据。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述处理装置接收来自所述交换装置的在所述单位时间内发送的非eCPRI数据。
  8. 如权利要求6或7所述的方法,其特征在于,所述单位时间为时隙。
  9. 如权利要求6至8中任一项所述的方法,其特征在于,所述eCPRI数据包括第一数据和第二数据,所述处理装置接收来自所述控制装置的所述eCPRI数据,包括:
    所述处理装置接收来自所述交换装置的所述eCPRI数据中的所述第一数据。
  10. 如权利要求6至8中任一项所述的方法,其特征在于,所述eCPRI数据包括第一数据和第二数据,所述方法还包括:
    所述处理装置从所述交换装置接收指示信息,所述指示信息用于指示所述第一数据的传输路径和所述第二数据的传输路径。
  11. 一种交换装置,其特征在于,所述装置包括处理单元和收发单元,
    所述处理单元,用于确定第一速率,所述第一速率用于表示单位时间内第一隧道能够 传输数据的单位数据量,所述第一隧道用于传输增强型通用无线接口eCPRI数据;
    所述收发单元,用于通过所述第一隧道在所述单位时间内以所述第一速率向处理装置发送所述eCPRI数据。
  12. 如权利要求11所述的装置,其特征在于,
    所述处理单元,还用于确定第一数据量,所述第一数据量为所述单位数据量减去第二数据量的差值,所述第二数据量为所述单位时间内所述eCPRI数据的数据量;
    所述收发单元,还用于根据所述第一数据量在所述单位时间内发送非eCPRI数据。
  13. 如权利要求11或12所述的装置,其特征在于,所述单位时间为时隙。
  14. 如权利要求10至14中任一项所述的装置,其特征在于,所述eCPRI数据包括第一数据和第二数据,
    所述收发单元,具体用于向所述第一处理装置发送所述第一数据;
    所述收发单元,具体用于向所述第二处理装置发送所述第二数据。
  15. 如权利要求10至14中任一项所述的装置,其特征在于,所述eCPRI数据包括第一数据和第二数据,
    所述收发单元,具体用于向所述第一处理装置发送所述eCPRI数据;
    所述收发单元,还用于向所述第一处理装置发送指示信息,所述指示信息用于指示所述第一数据的传输路径和所述第二数据的传输路径。
  16. 一种处理装置,其特征在于,所述装置包括处理单元和收发单元,
    所述收发单元,用于从交换装置接收来自交换装置的通过第一隧道在单位时间内以第一速率发送的增强型通用无线接口eCPRI数据,所述第一速率用于表示所述单位时间内所述第一隧道能够传输数据的单位数据量,所述第一隧道用于传输所述eCPRI数据;
    所述处理单元,用于对所述eCPRI数据进行处理。
  17. 如权利要求16所述的处理装置,其特征在于,
    所述收发单元,还用于接收来自所述交换装置的在所述单位时间内发送的非eCPRI数据。
  18. 如权利要求16或17所述的装置,其特征在于,所述单位时间为时隙。
  19. 如权利要求16至18中任一项所述的装置,所述eCPRI数据包括第一数据和第二数据,其特征在于,
    所述收发单元,具体用于接收来自所述交换装置的所述eCPRI数据中的所述第一数据。
  20. 如权利要求16至18中任一项所述的装置,所述eCPRI数据包括第一数据和第二数据,
    所述收发单元,还用于接收来自所述交换装置的指示信息,所述指示信息用于指示所述第一数据的传输路径和所述第二数据的传输路径。
  21. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述计算机程序或指令,以实现权利要求1至5,或者权利要求6至10中任一所述的方法。
  22. 一种数据交换的系统,其特征在于,包括:如权利要求11至15中任一所述的交换装置和如权利要求16至20中任一所述的处理装置。
PCT/CN2022/140212 2021-12-31 2022-12-20 一种数据交换的方法、交换装置和处理装置 WO2023125124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111677329.8 2021-12-31
CN202111677329.8A CN114448566B (zh) 2021-12-31 2021-12-31 一种数据交换的方法、交换装置和处理装置

Publications (1)

Publication Number Publication Date
WO2023125124A1 true WO2023125124A1 (zh) 2023-07-06

Family

ID=81365167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140212 WO2023125124A1 (zh) 2021-12-31 2022-12-20 一种数据交换的方法、交换装置和处理装置

Country Status (2)

Country Link
CN (1) CN114448566B (zh)
WO (1) WO2023125124A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448566B (zh) * 2021-12-31 2024-07-05 华为技术有限公司 一种数据交换的方法、交换装置和处理装置
CN116193056B (zh) * 2023-04-06 2023-09-29 广州美凯信息技术股份有限公司 一种多速率线路交换方法及交换系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909418A (zh) * 2006-08-01 2007-02-07 华为技术有限公司 通用无线接口的时钟分配装置及实现速率切换的方法
US20150281983A1 (en) * 2013-02-28 2015-10-01 Agilent Technologies, Inc. Method and Apparatus for Determining the Configuration of a Cellular Transmission System
CN106899342A (zh) * 2016-12-27 2017-06-27 中国移动通信有限公司研究院 一种数据封装、传输方法及装置
CN112713965A (zh) * 2020-12-30 2021-04-27 网络通信与安全紫金山实验室 一种基于cpri协议的速率匹配设计方法、系统及相关装置
CN114448566A (zh) * 2021-12-31 2022-05-06 华为技术有限公司 一种数据交换的方法、交换装置和处理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009673B1 (en) * 2017-09-15 2018-06-26 Futurewei Technologies, Inc. Efficient CPRI transmission
US20200113016A1 (en) * 2018-10-05 2020-04-09 Digimetrik Llc CPRI/eCPRI Data Transmission Method in Cloud Radio Access Network
CN113647068B (zh) * 2018-12-17 2024-05-10 瑞典爱立信有限公司 用于在eCPRI网络中进行分组延迟管理的方法和设备
EP3963898A1 (en) * 2019-04-29 2022-03-09 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for controlling transmission of an upstream packet traffic in a tdm pon-based fronthaul
CN113114404B (zh) * 2021-04-01 2023-06-02 四川创智联恒科技有限公司 一种通用eCPRI接口拓展装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909418A (zh) * 2006-08-01 2007-02-07 华为技术有限公司 通用无线接口的时钟分配装置及实现速率切换的方法
US20150281983A1 (en) * 2013-02-28 2015-10-01 Agilent Technologies, Inc. Method and Apparatus for Determining the Configuration of a Cellular Transmission System
CN106899342A (zh) * 2016-12-27 2017-06-27 中国移动通信有限公司研究院 一种数据封装、传输方法及装置
CN112713965A (zh) * 2020-12-30 2021-04-27 网络通信与安全紫金山实验室 一种基于cpri协议的速率匹配设计方法、系统及相关装置
CN114448566A (zh) * 2021-12-31 2022-05-06 华为技术有限公司 一种数据交换的方法、交换装置和处理装置

Also Published As

Publication number Publication date
CN114448566A (zh) 2022-05-06
CN114448566B (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
WO2023125124A1 (zh) 一种数据交换的方法、交换装置和处理装置
US11224050B2 (en) Method and apparatus for allocating dynamic resources of integrated access and backhaul nodes in wireless communication system
WO2020143828A1 (zh) 资源配置的方法和装置
CN111567018B (zh) 无线通信系统中用于分离物理层功能的方法
US11528710B2 (en) Time domain resource indication method in relay network, network device, and user equipment
US11528640B2 (en) Base station device, and method for transmitting data and signal
WO2020221321A1 (zh) 通信方法以及通信装置
WO2020233420A1 (zh) 时隙格式指示的方法和通信装置
WO2019096030A1 (zh) 跳频处理方法及设备
WO2021159467A1 (zh) 一种资源的配置方法及网络设备
EP4271079A1 (en) Terminal and communication method
WO2021159503A1 (zh) 资源配置方法和装置
WO2023124815A1 (zh) 无线设备、资源管理方法以及通信系统
CN114465981B (zh) 数据传输方法以及通信装置
WO2022218063A1 (zh) 一种随机接入的方法、通信装置及通信系统
US20230276411A1 (en) Method and device for transmitting or receiving data by using dual connectivity of iab node in wireless communication system
CN111182633A (zh) 一种通信方法及装置
CN111133792A (zh) 基站设备和数据分组发送方法
US11419132B2 (en) Network device and method for data transmission over common public radio interface
WO2022022482A1 (zh) 一种信息传输方法和通信装置
US20230246970A1 (en) Apparatus, system, and method of communicating end-to-end (e2e) quality of service (qos) information
WO2022021447A1 (zh) 一种通信方法和通信装置
WO2023051182A1 (zh) 一种通信方法及装置
WO2024061014A1 (zh) 一种通信方法及装置
WO2023134678A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914378

Country of ref document: EP

Kind code of ref document: A1