WO2023125110A1 - 用于电磁阀的电流标定方法、装置、处理器及工程机械 - Google Patents

用于电磁阀的电流标定方法、装置、处理器及工程机械 Download PDF

Info

Publication number
WO2023125110A1
WO2023125110A1 PCT/CN2022/140047 CN2022140047W WO2023125110A1 WO 2023125110 A1 WO2023125110 A1 WO 2023125110A1 CN 2022140047 W CN2022140047 W CN 2022140047W WO 2023125110 A1 WO2023125110 A1 WO 2023125110A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
solenoid valve
threshold
step size
amplitude
Prior art date
Application number
PCT/CN2022/140047
Other languages
English (en)
French (fr)
Inventor
曹宇
刘永赞
郭纪梅
田炯明
赵焜煜
Original Assignee
中联重科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司 filed Critical 中联重科股份有限公司
Publication of WO2023125110A1 publication Critical patent/WO2023125110A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor

Definitions

  • the present invention relates to the technical field of construction machinery, in particular to a current calibration method, device, processor, construction machinery and machine-readable storage medium for solenoid valves.
  • the proportional solenoid valve has the characteristic that the control current is proportional to the flow rate of the hydraulic system, which is convenient for the stepless speed regulation of the controlled object, so it is widely used in the field of construction machinery such as cranes. Before it is put into normal use, it is usually necessary to calibrate the minimum current to open the proportional solenoid valve, so that the opening of the solenoid valve can be controlled according to the set fixed curve to proportionally adjust the system flow to achieve the purpose of proportional speed regulation.
  • the existing current calibration method usually uses the detection of the pressure of the hydraulic system to determine whether the minimum current speed of the solenoid valve is satisfied. When the determination condition is not satisfied, the opening current is increased according to the set step size until the determination condition is met. However, when the pressure of the hydraulic system is reached, the solenoid valve may have been opened, but the actuator controlled by the solenoid valve has not overcome the static friction movement, resulting in inaccurate calibrated minimum current; and the setting step is difficult to select, the step length If the step size is too large, the calibration speed is fast but the calibration accuracy is not good. If the step size is too small, the calibration accuracy is good but the calibration speed is too slow, and it is difficult to balance efficiency and accuracy.
  • the purpose of the present invention is to overcome the problem that the calibrated minimum current in the prior art is not accurate and it is difficult to balance efficiency and precision, and provides a current calibration method, device, processor, engineering machinery and machine can be used for solenoid valves. Read storage media to solve the above problems.
  • the first aspect of the present application provides a current calibration method for solenoid valves, including:
  • the initial opening current is subtracted from the preset step size to update the opening current, and the updated opening current is loaded to the solenoid valve;
  • the updated opening current is subtracted from the determined step size to update the opening current again, and the updated opening current is loaded to the solenoid valve to judge whether the action amplitude reaches the amplitude threshold again ;
  • the current turn-on current is determined as the minimum current calibration value
  • the currently determined step size is obtained by shrinking the last determined step size.
  • the current calibration method also includes:
  • the initial opening current is added to the preset step size to update the opening current, and the updated opening current is loaded to the solenoid valve until the action amplitude reaches the amplitude threshold for the first time.
  • the determined step size is subtracted from the updated turn-on current to update the turn-on current, and the updated turn-on current is loaded to the solenoid valve.
  • the current calibration method also includes:
  • the current calibration method also includes:
  • the last turn-on current is determined as the minimum current calibration value.
  • the current calibration method also includes:
  • the current calibration method also includes:
  • the solenoid valve is controlled to be de-energized and kept for the first preset time.
  • the action range of the actuator controlled by the solenoid valve is obtained, including:
  • the current calibration method before the initial opening current is applied to the solenoid valve, the current calibration method also includes:
  • the reduction factor used to reduce the step size is 0.5.
  • the second aspect of the present application provides a processor configured to execute the above current calibration method for a solenoid valve.
  • the third aspect of the present application provides a current calibration device for solenoid valves, including:
  • the loading module is used to load the initial opening current to the solenoid valve
  • An acquisition module including detection equipment, used to acquire the range of action of the actuator controlled by the solenoid valve;
  • the first judging module is used to judge whether the range of motion reaches the range threshold for the first time
  • the first update module is used to subtract the preset step size from the initial opening current to update the opening current if the action amplitude reaches the amplitude threshold for the first time, and load the updated opening current to the solenoid valve;
  • the second judging module is used to rejudge whether the motion range reaches the range threshold
  • the second update module is used to subtract the determined step size from the updated opening current to update the opening current again if it is re-judged that the action range reaches the amplitude threshold, and load the updated opening current to the solenoid valve again to Determine whether the range of motion reaches the range threshold;
  • the first determination module is used to determine the current turn-on current as the minimum current calibration value when the action amplitude reaches the amplitude threshold and the currently determined step size is smaller than the step size threshold;
  • the currently determined step size is obtained by shrinking the last determined step size.
  • the current calibration device also includes:
  • the third update module is used to add the initial opening current to the preset step size to update the opening current if the action range does not reach the amplitude threshold for the first time, and load the updated opening current to the solenoid valve until the action range is the first Once the amplitude threshold is reached, the updated turn-on current is updated by subtracting the determined step size from the updated turn-on current, and the solenoid valve is loaded with the updated turn-on current.
  • the current calibration device also includes:
  • the fourth update module is used to add the updated opening current to the determined step size to update the opening current again if it is re-judged that the action amplitude does not reach the amplitude threshold, and load the updated opening current to the solenoid valve to It is judged again whether the range of motion reaches the range threshold.
  • the current calibration device also includes:
  • the second determining module is used to determine the last turn-on current as the minimum current calibration value when the action amplitude does not reach the amplitude threshold and the currently determined step size is less than the step size threshold.
  • the current calibration device also includes:
  • the receiving module is used for receiving the current calibration instruction.
  • the detection equipment includes a rotary displacement encoder for detecting the rotary displacement, a winch displacement encoder for detecting the displacement of the winch, a variable amplitude angle sensor for detecting the variable amplitude angle, and a telescopic sensor for detecting the telescopic displacement of the oil cylinder. at least one of displacement encoders.
  • the fourth aspect of the present application provides a construction machine, including:
  • the electromagnetic valve The electromagnetic valve
  • the fifth aspect of the present application provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, and when the instructions are executed by a processor, the processor is configured to execute the above-mentioned current calibration method for a solenoid valve .
  • the action range reaches the amplitude threshold
  • it will update Subtract the determined step from the final opening current to update the opening current again, and load the updated opening current to the solenoid valve again to judge whether the action range reaches the amplitude threshold, repeat the above process continuously, and gradually shrink during the repetition process step, until the action amplitude reaches the amplitude threshold and the currently determined step is smaller than the step threshold, the current opening current is determined as the minimum current calibration value.
  • Fig. 1 is a schematic flow chart of a current calibration method for a solenoid valve provided in an embodiment of the present application
  • Fig. 2 is another schematic flow chart of the current calibration method for the solenoid valve provided in the embodiment of the present application;
  • Fig. 3 is a schematic flow chart of the practical application of the current calibration method for the solenoid valve provided in the embodiment of the present application;
  • FIG. 4 is a schematic structural view of a current calibration device for a solenoid valve provided in an embodiment of the present application
  • Fig. 5 is another structural schematic diagram of a current calibration device for a solenoid valve provided in an embodiment of the present application
  • FIG. 6 is an internal structural diagram of a computer device provided in an embodiment of the present application.
  • the first judgment module 1004.
  • the first update module 1003.
  • the first determination module 1007.
  • the third update module 1007.
  • a receiving module 1011. A receiving module.
  • FIG. 1 is a schematic flowchart of a current calibration method for a solenoid valve provided in an embodiment of the present application. As shown in Figure 1, in an embodiment of the present application, a current calibration method for a solenoid valve is provided, including the following steps:
  • Step S110 Loading an initial opening current to the solenoid valve
  • Step S120 Obtain the range of action of the actuator controlled by the solenoid valve
  • Step S130 judging whether the motion amplitude reaches the amplitude threshold for the first time
  • Step S140 If the action amplitude reaches the amplitude threshold for the first time, subtract the preset step size from the initial opening current to update the opening current, and load the updated opening current to the solenoid valve;
  • Step S150 re-judging whether the motion range reaches the range threshold
  • Step S160 If it is judged again that the action range reaches the amplitude threshold, subtract the determined step from the updated opening current to update the opening current again, and load the updated opening current to the solenoid valve to judge again whether the action range is Amplitude threshold reached;
  • Step S170 When the motion amplitude reaches the amplitude threshold and the currently determined step size is smaller than the step size threshold, determine the current turn-on current as the minimum current calibration value; wherein, the currently determined step size is the step size determined last time It is obtained by shrinking on the basis of .
  • the initial turn-on current can be set to any value, or can be set according to experimental data, for example, it can be set to 100mA.
  • the actuator controlled by the solenoid valve can be a rotary motor, hoist, luffing cylinder, telescopic cylinder, etc.
  • the actuators controlled by the solenoid valve are different, the actuators that need to be obtained
  • the actuator when the actuator is a rotary motor, the rotary displacement of the rotary motor can be obtained; when the actuator is a hoist, the lifting displacement of the hoist can be obtained; when the actuator is a luffing cylinder , the luffing angle of the luffing cylinder can be obtained; when the actuator is a telescopic cylinder, the telescopic displacement of the telescopic cylinder can be obtained.
  • the amplitude threshold is the minimum range of motion when the actuator moves against static friction, which can be set according to actual experience or experimental data. It can be understood that the range of motion of the actuator is the first when the actuator moves against static friction for the first time. times the amplitude threshold is reached.
  • the preset step size can be set to a relatively large value, for example, it can be set to 50mA. It can be understood that if it is judged that the action amplitude reaches the amplitude threshold for the first time, it indicates that the initial opening current is greater than the opening current of the solenoid valve. The minimum current value, but the initial turn-on current may be relatively far away from the minimum current value. At this time, a relatively large preset step size can be subtracted from the initial turn-on current to update the turn-on current, so that the updated turn-on current can quickly approach the minimum current value. minimum current value. Then in step S150, it is re-judged whether the motion amplitude reaches the amplitude threshold.
  • step S160 if it is re-judged that the action amplitude reaches the amplitude threshold value, it indicates that the updated opening current is still greater than the minimum current value for opening the solenoid valve, but the updated opening current is already relatively close to the minimum current value, at this time
  • the updated turn-on current may be subtracted by a relatively small determined step size to update the turn-on current again.
  • the step size threshold can be set according to the actual accuracy requirements. By continuously repeating the above process, and gradually reducing the step size during the repetition process, until the action range reaches the amplitude threshold and the currently determined step size is smaller than the step size threshold, that is The current turn-on current may be determined as the minimum current scaling value.
  • FIG. 2 is another schematic flow chart of a current calibration method for a solenoid valve provided in an embodiment of the present application. As shown in Figure 2, the difference from the above-mentioned embodiment is that the current calibration method may also include:
  • Step S141 If the action amplitude does not reach the amplitude threshold for the first time, add the initial opening current to the preset step size to update the opening current, and load the updated opening current to the solenoid valve until the action amplitude reaches the amplitude threshold for the first time threshold value, subtract the determined step size from the updated opening current to update the opening current, and load the updated opening current to the solenoid valve.
  • step S141 if it is determined that the amplitude of the action has not reached the amplitude threshold for the first time, it indicates that the initial opening current is less than the minimum current value for opening the solenoid valve, and the initial opening current may be relatively far from the minimum current value.
  • the difference from the above embodiment is that the current calibration method may further include:
  • Step S161 If it is re-judged that the action amplitude has not reached the amplitude threshold, add the updated opening current to the determined step size to update the opening current again, and load the updated opening current to the solenoid valve to judge the action amplitude again Whether the amplitude threshold was reached.
  • step S161 if it is re-judged that the action amplitude has not reached the amplitude threshold, it indicates that the updated opening current is smaller than the minimum current value for opening the solenoid valve, but the updated opening current is already relatively close to the minimum current value , at this time, the updated opening current can be added with a relatively small determined step size to update the opening current again, and the updated opening current can be loaded to the solenoid valve to judge whether the action amplitude reaches the amplitude threshold again.
  • the difference from the above embodiment is that the current calibration method may further include:
  • Step S180 In the case that the action amplitude does not reach the amplitude threshold and the currently determined step size is smaller than the step size threshold, determine the last turn-on current as the minimum current calibration value.
  • step S180 after the updated opening current is applied to the solenoid valve last time, if it is re-judged that the action amplitude reaches the amplitude threshold, it is necessary to subtract the determined step from the updated opening current to update the opening current again. current, and load the re-updated opening current to the solenoid valve to judge whether the action amplitude reaches the amplitude threshold again. At this time, it may be judged that the action amplitude has not reached the amplitude threshold and the currently determined step size is smaller than the step threshold value. Then Just use the last opening current directly as the current calibration value of the solenoid valve.
  • the last turn-on current is greater than the minimum current value for turning on the solenoid valve, and the error between the last turn-on current and the minimum current value does not exceed the currently determined step size, that is, does not exceed the set step size threshold, Can meet the accuracy requirements.
  • the current calibration method may also include:
  • the termination threshold is the current value when a fault occurs in the process of loading current to the solenoid valve, causing any current actuator to fail to produce action.
  • the current opening current reaches the termination threshold, it is determined that the calibration has failed. Terminates the current calibration process. It can be understood that the current turn-on current may reach the termination threshold only after the turn-on current is increased, so the above steps do not need to be performed when the turn-on current is reduced.
  • the current calibration method may further include: when the motion amplitude reaches the amplitude threshold, controlling the solenoid valve to be powered off and maintaining it for a first preset time.
  • the solenoid valve can be controlled to be powered off and kept for the first preset time to ensure that the actuator can return to the initial position, avoiding
  • an error occurs when judging whether the action amplitude reaches the amplitude threshold. It can be understood that when the action amplitude reaches the amplitude threshold, it is necessary to control the power-off of the solenoid valve every time and keep it for the first preset time before loading the updated opening current to the solenoid valve to ensure the accuracy of current calibration .
  • obtaining the motion range of the actuator controlled by the solenoid valve in step S120 may include: obtaining the motion range of the actuator controlled by the solenoid valve after a second preset time elapses.
  • the action range of the actuator controlled by the solenoid valve is obtained, so that the hydraulic system has enough response time to drive the actuator to move and ensure the current calibration accuracy.
  • the current calibration method may further include: receiving a current calibration instruction.
  • a current calibration instruction input by a user through an input device may be received, for example, an operation instruction is pressed through a calibration button on a human-computer interaction interface, and then the current calibration process starts.
  • the reduction factor used to reduce the step size is 0.5. It can be understood that the currently determined step size is half of the last determined step size.
  • FIG. 3 is a schematic flowchart of the practical application of the current calibration method for the solenoid valve provided in the embodiment of the present application.
  • the current calibration method may include the following steps:
  • Step S1 Determine whether the system is running normally, if it is running normally, go to step S2, otherwise go to step S1.
  • judging whether the system operates normally may include judging whether the motion amplitude signal of the actuator can be obtained normally, whether the deployment posture of the actuator meets the requirements, and the like.
  • Step S2 Judging whether the minimum current calibration command is received, if so, go to step S3, otherwise go to step S2. Specifically, whether the minimum current calibration instruction is received can be judged by whether the calibration button on the human-computer interaction interface is pressed.
  • Step S3 Initialize the calibration parameters minimum current calibration value I 1 , turn-on current I 2 , and step size I x , and proceed to step S4. Specifically, the initial value of I 1 is set to 50, the initial value of I 2 is 100, and the initial value of I x is 50.
  • Step S4 Apply an opening current I 2 to the solenoid valve to be calibrated, and proceed to step S5.
  • Step S5 Determine whether the loading delay has been reached, if so, go to step S6, otherwise go to step S5.
  • Step S6 Obtain the action range of the actuator controlled by the solenoid valve, and proceed to step S7.
  • Step S7 Judging whether the motion range reaches the range threshold, if so, go to step S10, otherwise go to step S8.
  • Step S8 Add the step size Ix to the turn-on current I 2 to update the turn-on current I 2 , and proceed to step S9.
  • Step S9 Judging whether the current turn-on current I2 reaches the termination threshold, if not, proceed to step 4, otherwise terminate the current calibration, and end the process.
  • Step S10 Assign the minimum current calibration value I 1 as the turn-on current I 2 , halve the step size I x on the basis of the previous step size I x , and subtract the halved I x from the turn-on current I 2 to Update the turn-on current I 2 and go to step S11.
  • Step S11 Apply current 0 to the solenoid valve to be calibrated, and proceed to step S12.
  • Step S12 Judging whether the stop delay is reached, if so, go to step S13, otherwise go to step S12.
  • Step S13 Apply the opening current I 2 to the solenoid valve to be calibrated, and proceed to step S14.
  • Step S14 Determine whether the loading delay has been reached, if so, go to step S15, otherwise go to step S14.
  • Step S15 Obtain the action range of the actuator controlled by the solenoid valve, and proceed to step S16.
  • Step S16 Determine whether the motion range reaches the range threshold, if so, go to step S19, otherwise go to step S17.
  • Step S17 Judging whether the step size I x is lower than the step size threshold, if lower, go to step S20, otherwise go to step S18.
  • Step S18 Assign the minimum current calibration value I 1 as the turn-on current I 2 , halve the step size I x on the basis of the previous step size I x , add the halved I x to the turn-on current I 2 Update the turn-on current I 2 and go to step S13.
  • Step S19 Judging whether the step size I x is lower than the step size threshold, if lower, go to step S21, otherwise go to step S10.
  • Step S20 assign the minimum current calibration value I 1 as the last turn-on current I 2 , and proceed to step S22.
  • Step S21 assign the minimum current calibration value I 1 as the current turn-on current I 2 , and proceed to step S22.
  • Step S22 Record the minimum current calibration value I 1 , and the calibration is successful.
  • the action range does not reach the amplitude threshold again, Then gradually increase the turn-on current with a certain step size, repeat the above process continuously, and gradually reduce the step size during the repetition process, until the action range reaches the amplitude threshold and the currently determined step size is smaller than the step size threshold, the current turn-on current is determined is the minimum current calibration value.
  • the opening current is far away from the minimum current of the solenoid valve, a relatively large step size is used to make the opening current quickly approach the minimum current, and when the opening current is close to the minimum current, a gradually reduced step is used. Long-term search for the opening current that meets the accuracy requirements can solve the problem that it is difficult to balance efficiency and accuracy when selecting the step size.
  • using the action range of the actuator can more directly and clearly judge whether the speed of the minimum current of the solenoid valve is met, thereby improving the current calibration. accuracy.
  • the embodiment of the present application also provides a processor, and the processor is configured to execute the following method: load an initial opening current to the solenoid valve; acquire the motion range of the actuator controlled by the solenoid valve; determine whether the motion range reaches the range threshold for the first time ; If the action amplitude reaches the amplitude threshold for the first time, the initial opening current is subtracted from the preset step size to update the opening current, and the updated opening current is loaded to the solenoid valve; re-judgment whether the action amplitude reaches the amplitude threshold; if re-judging When the action amplitude reaches the amplitude threshold, the updated opening current is subtracted from the determined step size to update the opening current again, and the updated opening current is loaded to the solenoid valve to judge whether the action amplitude reaches the amplitude threshold again; When the amplitude reaches the amplitude threshold and the currently determined step size is smaller than the step size threshold, the current turn-on current is determined as the minimum current calibration value; wherein, the currently determined step
  • the method further includes: if the action amplitude does not reach the amplitude threshold for the first time, successively adding the initial opening current to the preset step size to update the opening current, and loading the updated opening current to the solenoid valve until When the action amplitude reaches the amplitude threshold for the first time, the updated opening current is subtracted from the determined step size to update the opening current, and the updated opening current is loaded to the solenoid valve.
  • the method further includes: if it is re-judged that the action amplitude has not reached the amplitude threshold, adding the updated opening current to the determined step size to update the opening current again, and loading the updated opening current to the solenoid valve. current to judge again whether the motion amplitude reaches the amplitude threshold.
  • the method further includes: when the action range does not reach the amplitude threshold and the currently determined step size is smaller than the step size threshold, determining the last turn-on current as the minimum current calibration value.
  • the method further includes: determining whether the current turn-on current reaches the termination threshold; and in case the current turn-on current reaches the termination threshold, terminating the current calibration.
  • the method further includes: when the motion amplitude reaches the amplitude threshold, controlling the solenoid valve to be powered off and maintaining it for a first preset time.
  • obtaining the motion range of the actuator controlled by the solenoid valve includes: obtaining the motion range of the actuator controlled by the solenoid valve after a second preset time elapses.
  • the current calibration method before the initial opening current is applied to the solenoid valve, the current calibration method further includes: receiving a current calibration instruction.
  • the reduction factor used to reduce the step size is 0.5.
  • FIG. 4 is a schematic structural diagram of a current calibration device for a solenoid valve provided in an embodiment of the present application.
  • a current calibration device for a solenoid valve is provided, the current calibration device includes:
  • the loading module 1001 is used to load the initial opening current to the solenoid valve
  • Obtaining module 1002 including detection equipment, used to obtain the action range of the actuator controlled by the solenoid valve;
  • the first judging module 1003 is used to judge whether the motion amplitude reaches the amplitude threshold for the first time;
  • the first update module 1004 is configured to subtract the preset step size from the initial opening current to update the opening current if the action amplitude reaches the amplitude threshold for the first time, and load the updated opening current to the solenoid valve;
  • the second judging module 1005 is used to rejudge whether the motion range reaches the range threshold
  • the second updating module 1006 is used for re-judging that the action amplitude reaches the amplitude threshold, then subtracting the determined step from the updated opening current to update the opening current again, and loading the updated opening current to the solenoid valve, so as to Determine again whether the range of motion reaches the range threshold;
  • the first determination module 1007 is configured to determine the current turn-on current as the minimum current calibration value when the action amplitude reaches the amplitude threshold and the currently determined step size is smaller than the step size threshold;
  • the currently determined step size is obtained by shrinking the last determined step size.
  • FIG. 5 is another structural schematic diagram of a current calibration device for a solenoid valve provided in an embodiment of the present application. As shown in Figure 5, the difference from the above embodiment is that the current calibration device also includes:
  • the third update module 1008 is used to add the initial opening current to the preset step size to update the opening current if the action amplitude does not reach the amplitude threshold for the first time, and load the updated opening current to the solenoid valve until the action amplitude When the amplitude threshold is reached for the first time, the updated turn-on current is updated by subtracting the determined step size from the updated turn-on current, and the updated turn-on current is loaded to the solenoid valve.
  • the difference from the above embodiment is that the current calibration device further includes:
  • the fourth update module 1009 is used to add the updated opening current to the determined step size to update the opening current again if it is re-judged that the action amplitude does not reach the amplitude threshold, and load the updated opening current to the solenoid valve, To judge again whether the range of motion reaches the range threshold.
  • the difference from the above embodiment is that the current calibration device further includes:
  • the second determination module 1010 is configured to determine the last turn-on current as the minimum current calibration value when the action amplitude does not reach the amplitude threshold and the currently determined step size is smaller than the step size threshold.
  • the difference from the above embodiment is that the current calibration device further includes:
  • the receiving module 1011 is configured to receive a current calibration instruction.
  • the detection device includes a rotary displacement encoder for detecting rotary displacement, a winch displacement encoder for detecting winch displacement, a variable amplitude angle sensor for detecting the variable amplitude angle, and a variable amplitude sensor for detecting the extension and contraction of the oil cylinder. at least one of a telescoping displacement encoder for displacement.
  • the device provided by the above embodiment performs related operations, it only uses the division of the above program modules as an example for illustration.
  • the internal structure of the program is divided into different program modules to complete all or part of the processing described above.
  • the device provided by the above embodiment and the method embodiment in the above embodiment belong to the same idea, and its specific implementation process is detailed in the method embodiment, and will not be repeated here.
  • the embodiment of the present application also provides a construction machine, including: a solenoid valve; an actuator controlled by the solenoid valve; and the above-mentioned solenoid valve current calibration device.
  • the work machine is a crane.
  • the crane may also include:
  • Communication interface capable of information interaction with other devices (such as network devices, terminals, etc.);
  • the processor is connected to the communication interface to realize information interaction with other devices, and is used to execute the method provided by one or more of the above technical solutions when running the computer program;
  • Memory used to store computer programs capable of running on the processor.
  • the processor includes a kernel, and the kernel fetches corresponding program units from the memory.
  • One or more kernels can be set, and the methods provided by the above one or more technical solutions can be realized by adjusting kernel parameters.
  • Memory may include non-permanent memory in computer-readable media, in the form of random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM), memory including at least one memory chip.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • the various components in the crane can be coupled together via a bus system.
  • a bus system is used to realize the connection communication between these components.
  • the bus system also includes a power bus, a control bus and a status signal bus.
  • the memory in the embodiment of the present application is used to store various types of data to support the operation of the crane. Examples of such data include: any computer programs used to operate the crane.
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSP Digital Signal Processor
  • the processor may implement or execute the various methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of this application can be directly implemented by a hardware decoding processor, or completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in a memory, and the processor reads the information in the memory, and combines with its hardware to complete the steps of the aforementioned method.
  • the crane can be implemented by one or more Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, ProgrammableLogic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components to achieve, use to perform the aforementioned method.
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • general-purpose processor controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components to achieve, use to perform the aforementioned method.
  • the memory in this embodiment of the present application may be a volatile memory or a nonvolatile memory, and may also include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (ROM, ReadOnly Memory), programmable read-only memory (PROM, Programmable Read Only Memory), erasable programmable read-only memory (EPROM, Erasable Programmable Read Only Memory) , Electrically Erasable Programmable Read Only Memory (EEPROM, Electrically Erasable Programmable Read Only Memory), Magnetic Random Access Memory (FRAM, ferromagnetic random access memory), Flash Memory (Flash Memory), magnetic surface memory, optical disc, or CD ROM (Compact Disc Read Only Memory); magnetic surface storage can be disk storage or tape storage.
  • the volatile memory may be random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • RAM Random Access Memory
  • many forms of RAM are available, such as Static Random Access Memory (SRAM, Static Random Access Memory), Synchronous Static Random Access Memory (SSRAM, Synchronous Static Random Access Memory), Dynamic Random Access Memory Memory (DRAM, Dynamic Random Access Memory), synchronous dynamic random access memory (SDRAM, Synchronous Dynamic Random Access Memory), double data rate synchronous dynamic random access memory (DDRSDRAM, Double Data Rate Synchronous Dynamic Random Access Memory), enhanced Synchronous Dynamic Random Access Memory (ESDRAM, Enhanced Synchronous Dynamic Random Access Memory), Synchronous Link Dynamic Random Access Memory (SLDRAM, SyncLink Dynamic Random Access Memory), Direct Memory Bus Random Access Memory (DRRAM, Direct Rambus Random Access Memory ).
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • the embodiment of the present application also provides a machine-readable storage medium, the machine-readable storage medium stores instructions, and when the instructions are executed by the processor, the processor executes the following method: load the initial opening current to the solenoid valve; obtain the solenoid valve The action range of the actuator controlled by the valve; judge whether the action range reaches the amplitude threshold for the first time; if the action range reaches the amplitude threshold for the first time, then subtract the preset step from the initial opening current to update the opening current, and send it to the electromagnetic
  • the valve is loaded with the updated opening current; re-judging whether the action range reaches the amplitude threshold; if it is re-judged that the action range reaches the amplitude threshold, the updated opening current is subtracted from the determined step to update the opening current again, and the solenoid valve Load the re-updated turn-on current to judge whether the action range reaches the amplitude threshold again; when the action range reaches the amplitude threshold and the currently determined step size is smaller than the step size threshold
  • the method further includes: if the action amplitude does not reach the amplitude threshold for the first time, successively adding the initial opening current to the preset step size to update the opening current, and loading the updated opening current to the solenoid valve until When the action amplitude reaches the amplitude threshold for the first time, the updated opening current is subtracted from the determined step size to update the opening current, and the updated opening current is loaded to the solenoid valve.
  • the method further includes: if it is re-judged that the action amplitude has not reached the amplitude threshold, adding the updated opening current to the determined step size to update the opening current again, and loading the updated opening current to the solenoid valve. current to judge again whether the motion amplitude reaches the amplitude threshold.
  • the method further includes: when the action range does not reach the amplitude threshold and the currently determined step size is smaller than the step size threshold, determining the last turn-on current as the minimum current calibration value.
  • the method further includes: determining whether the current turn-on current reaches the termination threshold; and in case the current turn-on current reaches the termination threshold, terminating the current calibration.
  • the method further includes: when the motion amplitude reaches the amplitude threshold, controlling the solenoid valve to be powered off and maintaining it for a first preset time.
  • obtaining the motion range of the actuator controlled by the solenoid valve includes: obtaining the motion range of the actuator controlled by the solenoid valve after a second preset time elapses.
  • the current calibration method before the initial opening current is applied to the solenoid valve, the current calibration method further includes: receiving a current calibration instruction.
  • the reduction factor used to reduce the step size is 0.5.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure may be as shown in FIG. 6 .
  • the computer equipment includes a processor A01 connected through a system bus, a network interface A02, a display screen A04, an input device A05 and a memory (not shown in the figure).
  • the processor A01 of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes an internal memory A03 and a non-volatile storage medium A06.
  • the nonvolatile storage medium A06 stores an operating system B01 and a computer program B02.
  • the internal memory A03 provides an environment for the operation of the operating system B01 and the computer program B02 in the non-volatile storage medium A06.
  • the network interface A02 of the computer device is used to communicate with external terminals through a network connection.
  • the display screen A04 of the computer equipment can be a liquid crystal display screen or an electronic ink display screen
  • the input device A05 of the computer equipment can be a touch layer covered on the display screen, or a button, a trackball or a touch screen provided on the casing of the computer equipment.
  • the control board can also be an external keyboard, touch pad or mouse.
  • FIG. 6 is only a block diagram of a part of the structure related to the solution of this application, and does not constitute a limitation on the computer equipment to which the solution of this application is applied.
  • the specific computer equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • An embodiment of the present application also provides a device, which includes a processor, a memory, and a program stored in the memory and operable on the processor, and the processor implements the method in any one of the foregoing embodiments when executing the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

一种用于电磁阀的电流标定方法,该方法通过向电磁阀加载初始开启电流,获取电磁阀所控制的执行机构的动作幅度,并判断动作幅度是否第一次达到幅度阈值,如果动作幅度第一次达到幅度阈值,则将初始开启电流减去预设步长以更新开启电流,并向电磁阀加载更新后的开启电流,以重新判断动作幅度是否达到幅度阈值,如果重新判断出动作幅度达到幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值,直至动作幅度达到幅度阈值且当前确定的步长小于步长阈值,将当前的开启电流确定为最小电流标定值,从而提高电流标定的速度和精度。还公开了一种执行该电流标定方法的处理器和机器可读存储介质,一种用于电磁阀的电流标定装置,以及包括该电流标定装置的工程机械。

Description

用于电磁阀的电流标定方法、装置、处理器及工程机械
相关申请的交叉引用
本申请要求2021年12月29日提交的中国专利申请202111640309.3的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及工程机械技术领域,具体地,涉及一种用于电磁阀的电流标定方法、装置、处理器、工程机械及机器可读存储介质。
背景技术
比例电磁阀具有控制电流与液压系统流量成比例的特性,便于实现被控对象的无级调速,因此在工程机械如起重机领域广泛应用。在投入正常使用之前,通常需要对开启比例电磁阀的最小电流进行标定,从而在之后根据设定的固定曲线控制电磁阀的开度以比例调节系统流量,达到比例调速的目的。
现有的电流标定方法通常采用检测液压系统的压力来判断是否满足电磁阀最小电流的速度,当判定条件不满足时,按照设定步长加大开启电流直至满足判定条件。然而当液压系统的压力达到时,电磁阀可能已经开启,而电磁阀控制的执行机构却并未克服静摩擦力运动,导致标定的最小电流并不准确;而且设定步长很难选取,步长选取过大则标定速度快但是标定精度不佳,步长选取过小则标定精度佳但标定速度过慢,难以兼顾效率与精度问题。
发明内容
本发明的目的是为了克服现有技术中标定的最小电流并不准确以及难以兼顾效率与精度的问题,提供了一种用于电磁阀的电流标定方法、装置、处理器、工程机械及机器可读存储介质以解决上述问题。
为了实现上述目的,本申请第一方面提供一种用于电磁阀的电流标定方法,包括:
向电磁阀加载初始开启电流;
获取电磁阀所控制的执行机构的动作幅度;
判断动作幅度是否第一次达到幅度阈值;
如果动作幅度第一次达到幅度阈值,则将初始开启电流减去预设步长以更新开启电流,并向电磁阀加载更新后的开启电流;
重新判断动作幅度是否达到幅度阈值;
如果重新判断出动作幅度达到幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值;
在动作幅度达到幅度阈值且当前确定的步长小于步长阈值的情况下,将当前的开启电流确定为最小电流标定值;
其中,当前确定的步长是在上一次确定的步长的基础上缩小而得到的。
具体地,该电流标定方法还包括:
如果动作幅度未第一次达到幅度阈值,则逐次将初始开启电流加上预设步长以更新开启电流,并向电磁阀加载更新后的开启电流,直至动作幅度第一次达到幅度阈值,将更新后的开启电流减去确定的步长以更新开启电流,并向电磁阀加 载更新后的开启电流。
具体地,该电流标定方法还包括:
如果重新判断出动作幅度未达到幅度阈值,则将更新后的开启电流加上确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值。
具体地,该电流标定方法还包括:
在动作幅度未达到幅度阈值且当前确定的步长小于步长阈值的情况下,将上一次的开启电流确定为最小电流标定值。
具体地,该电流标定方法还包括:
确定当前的开启电流是否达到终止阈值;
在当前的开启电流达到终止阈值的情况下,终止电流标定。
具体地,该电流标定方法还包括:
在动作幅度达到幅度阈值的情况下,控制电磁阀断电,并保持第一预设时间。
具体地,获取电磁阀所控制的执行机构的动作幅度,包括:
经过第二预设时间之后,获取电磁阀所控制的执行机构的动作幅度。
具体地,向电磁阀加载初始开启电流之前,电流标定方法还包括:
接收电流标定指令。
具体地,用于缩小步长的缩小系数为0.5。
本申请第二方面提供一种处理器,被配置为执行上述的用于电磁阀的电流标定方法。
本申请第三方面提供一种用于电磁阀的电流标定装置,包括:
加载模块,用于向电磁阀加载初始开启电流;
获取模块,包括检测设备,用于获取电磁阀所控制的执行机构的动作幅度;
第一判断模块,用于判断动作幅度是否第一次达到幅度阈值;
第一更新模块,用于如果动作幅度第一次达到幅度阈值,则将初始开启电流减去预设步长以更新开启电流,并向电磁阀加载更新后的开启电流;
第二判断模块,用于重新判断动作幅度是否达到幅度阈值;
第二更新模块,用于如果重新判断出动作幅度达到幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值;
第一确定模块,用于在动作幅度达到幅度阈值且当前确定的步长小于步长阈值的情况下,将当前的开启电流确定为最小电流标定值;
其中,当前确定的步长是在上一次确定的步长的基础上缩小而得到的。
具体地,该电流标定装置还包括:
第三更新模块,用于如果动作幅度未第一次达到幅度阈值,则逐次将初始开启电流加上预设步长以更新开启电流,并向电磁阀加载更新后的开启电流,直至动作幅度第一次达到幅度阈值,将更新后的开启电流减去确定的步长以更新开启电流,并向电磁阀加载更新后的开启电流。
具体地,该电流标定装置还包括:
第四更新模块,用于如果重新判断出动作幅度未达到幅度阈值,则将更新后的开启电流加上确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值。
具体地,该电流标定装置还包括:
第二确定模块,用于在动作幅度未达到幅度阈值且当前确定的步长小于步长 阈值的情况下,将上一次的开启电流确定为最小电流标定值。
具体地,该电流标定装置还包括:
接收模块,用于接收电流标定指令。
具体地,检测设备包括用于检测回转位移的回转位移编码器、用于检测卷扬位移的卷扬位移编码器、用于检测变幅角度的变幅角度传感器和用于检测油缸伸缩位移的伸缩位移编码器中的至少一种。
本申请第四方面提供一种工程机械,包括:
电磁阀;
由电磁阀所控制的执行机构;以及
上述的用于电磁阀的电流标定装置。
本申请第五方面提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令在被处理器执行时使得处理器被配置成执行上述的用于电磁阀的电流标定方法。
通过上述技术方案,即通过向电磁阀加载初始开启电流,然后获取电磁阀所控制的执行机构的动作幅度,并判断动作幅度是否第一次达到幅度阈值,如果动作幅度第一次达到幅度阈值,则将初始开启电流减去预设步长以更新开启电流,并向电磁阀加载更新后的开启电流,以重新判断动作幅度是否达到幅度阈值,如果重新判断出动作幅度达到幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值,不断重复上述过程,并在重复过程中逐渐缩小步长,直至动作幅度达到幅度阈值且当前确定的步长小于步长阈值,将当前的开启电流确定为最小电流标定值,通过该类方式,在开启电流远离电磁阀的最小电流时使用相对较大的步长使开启电流快速靠近最小电流,而在开启电流靠近最小电流时使用逐级缩小的步长寻找满足精度要求的开启电流,能够解决选取步长时难以兼顾效率与精度的问题,同时,利用执行机构的动作幅度能够更加直接明了的判断是否满足电磁阀最小电流的速度,从而提高电流标定的准确性。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本申请实施例中所提供的用于电磁阀的电流标定方法的流程示意图;
图2是本申请实施例中所提供的用于电磁阀的电流标定方法的另一流程示意图;
图3是本申请实施例中所提供的用于电磁阀的电流标定方法的实际应用流程示意图;
图4是本申请实施例中所提供的用于电磁阀的电流标定装置的结构示意图;
图5是本申请实施例中所提供的用于电磁阀的电流标定装置的另一结构示意图;
图6是本申请实施例中所提供的计算机设备的内部结构图。
附图标记说明
1001、加载模块;               1002、获取模块;
1003、第一判断模块;           1004、第一更新模块;
1005、第二判断模块;           1006、第二更新模块;
1007、第一确定模块;           1008、第三更新模块;
1009、第四更新模块;            1010、第二确定模块;
1011、接收模块。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
为了便于更好地理解本发明的技术方案,图1是本申请实施例中所提供的用于电磁阀的电流标定方法的流程示意图。如图1所示,在本申请一实施例中,提供了一种用于电磁阀的电流标定方法,包括以下步骤:
步骤S110:向电磁阀加载初始开启电流;
步骤S120:获取电磁阀所控制的执行机构的动作幅度;
步骤S130:判断动作幅度是否第一次达到幅度阈值;
步骤S140:如果动作幅度第一次达到幅度阈值,则将初始开启电流减去预设步长以更新开启电流,并向电磁阀加载更新后的开启电流;
步骤S150:重新判断动作幅度是否达到幅度阈值;
步骤S160:如果重新判断出动作幅度达到幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值;
步骤S170:在动作幅度达到幅度阈值且当前确定的步长小于步长阈值的情况下,将当前的开启电流确定为最小电流标定值;其中,当前确定的步长是在上一次确定的步长的基础上缩小而得到的。
具体地,在步骤S110中,初始开启电流可以设置为任意值,也可以根据实验数据进行设置,例如可以设置为100mA。在步骤S120中,电磁阀所控制的执行机构可以是回转马达、卷扬、变幅油缸、伸缩油缸等,可以理解,当电磁阀所控制的执行机构有所不同时,所需获取的执行机构的动作幅度相应有所不同,例如,当执行机构为回转马达时,可以获取回转马达的回转位移;当执行机构为卷扬时,可以获取卷扬的升降位移;当执行机构为变幅油缸时,可以获取变幅油缸的变幅角度;当执行机构为伸缩油缸时,可以获取伸缩油缸的伸缩位移。在步骤S130中,幅度阈值为该执行机构克服静摩擦力运动时的最小动作幅度,具体可以根据实际经验或者实验数据进行设置,可以理解,该执行机构第一次克服静摩擦力运动时动作幅度第一次达到幅度阈值。
在步骤S140中,预设步长可以设置为相对较大的值,例如可以设置为50mA,可以理解,如果判断出动作幅度第一次达到幅度阈值,表明该初始开启电流大于开启该电磁阀的最小电流值,但是该初始开启电流可能相对远离该最小电流值,此时可以将该初始开启电流减去一个相对较大的预设步长以更新开启电流,使更新后的开启电流快速靠近该最小电流值。然后在步骤S150中,重新判断动作幅度是否达到幅度阈值。
在步骤S160中,如果重新判断出动作幅度达到幅度阈值,表明该更新后的开启电流仍然大于开启该电磁阀的最小电流值,但是该更新后的开启电流已经相对靠近该最小电流值,此时可以将更新后的开启电流减去相对较小的确定的步长以再次更新开启电流。在步骤S170中,步长阈值可以根据实际精度要求进行设置,通过不断重复上述过程,并在重复过程中逐渐缩小步长,直至动作幅度达到幅度阈值且当前确定的步长小于步长阈值,即可将当前的开启电流确定为最小电流标定值。
通过该类方式,在开启电流远离电磁阀的最小电流时使用相对较大的步长使开启电流快速靠近最小电流,而在开启电流靠近最小电流时使用逐级缩小的步长寻找满足精度要求的开启电流,能够解决选取步长时难以兼顾效率与精度的问题,同时,利用执行机构的动作幅度能够更加直接明了的判断是否满足电磁阀最小电流的速度,从而提高电流标定的准确性。
在一个实施例中,请参阅图2,图2是本申请实施例中所提供的用于电磁阀的电流标定方法中的另一流程示意图。如图2所示,与上述实施例不同之处在于,该电流标定方法还可以包括:
步骤S141:如果动作幅度未第一次达到幅度阈值,则逐次将初始开启电流加上预设步长以更新开启电流,并向电磁阀加载更新后的开启电流,直至动作幅度第一次达到幅度阈值,将更新后的开启电流减去确定的步长以更新开启电流,并向电磁阀加载更新后的开启电流。
具体地,在步骤S141中,如果判断出动作幅度未第一次达到幅度阈值,表明该初始开启电流小于开启该电磁阀的最小电流值,并且该初始开启电流可能相对远离该最小电流值,此时可以将该初始开启电流逐次加上一个相对较大的预设步长以更新开启电流,使更新后的开启电流快速靠近该最小电流值,然后在动作幅度第一次达到幅度阈值后,将更新后的开启电流减去确定的步长以更新开启电流,并向电磁阀加载更新后的开启电流。
在一个实施例中,请继续参阅图2,与上述实施例不同之处在于,该电流标定方法还可以包括:
步骤S161:如果重新判断出动作幅度未达到幅度阈值,则将更新后的开启电流加上确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值。
具体地,在步骤S161中,如果重新判断出动作幅度未达到幅度阈值,表明该更新后的开启电流小于开启该电磁阀的最小电流值,但是该更新后的开启电流已经相对靠近该最小电流值,此时可以将更新后的开启电流加上相对较小的确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值。
在一个实施例中,请继续参阅图2,与上述实施例不同之处在于,该电流标定方法还可以包括:
步骤S180:在动作幅度未达到幅度阈值且当前确定的步长小于步长阈值的情况下,将上一次的开启电流确定为最小电流标定值。
具体地,在步骤S180中,在上一次向电磁阀加载更新后的开启电流后,如果重新判断出动作幅度达到幅度阈值,则需要将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值,此时可能会判断出动作幅度未达到幅度阈值且当前确定的步长小于步长阈值的情况,则直接将上一次的开启电流作为该电磁阀的电流标定值即可。可以理解,上一次的开启电流大于开启该电磁阀的最小电流值,且上一次的开启电流与该最小电流值之间的误差不超过当前确定的步长,即不超过设置的步长阈值,能够满足精度要求。
在一个实施例中,该电流标定方法还可以包括:
确定当前的开启电流是否达到终止阈值;
在当前的开启电流达到终止阈值的情况下,终止电流标定。
具体地,终止阈值为在向电磁阀加载电流的过程中,出现故障导致加载任何电流执行机构都无法产生动作时的电流值,在当前的开启电流达到终止阈值的情况下,则判定标定失败,终止电流标定流程。可以理解,只有在增大开启电流后可能出现当前的开启电流达到终止阈值的情况,因此在减小开启电流时不需要执行上述步骤。
在一个实施例中,该电流标定方法还可以包括:在动作幅度达到幅度阈值的情况下,控制电磁阀断电,并保持第一预设时间。
具体地,在动作幅度达到幅度阈值的情况下,表明该执行机构已经克服静摩擦力运动,此时可以控制电磁阀断电,并保持第一预设时间,保证执行机构能够回到初始位置,避免向电磁阀加载更新后的开启电流时因执行机构不在初始位置不需要克服静摩擦力导致判断动作幅度是否达到幅度阈值时出现错误。可以理解,在动作幅度达到幅度阈值的情况下,每次均需要先控制电磁阀断电,并保持第一预设时间,然后才能向电磁阀加载更新后的开启电流,保证电流标定的准确性。
在一个实施例中,对步骤S120中获取电磁阀所控制的执行机构的动作幅度,可以包括:经过第二预设时间之后,获取电磁阀所控制的执行机构的动作幅度。
具体地,在向电磁阀加载电流后,经过第二预设时间之后,再获取电磁阀所控制的执行机构的动作幅度,以使液压系统有足够的响应时间来驱动执行机构动作,保证电流标定的准确性。
在一个实施例中,在执行步骤S110中向电磁阀加载初始开启电流之前,该电流标定方法还可以包括:接收电流标定指令。
具体地,可以接收用户通过输入设备输入的电流标定指令,例如通过人机交互界面的标定按钮按下操作指令,然后开始电流标定流程。
在一个实施例中,用于缩小步长的缩小系数为0.5。可以理解,当前确定的步长均为上一次确定的步长的一半。
为了更好的理解本申请提供的技术方案,下面结合具体的实施例对本申请提供的用于电磁阀的电流标定方法的流程进行说明。
请参阅图3,图3是本申请实施例中所提供的用于电磁阀的电流标定方法的实际应用流程示意图。如图3所示,该电流标定方法可以包括以下步骤:
步骤S1:判断系统是否正常运行,若正常运行进入步骤S2,否则进入步骤S1。具体地,判断系统是否正常运行可以包括判断是否能正常获取执行机构的动作幅度信号,执行机构的展开姿态是否达到要求等。
步骤S2:判断是否接收到最小电流标定指令,若接收到进入步骤S3,否则进入步骤S2。具体地,可以通过人机交互界面上的标定按钮是否按下来判断是否接收到最小电流标定指令。
步骤S3:初始化标定参数最小电流标定值I 1、开启电流I 2、步长I x,进入步骤S4。具体地,设定I 1的初始值为50、I 2的初始值为100、I x的初始值为50。
步骤S4:向所需标定的电磁阀加载开启电流I 2,进入步骤S5。
步骤S5:判断加载延时是否达到,若达到进入步骤S6,否则进入步骤S5。
步骤S6:获取电磁阀所控制的执行机构的动作幅度,进入步骤S7。
步骤S7:判断动作幅度是否达到幅度阈值,若达到进入步骤S10,否则进入步骤S8。
步骤S8:将开启电流I 2加上步长I x以更新开启电流I 2,进入步骤S9。
步骤S9:判断当前的开启电流I 2是否达到终止阈值,若未达到进入步骤4,否则终止电流标定,结束流程。
步骤S10:将最小电流标定值I 1赋值为开启电流I 2,将步长I x在上一次的步长I x的基础上减半,将开启电流I 2减去减半后的I x以更新开启电流I 2,进入步骤S11。
步骤S11:向所需标定的电磁阀加载电流0,进入步骤S12。
步骤S12:判断停止延时是否达到,若达到进入步骤S13,否则进入步骤S12。
步骤S13:向所需标定的电磁阀加载开启电流I 2,进入步骤S14。
步骤S14:判断加载延时是否达到,若达到进入步骤S15,否则进入步骤S14。
步骤S15:获取电磁阀所控制的执行机构的动作幅度,进入步骤S16。
步骤S16:判断动作幅度是否达到幅度阈值,若达到进入步骤S19,否则进入步骤S17。
步骤S17:判断步长I x是否低于步长阈值,若低于进入步骤S20,否则进入步骤S18。
步骤S18:将最小电流标定值I 1赋值为开启电流I 2,将步长I x在上一次的步长I x的基础上减半,将开启电流I 2加上减半后的I x以更新开启电流I 2,进入步骤S13。
步骤S19:判断步长I x是否低于步长阈值,若低于进入步骤S21,否则进入步骤S10。
步骤S20:将最小电流标定值I 1赋值为上一次的开启电流I 2,进入步骤S22。
步骤S21:将最小电流标定值I 1赋值为当前的开启电流I 2,进入步骤S22。
步骤S22:记录最小电流标定值I 1,标定成功。
通过上述技术方案,即通过向电磁阀加载初始开启电流,然后获取电磁阀所控制的执行机构的动作幅度,并判断动作幅度是否第一次达到幅度阈值,如果出现动作幅度未第一次达到幅度阈值的情况,则以预设步长逐渐加大开启电流,直至动作幅度第一次达到幅度阈值,再以确定的步长逐渐减小开启电流,如果再次出现动作幅度未达到幅度阈值的情况,则以确定的步长逐渐增大开启电流,不断重复上述过程,并在重复过程中逐渐缩小步长,直至动作幅度达到幅度阈值且当前确定的步长小于步长阈值,将当前的开启电流确定为最小电流标定值,通过该类方式,在开启电流远离电磁阀的最小电流时使用相对较大的步长使开启电流快速靠近最小电流,而在开启电流靠近最小电流时使用逐级缩小的步长寻找满足精度要求的开启电流,能够解决选取步长时难以兼顾效率与精度的问题,同时,利用执行机构的动作幅度能够更加直接明了的判断是否满足电磁阀最小电流的速度,从而提高电流标定的准确性。
本申请实施例还提供一种处理器,处理器被配置为执行如下方法:向电磁阀加载初始开启电流;获取电磁阀所控制的执行机构的动作幅度;判断动作幅度是否第一次达到幅度阈值;如果动作幅度第一次达到幅度阈值,则将初始开启电流减去预设步长以更新开启电流,并向电磁阀加载更新后的开启电流;重新判断动作幅度是否达到幅度阈值;如果重新判断出动作幅度达到幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值;在动作幅度达到幅度阈值且当前确定的步长小于步长阈值的情况下,将当前的开启电流确定为最小电流标定值;其中,当前确定的步长是在上一次确定的步长的基础上缩小而得到的。
在一个实施例中,方法还包括:如果动作幅度未第一次达到幅度阈值,则逐次将初始开启电流加上预设步长以更新开启电流,并向电磁阀加载更新后的开启 电流,直至动作幅度第一次达到幅度阈值,将更新后的开启电流减去确定的步长以更新开启电流,并向电磁阀加载更新后的开启电流。
在一个实施例中,方法还包括:如果重新判断出动作幅度未达到幅度阈值,则将更新后的开启电流加上确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值。
在一个实施例中,方法还包括:在动作幅度未达到幅度阈值且当前确定的步长小于步长阈值的情况下,将上一次的开启电流确定为最小电流标定值。
在一个实施例中,方法还包括:确定当前的开启电流是否达到终止阈值;在当前的开启电流达到终止阈值的情况下,终止电流标定。
在一个实施例中,方法还包括:在动作幅度达到幅度阈值的情况下,控制电磁阀断电,并保持第一预设时间。
在一个实施例中,获取电磁阀所控制的执行机构的动作幅度,包括:经过第二预设时间之后,获取电磁阀所控制的执行机构的动作幅度。
在一个实施例中,在向电磁阀加载初始开启电流之前,该电流标定方法还包括:接收电流标定指令。
在一个实施例中,用于缩小步长的缩小系数为0.5。
请参阅图4,图4是本申请实施例中所提供的用于电磁阀的电流标定装置的结构示意图。如图4所示,在本申请一实施例中,提供了一种用于电磁阀的电流标定装置,该电流标定装置包括:
加载模块1001,用于向电磁阀加载初始开启电流;
获取模块1002,包括检测设备,用于获取电磁阀所控制的执行机构的动作幅度;
第一判断模块1003,用于判断动作幅度是否第一次达到幅度阈值;
第一更新模块1004,用于如果动作幅度第一次达到幅度阈值,则将初始开启电流减去预设步长以更新开启电流,并向电磁阀加载更新后的开启电流;
第二判断模块1005,用于重新判断动作幅度是否达到幅度阈值;
第二更新模块1006,用于如果重新判断出动作幅度达到幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值;
第一确定模块1007,用于在动作幅度达到幅度阈值且当前确定的步长小于步长阈值的情况下,将当前的开启电流确定为最小电流标定值;
其中,当前确定的步长是在上一次确定的步长的基础上缩小而得到的。
请参阅图5,图5是本申请实施例中所提供的用于电磁阀的电流标定装置的另一结构示意图。如图5所示,与上述实施例不同之处在于,该电流标定装置还包括:
第三更新模块1008,用于如果动作幅度未第一次达到幅度阈值,则逐次将初始开启电流加上预设步长以更新开启电流,并向电磁阀加载更新后的开启电流,直至动作幅度第一次达到幅度阈值,将更新后的开启电流减去确定的步长以更新开启电流,并向电磁阀加载更新后的开启电流。
在一个实施例中,请继续参阅图5,与上述实施例不同之处在于,该电流标定装置还包括:
第四更新模块1009,用于如果重新判断出动作幅度未达到幅度阈值,则将更新后的开启电流加上确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值。
在一个实施例中,请继续参阅图5,与上述实施例不同之处在于,该电流标定装置还包括:
第二确定模块1010,用于在动作幅度未达到幅度阈值且当前确定的步长小于步长阈值的情况下,将上一次的开启电流确定为最小电流标定值。
在一个实施例中,请继续参阅图5,与上述实施例不同之处在于,该电流标定装置还包括:
接收模块1011,用于接收电流标定指令。
在一个实施例中,检测设备包括用于检测回转位移的回转位移编码器、用于检测卷扬位移的卷扬位移编码器、用于检测变幅角度的变幅角度传感器和用于检测油缸伸缩位移的伸缩位移编码器中的至少一种。
需要说明的是,上述实施例提供的装置在执行相关操作时,仅以上述各程序模块的划分进行举例说明,实际应用时,可以根据需要而将上述处理分配由不同的程序模块完成,即将终端的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的装置与上述实施例中的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述程序模块的硬件实现,且为了实现本申请实施例的方法,本申请实施例还提供一种工程机械,包括:电磁阀;由电磁阀所控制的执行机构;以及上述的用于电磁阀的电流标定装置。
在一个实施例中,该工程机械是起重机。
在一个实施例中,起重机还可以包括:
通信接口,能够与其他设备(比如网络设备、终端等)进行信息交互;
处理器,与通信接口连接,以实现与其他设备进行信息交互,用于运行计算机程序时,执行上述一个或多个技术方案提供的方法;
存储器,用于存储能够在处理器上运行的计算机程序。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来实现上述一个或多个技术方案提供的方法。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
需要说明的是,处理器具体执行上述操作的过程详见方法实施例,这里不再赘述。
实际应用时,起重机中的各个组件可以通过总线系统耦合在一起。可以理解,总线系统用于实现这些组件之间的连接通信。总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
本申请实施例中的存储器用于存储各种类型的数据以支持起重机的操作。这些数据的示例包括:用于在起重机上操作的任何计算机程序。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件 及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,起重机可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,ProgrammableLogic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或者其他电子元件实现,用于执行前述方法。
可以理解,本申请实施例的存储器可以是易失性存储器或者非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,ReadOnly Memory)、可编程只读存储器(PROM,Programmable Read Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD ROM,Compact Disc Read Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令在被处理器执行时使得处理器执行如下方法:向电磁阀加载初始开启电流;获取电磁阀所控制的执行机构的动作幅度;判断动作幅度是否第一次达到幅度阈值;如果动作幅度第一次达到幅度阈值,则将初始开启电流减去预设步长以更新开启电流,并向电磁阀加载更新后的开启电流;重新判断动作幅度是否达到幅度阈值;如果重新判断出动作幅度达到幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值;在动作幅度达到幅度阈值且当前确定的步长小于步长阈值的情况下,将当前的开启电流确定为最小电流标定值;其中,当前确定的步长是在上一次确定的步长的基础上缩小而得到的。
在一个实施例中,方法还包括:如果动作幅度未第一次达到幅度阈值,则逐次将初始开启电流加上预设步长以更新开启电流,并向电磁阀加载更新后的开启电流,直至动作幅度第一次达到幅度阈值,将更新后的开启电流减去确定的步长以更新开启电流,并向电磁阀加载更新后的开启电流。
在一个实施例中,方法还包括:如果重新判断出动作幅度未达到幅度阈值,则将更新后的开启电流加上确定的步长以再次更新开启电流,并向电磁阀加载再次更新后的开启电流,以再次判断动作幅度是否达到幅度阈值。
在一个实施例中,方法还包括:在动作幅度未达到幅度阈值且当前确定的步长小于步长阈值的情况下,将上一次的开启电流确定为最小电流标定值。
在一个实施例中,方法还包括:确定当前的开启电流是否达到终止阈值;在当前的开启电流达到终止阈值的情况下,终止电流标定。
在一个实施例中,方法还包括:在动作幅度达到幅度阈值的情况下,控制电磁阀断电,并保持第一预设时间。
在一个实施例中,获取电磁阀所控制的执行机构的动作幅度,包括:经过第二预设时间之后,获取电磁阀所控制的执行机构的动作幅度。
在一个实施例中,在向电磁阀加载初始开启电流之前,该电流标定方法还包括:接收电流标定指令。
在一个实施例中,用于缩小步长的缩小系数为0.5。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图6所示。该计算机设备包括通过系统总线连接的处理器A01、网络接口A02、显示屏A04、输入装置A05和存储器(图中未示出)。其中,该计算机设备的处理器A01用于提供计算和控制能力。该计算机设备的存储器包括内存储器A03和非易失性存储介质A06。该非易失性存储介质A06存储有操作系统B01和计算机程序B02。该内存储器A03为非易失性存储介质A06中的操作系统B01和计算机程序B02的运行提供环境。该计算机设备的网络接口A02用于与外部的终端通过网络连接通信。该计算机程序被处理器A01执行时以实现上述任意一项实施例的方法。该计算机设备的显示屏A04可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置A05可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图6中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本申请实施例还提供一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现上述任意一项实施例的方法。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (18)

  1. 一种用于电磁阀的电流标定方法,其特征在于,包括:
    向电磁阀加载初始开启电流;
    获取所述电磁阀所控制的执行机构的动作幅度;
    判断所述动作幅度是否第一次达到幅度阈值;
    如果所述动作幅度第一次达到所述幅度阈值,则将所述初始开启电流减去预设步长以更新开启电流,并向所述电磁阀加载更新后的开启电流;
    重新判断所述动作幅度是否达到所述幅度阈值;
    如果重新判断出所述动作幅度达到所述幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向所述电磁阀加载再次更新后的开启电流,以再次判断所述动作幅度是否达到所述幅度阈值;
    在所述动作幅度达到所述幅度阈值且当前确定的步长小于步长阈值的情况下,将当前的开启电流确定为最小电流标定值;
    其中,当前确定的步长是在上一次确定的步长的基础上缩小而得到的。
  2. 根据权利要求1所述的电流标定方法,其特征在于,还包括:
    如果所述动作幅度未第一次达到所述幅度阈值,则逐次将所述初始开启电流加上预设步长以更新开启电流,并向所述电磁阀加载更新后的开启电流,直至所述动作幅度第一次达到所述幅度阈值,将更新后的开启电流减去确定的步长以更新开启电流,并向所述电磁阀加载更新后的开启电流。
  3. 根据权利要求1所述的电流标定方法,其特征在于,还包括:
    如果重新判断出所述动作幅度未达到所述幅度阈值,则将更新后的开启电流加上确定的步长以再次更新开启电流,并向所述电磁阀加载再次更新后的开启电流,以再次判断所述动作幅度是否达到所述幅度阈值。
  4. 根据权利要求1所述的电流标定方法,其特征在于,还包括:
    在所述动作幅度未达到所述幅度阈值且当前确定的步长小于所述步长阈值的情况下,将上一次的开启电流确定为所述最小电流标定值。
  5. 根据权利要求1所述的电流标定方法,其特征在于,还包括:
    确定当前的开启电流是否达到终止阈值;
    在当前的开启电流达到所述终止阈值的情况下,终止电流标定。
  6. 根据权利要求1所述的电流标定方法,其特征在于,还包括:
    在所述动作幅度达到所述幅度阈值的情况下,控制所述电磁阀断电,并保持第一预设时间。
  7. 根据权利要求1所述的电流标定方法,其特征在于,所述获取所述电磁阀所控制的执行机构的动作幅度,包括:
    经过第二预设时间之后,获取所述电磁阀所控制的执行机构的动作幅度。
  8. 根据权利要求1所述的电流标定方法,其特征在于,在所述向电磁阀加 载初始开启电流之前,所述电流标定方法还包括:
    接收电流标定指令。
  9. 根据权利要求1所述的电流标定方法,其特征在于,用于缩小步长的缩小系数为0.5。
  10. 一种处理器,其特征在于,被配置为执行根据权利要求1至9中任意一项所述的用于电磁阀的电流标定方法。
  11. 一种用于电磁阀的电流标定装置,其特征在于,包括:
    加载模块,用于向电磁阀加载初始开启电流;
    获取模块,包括检测设备,用于获取所述电磁阀所控制的执行机构的动作幅度;
    第一判断模块,用于判断所述动作幅度是否第一次达到幅度阈值;
    第一更新模块,用于如果所述动作幅度第一次达到所述幅度阈值,则将所述初始开启电流减去预设步长以更新开启电流,并向所述电磁阀加载更新后的开启电流;
    第二判断模块,用于重新判断所述动作幅度是否达到所述幅度阈值;
    第二更新模块,用于如果重新判断出所述动作幅度达到所述幅度阈值,则将更新后的开启电流减去确定的步长以再次更新开启电流,并向所述电磁阀加载再次更新后的开启电流,以再次判断所述动作幅度是否达到所述幅度阈值;
    第一确定模块,用于在所述动作幅度达到所述幅度阈值且当前确定的步长小于步长阈值的情况下,将当前的开启电流确定为最小电流标定值;
    其中,当前确定的步长是在上一次确定的步长的基础上缩小而得到的。
  12. 根据权利要求11所述的电流标定装置,其特征在于,还包括:
    第三更新模块,用于如果所述动作幅度未第一次达到所述幅度阈值,则逐次将所述初始开启电流加上预设步长以更新开启电流,并向所述电磁阀加载更新后的开启电流,直至所述动作幅度第一次达到所述幅度阈值,将更新后的开启电流减去确定的步长以更新开启电流,并向所述电磁阀加载更新后的开启电流。
  13. 根据权利要求11所述的电流标定装置,其特征在于,还包括:
    第四更新模块,用于如果重新判断出所述动作幅度未达到所述幅度阈值,则将更新后的开启电流加上确定的步长以再次更新开启电流,并向所述电磁阀加载再次更新后的开启电流,以再次判断所述动作幅度是否达到所述幅度阈值。
  14. 根据权利要求11所述的电流标定装置,其特征在于,还包括:
    第二确定模块,用于在所述动作幅度未达到所述幅度阈值且当前确定的步长小于所述步长阈值的情况下,将上一次的开启电流确定为所述最小电流标定值。
  15. 根据权利要求11所述的电流标定装置,其特征在于,还包括:
    接收模块,用于接收电流标定指令。
  16. 根据权利要求11所述的电流标定装置,其特征在于,所述检测设备包 括用于检测回转位移的回转位移编码器、用于检测卷扬位移的卷扬位移编码器、用于检测变幅角度的变幅角度传感器和用于检测油缸伸缩位移的伸缩位移编码器中的至少一种。
  17. 一种工程机械,其特征在于,包括:
    电磁阀;
    由所述电磁阀所控制的执行机构;以及
    根据权利要求11至16中任意一项所述的用于电磁阀的电流标定装置。
  18. 一种机器可读存储介质,该机器可读存储介质上存储有指令,其特征在于,该指令在被处理器执行时使得所述处理器被配置成执行根据权利要求1至9中任意一项所述的用于电磁阀的电流标定方法。
PCT/CN2022/140047 2021-12-29 2022-12-19 用于电磁阀的电流标定方法、装置、处理器及工程机械 WO2023125110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111640309.3A CN114483709B (zh) 2021-12-29 2021-12-29 用于电磁阀的电流标定方法、装置、处理器及工程机械
CN202111640309.3 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023125110A1 true WO2023125110A1 (zh) 2023-07-06

Family

ID=81508728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140047 WO2023125110A1 (zh) 2021-12-29 2022-12-19 用于电磁阀的电流标定方法、装置、处理器及工程机械

Country Status (2)

Country Link
CN (1) CN114483709B (zh)
WO (1) WO2023125110A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117738975A (zh) * 2024-02-06 2024-03-22 中科云谷科技有限公司 用于电磁阀的标定方法、标定装置及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114483709B (zh) * 2021-12-29 2022-09-23 中联重科股份有限公司 用于电磁阀的电流标定方法、装置、处理器及工程机械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305306A (zh) * 2011-06-28 2012-01-04 长沙中联重工科技发展股份有限公司 用于电流标定的方法、装置与系统以及摊铺机
CN103592992A (zh) * 2013-11-18 2014-02-19 国家电网公司 一种阴影条件下光伏阵列最大功率点快速寻优系统及方法
US20140129035A1 (en) * 2012-11-07 2014-05-08 Caterpillar Inc. Excess Flow Control Valve Calibration Method
CN106838431A (zh) * 2016-12-22 2017-06-13 中联重科股份有限公司 一种用于电磁阀的控制设备、方法、系统及工程机械
CN112093690A (zh) * 2020-09-11 2020-12-18 湖南三一中型起重机械有限公司 一种启动电流优化方法、装置、电子设备及存储介质
CN114483709A (zh) * 2021-12-29 2022-05-13 中联重科股份有限公司 用于电磁阀的电流标定方法、装置、处理器及工程机械

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7562554B2 (en) * 2006-08-31 2009-07-21 Caterpillar Inc. Method for calibrating independent metering valves
KR20130122240A (ko) * 2012-04-30 2013-11-07 서채영 인터락 기능을 부가한 솔레노이드 밸브 및 그를 이용한 제어 시스템
JPWO2019003757A1 (ja) * 2017-06-29 2020-04-30 パナソニックIpマネジメント株式会社 電磁弁駆動制御回路、電磁弁駆動装置及び燃料噴射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305306A (zh) * 2011-06-28 2012-01-04 长沙中联重工科技发展股份有限公司 用于电流标定的方法、装置与系统以及摊铺机
US20140129035A1 (en) * 2012-11-07 2014-05-08 Caterpillar Inc. Excess Flow Control Valve Calibration Method
CN103592992A (zh) * 2013-11-18 2014-02-19 国家电网公司 一种阴影条件下光伏阵列最大功率点快速寻优系统及方法
CN106838431A (zh) * 2016-12-22 2017-06-13 中联重科股份有限公司 一种用于电磁阀的控制设备、方法、系统及工程机械
CN112093690A (zh) * 2020-09-11 2020-12-18 湖南三一中型起重机械有限公司 一种启动电流优化方法、装置、电子设备及存储介质
CN114483709A (zh) * 2021-12-29 2022-05-13 中联重科股份有限公司 用于电磁阀的电流标定方法、装置、处理器及工程机械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117738975A (zh) * 2024-02-06 2024-03-22 中科云谷科技有限公司 用于电磁阀的标定方法、标定装置及存储介质
CN117738975B (zh) * 2024-02-06 2024-04-26 中科云谷科技有限公司 用于电磁阀的标定方法、标定装置及存储介质

Also Published As

Publication number Publication date
CN114483709B (zh) 2022-09-23
CN114483709A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023125110A1 (zh) 用于电磁阀的电流标定方法、装置、处理器及工程机械
JP2005276189A5 (zh)
WO2019129039A1 (zh) 一种应用图标管理方法及相关设备
US8276186B2 (en) System and method for synchronizing security settings of control systems
CN114033564A (zh) 一种发动机转速控制方法、装置、系统及存储介质
JP2021001537A (ja) 自動ダンプ制御を備えた産業機械
CN111857584A (zh) 一种写入速度控制方法、装置及电子设备和存储介质
CN115182407B (zh) 用于控制臂架的方法、装置、控制器及工程机械
US10228731B2 (en) Controller for retractable keyboards
CN114590711B (zh) 一种多工况回转启动电流调控方法及装置
US20130285982A1 (en) Mechanism for interpreting touches to a pad cover over a sensor pad at a computing device
CN114382132A (zh) 用于控制正流量挖掘机行走的方法、设备及处理器
US20210279839A1 (en) Image processing apparatus configured to perform edge preserving smoothing and image processing method thereof
CN113747043B (zh) 图像处理器启动方法、电子设备和存储介质
TW201409468A (zh) 記憶體資料處理系統及方法
CN110109348B (zh) 一种基于深度的液压比例阀双向死区补偿方法
TW202022268A (zh) 質量流控制器、控制器演算法及設定點濾器
CN115030245B (zh) 正流量挖掘机及其控制方法、控制装置和控制器
CN110780788A (zh) 一种执行触控操作的方法与设备
KR102591808B1 (ko) 컴퓨팅 시스템 및 그 동작 방법
CN112695831B (zh) 用于工程机械平行驾驶的远程控制装置、方法及设备
CN109408429B (zh) 一种低速接口的缓存方法与装置
CN115030244B (zh) 正流量挖掘机及其控制方法、控制装置和控制器
CN116317822A (zh) 电机的速度控制方法、装置、电子设备及计算机存储介质
CN114421840B (zh) 用于塔机的控制方法、装置、控制器、塔机及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914364

Country of ref document: EP

Kind code of ref document: A1