WO2023125046A1 - 一种裸支架及植入支架 - Google Patents

一种裸支架及植入支架 Download PDF

Info

Publication number
WO2023125046A1
WO2023125046A1 PCT/CN2022/139307 CN2022139307W WO2023125046A1 WO 2023125046 A1 WO2023125046 A1 WO 2023125046A1 CN 2022139307 W CN2022139307 W CN 2022139307W WO 2023125046 A1 WO2023125046 A1 WO 2023125046A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
bare stent
stent
wave
bare
Prior art date
Application number
PCT/CN2022/139307
Other languages
English (en)
French (fr)
Inventor
李安伟
王永胜
Original Assignee
杭州唯强医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州唯强医疗科技有限公司 filed Critical 杭州唯强医疗科技有限公司
Publication of WO2023125046A1 publication Critical patent/WO2023125046A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
    • A61F2002/8483Barbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material

Definitions

  • the invention relates to the field of medical devices, in particular to a bare stent and an implanted stent.
  • Abdominal aortic aneurysm is a common aortic disease in vascular surgery. If it ruptures, the mortality rate is high. Due to damage or disease of the arterial wall, the abdominal aorta is limitedly dilated, exceeding 50% of the normal diameter. Therefore, abdominal aortic aneurysm often presents with a pulsating abdominal mass as the first symptom. Most abdominal aortic aneurysms are caused by atherosclerosis, and a few are caused by trauma and infection, which is the result of the interaction of multiple factors. With the progress of aging in our country, the change of diet structure and the development of clinical understanding, the detection rate of abdominal aortic aneurysm is increasing year by year, and it increases significantly with age.
  • EVAR abdominal aortic aneurysm
  • open surgery open repair, OR
  • EVAR endovascular repair
  • EVAR is superior to open surgery in terms of perioperative mortality and complication rate, intraoperative blood loss, ICU length of stay, and total length of stay
  • EVAR has the advantages of "minimally invasive, safe, fast recovery, and fewer complications".
  • EVAR is gradually replacing traditional open surgery and has become the first choice for most patients with abdominal aortic aneurysm, especially those who cannot tolerate OR and elderly patients.
  • the purpose of the present application is to provide a bare stent and an implanted stent to solve the technical problem that the bare stent blocks the blood flow of branch vessels and may cause organ ischemia.
  • the present application provides a bare stent, the bare stent has a cylindrical structure, the bare stent includes a plurality of main triangular waves, and the plurality of main triangular waves are arranged end-to-end in the circumferential direction of the bare stent , the main triangular wave is provided with at least four, the proximal end of the main triangular wave forms the main peak, and the main trough is formed at the far end between two adjacent main triangular waves, and the two adjacent main troughs are in the bare stent
  • the arc length in the circumferential direction is 15mm to 30mm.
  • the main triangular wave includes a first support rod, a second support rod and a transition rod, the distal end of the first support rod and the distal end of the second support rod together constitute the distal end of the main triangular wave,
  • the transition rod connects the proximal end of the first support rod and the proximal end of the second support rod, and the transition rod constitutes the main peak; the far end of the first support rod is adjacent to the main peak
  • the distal ends of the second struts of the triangular wave together form a main trough.
  • the transition rod is an arc structure with a radius of curvature in the range of 1.5 mm to 3 mm.
  • the width of the middle part of the transition rod is greater than the width of both ends of the transition rod, and the middle part of the transition rod is provided with a through hole.
  • the two adjacent main peaks are staggered in height.
  • the main peak is lower than two adjacent main peaks or higher than two adjacent main peaks.
  • the bare stent further includes a plurality of inverted triangular waves, the plurality of inverted triangular waves are arranged in the circumferential direction of the bare stent, the number of the inverted triangular waves is consistent with the number of the main triangular waves, and the plurality of the The inverted triangular waves are set in one-to-one correspondence with the plurality of main triangular waves, and the inverted triangular waves are located at the distal side of the corresponding main wave peaks.
  • the distal end of the inverted triangular wave forms a reinforced trough, and the reinforced trough is arranged opposite to the main wave crest in the axial direction of the bare stent.
  • the inverted triangle wave includes a third support rod and a fourth support rod, the distal end of the third support rod is fixedly connected to the distal end of the fourth support rod, and together form a reinforced trough, the third support rod Both the proximal end of the support rod and the proximal end of the fourth support rod are fixedly connected to the main triangle wave.
  • the reinforcing trough is staggered in height from the main trough.
  • each of the first support rods is provided with at least one barb, the proximal end of the barb is fixedly connected to the first support rod, and the distal end of the barb moves away from the bare stent.
  • One side of the central axis extends; an acute angle is formed between the barb and the first support rod where it is located.
  • the acute angle between the barb and the first support rod is in the range of 20° to 40°.
  • At least two developing positioning portions are provided on the bare support, and the at least two developing positioning portions are respectively located on two main troughs arranged at intervals.
  • the present application provides an implanted stent, wherein the implanted stent includes a membrane and the bare stent described above, and the distal end of the main triangle wave of the bare stent is used to be fixed to the proximal end of the membrane.
  • the implanted stent further includes a first stent, the first stent is in a cylindrical structure, the first stent is fixed on the peripheral side of the graft and arranged coaxially with the bare stent;
  • the first stent includes four combined waves, the four combined waves are arranged end to end along the circumferential direction of the covering film, the combined waves and the main triangular waves are arranged along the axial direction of the bare stent, each of the combined The waves all include a first wave and a second wave connected to the first wave, the first wave and the second wave are triangular waves, the proximal end of the first wave forms a first crest, and the second wave The proximal end of the wave forms a second peak, and in the axial direction of the first stent, the first peak is higher than or equal to the second peak.
  • the arc length of two adjacent main troughs in the circumferential direction of the bare stent is within the range of 15 mm to 30 mm, which not only ensures the radial support of the bare stent It is also beneficial to prevent the bare stent from blocking the blood flow of most of the branch vessels such as the renal artery and the superior mesenteric artery, and eliminate the potential risk of organ ischemia caused by the bare stent blocking the blood flow of the branch vessels. The safety of the implanted stent is improved.
  • Fig. 1 is a schematic structural view of an implanted stent provided in this embodiment.
  • FIG. 2 is a schematic diagram of the structure of the bare stent implanted in the stent shown in FIG. 1 .
  • Fig. 3 is a plan view of the contracted bare stent shown in Fig. 2 .
  • Fig. 4 is a schematic structural view of the first stent implanted in the stent shown in Fig. 1 .
  • Fig. 5 is a plan view of the bare stent shown in Fig. 2 deployed along the circumferential direction at the main trough.
  • Fig. 6 is a schematic diagram showing the positions of the implanted stent shown in Fig. 1 and the superior mesenteric artery, the right renal artery, the left renal artery and the abdominal aorta.
  • Fig. 7 is a schematic view of the position of the implanted stent shown in Fig. 1 and the superior mesenteric artery, the right renal artery, the left renal artery and the abdominal aorta at another angle.
  • FIG. 8 is a simplified schematic diagram of the projection of the implanted stent shown in FIG. 6 and the positions of the superior mesenteric artery, the right renal artery, and the left renal artery along the axial direction of the abdominal aorta.
  • the end close to the human heart is defined as the proximal end
  • the end far away from the human heart is defined as the distal end.
  • the crests and troughs of implanted stents and bare stents refer to a whole with the highest point formed by two curves similar to a sine wave
  • the trough refers to a whole formed by two curves similar to a sine wave.
  • the whole with the lowest point can be understood as an n-shaped and a v-shaped structure.
  • FIG. 1 is a schematic structural diagram of an implanted stent provided in this embodiment.
  • the implanted stent 100 includes a bare stent 10 , a first stent 20 and a graft 30 .
  • the distal end of the bare stent 10 is fixed to the proximal end of the membrane 30
  • the first stent 20 is fixed to the membrane 30 and opposite to the bare stent 10 .
  • the bare stent 10 and the first stent 20 can be arranged on the covering film 30 by means of suturing, sticking, stamping, sticking, setting or hot pressing. Further, the bare stent 10 can be fixed on the inner surface of the proximal end of the membrane 30 , and can also be fixed on the outer surface of the proximal end of the membrane 30 .
  • the bare stent 10 and the first stent 20 are fixed on the inner surface of the proximal end of the membrane 30 by polymer sutures, and the bare stent 10 and the first stent 20 jointly support the proximal end of the membrane 30 .
  • the material of the polymer suture can be made of one or more of PU, PET, PTFE, e-PTFE, PEP, and FEP.
  • the polymer suture can also be made of one or more of other synthetic polymer materials and/or natural polymer materials, which are not strictly limited here.
  • FIG. 2 is a schematic diagram of the bare stent structure of the implanted stent shown in FIG. 1 .
  • the bare stent 10 has two states, one is the expanded state when the bare stent 10 is working in the blood vessel, and the other is the contracted state when the bare stent 10 enters the blood vessel. Wherein, the bare stent 10 in FIG. 2 is in a deployed state.
  • the bare stent 10 has a cylindrical structure, and the bare stent 10 includes a plurality of main triangular waves 11 , and the plurality of main triangular waves 11 are arranged end-to-end in the circumferential direction of the bare stent 10 .
  • there are at least four main triangular waves 11 preferably four to five. In this embodiment, four main triangular waves 11 are provided as an example for illustration.
  • each main triangular wave 11 forms a main peak 111, and the main wave trough 112 is formed at the distal end between two adjacent main triangular waves 11, and the arc length of two adjacent main wave troughs 112 in the circumferential direction of the bare stent 10 is 15mm to 30mm , to adapt to the vessel diameter of different patients.
  • the arc length of two adjacent main troughs 112 in the circumferential direction of the bare stent 10 is 17.3 mm;
  • the arc length of the trough 112 in the circumferential direction of the bare stent 10 is 22 mm;
  • the diameter specification of the bare stent 10 is 36 mm, the arc length of two adjacent main troughs 112 in the circumferential direction of the bare stent 10 is 28.3 mm.
  • the above diameter specifications of the bare stent and the arc lengths of the corresponding two adjacent main troughs 112 in the circumferential direction of the bare stent 10 are only illustrative, and do not necessarily refer to the diameter specifications of the bare stent and the corresponding two adjacent main troughs 112 in the bare stent 10.
  • the arc length in the circumferential direction of the stent 10 is limited.
  • the main wave peak 111 is an arc structure, and the curvature radius of the main wave peak 111 is in the range of 1.5 mm to 3 mm. Preferably, the radius of curvature of the main peak 111 is 2.0mm.
  • the transition of the proximal end of the bare stent 10 is smoother, and the bare stent 10 is less irritating to blood vessels.
  • the present application not only can Ensure the radial support force and flexibility of the bare stent 10, when applied to the interventional treatment of abdominal aortic aneurysm, it is also beneficial to prevent the bare stent 10 from blocking most of the blood flow of the renal artery and the superior mesenteric artery, eliminating the need for the bare stent 10 Blocking blood flow in branch vessels may pose a potential risk of organ ischemia.
  • the bare stent is not only beneficial to avoid the bare stent 10 blocking the blood flow of most of the renal artery and superior mesenteric artery when applied to abdominal aortic aneurysm, but when the bare stent is applied to aortic dissection, ascending aorta or aortic arch When waiting for other blood vessels, it is also beneficial to avoid most of the branch blood vessels, and eliminates the potential risk of organ ischemia that may be caused by the bare stent 10 blocking the blood flow of the branch blood vessels.
  • the proximal end of the bare stent 10 is smoother and rounder, which helps to solve the problem that the proximal end of the bare stent 10 irritates the vessel wall for a long time.
  • the curvature radius of the main wave peak 111 the stress concentration problem of the main wave peak 111 of the bare stent 10 can also be improved, so that the force on the main wave peak 111 of the bare stent 10 is more uniform, and the fatigue fracture resistance of the main wave peak 111 is improved. ability, thereby improving the safety of the bare stent 10.
  • each main triangular wave 11 needs a larger span, that is, the arc length of two adjacent main troughs 112 in the circumferential direction of the bare stent 10 will be too long, It is easy to cause a large amount of strain at the main wave peak 111 and the main wave trough 112. Excessive strain will cause plastic deformation, which will affect the shrinkage and rebound performance of the bare stent 10, resulting in residual deformation in the springback of the bare stent 10 after shrinkage, resulting in the bare stent 10 being unable to be replaced.
  • the arc length of two adjacent main wave troughs 112 in the circumferential direction of the bare stent 10 is 15 mm to 30 mm, which not only ensures the radial direction of the bare stent 10
  • the supporting force and flexibility are also beneficial to prevent the bare stent 10 from blocking the blood flow of most of the branch vessels, eliminating the potential risk of organ ischemia that may be caused by the bare stent 10 blocking the blood flow of the branch vessels.
  • the main triangle wave 11 may include a first support rod 113 , a second support rod 114 and a transition rod 115 .
  • the distal end of the first support rod 113 and the distal end of the second support rod 114 together constitute the distal end of the main triangle wave 11 .
  • Transition bar 115 connects the proximal end of first support bar 113 and the near end of second support bar 114 to form an acute angle as the main crest 111 of main triangular wave 11; The distal end forms an acute angle as the main trough 112 of the main triangular wave 11 .
  • the main triangular wave 11 may be an integrally formed structure, that is, the first support bar 113 , the second support bar 114 and the transition bar 115 are integrally formed to ensure the connection strength of the main triangular wave 11 .
  • the main triangular wave 11 can also be formed separately and fixedly connected to each component, which is not strictly limited in this application.
  • the bare stent 10 may be integrally formed to ensure the connection strength of the bare stent 10 and improve the support stability of the bare stent 10 .
  • the bare stent 10 can also be formed by connecting the main triangular waves 11 after being molded separately.
  • the width of the middle part of the transition rod 115 is greater than the width of both ends of the transition rod 115, and the middle part of the transition rod 115 is provided with a through hole 115a.
  • the extension direction perpendicular to the radial direction of the bare stent 10 and perpendicular to the transition rod 115 is defined as the width direction of the transition rod 115 .
  • the width of the middle portion of the transition bar 115 first increases and then decreases. It can be understood that the structural design in which the width of the middle portion of the transition rod 115 first increases and then decreases can solve the stress concentration problem of the transition rod 115 to a certain extent.
  • the through hole 115a is circular and the center of the through hole 115a is set at the middle part of the transition rod 115 where the width is the largest. The through hole 115a can further reduce the maximum stress peak in the middle of the transition rod 115 and improve the safety of the bare stent 10 .
  • FIG. 3 is a plane expanded view of the bare stent shown in FIG. 2 in a contracted state.
  • two adjacent main peaks 111 are staggered in height. If the distance between the highest point and the lowest point of each group of main triangular waves 11 in the axial direction of the bare stent 10 is defined as the height of the main peak 111 in the axial direction of the bare stent 10, then the height of the two adjacent main wave peaks 111 different. Since the main peak 111 has a circular arc structure and a large curvature, the bare stent 10 has a large volume after contraction, and it is difficult for the bare stent 10 to be put into the delivery sheath. At this time, adopting the staggered arrangement of the main wave peaks 111 can make more effective use of space, reduce the shrinkage volume, and solve the problem that the bare stent 10 is difficult to put into the delivery sheath.
  • the main peak 111 is lower than two adjacent main peaks 111 or higher than two adjacent main peaks 111 in the axial direction of the bare stent 10 .
  • the bare stent 10 may further include a plurality of inverted triangle waves 12 , and the number of the inverted triangle waves 12 is the same as the number of the main triangle waves 11 .
  • the four inverted triangular waves 12 are arranged in the circumferential direction of the bare stent 10 and correspond to the four main triangular waves 11 one by one.
  • the four inverted triangle waves 12 are located in the space on the distal side of the main trough 111 .
  • the inverted triangle wave 12 includes a third support rod 121 and a fourth support rod 122 .
  • a proximal end of the third support rod 121 is fixedly connected to the first support rod 113
  • a proximal end of the fourth support rod 122 is fixedly connected to the second support rod 114 .
  • the distal end of the third support rod 121 is fixedly connected with the distal end of the fourth support rod 122 to form an acute angle as the reinforced trough 123 of the inverted triangular wave 12, and the reinforced trough 123 is arranged opposite to the corresponding main trough 112 along the axial direction of the bare stent 10 .
  • the proximal end of the third support rod 121 is fixedly connected to the middle part of the first support rod 113
  • the proximal end of the fourth support rod 122 is fixedly connected to the middle part of the second support rod 114 .
  • the third support rod 121 and the fourth support rod 122 improve the stress structure of the main triangular wave 11, increase the radial support force of the bare stent 10, and have the effect of strengthening the support.
  • the reinforced trough 123 can also be used for fixing to the proximal end of the membrane 30 , increasing the stability of the bare stent 10 and improving the adherence of the proximal end of the membrane 30 .
  • the reinforcement trough 123 in order to facilitate the radial contraction of the bare stent 10 , in the axial direction of the bare stent 10 , the reinforcement trough 123 is staggered in height from the main trough 112 . In this embodiment, in the axial direction of the bare stent 10 , the distance between the reinforced trough 123 and the main peak 111 is smaller than the distance between the main trough 112 and the same main peak 111 .
  • the reinforced trough 123 can occupy the space between the main peak 111 and the main trough 112 in the axial direction of the bare stent 10, which improves the space utilization ratio of the bare stent 10 , realizing the miniaturization of the bare stent 10 in the contracted state.
  • the bare stent 10 may further include four first barbs 13 and four second barbs 14 .
  • the proximal end of the first barb 13 is fixedly connected to the first support rod 113, the distal end of the first barb 13 extends to a side away from the central axis of the bare stent 10, and the first barb 13 It forms an acute angle with the first support rod 113 .
  • the proximal end of the second barb 14 is fixedly connected to the second support rod 114, the distal end of the second barb 14 extends to the side away from the central axis of the bare stent 10, and the second barb 14 is connected to the second barb 114.
  • the two support rods 114 form an acute angle.
  • the first barb 13 and the second barb 14 can increase the fixing effect between the bare stent 10 and the blood vessel, and improve the stability of the bare stent 10 .
  • the angle between the first barb 13 and the first support rod 113 is in the range of 20° to 40°
  • the angle between the second barb 14 and the second support rod 114 is also in the range of 20° to 40°. ° range.
  • the bare stent 10 may not be provided with the second barbs 14 , but only include four first barbs 13 .
  • the bare stent 10 may include a third barb and/or a fourth barb (not shown in the figure) other than the first barb 13 and the second barb 14 .
  • the proximal end of the third barb is fixedly connected to the middle part of the first support bar 113
  • the proximal end of the fourth barb is fixedly connected to the middle part of the second support bar 114
  • the extension direction of the third barb is the same as that of the first barb. 13 extend in the same direction
  • the fourth barb extends in the same direction as the second barb 14 in the same direction. This is not strictly limited in the application.
  • the material of the bare stent 10 may include nickel-titanium alloy with shape memory function.
  • the bare stent 10 can use other shape memory materials, including but not limited to nickel-titanium superelastic alloy, cobalt-chromium-nickel-molybdenum alloy, copper-based shape-memory alloy, iron-based shape-memory alloy, medical stainless steel alloy or various One or more kinds of polymers (such as polynorbornene, polyurethane, polylactic acid copolymer, etc.) and the like.
  • the surface of the bare stent 10 can also be polished. Polishing the surface of the bare stent 10 can make the surface of the bare stent 10 smooth and prevent the bare stent 10 from scratching the vessel wall.
  • the development positioning parts are at least two development positioning parts (not shown in the figure) provided on the bare support 10.
  • two development positioning parts are provided on the bare support 10 as an example, and the number and arrangement of the development positioning parts are not specified. location is limited.
  • the two developing positioning parts are respectively located on the two main troughs 111 arranged at intervals. Specifically, the developing positioning portion is fixedly connected to the first support rod 113 and/or the second support rod 114 forming the corresponding main trough 111 .
  • the development and positioning part is used to assist the operator to determine the release position of the bare stent 10 , so that the bare stent 10 can be accurately released at the target position in the blood vessel, and the positioning accuracy of the bare stent 10 can be improved.
  • the development positioning part can adopt various forms such as ring shape, filament shape, belt shape or point shape, and is fixed on the first surface by common technical means in the field such as sewing, punching, inlaying, hot melting, bonding, welding or pressure riveting. on the support rod 113 and/or the second support rod 114 .
  • the material of the developing positioning part includes but not limited to gold, platinum, tantalum, osmium, rhenium, tungsten, iridium, rhodium and other radiopaque materials.
  • the material of the developing positioning part can also be a material composed of alloys or composites of radiopaque materials such as gold, platinum, tantalum, osmium, rhenium, tungsten, iridium, and rhodium.
  • FIG. 4 is a schematic structural view of the first stent implanted in the stent shown in FIG. 1 .
  • the first stent 20 has a cylindrical structure, and the first stent 20 is fixed on the peripheral side of the membrane 30 and arranged coaxially with the bare stent 10 .
  • the first bracket 20 may include four combined waves 21 .
  • the four combined waves 21 are arranged end to end along the circumferential direction of the coating 30 .
  • each combined wave 21 includes a first wave 211 and a second wave 212 connecting the first wave 211, and both the first wave 211 and the second wave 212 are triangular waves.
  • the proximal end of the first wave 211 forms a first peak 211a
  • the proximal end of the second wave 212 forms a second peak 212a.
  • the heights of the first wave 211 and the second wave 212 are equal.
  • the first peak 211 a is higher than the second peak 212 a. That is, in the axial direction of the first stent 20 , the second peak 212 a is closer to the distal end of the first stent 20 than the first peak 211 a. Further, in the axial direction of the first bracket 20 , the height difference between the first peak 211 a and the second peak 212 a is within a range of 2 mm to 4 mm. That is, the distance between the first peak 211 a and the second peak 212 a in the axial direction of the first bracket 20 is within a range of 2 mm to 4 mm.
  • the material of the first stent 20 may include nickel-titanium alloy with shape memory function.
  • the first stent 20 can use other shape memory materials, including but not limited to nickel-titanium superelastic alloy, cobalt-chromium-nickel-molybdenum alloy, copper-based shape-memory alloy, iron-based shape-memory alloy, medical stainless steel alloy or One or more of various polymers (such as polynorbornene, polyurethane, polylactic acid copolymer, etc.) and the like.
  • the surface of the first bracket 20 can also be polished. Polishing the surface of the first bracket 20 can make the surface of the first bracket 20 smooth and prevent the first bracket 20 from scratching the film.
  • both the first peak 211 a and the second peak 212 a are located between the reinforcing trough 123 and the main trough 112 . That is, when projected along the axial direction of the implanted stent 100 , the projection lines of the first peak 211 a and the second peak 212 a are located between the projection lines of the main trough 112 and the reinforcement trough 123 . In this embodiment, when projected along the axial direction of the implanted stent 100 , the projection line of the second peak 212 a partially coincides with the projection line of the connection between the first support rod 113 and the third support rod 121 .
  • FIG. 5 is a plan view of the bare stent shown in FIG. 2 deployed along the circumferential direction at the main trough.
  • Figure 6 is a schematic diagram of the positions of the implanted stent shown in Figure 1 and the superior mesenteric artery, right renal artery, left renal artery, and abdominal aorta;
  • Figure 7 is a schematic diagram of the implanted stent shown in Figure 1 and the superior mesenteric artery, right renal artery, and left kidney Schematic illustration of the artery and abdominal aorta position at another angle.
  • FIG. 8 is a simplified schematic diagram of the projection of the implanted stent shown in FIG. 6 and the positions of the superior mesenteric artery, the right renal artery, and the left renal artery along the axial direction of the abdominal aorta.
  • the bare stent 10 is deployed and flattened along the circumferential direction at the lowest point of one of the main troughs 112 , and the deployment point is recorded as 0° (also 360°).
  • each main triangular wave 11 occupies 90° of the circumference of the bare stent 10 .
  • the main wave peaks 111 are respectively located at 45°, 135°, 225° and 315° of the circumference of the bare stent 10 . Therefore, a large gap can be formed between each main peak 111 .
  • the branch blood vessel can be placed at the gap, avoiding the blood flow blocking of the branch blood vessel by the bare stent 10, and eliminating the possibility of the bare stent 10 blocking the blood flow.
  • Potential risk of organ ischemia improves the positioning accuracy and safety of the bare stent 10 .
  • the implanted stent 100 needs to be fixed at a branch vessel of the abdominal aorta 200 .
  • the operation method of releasing the implanted stent 100 is specifically described by taking the branch vessels as the superior mesenteric artery 300 , the right renal artery 400 and the left renal artery 500 .
  • the implanted stent 100 is transported to the position near the abdominal aortic aneurysm of the patient through the conveyor, so that the upper edge of the graft 30 is flush with the lower edge of the lower renal artery of the right renal artery 400 and the left renal artery 500 .
  • the upper edge of the graft 30 is flush with the lower edge of the left renal artery 500 .
  • the main body of the implanted stent 100 is released, and the bare stent 10 remains in a tight state.
  • the circumferential position of the implanted stent 100 at the branch vessel is adjusted. As shown in FIG. 8 , it is projected along the axial direction of the abdominal aorta 200 , assuming that one end point of the projection at the junction of the superior mesenteric artery 300 and the abdominal aorta 200 is 0° (also 360°) of the projection circle of the abdominal aorta 200 As for the counting points, according to statistics, the projected circular arc of the connection between the superior mesenteric artery 300 and the abdominal aorta 200 occupies a range of 0° to 22.5° of the projected circle of the abdominal aorta 200 .
  • the projected circular arc of the junction of the right renal artery 400 and the abdominal aorta 200 occupies the range of the projection circle of the abdominal aorta 200 between 270° and 307.5°, and the projection of the junction of the left renal artery 500 and the abdominal aorta 200 The arc occupies a range between 60° and 90° of the projected circumference of the abdominal aorta 200 .
  • the projected position of the main peak 111 can be at 45°, 135°, 225° and 315° of the projected circumference of the abdominal aorta 200 as shown in Figure 6 and Figure 7 . Therefore, between 315° and 45° and between 225° and 315° of the projected circumference of the bare stent 10, a large gap is formed between the main crests 111 of the bare stent 10, and the right renal artery 400 and the left renal artery 500 The connections with the abdominal aorta 200 are located in the gap.
  • the implanted stent 100 avoids the blood flow obstruction of the right renal artery 400 and the left renal artery 500 by the bare stent 10, eliminates the risk of thrombus formation due to the blocked blood flow velocity, and improves the safety of the implanted stent 100 and positioning accuracy.
  • the bare bracket 10 can be released. Since the material of the bare stent 10 has a shape memory function, it will rapidly expand in the radial direction of the implanted stent 100 in vivo until it supports the inner wall of the abdominal aorta 200 . At this time, the first barb 13 and the second barb 14 on the bare stent 10 will hook the inner wall of the abdominal aorta 200, so that the fixation of the implanted stent 100 is more firm, avoiding the instability of the suprarenal fixation area. Risk of stent migration.
  • the arc curvature of the main crest 111 of the implanted stent 100 provided by the present application is relatively large, which also avoids the problem that the tip of the implanted stent 100 irritates the inner wall of the abdominal aorta 200 for a long time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种裸支架(10)及植入支架(100)。裸支架(10)呈筒状结构,裸支架(10)包括多个主三角波(11),多个主三角波(11)首尾相连地排布于裸支架(10)的周向,主三角波(11)的数量为至少四个,主三角波(11)的近端形成主波峰(111),相邻两个主三角波(11)之间在远端形成主波谷(112),相邻两个主波谷(112)在裸支架(10)的周向上的弧长为15 mm至30mm的范围内。通过将裸支架(10)的主波峰(111)的数量控制为至少四个,使得相邻两个主波谷(112)在裸支架(10)的周向上的弧长为15mm至30mm的范围内,不仅能够保证裸支架(10)的径向支撑力以及柔顺性,还有利于避免裸支架(10)阻挡绝大部分肾动脉和肠系膜上动脉(300)等分支血管的血流,消除了裸支架(10)阻挡分支血管的血流可能带来脏器缺血的潜在风险,进一步提升了植入支架(100)的安全性。

Description

一种裸支架及植入支架
本申请要求于2021年12月30日提交至中国专利局、申请号为202111663657.2、申请名称为“一种裸支架及植入支架”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械领域,尤其涉及一种裸支架及植入支架。
背景技术
腹主动脉瘤是血管外科常见的大动脉疾病,若破裂,则死亡率高。由于动脉壁的损伤或病变,导致腹主动脉局限性扩张,超过正常直径的50%以上,因此腹主动脉瘤多以腹部搏动性包块为首发症状。大多数腹主动脉瘤由动脉粥样硬化引起,少数起因于创伤及感染,是多因素相互作用的结果。随着我国老龄化的进展、饮食结构的改变以及临床认识水平的发展,腹主动脉瘤的检出率逐年升高,且随年龄的增加而显著增加。
治疗腹主动脉瘤的主要方式包括经典的开放手术(open repair,OR)及腔内修复术(EVAR)。由于EVAR在围手术期病死率及并发症率,术中失血,ICU 住院时间及总住院时间方面均优于开放手术治疗,EVAR具有“微创、安全、快速恢复、并发症少”等优势,EVAR正逐步取代传统开放手术,成为大多数腹主动脉瘤患者的首选治疗方式,尤其是无法耐受OR者以及高龄患者。
然而,目前由于EVAR的支架性能的局限性,其裸支架横跨肾动脉等分支血管的开口后,分支血管的血流变成不规则的紊流,可能会引发脏器缺血并发症。
技术问题
本申请的目在于提供一种裸支架及植入支架,以解决裸支架阻挡分支血管的血流可能带来脏器缺血的技术问题。
技术解决方案
第一方面,本申请提供一种裸支架,所述裸支架呈筒状结构,所述裸支架包括多个主三角波,多个所述主三角波首尾相连地排布于所述裸支架的周向,所述主三角波设置有至少四个,所述主三角波的近端形成主波峰,相邻两个所述主三角波之间在远端形成主波谷,相邻两个所述主波谷在裸支架的周向上的弧长为15mm至30mm。
优选地,所述主三角波设置有四个至五个。
优选地,所述主三角波包括第一支撑杆、第二支撑杆以及过渡杆,所述第一支撑杆的远端和所述第二支撑杆的远端共同构成所述主三角波的远端,所述过渡杆连接所述第一支撑杆的近端和所述第二支撑杆的近端,所述过渡杆构成所述主波峰;所述第一支撑杆的远端与相邻所述主三角波的所述第二支撑杆的远端共同形成主波谷。
优选地,所述过渡杆为弧形结构且曲率半径在1.5mm至3mm的范围内。
优选地,所述过渡杆的中部的宽度大于所述过渡杆的两端的宽度,所述过渡杆的中部设有通孔。
优选地,在所述裸支架的轴向上,相邻的两个所述主波峰高低错开。
优选地,所述主波峰低于相邻的两个主波峰或高于相邻的两个主波峰。
优选地,所述裸支架还包括多个倒三角波,多个所述倒三角波排布于所述裸支架的周向,所述倒三角波的数量和所述主三角波的数量一致,多个所述倒三角波与多个所述主三角波一一对应设置,所述倒三角波位于对应的所述主波峰的远端侧。
优选地,所述倒三角波的远端形成加强波谷,所述加强波谷与所述主波峰在所述裸支架的轴向上相对设置。
优选地,所述倒三角波包括第三支撑杆和第四支撑杆,所述第三支撑杆的远端与所述第四支撑杆的远端固定连接,且共同形成加强波谷,所述第三支撑杆的近端以及所述第四支撑杆的近端均固定连接于所述主三角波。
优选地,在所述裸支架的轴向上,所述加强波谷与所述主波谷高低错开。
优选地,各所述第一支撑杆上设有至少一根倒刺,所述倒刺的近端固定连接于所述第一支撑杆,所述倒刺的远端向远离所述裸支架的中心轴线的一侧延伸;所述倒刺与其所在第一支撑杆之间形成锐角。
优选地,所述倒刺与其所在第一支撑杆之间的锐角在20°到40°的范围内。
优选地,所述裸支架上设置有至少两个显影定位部,至少两个显影定位部分别位于间隔设置的两个主波谷上。
第二方面,本申请提供一种植入支架,其中,植入支架包括覆膜和前述任一项的裸支架,裸支架的主三角波的远端用于固定至覆膜的近端。
优选地,所述植入支架还包括第一支架,所述第一支架呈筒状结构,所述第一支架固定于所述覆膜的周侧且与所述裸支架同轴设置;所述第一支架包括四个组合波,四个组合波首尾相连地沿所述覆膜的周向排布,所述组合波和所述主三角波沿所述裸支架的轴向排列,各所述组合波均包括第一波和连接所述第一波的第二波,所述第一波和所述第二波均为三角波,所述第一波的近端形成第一波峰,所述第二波的近端形成第二波峰,在所述第一支架的轴向上,所述第一波峰高于或等于所述第二波峰。
有益效果
通过将裸支架的主波峰的数量控制为四个至五个,使得相邻两个主波谷在裸支架的周向上的弧长为15mm至30mm的范围内,不仅能够保证裸支架的径向支撑力以及柔顺性,还有利于避免裸支架阻挡绝大部分肾动脉和肠系膜上动脉等分支血管的血流,消除了裸支架阻挡分支血管的血流可能带来脏器缺血的潜在风险,进一步提升了植入支架的安全性。
附图说明
图1是本实施例提供的一种植入支架的结构示意图。
图2是图1所示植入支架的裸支架结构示意图。
图3是图2所示裸支架收缩后的平面展开图。
图4是图1所示植入支架的第一支架的结构示意图。
图5是图2所示裸支架在主波谷处沿周向展开的平面图。
图6是图1所示植入支架与肠系膜上动脉、右肾动脉、左肾动脉和腹主动脉位置示意图。
图7是图1所示植入支架与肠系膜上动脉、右肾动脉、左肾动脉和腹主动脉位置在另一角度的示意图。
图8是图6所示植入支架与肠系膜上动脉、右肾动脉、左肾动脉位置沿腹主动脉轴向方向投影简化示意图。
附图标记:100、植入支架;10、裸支架;11、主三角波;111、主波峰;112、主波谷;113、第一支撑杆;114、第二支撑杆;115、过渡杆;115a、通孔;12、倒三角波;121、第三支撑杆;122、第四支撑杆;123、加强波谷;13、第一倒刺;14、第二倒刺;20、第一支架;21、组合波;211、第一波;211a、第一波峰;212、第二波;212a、第二波峰;30、覆膜;200、腹主动脉;300、肠系膜上动脉;400、右肾动脉;500、左肾动脉。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书的描述中,将靠近人体心脏的一端定义为近端,远离人体心脏的一端定义为远端。本申请中还规定,植入支架、裸支架的波峰及波谷,指的是类似于正弦波由两条曲线构成具有最高点的整体,而波谷指的是类似于正弦波由两条曲线构成的具有最低点的整体,通俗来讲可以理解为n字形和v字形的结构。
请参阅图1,图1是本实施例提供的一种植入支架的结构示意图。
在一些实施例中,植入支架100包括裸支架10、第一支架20和覆膜30。其中,裸支架10的远端固定于覆膜30的近端,第一支架20固定于覆膜30且与裸支架10相对设置。
其中,裸支架10和第一支架20可以通过缝合、贴覆、冲压、贴设、镶设或热压等方式设置于覆膜30上。进一步地,裸支架10可以固定于覆膜30的近端的内表面,也可以固定于覆膜30的近端的外表面。
示例性的,裸支架10和第一支架20通过高分子缝合线固定于覆膜30近端的内表面,裸支架10和第一支架20共同支撑起覆膜30的近端。其中,高分子缝合线的材料可以是PU、PET、PTFE、e-PTFE、PEP、FEP中的一种或多种制成。在其他实施例中,高分子缝合线也可以由其他合成高分子材料和/或天然高分子材料的一种或多种制成,在此处不做严格限定。
请参阅图2,图2是图1所示植入支架的裸支架结构示意图。
需要说明的是,裸支架10有两个状态,一种是裸支架10处于血管中工作时的展开状态,另一种是裸支架10进入血管时的收缩状态。其中,图2中的裸支架10处于展开状态。
在一些实施例中,裸支架10呈筒状结构,且裸支架10包括多个主三角波11,多个主三角波11首尾相连地排布于裸支架10的周向。其中,主三角波11设置有至少四个,优选四个至五个,本实施例以主三角波11设置有四个举例说明。各个主三角波11的近端形成主波峰111,相邻两个主三角波11之间在远端形成主波谷112,相邻两个主波谷112在裸支架10的周向上的弧长为15mm至30mm,以适应不同患者的血管直径大小。
例如,当裸支架10的直径规格为22mm时,相邻两个主波谷112在裸支架10的周向上的弧长为17.3mm;当裸支架10的直径规格为28mm时,相邻两个主波谷112在裸支架10的周向上的弧长为22mm;当裸支架10的直径规格为36mm时,相邻两个主波谷112在裸支架10的周向上的弧长为28.3mm。以上裸支架的直径规格和对应的相邻两个主波谷112在裸支架10的周向上的弧长只是示例性说明,并不对裸支架的直径规格和对应的相邻两个主波谷112在裸支架10的周向上的弧长进行限制。
主波峰111为弧形结构,主波峰111的曲率半径在1.5mm至3mm的范围内。优选的,主波峰111的曲率半径为2.0mm。裸支架10的近端过渡更为平滑,裸支架10对血管的刺激更小。
相比少于四个主三角波11的裸支架10,本申请通过控制四个至五个主三角波以及相邻两个主波谷112在裸支架10的周向上的弧长为15mm至30mm,不仅能够保证裸支架10的径向支撑力以及柔顺性,应用于腹主动脉瘤的介入治疗时,还有利于避免裸支架10阻挡绝大部分肾动脉和肠系膜上动脉的血流,消除了裸支架10阻挡分支血管的血流可能带来脏器缺血的潜在风险。需要说明的是,裸支架除了在应用于腹主动脉瘤时有利于避免裸支架10阻挡绝大部分肾动脉和肠系膜上动脉的血流,对于裸支架应用于主动脉夹层、升主动脉或主动脉弓等其他血管时,还有利于避免绝大部分分支血管,消除了裸支架10阻挡分支血管的血流可能带来脏器缺血的潜在风险。
在另一方面,通过控制主波峰111的曲率半径在1.5mm至3mm的范围内,使得裸支架10的近端更加平滑圆润,有利于解决裸支架10的近端长期刺激血管壁这一问题。另外,通过控制主波峰111的曲率半径,还可以改善裸支架10的主波峰111的应力集中问题,使裸支架10的主波峰111受力更为均匀,提升了主波峰111的抗疲劳断裂的能力,进而提高了裸支架10的安全性。
需要说明的是,当主三角波11的个数少于四个时,要么各个主三角波11需要较大的跨度,即相邻两个主波谷112在裸支架10的周向上的弧长会太长,容易导致主波峰111和主波谷112处应变量很大,应变过大会产生塑性变形,影响裸支架10收缩回弹性能,导致裸支架10收缩后的回弹存在残余变形,导致裸支架10无法更好的贴合血管的内壁;要么各个主三角波11在轴向上的高度会偏高,高度过高会导致裸支架10柔顺性差,很难适应弯曲的血管形态。本申请通过将主波峰111的个数设置为四个至五个,使得相邻两个主波谷112在裸支架10的周向上的弧长为15mm至30mm,不仅能够保证裸支架10的径向支撑力以及柔顺性,还有利于避免裸支架10阻挡绝大部分分支血管的血流,消除了裸支架10阻挡分支血管的血流可能带来脏器缺血的潜在风险。
如图2所示,主三角波11可以包括第一支撑杆113、第二支撑杆114以及过渡杆115。示例性的,第一支撑杆113的远端和第二支撑杆114的远端共同构成主三角波11的远端。过渡杆115连接第一支撑杆113的近端和第二支撑杆114的近端形成锐角以作为主三角波11的主波峰111;第一支撑杆113的远端与相邻第二支撑杆114的远端形成锐角以作为主三角波11的主波谷112。
示例性的,主三角波11可以是一体成型结构,即第一支撑杆113、第二支撑杆114和过渡杆115是一体成型结构,以保证主三角波11的连接强度。当然,主三角波11也可以是各组成单独成型后固定连接,在本申请中不做严格限定。
相类似的,裸支架10可以是一体成型结构,以保证裸支架10的连接强度,提高裸支架10的支撑稳定性。当然,裸支架10也可以是各主三角波11单独成型后连接形成。
在一些实施例中,过渡杆115的中部的宽度大于过渡杆115的两端的宽度,过渡杆115的中部设有通孔115a。在本申请中,定义垂直于裸支架10的径向方向且垂直于过渡杆115的延伸方向为过渡杆115的宽度方向。
在本实施例中,过渡杆115的中部的宽度先增加后减小。可以理解的是,过渡杆115的中部的宽度先增加后减小的结构设计能够在一定程度上解决过渡杆115存在的应力集中的问题。其中,通孔115a呈圆形且通孔115a的圆心设置于过渡杆115的中部宽度最大处。通孔115a可以进一步减小过渡杆115中部的最大应力峰值,提高裸支架10的安全性。
请一并参阅图2和图3,图3是图2所示裸支架处于收缩状态的平面展开图。
在一些实施例中,在裸支架10的轴向方向上,相邻的两个主波峰111高低错开。若定义每组主三角波11在裸支架10的轴向上的最高点与最低点在裸支架10的轴向方向上的距离为主波峰111的高度,则相邻两组主波峰111的高度大小不同。由于主波峰111为圆弧结构且曲率较大,裸支架10收缩后体积较大,裸支架10会难以收入输送器鞘管。此时,采用主波峰111高低错开的排布方式可以更加有效地利用空间,减小收缩后的体积,解决裸支架10较难收入输送器鞘管的问题。
更特殊的,在一些实施例中,主波峰111在裸支架10的轴向上低于相邻两个主波峰111或者高于相邻两个主波峰111。在本实施例中,有两个主波峰111高,两个主波峰111低,四个主波峰111按照主波峰111的高低交错排布。
在一些实施例中,裸支架10还可以包括多个倒三角波12,倒三角波12的数量和主三角波11的数量一致。四个倒三角波12排布于裸支架10的周向且与四个主三角波11一一对应设置。四个倒三角波12位于主波谷111的远端侧的空间内。其中,倒三角波12包括第三支撑杆121和第四支撑杆122。第三支撑杆121的近端固定连接于第一支撑杆113,第四支撑杆122的近端固定连接于第二支撑杆114。第三支撑杆121的远端与第四支撑杆122的远端固定连接形成锐角以作为倒三角波12的加强波谷123,加强波谷123与对应的主波谷112沿裸支架10的轴向上相对设置。
在本实施例中,第三支撑杆121的近端固定连接于第一支撑杆113的中部,第四支撑杆122的近端固定连接于第二支撑杆114的中部。第三支撑杆121和第四支撑杆122改善了主三角波11的受力结构,增加了裸支架10的径向支撑力,具有加强支撑的作用。另外,加强波谷123也可用于固定至覆膜30的近端,增加裸支架10的稳定性,并且提高覆膜30的近端的贴壁性。
在一些实施例中,为了方便裸支架10径向收缩,在裸支架10的轴向方向上,加强波谷123与主波谷112高低错开。在本实施例中,在裸支架10轴向方向上,加强波谷123与主波峰111之间的距离均小于主波谷112与同一主波峰111之间的距离。因此,本实施例的裸支架10处于收缩状态时,在裸支架10的轴向方向上,加强波谷123可以占据主波峰111与主波谷112之间的空间,提高了裸支架10的空间利用率,实现了裸支架10在收缩状态时的小型化。
在本实施例中,裸支架10还可以包括四根第一倒刺13和四根第二倒刺14。在一些实施例中,第一倒刺13的近端固定连接于第一支撑杆113,第一倒刺13的远端向远离裸支架10的中心轴向的一侧延伸,第一倒刺13与第一支撑杆113形成锐角。相对应的,第二倒刺14的近端固定连接于第二支撑杆114,第二倒刺14的远端向远离裸支架10的中心轴向的一侧延伸,第二倒刺14与第二支撑杆114形成锐角。第一倒刺13和第二倒刺14可以增加裸支架10与血管的固定效果,提高裸支架10的稳定性。
其中,第一倒刺13与第一支撑杆113之间的夹角在20°到40°的范围内,第二倒刺14与第二支撑杆114之间的夹角也在20°到40°的范围内。通过控制第一倒刺13与第一支撑杆113之间的夹角范围,第二倒刺14与第二支撑杆114之间的夹角范围,可以在不刺伤血管壁的前提下更好地提升裸支架10与血管的固定效果,有利于防止裸支架10移位。
在一些其他实施例中,裸支架10可以不设有第二倒刺14,仅包括四根第一倒刺13。或者,裸支架10可以包括除第一倒刺13、第二倒刺14以外的第三倒刺和/或第四倒刺(图中未示出)。其中,第三倒刺的近端固定连接于第一支撑杆113的中部,第四倒刺的近端固定连接于第二支撑杆114的中部,第三倒刺的延伸方向与第一倒刺13的延伸方向相同,第四倒刺的延伸方向与第二倒刺14的延伸方向相同。在申请中对此不做严格限定。
示例性的,裸支架10的材料可以包括具有形状记忆功能的镍钛合金。在一些其他实施例中,裸支架10可以采用其他形状记忆材料,包括但不仅限于镍钛超弹性合金、钴铬镍钼合金、铜基形状记忆合金、铁基形状记忆合金、医用不锈钢合金或各种聚合物(例如聚降冰片烯、聚氨酯、聚乳酸共聚物等)等的一种或多种制成。本实施例还可以对裸支架10的表面进行抛光处理。裸支架10的表面进行抛光处理可以使裸支架10的表面光滑,防止裸支架10刮伤血管壁。
裸支架10上设置有至少两个显影定位部(图中未示出),在本实施例中,以裸支架10上设置有两个显影定位部举例说明,并不对显影定位部的数量和设置位置进行限制。两个显影定位部分别位于间隔设置的两个主波谷111上。具体地,显影定位部固定连接于形成对应主波谷111的第一支撑杆113和/或第二支撑杆114上。显影定位部用于辅助操作者确定裸支架10的释放位置,以使裸支架10精准释放于血管内的目标位置,提高裸支架10的定位精确度。
显影定位部可以采用环状、丝状、带状或者点状等多种形式,并且通过缝合、冲压、镶嵌、热熔、粘接、焊接或者压铆等本领域常用的技术手段固定在第一支撑杆113和/或第二支撑杆114上。可选的,显影定位部的材料包括但不限于金、铂、钽、锇、铼、钨、铱、铑等射线不可透材料。显影定位部的材料还可以是金、铂、钽、锇、铼、钨、铱、铑等射线不可透材料的合金或复合物组成的材料。
请参阅图1和图4,图4是图1所示植入支架的第一支架的结构示意图。
在一些实施例中,第一支架20呈圆筒状结构,第一支架20固定于覆膜30的周侧且与裸支架10同轴设置。
示例性的,第一支架20可以包括四个组合波21。四个组合波21首尾相连沿覆膜30的周向排布。其中,每个组合波21均包括第一波211和连接第一波211的第二波212,且第一波211和第二波212均为三角波。其中,第一波211的近端形成第一波峰211a,第二波212的近端形成第二波峰212a。在第一支架20的轴向上,第一波211和第二波212的高度相等。
在其他实施例中,在第一支架20的轴向上,第一波峰211a高于第二波峰212a。也即是,在第一支架20轴向方向上,第二波峰212a相较于第一波峰211a更靠近第一支架20的远端。进一步地,在第一支架20的轴向上,第一波峰211a与第二波峰212a的高度差在2mm至4mm的范围内。即第一波峰211a与第二波峰212a在第一支架20轴向方向上的距离在2mm至4mm的范围内。
示例性的,第一支架20的材料可以包括具有形状记忆功能的镍钛合金。在一些其他实施例中,第一支架20可以采用其他形状记忆材料,包括但不仅限于镍钛超弹性合金、钴铬镍钼合金、铜基形状记忆合金、铁基形状记忆合金、医用不锈钢合金或各种聚合物(例如聚降冰片烯、聚氨酯、聚乳酸共聚物等)等的一种或多种制成。本实施例还可以对第一支架20的表面进行抛光处理,第一支架20的表面进行抛光处理可以使第一支架20的表面光滑,防止第一支架20刮伤覆膜。
在植入支架100的周向上,第一波峰211a和第二波峰212a均位于加强波谷123与主波谷112之间。也即是,沿植入支架100的轴向投影时,第一波峰211a的投影线和第二波峰212a的投影线均位于主波谷112的投影线与加强波谷123的投影线之间。在本实施例中,沿植入支架100的轴向投影时,第二波峰212a的投影线和第一支撑杆113与第三支撑杆121连接处的投影线部分重合。
请一并参阅图5、图6、图7和图8,图5是图2所示裸支架在主波谷处沿周向展开的平面图。图6是图1所示植入支架与肠系膜上动脉、右肾动脉、左肾动脉和腹主动脉位置示意图;图7是图1所示植入支架与肠系膜上动脉、右肾动脉、左肾动脉和腹主动脉位置在另一角度的示意图。图8是图6所示植入支架与肠系膜上动脉、右肾动脉、左肾动脉位置沿腹主动脉轴向方向投影简化示意图。
如图5所示,将裸支架10在其中一个主波谷112的最低点处沿周向展开铺平,记展开点处为0°(也是360°)。在本实施例中,因为裸支架10包含四个主三角波11,所以每个主三角波11都占据裸支架10圆周的90°。其中,主波峰111分别处于裸支架10圆周的45°、135°、225°和315°位置。因此,在每个主波峰111之间都能形成很大的豁口。通过显影定位部的显影作用调节裸支架10的与分支血管的相对位置关系,可以使得分支血管处于豁口处,避免裸支架10对分支血管的血流阻挡,消除裸支架10阻挡血流可能带来脏器缺血的潜在风险,提升裸支架10的定位精确度和安全性。
示例性的,采用腔内修复术治疗靠近或累及内脏动脉的腹主动脉瘤时,植入支架100需要固定于腹主动脉200的分支血管处。在本实施例中,如图6和图7所示,以分支血管为肠系膜上动脉300、右肾动脉400和左肾动脉500来具体说明植入支架100释放的操作方法。
首先,将植入支架100通过输送器输送至患者腹主动脉瘤附近位置,使覆膜30的上边缘与右肾动脉400和左肾动脉500两者中靠下的肾动脉的下沿齐平。在本实施例中,覆膜30的上边缘与左肾动脉500的下沿齐平。接着释放植入支架100主体,裸支架10保持紧束状态。
然后,对植入支架100在分支血管处的周向位置进行调整。如图8所示,沿腹主动脉200的轴向方向投影,假定肠系上膜动脉300与腹主动脉200连接处投影的一端点为腹主动脉200投影圆周的0°(也是360°)记数点,则根据统计,肠系膜上动脉300与腹主动脉200连接处的投影圆弧占据腹主动脉200投影圆周的范围在0°到22.5°之间。相对应的,右肾动脉400与腹主动脉200连接处的投影圆弧占据腹主动脉200投影圆周的范围在270°到307.5°之间,左肾动脉500与腹主动脉200连接处的投影圆弧占据腹主动脉200投影圆周的范围在60°到90°之间。
此时,通过调整裸支架10的周向位置,可以使得主波峰111的投影位置处于如图6和图7所示腹主动脉200的投影圆周的45°、135°、225°和315°处。因此,在裸支架10投影圆周的315°到45°之间、225°到315°之间,裸支架10主波峰111之间都形成了很大豁口,并且右肾动脉400和左肾动脉500与腹主动脉200连接处均位于豁口内。
因此,本申请提供的植入支架100避免了裸支架10对右肾动脉400和左肾动脉500的血流阻挡,消除了因血液流速受阻而形成血栓的风险,提升了植入支架100的安全性和定位精确度。
请继续参阅图6和图7,调整完成后,可以释放裸支架10。由于裸支架10的材料具有形状记忆功能,在体内会迅速沿植入支架100的径向扩张,直至支撑到腹主动脉200的内壁。此时,裸支架10上的第一倒刺13和第二倒刺14会勾住腹主动脉200的内壁,使得植入支架100的固定更加牢固,避免了因肾上固定区不稳固而产生支架移位的风险。本申请提供的植入支架100的主波峰111的圆弧曲率较大,也规避了植入支架100尖部长期刺激腹主动脉200的内壁的问题。
以上,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种裸支架,其特征在于,所述裸支架呈筒状结构,所述裸支架包括多个主三角波,多个所述主三角波首尾相连地排布于所述裸支架的周向,所述主三角波的数量为至少四个,所述主三角波的近端形成主波峰,相邻两个所述主三角波之间在远端形成主波谷,相邻两个所述主波谷在裸支架的周向上的弧长为15mm至30mm的范围内。
  2. 根据权利要求1所述的裸支架,其特征在于,所述主三角波的数量为四个至五个。
  3. 根据权利要求1所述的裸支架,其特征在于,所述主三角波包括第一支撑杆、第二支撑杆以及过渡杆,所述第一支撑杆的远端和所述第二支撑杆的远端共同构成所述主三角波的远端,所述过渡杆连接所述第一支撑杆的近端和所述第二支撑杆的近端,所述过渡杆构成所述主波峰;所述第一支撑杆的远端与相邻所述主三角波的所述第二支撑杆的远端共同形成主波谷。
  4. 根据权利要求3所述的裸支架,其特征在于,所述过渡杆为弧形结构且曲率半径在1.5mm至3mm的范围内。
  5. 根据权利要求4所述的裸支架,其特征在于,所述过渡杆的中部的宽度大于所述过渡杆的两端的宽度,所述过渡杆的中部设有通孔。
  6. 根据权利要求1至5中任一项所述的裸支架,其特征在于,在所述裸支架的轴向上,相邻的两个所述主波峰高低错开。
  7. 根据权利要求5所述的裸支架,其特征在于,所述主波峰低于相邻的两个主波峰或高于相邻的两个主波峰。
  8. 根据权利要求1所述的裸支架,其特征在于,所述裸支架还包括多个倒三角波,多个所述倒三角波排布于所述裸支架的周向,所述倒三角波的数量和所述主三角波的数量一致,多个所述倒三角波与多个所述主三角波一一对应设置,所述倒三角波位于对应的所述主波峰的远端侧。
  9. 根据权利要求8所述的裸支架,其特征在于,所述倒三角波的远端形成加强波谷,所述加强波谷与所述主波峰在所述裸支架的轴向上相对设置。
  10. 根据权利要求9所述的裸支架,其特征在于,所述倒三角波包括第三支撑杆和第四支撑杆,所述第三支撑杆的远端与所述第四支撑杆的远端固定连接,且共同形成加强波谷,所述第三支撑杆的近端以及所述第四支撑杆的近端均固定连接于所述主三角波。
  11. 根据权利要求9至10中任一项所述的裸支架,其特征在于,在所述裸支架的轴向上,所述加强波谷与所述主波谷高低错开。
  12. 根据权利要求4所述的裸支架,其特征在于,各所述第一支撑杆上设有至少一根倒刺,所述倒刺的近端固定连接于所述第一支撑杆,所述倒刺的远端向远离所述裸支架的中心轴线的一侧延伸;所述倒刺与其所在第一支撑杆之间形成锐角。
  13. 根据权利要求12所述的裸支架,其特征在于,所述倒刺与其所在第一支撑杆之间的锐角在20°到40°的范围内。
  14. 根据权利要求1所述的裸支架,其特征在于,所述裸支架上设置有至少两个显影定位部,至少两个所述显影定位部分别位于间隔设置的两个所述主波谷上。
  15. 一种植入支架,其特征在于,包括覆膜和权利要求1至14中任一项所述的裸支架,所述裸支架的主三角波的远端用于固定至所述覆膜的近端。
  16. 根据权利要求15所述的植入支架,其特征在于,所述植入支架还包括第一支架,所述第一支架呈筒状结构,所述第一支架固定于所述覆膜的周侧且与所述裸支架同轴设置;
    所述第一支架包括四个组合波,四个组合波首尾相连地沿所述覆膜的周向排布,所述组合波和所述主三角波沿所述裸支架的轴向排列,各所述组合波均包括第一波和连接所述第一波的第二波,所述第一波和所述第二波均为三角波,所述第一波的近端形成第一波峰,所述第二波的近端形成第二波峰,在所述第一支架的轴向上,所述第一波峰高于或等于所述第二波峰。
PCT/CN2022/139307 2021-12-30 2022-12-15 一种裸支架及植入支架 WO2023125046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111663657.2A CN116407369A (zh) 2021-12-30 2021-12-30 一种裸支架及植入支架
CN202111663657.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125046A1 true WO2023125046A1 (zh) 2023-07-06

Family

ID=86997643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139307 WO2023125046A1 (zh) 2021-12-30 2022-12-15 一种裸支架及植入支架

Country Status (2)

Country Link
CN (1) CN116407369A (zh)
WO (1) WO2023125046A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117100456A (zh) * 2023-10-18 2023-11-24 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316983A (ja) * 1999-03-05 2000-11-21 Terumo Corp 生体留置用ステントおよび生体器官拡張器具
US20070055345A1 (en) * 2005-09-02 2007-03-08 Medtronic Vascular, Inc. Endoluminal prosthesis
CN202960835U (zh) * 2012-11-30 2013-06-05 中国人民解放军广州军区武汉总医院 用于主动脉弓部一体单分支血管腔内修复治疗的覆膜支架
CN205286610U (zh) * 2016-01-08 2016-06-08 朱建成 一种主动脉覆膜支架
CN106344209A (zh) * 2016-10-11 2017-01-25 有研医疗器械(北京)有限公司 一种腹主动脉覆膜支架及其输送装置和使用方法
CN112773585A (zh) * 2020-12-30 2021-05-11 杭州唯强医疗科技有限公司 植入支架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316983A (ja) * 1999-03-05 2000-11-21 Terumo Corp 生体留置用ステントおよび生体器官拡張器具
US20070055345A1 (en) * 2005-09-02 2007-03-08 Medtronic Vascular, Inc. Endoluminal prosthesis
CN202960835U (zh) * 2012-11-30 2013-06-05 中国人民解放军广州军区武汉总医院 用于主动脉弓部一体单分支血管腔内修复治疗的覆膜支架
CN205286610U (zh) * 2016-01-08 2016-06-08 朱建成 一种主动脉覆膜支架
CN106344209A (zh) * 2016-10-11 2017-01-25 有研医疗器械(北京)有限公司 一种腹主动脉覆膜支架及其输送装置和使用方法
CN112773585A (zh) * 2020-12-30 2021-05-11 杭州唯强医疗科技有限公司 植入支架

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117100456A (zh) * 2023-10-18 2023-11-24 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器
CN117100456B (zh) * 2023-10-18 2024-02-02 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器

Also Published As

Publication number Publication date
CN116407369A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US10729531B2 (en) Low profile non-symmetrical stent
US10828183B2 (en) Low profile non-symmetrical stent
EP0880948B1 (en) Stent and stent-graft for treating branched vessels
JP5492792B2 (ja) 血管アクセスシステム
JP2008534108A (ja) 脈管グラフト
EP2231067B1 (en) Stent member
US7905915B2 (en) Z-stent with incorporated barbs
US20060195172A1 (en) Multi-unit stent-graft
WO2010105561A1 (zh) 侧支型覆膜支架
JPH11509130A (ja) よじれに抗するステント移植片
WO2019096158A1 (zh) 血管支架
JP2024010114A (ja) 内部人工器官
CN110623780A (zh) 分段式覆膜支架及其制备方法
WO2023125046A1 (zh) 一种裸支架及植入支架
CN115697255A (zh) 可膨胀器械及相关系统和方法
CN112638321A (zh) 用于使可植入医疗装置转向的设备、系统和方法
EP3988062A1 (en) Segmental covered stent and preparation method therefor
WO2023124901A1 (zh) 管腔支架
TWI749353B (zh) 中心靜脈用覆膜支架
EP1477134A2 (en) Stent and stent-graft for treating branched vessels
CN219184335U (zh) 覆膜支架
WO2022227283A1 (zh) 一种主动脉覆膜支架
WO2016145391A1 (en) Expansible cardiovascular graft system
WO2023028279A2 (en) Compliant endovascular device for thoracic and the thoraco-abdominal aorta
JP3881379B2 (ja) 血管又は中空の器官内腔内に植え込まれる装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914301

Country of ref document: EP

Kind code of ref document: A1