WO2023124919A1 - 提纯氦气的系统及方法和应用 - Google Patents

提纯氦气的系统及方法和应用 Download PDF

Info

Publication number
WO2023124919A1
WO2023124919A1 PCT/CN2022/138123 CN2022138123W WO2023124919A1 WO 2023124919 A1 WO2023124919 A1 WO 2023124919A1 CN 2022138123 W CN2022138123 W CN 2022138123W WO 2023124919 A1 WO2023124919 A1 WO 2023124919A1
Authority
WO
WIPO (PCT)
Prior art keywords
helium
extraction tower
gas
phase
tower
Prior art date
Application number
PCT/CN2022/138123
Other languages
English (en)
French (fr)
Inventor
刘子兵
邱鹏
常志波
夏政
余浩杰
刘银春
梁璇玑
王登海
刘峰
林亮
韦玮
范君来
马勇
江伟平
柳洁
郭永强
崔春江
吴付洋
张宗伟
黄杰
Original Assignee
长庆工程设计有限公司
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长庆工程设计有限公司, 中国石油天然气股份有限公司 filed Critical 长庆工程设计有限公司
Publication of WO2023124919A1 publication Critical patent/WO2023124919A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/029Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop

Definitions

  • the invention relates to the technical field of helium purification, in particular to a system, method and application for purifying helium.
  • Helium is a colorless, odorless rare inert gas. It is widely used in high-tech fields such as clinical medicine, national defense and military industry, aerospace, nuclear industry, deep-sea diving, low-temperature superconductivity, and high-precision welding. It is a relationship An important scarce strategic resource for national security and the development of high-tech industries. Helium is a monoatomic gas that cannot be synthesized through chemical reactions. The separation and purification of helium from helium-containing natural gas is currently the only source of industrial production of helium. However, my country's helium resources are scarce, and helium products mainly rely on imports. Therefore, the development of appropriate technology to extract helium from natural gas is of great strategic significance for ensuring the safety of national helium use. Especially for the comprehensive and efficient utilization of natural gas resources, it is of positive significance to improve the economic benefits of gas field development.
  • the cryogenic method is the most widely used and mature separation technology in the field of helium extraction from natural gas. It usually consists of natural gas pretreatment and purification, cryogenic rectification to extract crude helium, and helium refining.
  • the existing technology for extracting helium from natural gas mainly has the following defects: (1) The recovery of helium components from natural gas adopts a cryogenic process, which requires deep removal of carbon dioxide to ensure that dry ice will not form under low temperature conditions and block cold boxes and other equipment, resulting in Secondary dehydration requires high investment and high energy consumption, making it difficult to achieve economical efficiency. (2) Multi-stage combined refrigeration needs to be adopted, the process is long, the investment is high, the operating cost is high, the operation is complicated, and it cannot be economically effective.
  • the object of the present invention is to provide a system, method and application for purifying helium in order to overcome the technical problems existing in the prior art.
  • the first aspect of the present invention provides a system for purifying helium, which system includes: a first gas-liquid separation device, a first-stage helium extraction tower, a second gas-liquid separation device, and a second-stage helium extraction tower and denitrification tower,
  • the first gas-liquid separation device is used to convert helium-containing natural gas into a first gas phase and a first liquid phase through a first treatment;
  • the primary helium extraction tower is used to perform first rectification on the first gas phase and the first liquid phase to obtain a second gas phase and a second liquid phase;
  • the second gas-liquid separation device is used to convert the second gas phase into a third gas phase and a third liquid phase through a second treatment
  • the secondary helium extracting tower is used to carry out the second rectification of the third gas phase and the third liquid phase to obtain crude helium product and the fourth liquid phase;
  • the denitrification tower is used to denitrify the fourth liquid phase to obtain nitrogen and LNG products.
  • a second aspect of the present invention provides a method for purifying helium, the method comprising the following steps:
  • the third aspect of the present invention provides an application of the system described in the aforementioned first aspect or the method described in the aforementioned second aspect in the extraction of helium from natural gas.
  • the system for purifying helium in the present invention is equipped with a coupling device of a first-stage helium extraction tower, a second-stage helium extraction tower, and a denitrification tower, which greatly reduces the refrigerant refrigeration power, significantly reduces investment and saves operation cost.
  • the first-level helium extraction tower realizes low-temperature decarbonation (hereinafter referred to as carbon) and the initial concentration of helium
  • the second-level helium extraction tower realizes ultra-low temperature denitrification and secondary concentration of helium.
  • the denitrification tower can produce ultra-low temperature nitrogen refrigerant, which is the second
  • the step-by-step helium extraction tower provides the cooling source of ultra-low temperature nitrogen at the top of the tower. Without the nitrogen cycle refrigeration system of the conventional process, the efficient helium extraction is realized, and the helium recovery rate can reach more than 99%. At the same time, the denitrification tower The by-production of LNG at the top of the tower can greatly improve the overall economic benefits of the process.
  • Fig. 1 is a schematic structural diagram of the system for purifying helium according to a specific embodiment of the present invention.
  • First-level helium extraction tower reflux tank 14.
  • First-level reflux pump 15.
  • the fifth liquid level regulating valve 26 The top condenser of the secondary helium extraction tower 27.
  • Second pressure regulating valve 29 Secondary tower bottom reboiler 30. Second pressure regulating valve
  • the denitrification tower 31 31.
  • the sixth liquid level regulating valve 32 32.
  • the first aspect of the present invention provides a system for purifying helium, which system includes: a first gas-liquid separation device, a first-stage helium extraction tower 11, a second gas-liquid separation device, and a second-stage gas-liquid separation device connected in sequence.
  • the first gas-liquid separation device is used to convert the helium-containing natural gas 1 into a first gas phase and a first liquid phase through a first treatment;
  • the primary helium extracting tower 11 is used to carry out the first rectification of the first gas phase and the first liquid phase to obtain a second gas phase and a second liquid phase;
  • the second gas-liquid separation device is used to convert the second gas phase into a third gas phase and a third liquid phase through a second treatment
  • the secondary helium extraction tower 27 is used to carry out the second rectification of the third gas phase and the third liquid phase to obtain the crude helium product and the fourth liquid phase;
  • the denitrification tower 33 is used for denitrification treatment of the fourth liquid phase to obtain nitrogen (exported nitrogen) and LNG product (liquefied natural gas).
  • the first gas phase separation device includes: at least one primary cold box 5 and at least one primary low temperature separator 6 .
  • the first gas phase separation device includes: a primary cold box 5 and a primary low temperature separator 6 connected in sequence.
  • the primary cold box 5 is used to precool the helium-containing natural gas 1 to obtain low-temperature helium-containing natural gas.
  • the primary low-temperature separator 6 is used for first low-temperature separation of the low-temperature helium-containing natural gas to obtain the first gas phase and the first liquid phase.
  • At least one first-stage bottom reboiler 7 is arranged between the first-stage cold box 5 and the first-stage low-temperature separator 6, for cooling the low-temperature helium-containing natural gas , and then sent to the first-stage low-temperature separator 6, this arrangement can make part of the CO 2 condensed and precipitated and the first liquid phase enter the middle and lower part of the first-stage concentration tower with a higher temperature, which can effectively suppress the formation of CO 2 dry ice freeze blockage probability, and at the same time use the cooling to provide its own heat to the first-stage thickening tower as a reboiling heat source.
  • the gas phase outlet of the primary cryogenic separator 6 can be connected with the middle part of the primary helium extraction tower 11, and the liquid phase outlet of the primary cryogenic separator 6 can be connected with the primary helium extraction tower The middle and lower parts of 11 are connected.
  • one or more (there is no limit to the number of settings) flow regulating valves, liquid level regulating valves, temperature control valves and pressure regulating valves can be set between each device.
  • the primary helium extraction tower 11 is connected to the primary column bottom reboiler 7 for reboiling the reboiled liquid at the bottom of the primary helium extraction column 11 at the bottom of the primary column After exchanging heat in the device 7, it is sent to the gas phase space at the bottom of the primary helium extraction tower 11 to provide heat for the primary helium extraction tower 11.
  • various devices can be connected through pipelines.
  • the first-stage cold box 5, the first-stage bottom reboiler 7, the first-stage low-temperature separator 6, the first flow regulating valve 8, the first liquid level regulating valve 9 and the first-stage helium extraction tower 11 are connected by pipelines .
  • the second gas-liquid separation device includes: at least one primary helium extraction tower reflux tank 13 and at least one secondary low temperature separator 24 .
  • the second gas-liquid separation device includes: a first-stage helium extraction tower reflux tank 13 and a second-stage low-temperature separator 24 connected in sequence.
  • the primary helium extraction tower reflux tank 13 is used to separate the second gas phase to obtain a gas phase stream and a liquid phase stream.
  • the secondary low-temperature separator 24 is used for performing a second low-temperature separation on the gas phase stream to obtain a third gas phase and a third liquid phase.
  • At least one primary helium extraction tower top condenser 12 (arranged on the primary helium extraction tower) is also provided between the primary helium extraction tower 11 and the primary helium extraction tower reflux tank 13 Outside), after being used for condensing the second gas phase, it is sent to the reflux tank 13 of the first-stage helium extraction tower.
  • At least one secondary column bottom reboiler 29 is also provided between the primary helium extraction tower reflux tank 13 and the secondary low temperature separator 24, for cooling the gas phase stream After that, it is sent to the secondary low-temperature separator 24.
  • the gas phase outlet of the secondary low temperature separator 24 is connected to the middle part of the secondary helium extraction tower 27, and the liquid phase outlet of the secondary low temperature separator 24 is connected to the secondary extraction tower 27.
  • the middle and lower parts of the helium tower 27 are connected.
  • a fifth liquid level regulating valve 25 may also be provided between the secondary cryogenic separator 24 and the secondary helium extraction tower 27, for controlling the flow rate into the secondary helium extraction tower 27 to maintain Stablize.
  • At least one secondary cold box 22 is also arranged between the secondary low temperature separator 24 and the secondary helium extraction tower 27, for subcooling the third gas phase , and then sent to the secondary helium extraction tower 27.
  • a second pressure regulating valve 28 may also be provided between the secondary cold box 22 and the secondary helium extraction tower 27 to control the pressure entering the secondary helium extraction tower 27 in a stable state.
  • the gas phase outlet of the secondary helium extraction tower 27 is connected to the secondary cold box 22, and is used to discharge the gas phase from the top of the secondary helium extraction tower 27 through the secondary Stage cold box 22 carries out heat exchange, obtains crude helium product.
  • a first pressure regulating valve 21 may also be provided at the outlet of the secondary cold box 22 for controlling the output pressure of the crude helium product.
  • the secondary helium extraction tower 27 is connected with the secondary bottom reboiler 29, and is used for dissolving the reboiler at the bottom of the secondary helium extraction tower 27 in the secondary
  • the heat is exchanged in the reboiler 29 at the bottom of the first stage tower and then sent to the gas phase space at the bottom of the second stage helium extraction tower 27 to provide heat for the second stage helium extraction tower 27.
  • the top condenser 32 of the denitrification tower is installed in the upper part of the denitrification tower 33 (that is, it is arranged inside the denitrification tower).
  • the top condenser 32 of the denitrification tower is connected to the secondary cold box 22, and is used to cool and liquefy the high-pressure refrigerant 18 in the secondary cold box 22, and then send it into the The top condenser 32 of the denitrification tower provides cooling capacity for the denitrification tower 33 and then returns to the secondary cold box 22 to obtain a low-pressure gas-phase refrigerant 19 .
  • the upper part of the secondary helium extraction tower 27 is provided with a secondary helium extraction tower top condenser 26 (that is, arranged in the inside of the secondary helium extraction tower), for the denitrification tower 33
  • the gas phase (nitrogen) at the top of the tower carries out heat exchange in the top condenser 26 of the secondary helium extraction tower and after providing cooling capacity for the top condenser 26 of the secondary helium extraction tower, it passes through the secondary cooling
  • the box 22 is used for recovery of low-temperature cooling capacity, and then reheated by the first-stage cold box 5, and used as an external nitrogen discharge device.
  • the liquid phase outlet at the bottom of the denitrification tower 33 is connected to the secondary cold box 22 for passing the liquid phase at the bottom of the denitrification tower 33 through the secondary cooling After tank 22 is subcooled, LNG product is obtained.
  • the lower part of the denitrification tower 33 is provided with a reboiler 34 at the bottom of the denitrification tower (that is, it is arranged inside the denitrification tower).
  • the reboiler 34 at the bottom of the denitrification tower is connected with the first-stage helium extraction tower 11 and the top condenser 12 of the first-stage helium extraction tower, and is used to convert the first-stage helium extraction tower
  • the second liquid phase in the helium extraction tower 11 part is exchanged in the reboiler 34 at the bottom of the denitrification tower to provide heat for the denitrification tower 33, and then sent to the top of the first-stage helium extraction tower for condensation
  • the device 12 provides cooling capacity for the top condenser 12 of the primary helium extraction tower, and converts it into crude natural gas. Adopting this specific arrangement (the flow direction of the second liquid phase in the first-stage helium extraction tower 11 ) can fully couple and utilize the energies of the streams in each device.
  • a temperature control valve at the bottom of the denitrification tower can also be provided between the reboiler 34 at the bottom of the denitrification tower and the first-stage helium extraction tower 11, which is used to control the LNG product at the bottom of the denitrification tower. nitrogen content.
  • a third liquid level regulating valve 17 may also be provided between the top condenser 12 of the first-stage helium extraction tower and the first-stage helium extraction tower 11 to control the flow rate of reflux.
  • the top condenser 12 of the first-stage helium extraction tower is connected to the first-stage cold box 5 for sending the crude natural gas into the first-stage cold box 5 for reheating to obtain low-pressure lean natural gas 3 .
  • the liquid phase outlet of the first-stage helium extraction tower reflux tank 13 is connected to the upper part of the first-stage helium extraction tower 11, and is used to transfer the liquid phase of the first-stage helium extraction tower reflux tank 13 The phase flow is sent to the upper part of the first-stage helium extraction tower 11 as the reflux liquid at the top of the first-stage helium extraction tower 11 .
  • a primary reflux pump 11 and a temperature control valve 15 at the top of the primary helium extraction tower can also be arranged between the primary helium extraction tower reflux tank 13 and the primary helium extraction tower 11 .
  • the first-stage reflux pump is used to physically pressurize the liquid phase, and then send it to the upper part of the first-stage helium extraction tower 11 after the flow is regulated by the temperature control valve 15 on the top of the first-stage helium extraction tower.
  • the bottom of the first-stage helium extraction tower 11 is connected to the first-stage cold box 5, and is used to recover the remaining part of the second liquid phase to obtain medium-pressure lean natural gas 2.
  • a second liquid level regulating valve 10 may also be provided between the bottom of the first-stage helium extraction tower 11 and the first-stage cold box 5, for liquidating the remaining part of the second liquid phase. After position control, it is sent to the primary cold box 5 for cooling recovery.
  • a second aspect of the present invention provides a method for purifying helium, the method comprising the following steps:
  • step (1), the first treatment includes: precooling the helium-containing natural gas to obtain low-temperature helium-containing natural gas.
  • the first treatment includes: performing a first low-temperature separation on the helium-containing natural gas and/or the low-temperature helium-containing natural gas to obtain the first gas phase and the first liquid phase.
  • the first treatment further includes: cooling the helium-containing natural gas and/or the low-temperature helium-containing natural gas before the first low-temperature separation.
  • the conditions of the first rectification may include: the temperature is from -95°C to -80°C (such as -95°C, -92°C, -90°C, -88°C °C, -86°C, -85°C, -82°C, -80°C or any value between the above values), the pressure is 3.5MPa to 4.5MPa (such as 3.5MPa, 3.8MPa, 4.0MPa, 4.2MPa, 4.4MPa , 4.5MPa or any value between the above values).
  • the conditions of the first rectification can make helium be concentrated more than 30 times; at the same time, low-temperature CO 2 removal can be realized, dry ice can be controlled in the whole tower, and the CO 2 content of the second gas phase can be controlled to be lower than 50 ppm.
  • the method may further comprise the step of subcooling the first gas phase and the first liquid phase before the first rectification.
  • the method further includes the step of exchanging heat with the reboiled liquid obtained from the first rectification.
  • the second treatment includes: separating the second gas phase to obtain a gas phase stream and a liquid phase stream.
  • the second treatment includes: performing a second low temperature separation on the second gas phase and/or the gas phase stream to obtain a third gas phase and a third liquid phase.
  • the second treatment further includes: before the separation, condensing the second gas phase.
  • the second treatment further comprises: cooling the second gaseous phase and/or the gaseous phase stream before the second low-temperature separation.
  • the method further includes returning the separated liquid phase to the reflux used for the first rectification.
  • the conditions of the second rectification include: the temperature is from -185°C to -110°C (such as -185°C, -180°C, -170°C, -160°C , -150°C, -140°C, -130°C, -120°C, -110°C or any value between the above values), the pressure is 2-3MPa (such as 2MPa, 2.1MPa, 2.2MPa, 2.3MPa, 2.4MPa , 2.5MPa, 2.7MPa, 2.8MPa, 3MPa or any value between the above values).
  • the conditions of the second rectification can greatly reduce methane and nitrogen, and further increase the concentration of helium.
  • the method further includes: before the second rectification, subcooling the third gas phase.
  • the method further includes the step of exchanging heat with the reboiled liquid obtained from the second rectification.
  • the method further includes the step of exchanging heat in the gas phase obtained from the second rectification to obtain a crude helium product.
  • the conditions of the denitrification treatment include: the temperature is from -160 to -110°C (such as -160°C, -150°C, -140°C, -130°C, - 120°C, -110°C or any value between the above values), the pressure is 1.5MPa to 2.5MPa (such as 1.5MPa, 1.6MPa, 1.7MPa, 1.8MPa, 2MPa, 2.2MPa, 2.5MPa or between the above values any value).
  • the denitrification treatment can obtain LNG products and by-product nitrogen. Among them, the use of nitrogen which is a by-product of denitrification can provide -184°C ultra-low temperature cooling capacity, avoiding the need to set up an independent nitrogen cycle refrigeration compressor.
  • the method further includes the step of cooling and liquefying the high-pressure refrigerant to obtain the low-pressure gas-phase refrigerant.
  • the method further includes the step of subcooling the liquid phase obtained from the denitrification treatment to obtain an LNG product.
  • the method further includes: performing heat exchange on part of the second liquid phase to convert it into crude natural gas.
  • the method further includes: reheating the crude natural gas to obtain low-pressure lean natural gas.
  • the method further includes: recovering the remaining part of the second liquid phase for cooling to obtain medium-pressure lean natural gas.
  • first low-temperature separation and/or second low-temperature separation are not particularly limited, as long as the requirements of the present invention can be met , can be carried out with reference to conventional methods in the art.
  • the present invention has no special limitation on the content of each component in the helium-containing natural gas, for example, in terms of volume fraction, the helium-containing natural gas may contain 98-99% of CH 4 and 0.1-0.5% of C 2 H 6. 0.2-0.6% N2 , 0.3-0.8% CO2 , 0.01-0.1% He and 0.005-0.3% H2 .
  • the crude helium product may contain 0.2-0.8% of CH 4 , 6-12% of N 2 , 60-70% of He and 15-25% of H in terms of volume fraction 2 .
  • the third aspect of the present invention provides an application of the system described in the aforementioned first aspect or the method described in the aforementioned second aspect in the extraction of helium from natural gas.
  • the use of the method for purifying helium of the present invention in the system for purifying helium of the present invention specifically includes the following process:
  • step (b) The first gas phase and the first liquid phase obtained in step (a) are sent into the first-level cold box 5 for subcooling respectively and then sent into the first-level helium extraction tower 11, and the first rectification is carried out to obtain the second gas phase and the first liquid phase Two liquid phases, wherein, the first gas phase is sent to the middle part of the first-level helium extraction tower 11, and the first gas phase is sent to the middle and lower part of the first-level helium extraction tower 11; After the heat exchange in the reboiler 34 at the bottom of the nitrogen tower provides heat for the denitrification tower 33, it is sent to the top condenser 12 of the first-level helium extraction tower to provide cooling capacity for the top condenser 12 of the first-level helium extraction tower, and is transformed into Crude natural gas, then send the crude natural gas into the first-stage cold box 5 for reheating to obtain low-pressure lean natural gas; then recover the remaining part of the second liquid phase to obtain medium-pressure lean natural gas; and
  • step (c) the second gas phase that step (b) obtains is sent into the top condenser 12 of the first-level helium extraction tower and condensed, and then sent into the first-level helium extraction tower reflux tank 13 for separation to obtain a gaseous phase stream and a liquid phase stream; And the obtained gas phase stream is sent to the secondary low-temperature separator 24 after being cooled in the bottom of the secondary column reboiler 29, and the second low-temperature separation is carried out to obtain the third gas phase and the third liquid phase; wherein, the obtained liquid After the phase flow is pressurized by the primary reflux pump 14, and the temperature control valve 15 at the top of the primary helium extraction tower is regulated and controlled, the temperature is sent to the top of the primary helium extraction tower 11 as the reflux liquid at the top of the primary helium extraction tower 11;
  • the third gas phase obtained by step (c) is sent into the middle part of the secondary helium tower 27 after being supercooled by the secondary cold box 22, and the third liquid phase obtained by the step (c) is sent into the secondary helium extraction
  • the third gas phase and the third liquid phase are carried out to the second rectification in the secondary helium extraction tower 27, the gas phase obtained at the top of the tower, the liquid phase (the fourth liquid phase) obtained at the bottom of the tower, the tower
  • the gas phase at the top is sent into the secondary cold box 22 to obtain the crude helium product after heat exchange;
  • the gas phase space at the bottom of the helium extraction tower 27 provides heat for the secondary helium extraction tower 27;
  • step (e) the fourth liquid phase obtained in step (d) is denitrified, the top of the tower obtains a gas phase, and the bottom of the tower obtains a liquid phase; the gas phase at the top of the tower is sent to the top condenser 32 of the secondary helium extraction tower for heat exchange And after the cooling capacity is provided for the top condenser 32 of the secondary helium extraction tower, the ultra-low temperature cooling capacity is recovered through the secondary cold box 22, and then reheated through the primary cold box 5 to obtain nitrogen (as external nitrogen); The liquid phase at the bottom of the tower is sent to the secondary cold box 22 for supercooling to obtain LNG products.
  • the composition of helium-containing natural gas includes: 98.5313% CH 4 , 0.2998% C 2 H 6 , 0.4812% N 2 , 0.6311% CO 2 , 0.0416% He and 0.0150% H 2 .
  • the device performs the first low-temperature separation to obtain the first gas phase and the first liquid phase;
  • the first gaseous phase and the first liquid phase obtained in step (1) are sent into the first-level helium extraction tower after being supercooled respectively in the first-level cold box, and the first rectification is carried out to obtain the second gaseous phase and the second liquid phase Phase, wherein, the first gas phase is sent to the middle part of the first-stage helium extraction tower, and the first gas phase is sent to the middle and lower part of the first-stage helium extraction tower; wherein, the operating conditions of the first rectification: the temperature at the top of the tower is -94 ° C, The temperature at the bottom of the tower is -81°C and the pressure is 4.2MPa; the second liquid phase of the first-stage helium extraction tower is exchanged in the reboiler at the bottom of the denitrification tower to provide heat for the denitrification tower, and then sent to the first-stage helium extraction tower
  • the top condenser of the helium extraction tower provides cooling capacity for the top condenser of the first-stage
  • step (3) after the second gas phase that step (2) obtains is sent into the top condenser of the first-level helium extraction tower and condensed, it is sent into the first-level helium extraction tower reflux tank for separation to obtain a gaseous phase stream and a liquid phase stream; and
  • the obtained gas phase flow is sent to the secondary bottom reboiler for cooling and then sent to the secondary low temperature separator for second low temperature separation to obtain the third gas phase and the third liquid phase; wherein, the obtained liquid phase is passed through a
  • the first-stage reflux pump pressurizes, the temperature control valve at the top of the first-stage helium extraction tower regulates the temperature, and then sends it to the upper part of the first-stage helium extraction tower as the reflux liquid at the top of the first-stage helium extraction tower;
  • the third gas phase and the third liquid phase are subjected to the second rectification in the secondary helium extraction tower, the gas phase obtained at the top of the tower, the liquid phase (the fourth liquid phase) obtained at the bottom of the tower, and the gas phase at the top of the tower is passed through
  • the crude helium product is obtained; and the reboiled liquid at the bottom of the secondary helium extraction tower is exchanged in the reboiler at the bottom of the secondary column and then sent to the bottom of the secondary helium extraction tower
  • the gas phase space provides heat for the secondary helium extraction tower; among them, the operating conditions of the second rectification: tower top temperature -181°C, tower bottom temperature -110°C, pressure 2.3MPa;
  • step (4) the 4th liquid phase that step (4) obtains is carried out denitrification treatment, and tower top obtains gaseous phase, and tower bottom obtains liquid phase;
  • the ultra-low temperature cooling capacity is recovered through the second-level cold box, and then reheated through the first-level cold box to obtain nitrogen (as external nitrogen); the liquid at the bottom of the tower is The phase is sent to the secondary cold box for supercooling to obtain LNG products;
  • the operating conditions of the denitrification treatment include: tower top temperature -160°C, tower bottom temperature -110°C, and pressure 1.6MPa.
  • the composition of the crude helium product includes: by volume fraction, the crude helium contains 0.6117% CH 4 , 10.3476% N 2 , 67.7689% He and 21.2718% H 2 .
  • the recovery rate of helium is 99%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种提纯氦气的系统及方法和应用,该系统包括:依次连通的第一气液分离装置、一级提氦塔(11)、第二气液分离装置、二级提氦塔(27)和脱氮塔(33);第一气液分离装置用于将含氦天然气(1)进行第一处理转变成第一气相和第一液相;一级提氦塔(11)用于将第一气相和第一液相进行第一精馏,得到第二气相和第二液相;第二气液分离装置用于将第二气相进行第二处理转变成第三气相和第三液相;二级提氦塔(27)用于将第三气相和第三液相进行第二精馏,得到粗氦和第四液相;脱氮塔(33)用于将第四液相进行脱氮处理。

Description

提纯氦气的系统及方法和应用
相关申请的交叉引用
本申请要求2021年12月29日提交的中国专利申请202111642310.X的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及氦气提纯技术领域,具体涉及一种提纯氦气的系统及方法和应用。
背景技术
氦气是一种无色、无味的稀有惰性气体,它在临床医学、国防军工、航天、核工业、深海潜水、低温超导、高精度焊接等高科技领域都有广泛应用,是一种关系国家安全和高新技术产业发展的重要稀缺战略资源。氦是一种单原子气体,无法通过化学反应进行合成得到,从含氦天然气中分离提纯氦气是目前工业化生产氦气的唯一来源。但是,我国的氦气资源匮乏,氦气产品主要依靠进口。因此,开发适宜的工艺技术提取天然气中的氦气,对于保障国家用氦安全具有重要战略意义。特别是对于天然气资源综合高效利用,提高气田开发的经济效益更是具有积极意义。
低温法是天然气提氦领域应用最广泛、最成熟的分离技术,通常由天然气预处理净化、低温精馏提取粗氦及氦气精制等工序构成。
现有天然气提取氦气的工艺主要存在以下缺陷:(1)天然气回收氦组分采用深冷工艺,需要深度脱除二氧化碳,以确保低温条件下不形成干冰而冻堵冷箱及其他设备,造成二次脱水,投资高和运行能耗大,难以实现经济有效。(2)需要采用多级联合制冷,流程长、投资高、运行费用高,操作复杂,不能实现经济有效。
因此,寻求经济高效的提纯氦气的工艺仍是人们亟待解决的问题。
发明内容
本发明的目的是为了克服现有技术存在的技术问题,提供一种提纯氦气的系统及方法和应用。
为了实现上述目的,本发明第一方面提供一种提纯氦气的系统,该系统包括:依次连通的第一气液分离装置、一级提氦塔、第二气液分离装置、二级提氦塔和脱氮塔,
所述第一气液分离装置用于将含氦天然气进行第一处理转变成第一气相和第一液相;
所述一级提氦塔用于将所述第一气相和第一液相进行第一精馏,得到第二气相和第二液相;
所述第二气液分离装置用于将所述第二气相进行第二处理转变成第三气相和第三液相;
所述二级提氦塔用于将所述第三气相和第三液相进行第二精馏,得到粗氦产品和第四液相;
所述脱氮塔用于将所述第四液相进行脱氮处理,得到氮气和LNG产品。
本发明第二方面提供一种提纯氦气的方法,该方法包括以下步骤:
(1)将含氦天燃气进行第一处理变成第一气相和第一液相;
(2)将所述第一气相和所述第一液相进行第一精馏,得到第二气相和第二液相;
(3)将所述第二气相进行第二处理变成第三气相和第三液相;
(4)将所述第三气相和第三液相进行第二精馏,得到粗氦产品和第四液相;
(5)将所述第四液相进行脱氮处理,得到氮气和LNG产品。
本发明第三方面提供一种前述第一方面所述的系统或前述第二方面所述的方法在天然气提氦气中的应用。
通过上述技术方案,本发明的提纯氦气的系统中设置有一级提氦塔、二级提氦塔以及脱氮塔的耦合装置,极大地降低了冷剂制冷功率,显著降低投资的同时节省运行成本。其中,一级提氦塔实现低温脱二氧化碳(后续简称碳)及氦气初步浓缩,二级提氦塔实现超低温脱氮及氦气二次浓缩,脱氮塔能够制超低温氮冷剂,为二级提氦塔提供超低温氮气的塔顶冷源,在不设置常规工艺的氮循环制冷系统的情况下,实现了高效提氦,且氦气回收率可以达到99%以上;同时,脱氮塔的塔顶副产LNG能够大大提高工艺整体的经济效益。
附图说明
图1是本发明一种具体实施方式的所述提纯氦气的系统的结构示意图。
附图标记说明
1、含氦天然气                2、中压贫天然气              3、低压贫天然气
4、外输氮气                  5、一级冷箱                  6、一级低温分离器
7、一级塔底重沸器            8、第一流量调节阀            9、第一液位调节阀
10、第二液位调节阀;         11、一级提氦塔               12、一级提氦塔塔顶冷凝器
13、一级提氦塔回流罐         14、一级回流泵               15、一级提氦塔塔顶温控阀
16、脱氮塔塔底温控阀         17、第三液位调节阀           18、高压冷剂
19、低压气相冷剂             20、粗氦产品                 21、第一压力调节阀
22、二级冷箱                 23、第四液位调节阀           24、二级低温分离器
25、第五液位调节阀           26、二级提氦塔塔顶冷凝器     27、二级提氦塔
28、第二压力调节阀           29、二级塔底重沸器           30、第二压力调节阀
31、第六液位调节阀           32、脱氮塔塔顶冷凝器         33、脱氮塔
34、脱氮塔塔底重沸器         35、LNG产品                36、冷剂J-T阀
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
如图1所述,本发明第一方面提供一种提纯氦气的系统,该系统包括:依次连通的第一气液分离装置、一级提氦塔11、第二气液分离装置、二级提氦塔27和脱氮塔33,
所述第一气液分离装置用于将含氦天然气1进行第一处理转变成第一气相和第一液相;
所述一级提氦塔11用于将所述第一气相和第一液相进行第一精馏,得到第二气相和第二液相;
所述第二气液分离装置用于将所述第二气相进行第二处理转变成第三气相和第三液相;
所述二级提氦塔27用于将所述第三气相和第三液相进行第二精馏,得到粗氦产品和第四液相;
所述脱氮塔33用于将所述第四液相进行脱氮处理,得到氮气(外输氮气)和LNG产品(液化天然气)。
根据本发明的一些实施方式,所述第一气相分离装置包括:至少一个一级冷箱5和至少一个一级低温分离器6。
根据本发明优选的实施方式,所述第一气相分离装置包括:依次连通的一级冷箱5和一级低温分离器6。
根据本发明的一些实施方式,所述一级冷箱5用于将所述含氦天然气1进行预冷,得到低温含氦天然气。所述一级低温分离器6用于将所述低温含氦天然气进行第一低温分离,得到所述第一气相和第一液相。
根据本发明的一些实施方式,所述一级冷箱5和一级低温分离器6之间还设置有至少一个一级塔底重沸器7,用于将所述低温含氦天然气进行冷却后,再送入一级低温分离器6,这种设置方式能够使得部分CO 2冷凝析出和第一液相进入一级提浓塔的中下部温度较高部分,能够有效抑制CO 2干冰冻堵生成的几率,同时利用降温的同时提供自身的热量给一级提浓塔做重沸热源。
本发明中,对各个装置之间用于连通的入口和出口的相对位置设置关系没有特别的限制,只要能够满足本发明的需求即可。举例来讲,所述一级低温分离器6的气相出口可以与所述一级提氦塔11的中部相连,所述一级低温分离器6的液相出口可以与所述一级提氦塔11的中下部相连。
本发明中,在各个装置之间可以设置1个或多个(对设置的数量没有限制)流量调节阀、液位调节阀、温控阀和压力调节阀等。
优选地,所述一级提氦塔11与所述一级塔底重沸器7相连,用于将所述一级提氦塔11塔底的重沸液在所述一级塔底重沸器7中换热后再送入一级提氦塔11塔底的气相空间为所述一级提氦塔11提供热量。
本发明中,各个装置之间可以通过管线相连。举例来讲,一级冷箱5、一级塔底重沸器7、一级低温分离器6、第一流量调节阀8、第一液位调节阀9与一级提氦塔11通过管线相连。
根据本发明的一些实施方式,所述第二气液分离装置包括:至少一个一级提氦塔回流罐13和至少一个二级低温分离器24。
根据本发明的一些实施方式,所述第二气液分离装置包括:依次连通的一级提氦塔回流罐13和二级低温分离器24。
根据本发明的一些实施方式,所述一级提氦塔回流罐13用于将所述第二气相进行分离得到气相物流和液相物流。所述二级低温分离器24用于将所述气相物流进行第二低温分离,得到第三气相和第三液相。
根据本发明的一些实施方式,所述一级提氦塔11和一级提氦塔回流罐13之间还设置有至少一个一级提氦塔塔顶冷凝器12(设置在一级提氦塔的外部),用于将所述第二气相进行冷凝后,再送入所述一级提氦塔回流罐13。
根据本发明的一些实施方式,所述一级提氦塔回流罐13和二级低温分离器24之间还设置有至少一个二级塔底重沸器29,用于将所述气相物流进行冷却后,再送入二级低温分离器24。
根据本发明的一些实施方式,所述二级低温分离器24的气相出口与所述二级提氦塔27的中部相连,所述二级低温分离器24的液相出口与所述二级提氦塔27的中下部相连。
本发明中,所述二级低温分离器24和所述二级提氦塔27之间还可以设置有第五液位调节阀25,用于控制进二级提氦塔27的流量使其保持稳定。
根据本发明的一些实施方式,所述二级低温分离器24和所述二级提氦塔27之间还设置有至少一个二级冷箱22,用于将所述第三气相进行过冷后,再送入所述二级提氦塔27。
本发明中,所述二级冷箱22和所述二级提氦塔27之间还可以设置有第二压力调节阀28,用于控制进二级提氦塔27的压力处于稳定状态。
根据本发明的一些实施方式,所述二级提氦塔27的气相出口与所述二级冷箱22相连,用于将从所述二级提氦塔27塔顶排出的气相经所述二级冷箱22进行换热,得到粗氦产品。
本发明中,在所述二级冷箱22出口还可以设置有第一压力调节阀21,用于控制粗氦产品的输出压力。
根据本发明的一些实施方式,所述二级提氦塔27与所述二级塔底重沸器29相连,用于将所述二级提氦塔27塔底的重沸液在所述二级塔底重沸器29中换热后再送入二级提氦塔27塔底的气相空间为 所述二级提氦塔27提供热量。
根据本发明的一些实施方式,所述脱氮塔33的上部内设有脱氮塔塔顶冷凝器32(也即设置在脱氮塔的内部)。
根据本发明的一些实施方式,所述脱氮塔塔顶冷凝器32与所述二级冷箱22相连,用于将高压冷剂18经在二级冷箱22中进行冷却液化后,再送入脱氮塔塔顶冷凝器32,为所述脱氮塔33提供冷量后再返回二级冷箱22,得到低压气相冷剂19。
本发明中,所述二级提氦塔27的上部内设有二级提氦塔塔顶冷凝器26(也即设置在二级提氦塔的内部),用于将所述脱氮塔33塔顶的气相(氮气)在所述二级提氦塔塔顶冷凝器26中进行换热并为所述二级提氦塔塔顶冷凝器26提供冷量后,再经所述二级冷箱22进行低温位冷量回收,之后经一级冷箱5复热,并作为外输氮气排出装置。
根据本发明的一些实施方式,所述脱氮塔33塔底的液相出口与所述二级冷箱22相连,用于将所述脱氮塔33塔底的液相经所述二级冷箱22过冷后,得到LNG产品。
根据本发明的一些实施方式,所述脱氮塔33的下部内设有脱氮塔塔底重沸器34(也即设置在脱氮塔的内部)。
根据本发明的一些实施方式,所述脱氮塔塔底重沸器34与所述一级提氦塔11和所述一级提氦塔塔顶冷凝器12相连,用于将所述一级提氦塔11部分所述第二液相经在所述脱氮塔塔底重沸器34中换热为所述脱氮塔33提供热量后,再送入所述一级提氦塔塔顶冷凝器12为所述一级提氦塔塔顶冷凝器12提供冷量,并转变为粗天然气。采用该种特定的设置方式(一级提氦塔11部分所述第二液相流向)能够使得各个装置物流的能量之间充分耦合利用。
本发明中,所述脱氮塔塔底重沸器34与所述一级提氦塔11之间还可以设置有脱氮塔塔底温控阀,用于控制脱氮塔塔底LNG产品中的氮气含量。
本发明中,所述一级提氦塔塔顶冷凝器12和所述一级提氦塔11之间还可以设置有第三液位调节阀17,用于控制回流的流量。
优选地,所述一级提氦塔塔顶冷凝器12和所述一级冷箱5相连,用于将所述粗天然气送入所述一级冷箱5进行复热,得到低压贫天然气3。
根据本发明的一些实施方式,所述一级提氦塔回流罐13的液相出口与所述一级提氦塔11的上部相连,用于将所述一级提氦塔回流罐13的液相物流送入所述一级提氦塔11的上部作为所述一级提氦塔11塔顶的回流液。
本发明中,所述一级提氦塔回流罐13和所述一级提氦塔11之间还可以设置一级回流泵11和一级提氦塔塔顶温控阀15。其中,所述一级回流泵用于将所述液相物理增压后,再经一级提氦塔塔顶温控阀15调控流量后送入所述一级提氦塔11的上部。
根据本发明的一些实施方式,所述一级提氦塔11的塔底与所述一级冷箱5相连,用于将剩余部分所述第二液相进行冷量回收,得到中压贫天然气2。
本发明中,在所述一级提氦塔11的塔底与所述一级冷箱5之间还可以设置第二液位调节阀10,用于将剩余部分所述第二液相进行液位控制后,送入一级冷箱5进行冷量回收。
本发明第二方面提供一种提纯氦气的方法,该方法包括以下步骤:
(1)将含氦天燃气进行第一处理变成第一气相和第一液相;
(2)将所述第一气相和所述第一液相进行第一精馏,得到第二气相和第二液相;
(3)将所述第二气相进行第二处理变成第三气相和第三液相;
(4)将所述第三气相和第三液相进行第二精馏,得到粗氦产品和第四液相;
(5)将所述第四液相进行脱氮处理,得到氮气和LNG产品。
根据本发明的一些实施方式,步骤(1),所述第一处理包括:将所述含氦天然气进行预冷,得到低温含氦天然气。
根据本发明的一些实施方式,所述第一处理包括:将所述含氦天然气和/或所述低温含氦天然气进行第一低温分离,得到所述第一气相和第一液相。
根据本发明的一些实施方式,所述第一处理还包括:在所述第一低温分离之前,将所述含氦天然气和/或低温含氦天然气进行冷却。
根据本发明的一些实施方式,步骤(2)中,所述第一精馏的条件可以包括:温度为-95℃至-80℃(如-95℃、-92℃、-90℃、-88℃、-86℃、-85℃、-82℃、-80℃或以上数值之间的任意值),压力为3.5MPa至4.5MPa(如3.5MPa、3.8MPa、4.0MPa、4.2MPa、4.4MPa、4.5MPa或以上数值之间的任意值)。所述第一精馏的条件能够使得氦气进行浓缩30倍以上;同时实现低温脱CO 2,控制全塔不产生干冰,控制第二气相CO 2含量低于50ppm。
根据本发明的一些实施方式,所述方法还可以包括在所述第一精馏之前将所述第一气相和所述第一液相进行过冷的步骤。
根据本发明的一些实施方式,所述方法还包括将所述第一精馏得到的重沸液进行换热的步骤。
根据本发明的一些实施方式,步骤(3)中,所述第二处理包括:将所述第二气相进行分离得到气相物流和液相物流。
根据本发明的一些实施方式,所述第二处理包括:将所述第二气相和/或所述气相物流进行第二低温分离,得到第三气相和第三液相。
根据本发明的一些实施方式,所述第二处理还包括:在所述分离之前,将所述第二气相进行冷凝。
根据本发明的一些实施方式,所述第二处理还包括:在所述第二低温分离之前,将所述第二气相和/或所述气相物流进行冷却。
根据本发明的一些实施方式,所述方法还包括将分离得到的液相物流回用于所述第一精馏的回流液。
根据本发明的一些实施方式,步骤(4)中,所述第二精馏的条件包括:温度为-185℃至-110℃(如-185℃、-180℃、-170℃、-160℃、-150℃、-140℃、-130℃、-120℃、-110℃或以上数值之间的任意值),压力为2-3MPa(如2MPa、2.1MPa、2.2MPa、2.3MPa、2.4MPa、2.5MPa、2.7MPa、2.8MPa、3MPa或以上数值之间的任意值)。所述第二精馏的条件能够使得甲烷、氮气大大降低,氦气浓度进一步提高。
根据本发明的一些实施方式,所述方法还包括:在所述第二精馏之前,将所述第三气相进行过冷。
根据本发明的一些实施方式,所述方法还包括将所述第二精馏得到的重沸液进行换热的步骤。
根据本发明的一些实施方式,所述方法还包括将第二精馏得到的气相换热,得到粗氦产品的步骤。
根据本发明的一些实施方式,步骤(5)中,所述脱氮处理的条件包括:温度为-160至-110℃(如-160℃、-150℃、-140℃、-130℃、-120℃、-110℃或以上数值之间的任意值),压力为1.5MPa至2.5MPa(如1.5MPa、1.6MPa、1.7MPa、1.8MPa、2MPa、2.2MPa、2.5MPa或以上数值之间的任意值)。所述脱氮处理能够得到LNG产品和副产氮气。其中,利用脱氮是副产的氮气可提供-184℃超低温位冷量,避免设置独立的氮循环制冷压缩机。
根据本发明的一些实施方式,所述方法还包括将高压冷剂进行冷却液化,得到低压气相冷剂的步骤。
根据本发明的一些实施方式,所述方法还包括将脱氮处理得到的液相进行过冷,得到LNG产品的步骤。
根据本发明的一些实施方式,所述方法还包括:将部分所述第二液相进行换热,转变为粗天然气。
根据本发明的一些实施方式,所述方法还包括:将所述粗天然气进行复热,得到低压贫天然气。
根据本发明的一些实施方式,所述方法还包括:将剩余部分所述第二液相进行冷量回收,得到中压贫天然气。
本发明中,对所述冷凝、冷却、换热、分离、低温分离(第一低温分离和/或第二低温分离)等的具体条件不做特别的限制,只要能够满足本发明的需求即可,可以参照本领域的常规方式进行。
本发明对所述含氦天然气中各组分的含量没有特别的限制,例如,以体积分数计,所述含氦天然气中可以包含98-99%的CH 4、0.1-0.5%的C 2H 6、0.2-0.6%的N 2、0.3-0.8%的CO 2、0.01-0.1%的He和0.005-0.3%的H 2
根据本发明的一些实施方式,以体积分数计,所述粗氦产品中可以包含0.2-0.8%的CH 4、6-12%的N 2、60-70%的He和15-25%的H 2
本发明第三方面提供一种前述第一方面所述的系统或前述第二方面所述的方法在天然气提氦气 中的应用。
按照一种优选的具体实施方式,结合图1,本发明的提纯氦气的方法在本发明的提纯氦气的系统中的使用具体包括以下流程:
(a)将含氦天然气送入一级冷箱5进行预冷,得到低温含氦天然气;之后将得到的低温含氦天然气送入一级塔底重沸器7进行冷却后再送入一级低温分离器6进行第一低温分离,得到第一气相和第一液相;
(b)将步骤(a)得到的第一气相和第一液相分别送入一级冷箱5过冷后送入一级提氦塔11,进行第一精馏,得到第二气相和第二液相,其中,第一气相送入一级提氦塔11的中部,第一气相送入一级提氦塔11的中下部;将一级提氦塔11部分第二液相经在脱氮塔塔底重沸器34中换热为脱氮塔33提供热量后,再送入一级提氦塔塔顶冷凝器12为一级提氦塔塔顶冷凝器12提供冷量,并转变为粗天然气,之后将粗天然气送入一级冷箱5进行复热,得到低压贫天然气;再将剩余部分第二液相进行冷量回收,得到中压贫天然气;并将一级提氦塔11塔底的重沸液在一级塔底重沸器中换热后再送入一级提氦塔11塔底的气相空间为一级提氦塔11提供热量;
(c)将步骤(b)得到的第二气相送入一级提氦塔塔顶冷凝器12进行冷凝之后,送入一级提氦塔回流罐13进行分离,得到气相物流和液相物流;并将得到的气相物流送入二级塔底重沸器29中冷却后再送入二级低温分离器24,进行第二低温分离,得到第三气相和第三液相;其中,将得到的液相物流经一级回流泵14增压、一级提氦塔塔顶温控阀15调控温度后送入一级提氦塔11的上部作为所述一级提氦塔11塔顶的回流液;
(d)将步骤(c)得到的第三气相送入二级冷箱22过冷后送入二级氦塔27的中部,将步骤(c)得到的第三液相送入二级提氦塔27的中下部,在二级提氦塔27中将第三气相和第三液相进行第二精馏,塔顶得到的气相,塔底得到的液相(第四液相),将塔顶的气相经送入经二级冷箱22换热后得到粗氦产品;并将二级提氦塔27塔底的重沸液在二级塔底重沸器中换热后再送入二级提氦塔27塔底的气相空间为二级提氦塔27提供热量;
(e)将步骤(d)得到的第四液相进行脱氮处理,塔顶得到气相,塔底得到液相;将塔顶的气相送入二级提氦塔塔顶冷凝器32中换热并为二级提氦塔塔顶冷凝器32提供冷量后,再经二级冷箱22进行超低温冷量回收,之后经一级冷箱5复热,得到氮气(作为外输氮气);将塔底的液相送入二级冷箱22过冷后得到LNG产品。
以下将通过实施例对本发明进行详细描述。
以下实施例均将结合图1来说明本发明的提纯氦气的方法。除非另有说明,流程的具体操作均如上文所述。
实施例1
本实施中,含氦天然气的组成包括:98.5313%的CH 4、0.2998%的C 2H 6、0.4812%的N 2、0.6311%的CO 2、0.0416%的He和0.0150%的H 2
(1)将上述含氦天然气送入一级冷箱进行预冷,得到低温含氦天然气;之后将得到的低温含氦天然气送入一级塔底重沸器进行冷却后再送入一级低温分离器进行第一低温分离,得到第一气相和第一液相;
(2)将步骤(1)得到的第一气相和第一液相分别送入一级冷箱过冷后送入一级提氦塔,进行第一精馏,得到第二气相和第二液相,其中,第一气相送入一级提氦塔的中部,第一气相送入一级提氦塔的中下部;其中,第一精馏的操作条件:塔顶的温度为-94℃,塔底的温度为-81℃,压力为4.2MPa;将一级提氦塔部分第二液相经在脱氮塔塔底重沸器中换热为脱氮塔提供热量后,再送入一级提氦塔塔顶冷凝器为一级提氦塔塔顶冷凝器提供冷量,并转变为粗天然气,之后将粗天然气送入一级冷箱进行复热,得到低压贫天然气;再将剩余部分第二液相进行冷量回收,得到中压贫天然气;并将一级提氦塔塔底的重沸液在一级塔底重沸器中换热后再送入一级提氦塔塔底的气相空间为一级提氦塔提供热量;
(3)将步骤(2)得到的第二气相送入一级提氦塔塔顶冷凝器进行冷凝之后,送入一级提氦塔回流罐进行分离,得到气相物流和液相物流;并将得到的气相物流送入二级塔底重沸器中冷却后再送入二级低温分离器,进行第二低温分离,得到第三气相和第三液相;其中,将得到的液相物流经一级回流泵增压、一级提氦塔塔顶温控阀调控温度后送入一级提氦塔的上部作为所述一级提氦塔塔顶的回流液;
(4)将步骤(3)得到的第三气相送入二级冷箱过冷后送入二级氦塔的中部,将步骤(3)得到的第三液相送入二级提氦塔的中下部,在二级提氦塔中将第三气相和第三液相进行第二精馏,塔顶得到的气相,塔底得到的液相(第四液相),将塔顶的气相经送入经二级冷箱换热后得到粗氦产品;并将二级提氦塔塔底的重沸液在二级塔底重沸器中换热后再送入二级提氦塔塔底的气相空间为二级提氦塔提供热量;其中,第二精馏的操作条件:塔顶温度-181℃,塔底温度-110℃,压力为2.3MPa;
(5)将步骤(4)得到的第四液相进行脱氮处理,塔顶得到气相,塔底得到液相;将塔顶的气相送入二级提氦塔塔顶冷凝器中换热并为二级提氦塔塔顶冷凝器提供冷量后,再经二级冷箱进行超低温冷量回收,之后经一级冷箱复热,得到氮气(作为外输氮气);将塔底的液相送入二级冷箱过冷后得到LNG产品;其中,脱氮处理的操作条件包括:塔顶温度-160℃,塔底温度-110℃,压力为1.6MPa。
其中,粗氦产品的组成包括:以体积分数计,所述粗氦中包含0.6117%的CH 4、10.3476%的N 2、67.7689%的He和21.2718%的H 2。氦气的回收率为99%。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (15)

  1. 一种提纯氦气的系统,其特征在于,该系统包括:依次连通的第一气液分离装置、一级提氦塔(11)、第二气液分离装置、二级提氦塔(27)和脱氮塔(33),
    所述第一气液分离装置用于将含氦天然气(1)进行第一处理转变成第一气相和第一液相;
    所述一级提氦塔(11)用于将所述第一气相和第一液相进行第一精馏,得到第二气相和第二液相;
    所述第二气液分离装置用于将所述第二气相进行第二处理转变成第三气相和第三液相;
    所述二级提氦塔(27)用于将所述第三气相和第三液相进行第二精馏,得到粗氦产品和第四液相;
    所述脱氮塔(33)用于将所述第四液相进行脱氮处理,得到氮气和LNG产品。
  2. 根据权利要求1所述的系统,其中,所述第一气相分离装置包括:至少一个一级冷箱(5)和至少一个一级低温分离器(6);
    优选地,所述第一气相分离装置包括:依次连通的一级冷箱(5)和一级低温分离器(6);
    其中,所述一级冷箱(5)用于将所述含氦天然气(1)进行预冷,得到低温含氦天然气;所述一级低温分离器(6)用于将所述低温含氦天然气进行第一低温分离,得到所述第一气相和第一液相;
    优选地,所述一级冷箱(5)和一级低温分离器(6)之间还设置有至少一个一级塔底重沸器(7),用于将所述低温含氦天然气进行冷却后,再送入一级低温分离器(6);
    优选地,所述一级低温分离器(6)的气相出口与所述一级提氦塔(11)的中部相连,所述一级低温分离器(6)的液相出口与所述一级提氦塔(11)的中下部相连;
    优选地,所述一级提氦塔(11)与所述一级塔底重沸器(7)相连,用于将所述一级提氦塔(11)塔底的重沸液在所述一级塔底重沸器(7)中换热后再送入一级提氦塔(11)塔底的气相空间为所述一级提氦塔(11)提供热量。
  3. 根据权利要求1或2所述的系统,其中,所述第二气液分离装置包括:至少一个一级提氦塔回流罐(13)和至少一个二级低温分离器(24);
    优选地,所述第二气液分离装置包括:依次连通的一级提氦塔回流罐(13)和二级低温分离器(24);
    其中,所述一级提氦塔回流罐(13)用于将所述第二气相进行分离得到气相物流和液相物流;所述二级低温分离器(24)用于将所述气相物流进行第二低温分离,得到第三气相和第三液相;
    优选地,所述一级提氦塔(11)和一级提氦塔回流罐(13)之间还设置有至少一个一级提氦塔塔顶冷凝器(12),用于将所述第二气相进行冷凝后,再送入所述一级提氦塔回流罐(13);
    优选地,所述一级提氦塔回流罐(13)和二级低温分离器(24)之间还设置有至少一个二级塔底重沸器(29),用于将所述气相物流进行冷却后,再送入二级低温分离器(24);
    优选地,所述二级低温分离器(24)的气相出口与所述二级提氦塔(27)的中部相连,所述二级低温分离器(24)的液相出口与所述二级提氦塔(27)的中下部相连;
    优选地,所述二级低温分离器(24)和所述二级提氦塔(27)之间还设置有至少一个二级冷箱(22),用于将所述第三气相进行过冷后,再送入所述二级提氦塔(27);
    优选地,所述二级提氦塔(27)的气相出口与所述二级冷箱(22)相连,用于将从所述二级提氦塔(27)塔顶排出的气相经所述二级冷箱(22)进行换热,得到粗氦产品;
    优选地,所述二级提氦塔(27)与所述二级塔底重沸器(29)相连,用于将所述二级提氦塔(27)塔底的重沸液在所述二级塔底重沸器(29)中换热后再送入二级提氦塔(27)塔底的气相空间为所述二级提氦塔(27)提供热量。
  4. 根据权利要求3所述的系统,其中,所述脱氮塔(33)的上部内设有脱氮塔塔顶冷凝器(32);
    优选地,所述脱氮塔塔顶冷凝器(32)与所述二级冷箱(22)相连,用于将高压冷剂(18)经在二级冷箱(22)中进行冷却液化后,再送入脱氮塔塔顶冷凝器(32),为所述脱氮塔(33)提供冷量后再返回二级冷箱(22),得到低压气相冷剂(19);
    优选地,所述脱氮塔(33)塔底的液相出口与所述二级冷箱(22)相连,用于将所述脱氮塔(33)塔底的液相经所述二级冷箱(22)过冷后,得到LNG产品。
  5. 根据权利要求3所述的方法,其中,所述脱氮塔(33)的下部内设有脱氮塔塔底重沸器(34);
    优选地,所述脱氮塔塔底重沸器(34)与所述一级提氦塔(11)和所述一级提氦塔塔顶冷凝器(12)相连,用于将所述一级提氦塔(11)部分所述第二液相经在所述脱氮塔塔底重沸器(34)中换热为所述脱氮塔(33)提供热量后,再送入所述一级提氦塔塔顶冷凝器(12)为所述一级提氦塔塔顶冷凝器(12)提供冷量,并转变为粗天然气;
    优选地,所述一级提氦塔塔顶冷凝器(12)和所述一级冷箱(5)相连,用于将所述粗天然气送入所述一级冷箱(5)进行复热,得到低压贫天然气(3)。
  6. 根据权利要求3所述的方法,其中,所述一级提氦塔回流罐(13)的液相出口与所述一级提氦塔(11)的上部相连,用于将所述一级提氦塔回流罐(13)的液相物流送入所述一级提氦塔(11)的上部作为所述一级提氦塔(11)塔顶的回流液。
  7. 根据权利要求1-6中任意一项所述的系统,其中,所述一级提氦塔(11)的塔底与所述一级冷箱(5)相连,用于将剩余部分所述第二液相进行冷量回收,得到中压贫天然气(2)。
  8. 一种提纯氦气的方法,其特征在于,该方法包括以下步骤:
    (1)将含氦天燃气进行第一处理变成第一气相和第一液相;
    (2)将所述第一气相和所述第一液相进行第一精馏,得到第二气相和第二液相;
    (3)将所述第二气相进行第二处理变成第三气相和第三液相;
    (4)将所述第三气相和第三液相进行第二精馏,得到粗氦产品和第四液相;
    (5)将所述第四液相进行脱氮处理,得到氮气和LNG产品。
  9. 根据权利要求8所述的方法,其中,步骤(1),所述第一处理包括:将所述含氦天然气进行预冷,得到低温含氦天然气;
    和/或,所述第一处理包括:将所述含氦天然气和/或所述低温含氦天然气进行第一低温分离,得到所述第一气相和第一液相;
    优选地,所述第一处理还包括:在所述第一低温分离之前,将所述含氦天然气和/或低温含氦天然气进行冷却。
  10. 根据权利要求8或9所述的方法,其中,步骤(2)中,所述第一精馏的条件包括:温度为-95℃至-80℃,压力为3.5MPa至4.5MPa;
    和/或,所述方法还包括在所述第一精馏之前将所述第一气相和所述第一液相进行过冷的步骤;
    和/或,所述方法还包括将所述第一精馏得到的重沸液进行换热的步骤。
  11. 根据权利要求8或9所述的方法,其中,步骤(3)中,所述第二处理包括:将所述第二气相进行分离得到气相物流和液相物流;
    和/或,所述第二处理包括:将所述第二气相和/或所述气相物流进行第二低温分离,得到第三气相和第三液相;
    优选地,所述第二处理还包括:在所述分离之前,将所述第二气相进行冷凝;
    优选地,所述第二处理还包括:在所述第二低温分离之前,将所述第二气相和/或所述气相物流进行冷却;
    优选地,所述方法还包括将分离得到的液相物流回用于所述第一精馏的回流液。
  12. 根据权利要求8或9所述的方法,其中,步骤(4)中,所述第二精馏的条件包括:温度为-185℃至-110℃,压力为2MPa至3MPa;
    和/或,所述方法还包括:在所述第二精馏之前,将所述第三气相进行过冷;
    和/或,所述方法还包括将所述第二精馏得到的重沸液进行换热的步骤;
    和/或,所述方法还包括将第二精馏得到的气相换热,得到粗氦产品的步骤。
  13. 根据权利要求8或9所述的方法,其中,步骤(5)中,所述脱氮处理的条件包括:温度为-160至-110℃,压力为1.5MPa至2.5MPa;
    和/或,所述方法还包括将高压冷剂进行冷却液化,得到低压气相冷剂的步骤;
    和/或,所述方法还包括将脱氮处理得到的液相进行过冷,得到LNG产品的步骤;
    和/或,所述方法还包括:将部分所述第二液相进行换热,转变为粗天然气;
    优选地,所述方法还包括:将所述粗天然气进行复热,得到低压贫天然气;
    和/或,所述方法还包括:将剩余部分所述第二液相进行冷量回收,得到中压贫天然气。
  14. 根据权利要求8或9所述的方法,其中,以体积分数计,所述含氦天然气中包含98-99%的CH 4、0.1-0.5%的C 2H 6、0.2-0.6%的N 2、0.3-0.8%的CO 2、0.01-0.1%的He和0.005-0.3%的H 2
    和/或,以体积分数计,所述粗氦中包含0.2-0.8%的CH 4、6-12%的N 2、60-70%的He和15-25%的H 2
  15. 权利要求1-7中任意一项所述的系统或权利要求8-14中任意一项所述的方法在天然气提氦气中的应用。
PCT/CN2022/138123 2021-12-29 2022-12-09 提纯氦气的系统及方法和应用 WO2023124919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111642310.X 2021-12-29
CN202111642310.XA CN116412642A (zh) 2021-12-29 2021-12-29 提纯氦气的系统及方法和应用

Publications (1)

Publication Number Publication Date
WO2023124919A1 true WO2023124919A1 (zh) 2023-07-06

Family

ID=86997684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138123 WO2023124919A1 (zh) 2021-12-29 2022-12-09 提纯氦气的系统及方法和应用

Country Status (2)

Country Link
CN (1) CN116412642A (zh)
WO (1) WO2023124919A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937369A (zh) * 2012-12-05 2013-02-20 中国石油集团工程设计有限责任公司 天然气低温提氦系统及方法
CN205939932U (zh) * 2016-08-24 2017-02-08 四川空分设备(集团)有限责任公司 液化天然气闪蒸气提取高纯氦系统
CN106866339A (zh) * 2017-04-07 2017-06-20 中国石油集团工程设计有限责任公司 一种天然气中回收乙烷联产粗氦的装置及方法
RU2739748C1 (ru) * 2020-05-28 2020-12-28 Андрей Владиславович Курочкин Установка для выделения концентрата гелия из углеводородсодержащей газовой смеси
CN212747065U (zh) * 2020-09-30 2021-03-19 四川空分集团工程有限公司 一种高含氮和含氦天然气液化及粗氦和氮提取系统
CN113670002A (zh) * 2021-09-27 2021-11-19 西南石油大学 一种双塔天然气氦回收方法
CN113686098A (zh) * 2021-09-27 2021-11-23 西南石油大学 一种天然气液化及氦气回收方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937369A (zh) * 2012-12-05 2013-02-20 中国石油集团工程设计有限责任公司 天然气低温提氦系统及方法
CN205939932U (zh) * 2016-08-24 2017-02-08 四川空分设备(集团)有限责任公司 液化天然气闪蒸气提取高纯氦系统
CN106866339A (zh) * 2017-04-07 2017-06-20 中国石油集团工程设计有限责任公司 一种天然气中回收乙烷联产粗氦的装置及方法
RU2739748C1 (ru) * 2020-05-28 2020-12-28 Андрей Владиславович Курочкин Установка для выделения концентрата гелия из углеводородсодержащей газовой смеси
CN212747065U (zh) * 2020-09-30 2021-03-19 四川空分集团工程有限公司 一种高含氮和含氦天然气液化及粗氦和氮提取系统
CN113670002A (zh) * 2021-09-27 2021-11-19 西南石油大学 一种双塔天然气氦回收方法
CN113686098A (zh) * 2021-09-27 2021-11-23 西南石油大学 一种天然气液化及氦气回收方法

Also Published As

Publication number Publication date
CN116412642A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN108458549B (zh) 从天然气中提氦并液化的系统与方法
CN113865263B (zh) 一种天然气提取粗氦并联产液化天然气的生产系统
CN108731381B (zh) 一种液化天然气联产液氦的工艺装置及方法
CN212747065U (zh) 一种高含氮和含氦天然气液化及粗氦和氮提取系统
CN103697659A (zh) 从富甲烷气中制取液化天然气和富氢产品的装置及方法
CN107514872B (zh) 从lng储罐闪蒸汽中回收氦气的工艺与系统
CN109631494B (zh) 一种氦气生产系统和生产方法
CN112066642A (zh) 一种高含氮和含氦天然气液化及粗氦和氮提取系统
CN102435045A (zh) 液氮洗涤净化合成气及其深冷分离回收lng装置
CN109442868B (zh) 一种去除氧氮分离提纯氖氦的方法
CN113959176A (zh) 一种液化天然气闪蒸气中氦气的分离系统和方法
CN202382518U (zh) 液氮洗涤净化合成气及其深冷分离回收lng装置
WO2023124919A1 (zh) 提纯氦气的系统及方法和应用
CN217900304U (zh) 一种从合成氨尾气中回收氩和甲烷的装置
CN106500458B (zh) 预冷式天然气液化工艺及系统
CN114165987A (zh) 一种液体二氧化碳生产装置及其生产方法
CN109210867B (zh) 一种从含氧煤层气中回收甲烷的系统
CN114777418A (zh) 一种冷凝法天然气bog提氦的系统
CN209910277U (zh) 无动力的深冷分离装置
CN114440551A (zh) 富含氮气的油田伴生气混烃回收及干气低温液化装置及方法
CN111895723B (zh) 一种丙烷脱氢制丙烯反应生成气的分离装置及分离方法
CN113983761A (zh) 一种提氦装置和天然气提氦方法
CN114646187B (zh) 一种适用于低含氦天然气的三塔低温提氦系统
CN220321742U (zh) 一种丙烷预冷氮气循环过冷天然气提氦联产乙烷的装置
CN217654183U (zh) 一种采用氮气膨胀制冷的天然气提粗氦联产lng装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914174

Country of ref document: EP

Kind code of ref document: A1