CN113670002A - 一种双塔天然气氦回收方法 - Google Patents
一种双塔天然气氦回收方法 Download PDFInfo
- Publication number
- CN113670002A CN113670002A CN202111133246.2A CN202111133246A CN113670002A CN 113670002 A CN113670002 A CN 113670002A CN 202111133246 A CN202111133246 A CN 202111133246A CN 113670002 A CN113670002 A CN 113670002A
- Authority
- CN
- China
- Prior art keywords
- helium
- tower
- enters
- gas
- recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/028—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
- F25J3/029—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/42—Quasi-closed internal or closed external nitrogen refrigeration cycle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本发明公开了一种双塔天然气氦回收方法,涉及天然气加工工艺技术领域,该方法采用双塔提氦工艺,氦气提浓塔和氦气回收塔均采用具有温度梯度的多股进料方式,氦气提浓塔和氦气回收塔部分塔底出料分别在主冷箱和氦气回收冷箱中升温后回流;氦气回收塔塔顶气相在氦气回收冷箱中升温,作为粗氦产品进入后续提纯单元。氦气提浓塔采用提馏塔,利用塔顶物流温位来控制塔顶出料中氦气含量,提高了氦气回收塔进料中氦气浓度,减少了氦气回收塔塔顶所需冷量。本发明适合于不同氦气含量的含氦天然气氦气回收系统,当天然气中氦气含量较低(天然气中氦气含量低于0.5%)时,系统节能优势明显,具有系统热集成度高、能耗低、投资小、氦气回收率高等特点。
Description
技术领域
本发明涉及天然气加工工艺技术领域,特别涉及一种天然气氦气回收方法。
背景技术
氦气是国防军工和高科技产业发展不可或缺的稀有战略物资之一。我国氦气资源相当贫乏,基本依赖进口,且天然气中氦气含量低,提取难度大,成本高,本发明提出的一种双塔天然气氦气回收方法,对于保障国家用氦安全和促进我国天然气提氦工业发展具有重要的现实意义。
专利CN101975503A《改良的天然气提氦工艺》中发明者等人提出了一种天然气提氦工艺,该工艺采用了一个精馏塔,其工艺主要缺点是流程氦气浓度低,提氦系统不完整,还需进一步对天然气中的氦气分离提浓。
专利CN111578621A《一种可切换天然气两塔提氦装置及工艺》中发明者提出了两塔提氦工艺,该流程的一次氦气提浓塔和二次氦气提浓塔采用传统的精馏塔,分别设置了冷凝器和重沸器,两塔将重沸器和冷凝器分别放置在塔内和塔顶,未充分理解低温分离提氦的特点,流程中冷热物流热集成度较低。一次氦气提浓塔主要作用是提高原料气中的氦气浓度,无需控制塔顶出料物流的产品组成,直接可采用提馏塔的方式,一次氦气提浓塔不需要设置塔顶冷凝器和回流罐。氦气回收塔塔顶冷源采用氮气制冷循环,氮气制冷循环的各个物流均位于氦气回收冷箱中,冷热物流温差太大(40℃~-180℃),有效能损失较大。此方法主要不足是一次氦气提浓塔不需要冷凝器和回流罐,应采用提馏塔形式,工艺设备多。将氮气制冷循环置于氦气回收冷箱中,换热温差大,热集成度低。
专利CN112179048A《一种贫氦天然气轻烃回收与提氦的联产系统和方法》中发明者等人提出了天然气轻烃回收与提氦联产系统,虽然联产系统提高了系统的热集成度,但是提氦部分采用的是闪蒸分离法,而闪蒸分离法存在氦气回收率和氦气纯度低(实例中氦气浓度为 38.03%),增加了后续氦气提纯的难度和负荷。
现有提氦专利中主要存在流程复杂、设备多、氦气回收率低、提氦塔设置不合理等问题。
发明内容
针对现有天然气氦气回收方法存在的能耗高、流程复杂、氦气回收率低以及粗氦产品纯度低等问题,将低温精馏和提氦工艺流程相结合,本发明提供了一种天然气氦气回收方法,开发了一种双塔天然气双塔氦气回收,该方法适用于不同氦气含量的含氦天然气氦气回收系统,当原料气中氦气含量较低(天然气中氦气含量低于0.5%)时,节能优势明显。该流程采用双塔提氦,提浓塔采用具有温度梯度的多股进料方式,大幅度降低了提浓塔的有效能损失,氦气提浓塔和氦气回收塔采用塔底部分物流复热的方式为塔底提供热源,氦气回收塔的冷量和两塔塔底的热源分别通过物流换热的形式获得,大幅度提高了流程的热集成度,降低了系统总压缩功。其双塔氦气回收工艺流程如图1所示。
本发明提供的天然气氦气回收方法,其流程特征描述如下:
(1)流程由氦气提浓塔(T-101)和氦气回收塔(T-102)两部分组成,经预处理后的天然气在主冷箱(E-101)预冷后进入重烃分离器(V-101),重烃分离器气相经主冷箱降温后进入低温分离器(V-102),重烃分离器液相进主冷箱(E-101)升温后,经过降压后进入闪蒸罐 (V-104),分离出气体和凝液,气相进入燃料气系统。重烃分离器(V-101)气相经主冷箱(E-101)降温后进入低温分离器(V-102)分离,低温分离器气相经主冷箱降温后节流降压进入氦气提浓塔(T-101)塔顶部,低温分离器液相降压进入氦气提浓塔(T-101)中部,氦气提浓塔(T-101)塔顶出料经氦气回收冷箱(E-102)内降温后进入氦气回收塔(T-102)中部,氦气提浓塔(T-101)塔底部出料的一部分在主冷箱(E-101)中升温进入提浓塔塔底部,另外一部分分成两股分别降压后经过主冷箱(E-101)升温后进入增压单元增压。氦气回收塔 (T-102)塔顶出料经氦气回收冷箱(E-102)升温后外输,在氦气回收塔(T-102)塔底出料的一部分进入氦气回收冷箱(E-102)升温至氦气回收塔底部,另一部分塔底出料经过节流降压后依次进入氦气回收冷箱(E-102)、主冷箱(E-101)升温,随后进入增压单元增压外输。
(2)两塔是具有较大温度梯度的多股进料的低温分馏塔,氦气提浓塔(T-101)有三股进料,分别是低温分离器(V-102)气相进主冷箱(E-101)内降温后经降压进入氦气提浓塔(T-101)塔顶部,低温分离器(V-102)液相经降压后进入氦气提浓塔(T-101)中部,氦气提浓塔(T-101)塔底部分物流在主冷箱(E-101)内换热后进入氦气提浓塔(T-101)塔底部。氦气回收塔(T-102)有两股进料:氦气提浓塔(T-101)塔顶出料进氦气回收冷箱(E-102) 内降温后经降压自氦气回收塔(T-102)中部进料,氦气回收塔(T-102)塔底部分物流在氦气回收冷箱(E-102)内换热升温后进入回收塔底部。
(3)制冷循环采用氮气制冷循环,高压氮气在氦气回收冷箱(E-102)中降温后经节流阀节流降压在氦气回收塔塔顶冷凝器(E-103)中换热以提供冷量,升温后的氮气进入氦气回收冷箱(E-102)复热升温后进入吸入罐(V-103),其气相经增压后再次进入氦气回收冷箱 (E-102)降温,进入下一轮制冷循环。
(4)主冷箱(E-101)和氦气回收冷箱(E-102)均采用多股板翅式换热器,将三股热流与五股冷流、两股热流与四股冷流分别集成于主冷箱(E-101)和氦气回收冷箱(E-102)中。主冷箱(E-101)的三股热流为原料气、重烃分离器(V-101)气相、低温分离器(V-102)气相;五股冷流分别为重烃分离器(V-101)液相、氦气提浓塔(T-101)塔底的三股分流物流、氦气回收塔(T-102)塔底的一股分流物流。氦气回收冷箱(E-102)的四股冷流为氦气回收塔(T-102)塔底两股物流、粗氦和低温低压氮气;两股热流为高压氮气以及氦气提浓塔(T-101) 塔顶物流。
(5)原料气进入本装置前需作净化预处理,保证流程中天然气不形成二氧化碳固体和天然气水合物。
(6)当原料气中戊烷及戊烷以上的重烃含量大于70mg/m3,且原料气中芳香烃摩尔含量大于10-6,原料气进入本装置需作脱烃处理。
与现有技术相比,本发明的有益之处在于:
(1)本发明将低温精馏和氦气回收的工艺相结合,应用热集成技术,将多股冷热物流集成于冷箱,提高了系统的热集成度,降低了系统能耗。
(2)氦气提浓塔(T-101)和氦气回收塔(T-102)采用具有温度梯度的多股进料方式,两塔均采用塔底部分物流进入冷箱(主冷箱或氦气回收冷箱)升温复热后进入塔底作为热源,提高了系统中冷热物流换热曲线的匹配度,简化了流程,降低了工程投资。
(3)流程中采用氮气制冷循环为氦气回收塔塔顶(T-102)提供冷量,降低制冷温度,提高粗氦纯度;主冷箱冷量由氦气提浓塔塔底两股物流和氦气回收塔塔底一股物流提供,这三股物流具有不同流量和温位;氦气回收冷箱冷量由氦气回收塔底降压、低温氮气和粗氦提供。
(4)该工艺取消了重沸器与冷凝器,减少了设备个数与设备投资,氦气回收率和粗氦纯度高,且回收率可调,流程适应性强。
本发明的优点、目标和特征将通过应用实例说明,有利于技术人员理解本发明优势。
附图说明
下面结合附图和具体实施方式对本范明作进一步详细的说明
图1为天然气双塔氦气回收工艺流程图;
其中,E-101-主冷箱;E-102-氦气回收冷箱;E-103-回收塔塔顶冷凝器;E-104-水冷器;V-101-重烃分离器;V-102-低温分离器;V-103-吸入罐;V-104-闪蒸罐;T-101-氦气提浓塔; T-102-氦气回收塔;K-101-氮气循环压缩机;A-101-空冷器。
具体实施方式
下面结合附图对本发明的实例进行说明,应当理解,此处所描述的实例仅用于说明和解释本发明,并不用于限定本发明。
实施例中压力采用绝压。
实例1
原料气质组成及工况条件:
原料气处理规模:100×104m3/d
原料气压力:4.5MPa
原料气温度:40℃
外输气压力:大于4.2MPa
原料气组成见表1。
表1、原料气摩尔组成
天然气组分 | Helium | Nitrogen | CO<sub>2</sub> | Methane | Ethane | Propane | i-Butane |
天然气组成,mol% | 0.25 | 10 | 0.001 | 87.699 | 1.331 | 0.406 | 0.021 |
天然气组分 | n-Butane | i-Pentane | n-Pentane | n-Hexane | n-Heptane | n-Octane | n-Nonane |
天然气组成,mol% | 0.062 | 0.062 | 0.062 | 0.03 | 0.02 | 0.019 | 0.016 |
天然气组分 | n-Decane | n-C<sub>11</sub> | |||||
天然气组成,mol% | 0.012 | 0.01 |
本发明提供的天然气双塔氦气回收方法实施例1工艺流程如图1所示,其流程简述如下:
(1)膜分离后的天然气增压后经过预处理(脱碳脱水)进入主冷箱(E-101)降温至-80℃后进入重烃分离器(V-101),重烃分离器气相在主冷箱(E-101)降温至-88.4℃后进入低温分离器(V-101),重烃分离器(V-101)液相在主冷箱(E-101)升温至36℃后降压进入闪蒸罐(V-104)分离。低温分离器(V-102)气相经主冷箱(E-101)冷却到-120℃后降压至3.85MPa 进入氦气提浓塔(T-101)塔顶部,低温分离器(V-102)液相节流降压至3.9MPa进入氦气提浓塔(T-101)中部。
(2)氦气提浓塔(T-101)塔顶出料(3.8MPa,-111℃)进入氦气回收冷箱(E-102)降温降压(2.5MPa,-154℃)后进入氦气回收塔(T-102)中部。
(3)氦气提浓塔(T-101)塔底出料分为两股,第一股(摩尔流量百分比为16.5%)在主冷箱(E-101)内换热升温后自氦气提浓塔塔底进料,第二股(摩尔流量百分比为83.5%)分成两部分,一部分(摩尔流量百分比为83%)节流降压至2.7MPa后进入主冷箱(E-101) 复热后进入增压单元增压,另一部分(摩尔流量百分比为17%)节流降压至1.3MPa后进入主冷箱复热后进入增压单元增压外输。
(4)氦气回收塔(T-102)塔顶出料(2.39MPa,-180℃)粗氦气(纯度为73.476%)经过氦气回收冷箱(E-102)升温至36℃后进入后续提纯单元。
(5)氦气回收塔(T-102)塔底出料分为两股,第一股(摩尔流量百分比为25.5%)进入氦气回收冷箱(E-102)换热升温后自氦气回收塔(T-102)塔底部进料,第二股(摩尔流量百分比为74.5%)节流降压至0.6MPa后分别进入氦气回收冷箱(E-102)和主冷箱(E-101),为两冷箱提供冷量,升温至36℃后与氦气提浓塔塔底(T-101)的两股物流分别进入增压单元增压至4.3MPa后一起外输。
(6)制冷循环采用氮气制冷循环,氮气在氦气回收冷箱(E-102)中降温至-175℃后降压至0.35MPa后进入氦气回收塔塔顶冷凝器(E-103)中换热以提供冷量,升温后的氮气进入氦气回收冷箱(E-102)复热,再一次升温至-100℃后进入吸入罐(V-103)中,分离出的气相增压后再次进入氦气回收冷箱(E-102),进入下一轮循环。
天然气双塔氦气回收流程主要参数表2、表3、表4,模拟结果表明:天然气双塔氦气回收总压缩功为1096kW,总压缩功包括来原料气增压压缩功、制冷压缩功和外输气压缩功。氦气回收率为98.95%,粗氦产品纯度为73.48%。
表2天然气双塔氦气回收流程主要参数
项目 | 工艺参数 |
天然气处理规模,10<sup>4</sup>m<sup>3</sup>/d | 100×10<sup>4</sup> |
原料气压力,MPa | 4.5 |
原料气温度,℃ | 40 |
氦气回收率,% | 98.95 |
氦气纯度,% | 73.48 |
氮气制冷循环压缩功,kW | 16.34 |
外输气增压压缩功,kW | 1079 |
总压缩功,kW | 1096 |
表3粗氦产品气质组成及工况条件
表4外输气气质组成及工况条件
Claims (8)
1.一种双塔天然气氦回收方法,其特征在于,包括以下步骤:
(1)经预处理后的原料气经主冷箱(E-101)降温进入重烃分离器(V-101)进行气液分离;
(2)重烃分离器(V-101)分离的气相在主冷箱(E-101)中降温后进入低温分离器(V-102)进一步气液分离,重烃分离器(V-101)分离的液相节流后在主冷箱中换热,升温后进入闪蒸罐(V-104),闪蒸出的气相进燃料气系统,闪蒸出的凝液进入凝液罐;低温分离器(V-102)分离出的气相在主冷箱中降温降压后进入氦气提浓塔(T-101)塔顶部,低温分离器(V-102)分离出的液相经降压后进入氦气提浓塔(T-101)中部;
(3)氦气提浓塔(T-101)塔底出料分为两股,第一股在主冷箱(E-101)内换热升温后自氦气提浓塔塔底部进料,第二股分成两部分,一部分经降压后进入主冷箱(E-101)复热后进入增压单元增压,另一部分经降压后进入主冷箱复热后进入增压单元增压外输;
(4)氦气提浓塔(T-101)塔顶气相出料经氦气回收冷箱(E-101)降温后进入氦气回收塔(T-102)中部;
(5)氦气回收塔(T-102)塔顶出料物流经氦气回收冷箱(E-102)升温,作为粗氦产品;制冷循环采用氮气循环制冷;
(6)氦气回收塔(T-102)塔底物流分为两股物流,一股物流经氦气回收冷箱(E-102)换热升温后自氦气回收塔(T-102)塔底部进料,另一股物流经降压后分别进入氦气回收冷箱(E-102)和主冷箱(E-101)换热升温后进入增压单元增压。
2.如权利要求1所述的天然气的提氦方法,其特征在于,所述主冷箱(E-101)和氦气回收冷箱(E-102)均采用多股板翅式换热器。
3.如权利要求2所述的天然气的提氦方法,其特征在于,所述主冷箱(E-101)集成三股热流与五股冷流,所述氦气回收冷箱(E-102)集成两股热流与四股冷流。
4.如权利要求3所述的天然气的提氦方法,其特征在于,所述主冷箱(E-101)集成的三股热流与五股冷流,其中三股热流分别为原料气、重烃分离器(V-101)气相物流、低温分离器(V-102)气相物流,五股冷流分别为重烃分离器液相、氦气提浓塔(T-101)塔底的三股分流物流、氦气回收塔(T-102)塔底的一股分流物流,所述氦气回收冷箱(E-102)两股热流与四股冷流,其中两股热流为高压氮气以及氦气提浓塔(T-101)塔顶气相物流,四股冷流分别为氦气回收塔(T-102)塔底两股物流、粗氦及低温低压氮气。
5.如权利要求1所述的天然气的提氦方法,其特征在于,所述制冷循环主要采用氮气制冷循环。
6.如权利要求4所述的天然气的提氦方法,其特征在于,制冷循环采用氮气制冷循环,高压氮气经氦气回收冷箱(E-102)降温降压后为氦气回收塔(T-102)塔顶冷凝器(E-103)提供冷量,升温后低压低温氮气进入氦气回收冷箱(E-102)复热升温后进入吸入罐(V-103),其气相分别进入经氮气压缩机(K-101)增压和氦气回收冷箱(E-101)降温,再进入下一轮循环。
7.如权利要求1所述的天然气的提氦方法,其特征在于,氦气提浓塔(T-101)和氦气回收塔(T-102)采用高效填料以提高分离效率。
8.如权利要求1所述的天然气的提氦方法,其特征在于,所述原料气进入本装置前需作净化预处理,保证流程中不形成二氧化碳固体和天然气水合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111133246.2A CN113670002B (zh) | 2021-09-27 | 2021-09-27 | 一种双塔天然气氦回收方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111133246.2A CN113670002B (zh) | 2021-09-27 | 2021-09-27 | 一种双塔天然气氦回收方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113670002A true CN113670002A (zh) | 2021-11-19 |
CN113670002B CN113670002B (zh) | 2022-06-21 |
Family
ID=78550241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111133246.2A Active CN113670002B (zh) | 2021-09-27 | 2021-09-27 | 一种双塔天然气氦回收方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113670002B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023124919A1 (zh) * | 2021-12-29 | 2023-07-06 | 长庆工程设计有限公司 | 提纯氦气的系统及方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102937369A (zh) * | 2012-12-05 | 2013-02-20 | 中国石油集团工程设计有限责任公司 | 天然气低温提氦系统及方法 |
CN204830679U (zh) * | 2015-07-31 | 2015-12-02 | 北京高杰能源技术有限公司 | 天然气超低温提取氦气系统 |
CN106352657A (zh) * | 2016-08-24 | 2017-01-25 | 四川空分设备(集团)有限责任公司 | 闪蒸气提取氦气的系统及方法 |
CN111578621A (zh) * | 2020-06-17 | 2020-08-25 | 中国石油工程建设有限公司 | 一种可切换天然气两塔提氦装置及工艺 |
CN111981768A (zh) * | 2020-08-20 | 2020-11-24 | 中国石油工程建设有限公司 | 一种天然气低温节流提取氦气装置和方法 |
CN212299662U (zh) * | 2020-08-20 | 2021-01-05 | 中国石油工程建设有限公司 | 一种天然气低温节流提取氦气装置 |
-
2021
- 2021-09-27 CN CN202111133246.2A patent/CN113670002B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102937369A (zh) * | 2012-12-05 | 2013-02-20 | 中国石油集团工程设计有限责任公司 | 天然气低温提氦系统及方法 |
CN204830679U (zh) * | 2015-07-31 | 2015-12-02 | 北京高杰能源技术有限公司 | 天然气超低温提取氦气系统 |
CN106352657A (zh) * | 2016-08-24 | 2017-01-25 | 四川空分设备(集团)有限责任公司 | 闪蒸气提取氦气的系统及方法 |
CN111578621A (zh) * | 2020-06-17 | 2020-08-25 | 中国石油工程建设有限公司 | 一种可切换天然气两塔提氦装置及工艺 |
CN111981768A (zh) * | 2020-08-20 | 2020-11-24 | 中国石油工程建设有限公司 | 一种天然气低温节流提取氦气装置和方法 |
CN212299662U (zh) * | 2020-08-20 | 2021-01-05 | 中国石油工程建设有限公司 | 一种天然气低温节流提取氦气装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023124919A1 (zh) * | 2021-12-29 | 2023-07-06 | 长庆工程设计有限公司 | 提纯氦气的系统及方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN113670002B (zh) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113686098B (zh) | 一种天然气液化及氦气回收方法 | |
CN106866339B (zh) | 一种天然气中回收乙烷联产粗氦的装置及方法 | |
CN112179048B (zh) | 一种贫氦天然气轻烃回收与提氦的联产系统和方法 | |
CN110455038B (zh) | 一种氦提取单元、氦提取装置和联产氦气的系统 | |
CN112378168B (zh) | 一种煤基富甲烷合成气深冷分离制lng的工艺与系统 | |
CN113865263B (zh) | 一种天然气提取粗氦并联产液化天然气的生产系统 | |
CN113670002B (zh) | 一种双塔天然气氦回收方法 | |
CN204981793U (zh) | 一种lng冷能应用于油田伴生气的处理装置 | |
CN104807287A (zh) | 一种小型天然气液化制冷系统及方法 | |
CN107082736B (zh) | 一种液化天然气轻烃回收方法 | |
CN105509413A (zh) | 聚烯烃排火炬气的深冷分离回收系统及方法 | |
CN110108091B (zh) | Star丙烷脱氢的氢气分离膜内嵌改进的深冷液化系统 | |
CN110118468B (zh) | 一种带自冷循环适用于富气的乙烷回收方法 | |
US11604024B2 (en) | Method for producing pure nitrogen from a natural gas stream containing nitrogen | |
CN210425763U (zh) | 高压外输富气乙烷回收装置 | |
CN107541235B (zh) | 一种原油常压蒸馏塔塔顶油气的两段式冷凝、分离方法及分离系统 | |
CN112169549B (zh) | 一种气相法聚乙烯装置尾气的回收方法 | |
CN116067121B (zh) | 一种低含氦天然气多级浓缩提氦联产lng的方法 | |
CN108036585B (zh) | 一种lng冷能利用的热泵空气分离系统 | |
CN102645084A (zh) | 一种混合冷剂三级制冷制备液化天然气的方法及装置 | |
CN111174529A (zh) | 一种利用液化天然气冷能脱烃脱碳的系统和方法 | |
CN217900303U (zh) | 一种可提高原料气中苯含量上限的天然气乙烷回收装置 | |
CN212692273U (zh) | 石油伴生气液化回收系统 | |
CN113831942B (zh) | 一种天然气液化脱氮系统及工艺 | |
CN210602469U (zh) | 一种低压外输气乙烷回收装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |