CN102937369A - 天然气低温提氦系统及方法 - Google Patents

天然气低温提氦系统及方法 Download PDF

Info

Publication number
CN102937369A
CN102937369A CN2012105134234A CN201210513423A CN102937369A CN 102937369 A CN102937369 A CN 102937369A CN 2012105134234 A CN2012105134234 A CN 2012105134234A CN 201210513423 A CN201210513423 A CN 201210513423A CN 102937369 A CN102937369 A CN 102937369A
Authority
CN
China
Prior art keywords
helium
outlet
concentration tower
deep freezer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105134234A
Other languages
English (en)
Other versions
CN102937369B (zh
Inventor
龙增兵
琚宜林
刘家洪
冼祥发
钟志良
郭成华
杨晓秋
刘泽军
陈运强
汪宏伟
陶真
汪贵
孙林
谌天兵
陆永康
蒲黎明
刘志荣
盛炳林
李均方
兰小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
China Petroleum Engineering and Construction Corp
Original Assignee
China National Petroleum Corp Engineering Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp Engineering Design Co Ltd filed Critical China National Petroleum Corp Engineering Design Co Ltd
Priority to CN201210513423.4A priority Critical patent/CN102937369B/zh
Publication of CN102937369A publication Critical patent/CN102937369A/zh
Application granted granted Critical
Publication of CN102937369B publication Critical patent/CN102937369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种天然气低温提氦系统及方法,采用后膨胀+氮循环制冷两塔分离技术,充分回收装置自身冷量来预冷原料天然气,不仅能适用含氦量极低的天然气,同时具有能耗低、氦气回收率高、投资省、操作灵活、变工况适应能力强等特征。本发明的积极效果是:本发明中含氦天然气经过预冷系统、低温精馏系统提取天然气中少量的氦气,氦气提浓过程中所需的超低温度冷源由独立的氮循环制冷系统提供,该独立系统调节手段丰富,同时不受上游操作的影响,采用后膨胀制冷系统,不仅使系统操作压力较现有工艺高,在相同的制冷温度下,可使产品氦气浓度更高。

Description

天然气低温提氦系统及方法
技术领域
本发明涉及一种天然气低温提氦系统及方法。
背景技术
氦气因其独特的性质,在国防军工和科学研究中有着重要的用途。利用其-268.9℃的低沸点,液氦可以用于超低温冷却;在火箭和航天中用作液氢燃料系统的清洗介质和加压推进剂;在悬浮列车等领域中广受关注的超导体应用中,氦气也是不可或缺的。此外,氦气在医疗领域的核磁共振成像设备中用作超导电磁体冷却、在核发电装置用作传热介质、在光纤生产中用作冷却和惰性气体保护以及在仪器分析方面用作气相色谱等的载气等方面都得到广泛的应用。
随着世界经济的快速发展和产业结构的不断调整,各国经济正逐步融入到全球大市场之中。在未来两三年中,氦气的市场规模与经济增长将会同步保持稳定增长态势。根据预测,在未来多年内全球对氦气的需求量将以每年6%左右的速度增长,其需求总量可达到2.25~3亿立方米。由此推算,到2030年全球的氦气需求将短缺1.6~1.7亿立方米,其中亚太地区短缺约6000万立方米。而我由于国内氦气的消费量快速提升,每年都需要通过大量进口来弥补需求缺口。据有关部门统计,2007~2008年,氦气行业年均消费增量将会保持在0.37亿m3左右。 
氦气在空气中含量极少(约0.005%)并无工业提氦价值。氦气主要存在于天然气中,其含量在世界各地各有不同,有的氦气含量最高达8%。因此从天然气中提取氦气仍是氦气的主要工业来源。
目前国内外天然气提氦工艺主要包括非低温法和低温法。
非低温法主要采用膜分离和变压吸附。我国研究的膜分离技术采用国产聚砜/硅橡胶中空纤维膜,常温下经一级膜分离可使氦浓缩5~5.5倍,氦收率达到63%~75%。但该工艺技术还没工业化,同时膜的可靠性和稳定还需进一步研究证明。在此研究的基础上,我国研究人员提出了用膜分离+低温分离联合法从天然气中提取氦气。利用膜分离预浓天然气中的氦气,在相同氦气产量的情况下,可大幅度降低低温分离的规模及投资费用,但同样存在膜分离膜中分离膜的技术问题。而没有真正意义上的工业化。
在国外俄罗斯科学院西伯利亚分院研究于2006年研究出一种采用非低温法从天然气中分离氦气的新工艺。该工艺利用极为细小的玻璃微珠组成的膜将氦气从气流中吸附出来,但目前该工艺尚未投入规模化工业生产中,还有待进一步的研究开发。
低温法提氦工艺,国内外一般采用氮气循环制冷技术来满足低温法提氦工艺中所需的制冷温度。对于前端原料气预冷方案,根据具体原料气气质条件,一般采用膨胀制冷、外部制冷(如PRICO混合冷剂制冷循环)以及前膨胀制冷+外部制冷的方式。
非低温方法由于其膜分离元件的技术问题等问题,在天然气提氦工业中尚未成熟到足以规模化和工业化的程度。
低温法中,现有的外部制冷工艺虽可联产LNG,但能耗高,而前膨胀制冷工艺,提氦塔操作压力较低,操作温度低(最低-192℃),对塔体材质要求高,在到达相同氦气浓度的情况下,冷量需求大,能耗高,变工况能力较差。同时对数平均温差小,传热面积大,投资较高。 
发明内容
为了克服现有技术的上述缺点,本发明提供了一种天然气低温提氦系统及方法,采用后膨胀+氮循环制冷两塔分离技术,充分回收装置自身冷量来预冷原料天然气,不仅能适用含氦量极低的天然气,同时具有能耗低、氦气回收率高、投资省、操作灵活、变工况适应能力强等特征。
本发明解决其技术问题所采用的技术方案是:一种天然气低温提氦系统,包括原料气冷却器、一级提浓塔、二级提浓塔、深冷器、膨胀机组、氮气压缩机和氮气缓冲罐,其中:
原料气冷却器左侧进口接含氦净化天然气,原料气冷却器底部出口与进口分别通过管线与一级提浓塔塔底的蒸发器进口与出口连接;原料气冷却器右侧出口通过管线与一级提浓塔中部进口连接;原料气冷却器右侧中部进口通过管线分别与一级提浓塔塔顶冷凝器上部出口、深冷器底部的低压气出口连接;原料气冷却器左侧中部出口接下游系统;原料气冷却器右侧下部进口通过管线与一级提浓塔塔底出口连接;原料气冷却器上部的出口与进口分别通过管线与膨胀机组的透平膨胀机进口与出口连接;原料气冷却器左侧的出口与膨胀机组的同轴压缩机进口连接,同轴压缩机出口接入下游系统;
一级提浓塔塔底出口通过管线与塔顶冷凝器进口连接,一级提浓塔塔顶冷凝器出口通过管线与二级提浓塔塔底蒸发器进口连接,塔底蒸发器出口接深冷器底部进口,深冷器中部出口接入二级提浓塔中部进口;二级提浓塔塔顶冷凝器出口接深冷器左侧上部进口,深冷器右侧上部出口为产品粗氦出口;二级提浓塔塔底部出口通过管线深冷器左侧下部进口连接;
氮气缓冲罐、氮气压缩机和深冷器依次连接,深冷器左侧中部进口与二级提浓塔塔顶冷凝器的低温氮气出口连接;深冷器左侧下部出口与二级提浓塔塔顶冷凝器进口连接,深冷器右侧中部出口接氮气缓冲罐进口。
本发明还提供了一种天然气低温提氦方法,包括如下步骤:
从干燥系统来的含氦天然气进入原料气冷却器中冷却到-92℃后,通过流量调节阀调节,从天然气中抽部分气体进入一级提浓塔塔底作为蒸发器热源被冷却到-109℃后,再次进入原料气冷却器与原料气汇合继续预冷,预冷到-114.7℃后进入一级提浓塔中部进行一次提浓;
一级提浓塔塔底出来的液甲烷部分经过节流到0.43 MPa ,温度到达-139.6℃,作为塔顶冷凝器的冷源,经过塔顶冷凝器换热后,低压返回气体与深冷器来的低压气汇合进入原料气冷却器回收冷量后进入下游系统,其余液甲烷节流到1.68 MPa,温度为-116.0℃后进入原料气冷却器回收部分冷量,温度达到-95℃,然后进入膨胀机组的透平膨胀机,膨胀到0.9MPa,温度达到-117.3℃再进入原料气冷却器换热,回收冷量后,再经过膨胀机组的同轴压缩机增压到1.0 MPa后进入下游系统;
一级提浓塔出来的一次粗氦进入二级提浓塔塔底蒸发器回收冷量后,进入深冷器预冷到-150.5℃进入二级提浓塔中部进行二次提浓;经二级提浓塔塔顶冷凝器出来的粗氦进入深冷器换热到37℃成为产品粗氦;二级提浓塔塔底部出来的液体,经节流到0.45MPa,温度达到-170.4℃进入深冷器回收部分冷量后,与一级提浓塔塔顶出来低压气体汇合,二级提浓塔塔顶冷凝器所需的冷量依靠氮循环所产生的液氮蒸发提供;在氮循环系统中,气体氮储存在氮气缓冲罐中,经氮气压缩机压缩到2.0MPa,进深冷器与二级提浓塔塔顶冷凝器出来的低温氮气以及二级提浓塔塔底节流后的氮甲烷液体换冷,温度达到-160℃,再经节流阀节流到0.13 MPa,温度达到-188.1℃,进入二级提浓塔塔顶冷凝器提供冷量,出塔顶冷凝器的低温氮气进入深冷器给出冷量后,温度为35℃进入氮气缓冲罐。
与现有技术相比,本发明的积极效果是:本发明中含氦天然气经过预冷系统、低温精馏系统提取天然气中少量的氦气,氦气提浓过程中所需的超低温度冷源由独立的氮循环制冷系统提供,该独立系统调节手段丰富,同时不受上游操作的影响。采用后膨胀制冷系统,不仅使系统操作压力较现有工艺高,在相同的制冷温度下,可使产品氦气浓度更高。具体表现如下:
1)采用双塔提氦工艺,并配以先进、高效的板翅式换热器,利用透平膨胀制冷的同时,充分回收装置自身冷量来预冷原料天然气,而不需要其它外部冷源来预冷原料气,使装置的能耗降低;
2)采用后膨胀制冷,不仅操作压力较现有的前膨胀制冷工艺高,同时能够在膨胀机允许的范围内改变膨胀比,来调节原料气预冷温度,且不影响后续操作压力。装置操作稳定、灵活;
3)装置采用独立的氮循环制冷系统,不仅能提供近-190℃的超低温位,而且独立的制冷系统,能够很好适应变工况操作条件。
4)一级提浓塔、二级提浓塔、原料气冷却器及深冷器等设备均设置在冷箱内,保冷效果好,并最大程度地减少冷损。
5)工艺中设置冷量调节罐,能起到调节一级提浓塔塔顶冷凝器以及原料气冷却器负荷的作用,不需要变频冷量调节。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1本发明的的系统原理示意图。
具体实施方式
一种天然气低温提氦系统,如图1所示,包括:原料气冷却器1、一级提浓塔2、二级提浓塔3、深冷器4、膨胀机组5、氮气压缩机6、冷量调节罐7、氮气缓冲罐8等,其中:
原料气冷却器1左侧进口接含氦净化天然气,原料气冷却器1底部出口与进口分别通过管线与一级提浓塔2塔底的蒸发器进口与出口连接;原料气冷却器1右侧出口通过管线与一级提浓塔2中部进口连接;原料气冷却器1右侧中部进口通过管线分别与一级提浓塔2塔顶冷凝器上部出口、深冷器4底部的低压气出口连接;原料气冷却器1左侧中部出口接下游系统(低压天然气);原料气冷却器1右侧下部进口通过管线与一级提浓塔2塔底出口连接;原料气冷却器1上部的出口与进口分别通过管线与膨胀机组5的透平膨胀机进口与出口连接;原料气冷却器1左侧的出口与膨胀机组5的同轴压缩机进口连接,同轴压缩机出口接入下游系统(中压天然气)。
一级提浓塔2塔底出口通过管线与塔顶冷凝器进口连接,一级提浓塔2塔顶冷凝器下部出口与冷量调节罐7连接;一级提浓塔2塔顶冷凝器出口通过管线与二级提浓塔3塔底蒸发器进口连接,塔底蒸发器出口接深冷器4底部进口,深冷器4中部出口接入二级提浓塔3中部进口;二级提浓塔3塔顶冷凝器出口接深冷器4左侧上部进口,深冷器4右侧上部出口为产品粗氦出口;二级提浓塔3塔底部出口通过管线深冷器4左侧下部进口连接,二级提浓塔3塔顶冷凝器所需的冷量是依靠氮循环所产生的液氮蒸发提供。
氮气缓冲罐8、氮气压缩机6和深冷器4依次连接,深冷器4左侧中部进口与二级提浓塔3塔顶冷凝器的低温氮气出口连接;深冷器4左侧下部出口与二级提浓塔3塔顶冷凝器进口连接,深冷器4右侧中部出口接氮气缓冲罐8进口。
本发明还提供了一种天然气低温提氦方法,包括如下步骤:
新型后膨胀+氮循环制冷天然气提氦技术主要包括天然气预冷系统、低温精馏系统和氮循环系统。天然气预冷系统主要通过回收自身冷量和膨胀制冷来预冷含氦天然气;低温精馏系统采用两塔精馏工艺来分离天然气中氦气;氮循环制冷系统通过高压氮气节流提供超低温位冷量来提浓氦气。具体技术方案如下:
从干燥系统来的含氦天然气(即原料气)进入原料气冷却器1中冷却到-92℃后,通过流量调节阀调节,从天然气中抽部分气体进入一级提浓塔2塔底作为蒸发器热源被冷却到-109℃后,再次进入原料气冷却器1与原料气汇合继续预冷;提氦天然气预冷到-114.7℃后(约94%的液化率)进入一级提浓塔2中部进行一次提浓。
一级提浓塔2塔顶冷凝器出来的一次粗氦浓度可达4.4%,温度为-131.1℃;一级提浓塔2塔底出来的液甲烷部分(约14%(mol))经过节流到0.43 MPa ,温度到达-139.6℃,作为塔顶冷凝器的冷源,经过塔顶冷凝器换热后,低压返回气体与深冷器4来的低压气汇合进入原料气冷却器1回收冷量后进入下游系统,若一级提浓塔冷量过剩,一级提浓塔2塔顶冷凝器中的液甲烷进入冷量调节罐7;一级提浓塔2塔底出来的其余液甲烷节流到1.68 MPa,温度为-116.0℃后进入原料气冷却器1回收部分冷量,温度为-95℃,进入膨胀机组5的透平膨胀机,膨胀到0.9MPa,温度为-117.3℃再进入原料气冷却器1换热,回收冷量后,再经过膨胀机组5的同轴压缩机增压到1.0 MPa进入下游系统。
一级提浓塔2出来的一次粗氦进入二级提浓塔3塔底蒸发器回收冷量后,进入深冷器4预冷到-150.5℃进入二级提浓塔3中部(操作压力为1.83MPa)进行二次提浓;经二级提浓塔3塔顶冷凝器出来的粗氦进入深冷器4换热到37℃产生产品粗氦(浓度为68.3%);二级提浓塔3塔底部出来的液体,经节流到0.45MPa,温度达到-170.4℃进入深冷器4回收部分冷量后,与一级提浓塔2塔顶出来低压气体汇合,二级提浓塔3塔顶冷凝器所需的冷量是依靠氮循环所产生的液氮蒸发提供。
在氮循环系统中,气体氮储存在氮气缓冲罐8中,经氮气压缩机6压缩到2.0MPa,进深冷器4与二级提浓塔3塔顶冷凝器出来的低温氮气以及二级提浓塔3塔底节流后的氮甲烷液体换冷,温度达到-160℃,再经节流阀节流到0.13 MPa,温度达到-188.1℃,进入二级提浓塔3塔顶冷凝器提供冷量,出塔顶冷凝器的低温氮气进入深冷器4给出冷量后,温度为35℃进入氮气缓冲罐8;损耗的氮气定期补充。

Claims (5)

1.一种天然气低温提氦系统,其特征在于:包括原料气冷却器、一级提浓塔、二级提浓塔、深冷器、膨胀机组、氮气压缩机和氮气缓冲罐,其中:
原料气冷却器左侧进口接含氦净化天然气,原料气冷却器底部出口与进口分别通过管线与一级提浓塔塔底的蒸发器进口与出口连接;原料气冷却器右侧出口通过管线与一级提浓塔中部进口连接;原料气冷却器右侧中部进口通过管线分别与一级提浓塔塔顶冷凝器上部出口、深冷器底部的低压气出口连接;原料气冷却器左侧中部出口接下游系统;原料气冷却器右侧下部进口通过管线与一级提浓塔塔底出口连接;原料气冷却器上部的出口与进口分别通过管线与膨胀机组的透平膨胀机进口与出口连接;原料气冷却器左侧的出口与膨胀机组的同轴压缩机进口连接,同轴压缩机出口接入下游系统;
一级提浓塔塔底出口通过管线与塔顶冷凝器进口连接,一级提浓塔塔顶冷凝器出口通过管线与二级提浓塔塔底蒸发器进口连接,塔底蒸发器出口接深冷器底部进口,深冷器中部出口接入二级提浓塔中部进口;二级提浓塔塔顶冷凝器出口接深冷器左侧上部进口,深冷器右侧上部出口为产品粗氦出口;二级提浓塔塔底部出口通过管线深冷器左侧下部进口连接;
氮气缓冲罐、氮气压缩机和深冷器依次连接,深冷器左侧中部进口与二级提浓塔塔顶冷凝器的低温氮气出口连接;深冷器左侧下部出口与二级提浓塔塔顶冷凝器进口连接,深冷器右侧中部出口接氮气缓冲罐进口。
2.根据权利要求1所述的天然气低温提氦系统,其特征在于:所述一级提浓塔塔顶冷凝器下部出口与冷量调节罐连接。
3.一种天然气低温提氦方法,其特征在于:包括如下步骤:
从干燥系统来的含氦天然气进入原料气冷却器中冷却到-92℃后,通过流量调节阀调节,从天然气中抽部分气体进入一级提浓塔塔底作为蒸发器热源被冷却到-109℃后,再次进入原料气冷却器与原料气汇合继续预冷,预冷到-114.7℃后进入一级提浓塔中部进行一次提浓;
一级提浓塔塔底出来的液甲烷部分经过节流到0.43 MPa ,温度到达-139.6℃,作为塔顶冷凝器的冷源,经过塔顶冷凝器换热后,低压返回气体与深冷器来的低压气汇合进入原料气冷却器回收冷量后进入下游系统,其余液甲烷节流到1.68 MPa,温度为-116.0℃后进入原料气冷却器回收部分冷量,温度达到-95℃,然后进入膨胀机组的透平膨胀机,膨胀到0.9MPa,温度达到-117.3℃再进入原料气冷却器换热,回收冷量后,再经过膨胀机组的同轴压缩机增压到1.0 MPa后进入下游系统;
一级提浓塔出来的一次粗氦进入二级提浓塔塔底蒸发器回收冷量后,进入深冷器预冷到-150.5℃进入二级提浓塔中部进行二次提浓;经二级提浓塔塔顶冷凝器出来的粗氦进入深冷器换热到37℃成为产品粗氦;二级提浓塔塔底部出来的液体,经节流到0.45MPa,温度达到-170.4℃进入深冷器回收部分冷量后,与一级提浓塔塔顶出来低压气体汇合,二级提浓塔塔顶冷凝器所需的冷量依靠氮循环所产生的液氮蒸发提供;
在氮循环系统中,气体氮储存在氮气缓冲罐中,经氮气压缩机压缩到2.0MPa,进深冷器与二级提浓塔塔顶冷凝器出来的低温氮气以及二级提浓塔塔底节流后的氮甲烷液体换冷,温度达到-160℃,再经节流阀节流到0.13 MPa,温度达到-188.1℃,进入二级提浓塔塔顶冷凝器提供冷量,出塔顶冷凝器的低温氮气进入深冷器给出冷量后,温度为35℃进入氮气缓冲罐。
4.根据权利要求3所述的天然气低温提氦方法,其特征在于:当一级提浓塔冷量过剩时,一级提浓塔塔顶冷凝器中的液甲烷进入冷量调节罐。
5.根据权利要求3所述的天然气低温提氦方法,其特征在于:所述二次提浓的操作压力为1.83MPa。
CN201210513423.4A 2012-12-05 2012-12-05 天然气低温提氦系统及方法 Active CN102937369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210513423.4A CN102937369B (zh) 2012-12-05 2012-12-05 天然气低温提氦系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210513423.4A CN102937369B (zh) 2012-12-05 2012-12-05 天然气低温提氦系统及方法

Publications (2)

Publication Number Publication Date
CN102937369A true CN102937369A (zh) 2013-02-20
CN102937369B CN102937369B (zh) 2015-03-11

Family

ID=47696280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210513423.4A Active CN102937369B (zh) 2012-12-05 2012-12-05 天然气低温提氦系统及方法

Country Status (1)

Country Link
CN (1) CN102937369B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106866339A (zh) * 2017-04-07 2017-06-20 中国石油集团工程设计有限责任公司 一种天然气中回收乙烷联产粗氦的装置及方法
CN107514872A (zh) * 2017-09-27 2017-12-26 中科瑞奥能源科技股份有限公司 从lng储罐闪蒸汽中回收氦气的工艺与系统
CN112432430A (zh) * 2020-11-20 2021-03-02 北京福典工程技术有限责任公司 从液化天然气的闪蒸汽中提纯氦气并液化的系统和方法
CN112573494A (zh) * 2020-12-23 2021-03-30 西南石油大学 一种利用水合物法的氦精制装置
CN112811402A (zh) * 2020-12-23 2021-05-18 西南石油大学 一种水合物法集成提氦装置
CN113670002A (zh) * 2021-09-27 2021-11-19 西南石油大学 一种双塔天然气氦回收方法
CN113983761A (zh) * 2021-10-25 2022-01-28 中石化石油工程技术服务有限公司 一种提氦装置和天然气提氦方法
CN115745713A (zh) * 2022-11-22 2023-03-07 北京航天试验技术研究所 一种高密度氢氧推进剂同步制备系统及其方法
WO2023124919A1 (zh) * 2021-12-29 2023-07-06 长庆工程设计有限公司 提纯氦气的系统及方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277325A (ja) * 1992-03-30 1993-10-26 Nippon Sanso Kk ヘリウムガス精製装置及びその運転方法
CN202973762U (zh) * 2012-12-05 2013-06-05 中国石油集团工程设计有限责任公司 天然气低温提氦系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277325A (ja) * 1992-03-30 1993-10-26 Nippon Sanso Kk ヘリウムガス精製装置及びその運転方法
CN202973762U (zh) * 2012-12-05 2013-06-05 中国石油集团工程设计有限责任公司 天然气低温提氦系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
钟志良,何珺,汪宏伟,龙增兵,宋光红: "某大型提氦装置工艺技术探讨", 《油气加工》 *
龙增兵,琚宜林,钟志良,蒲远洋: "天然气提氦技术探讨与研究", 《天然气与石油》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106866339B (zh) * 2017-04-07 2023-03-31 中国石油天然气集团有限公司 一种天然气中回收乙烷联产粗氦的装置及方法
CN106866339A (zh) * 2017-04-07 2017-06-20 中国石油集团工程设计有限责任公司 一种天然气中回收乙烷联产粗氦的装置及方法
CN107514872A (zh) * 2017-09-27 2017-12-26 中科瑞奥能源科技股份有限公司 从lng储罐闪蒸汽中回收氦气的工艺与系统
CN107514872B (zh) * 2017-09-27 2022-11-25 中科瑞奥能源科技股份有限公司 从lng储罐闪蒸汽中回收氦气的工艺与系统
CN112432430A (zh) * 2020-11-20 2021-03-02 北京福典工程技术有限责任公司 从液化天然气的闪蒸汽中提纯氦气并液化的系统和方法
CN112573494A (zh) * 2020-12-23 2021-03-30 西南石油大学 一种利用水合物法的氦精制装置
CN112811402A (zh) * 2020-12-23 2021-05-18 西南石油大学 一种水合物法集成提氦装置
CN112573494B (zh) * 2020-12-23 2022-06-21 西南石油大学 一种利用水合物法的氦精制装置
CN113670002A (zh) * 2021-09-27 2021-11-19 西南石油大学 一种双塔天然气氦回收方法
CN113983761A (zh) * 2021-10-25 2022-01-28 中石化石油工程技术服务有限公司 一种提氦装置和天然气提氦方法
WO2023124919A1 (zh) * 2021-12-29 2023-07-06 长庆工程设计有限公司 提纯氦气的系统及方法和应用
CN115745713A (zh) * 2022-11-22 2023-03-07 北京航天试验技术研究所 一种高密度氢氧推进剂同步制备系统及其方法
CN115745713B (zh) * 2022-11-22 2023-11-14 北京航天试验技术研究所 一种高密度氢氧推进剂同步制备系统及其方法

Also Published As

Publication number Publication date
CN102937369B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
CN102937369B (zh) 天然气低温提氦系统及方法
CN108458549B (zh) 从天然气中提氦并液化的系统与方法
CN102435044B (zh) 一种焦炉气制液化天然气的深冷分离系统
CN108731381B (zh) 一种液化天然气联产液氦的工艺装置及方法
CN205939932U (zh) 液化天然气闪蒸气提取高纯氦系统
CN105180595B (zh) 一种制取富氢气和液态甲烷的系统及方法
CN208332859U (zh) 从天然气中提氦并液化的系统
CN202254637U (zh) 煤制气甲烷化后气体深冷分离液化装置
CN100581996C (zh) 空气分离制取压力氮气的装置及方法
CN102374754A (zh) 从焦炉煤气中制取液态天然气及一氧化碳的设备及方法
CN103175381A (zh) 低浓度煤层气含氧深冷液化制取lng工艺
CN110455038A (zh) 一种氦提取单元、氦提取装置和联产氦气的系统
CN210625119U (zh) 一种降低氮循环能耗的co深冷分离系统
CN102435045A (zh) 液氮洗涤净化合成气及其深冷分离回收lng装置
CN102519222A (zh) 一种焦炉气制液化天然气的深冷分离方法
CN202382517U (zh) 一种焦炉气制液化天然气的深冷分离系统
CN103175380B (zh) 低浓度煤层气含氧深冷液化制取lng装置
CN102628634B (zh) 三循环复叠式制冷天然气液化系统及方法
CN106595223B (zh) 一种回收天然气中碳三以上重烃的系统和方法
CN206094746U (zh) 一种从富甲烷气中提取液态甲烷的新型装置
CN211624871U (zh) 双制冷循环分离煤制合成气中甲烷生产lng和cng的装置
CN202382518U (zh) 液氮洗涤净化合成气及其深冷分离回收lng装置
CN208042611U (zh) 从天然气中提氦并液化的装置
CN202973762U (zh) 天然气低温提氦系统
CN204006964U (zh) 深冷法制取纯一氧化碳和富氢气的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180111

Address after: 610041 Chengdu high tech Zone, Sichuan province sublimation Road No. 6

Patentee after: China Petroleum Engineering Construction Co Ltd

Address before: 610041 Chengdu high tech Zone, Sichuan province sublimation Road No. 6

Patentee before: Engineering Design Co., Ltd., China Petroleum Group

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200924

Address after: 100120 Beijing Xicheng District six laying Kang

Patentee after: CHINA NATIONAL PETROLEUM Corp.

Patentee after: CHINA PETROLEUM ENGINEERING & CONSTRUCTION Corp.

Address before: 610041 No. 6, sublimation Road, hi tech Zone, Sichuan, Chengdu

Patentee before: CHINA PETROLEUM ENGINEERING & CONSTRUCTION Corp.