WO2023124784A1 - 电流传感器、电子设备和检测装置 - Google Patents

电流传感器、电子设备和检测装置 Download PDF

Info

Publication number
WO2023124784A1
WO2023124784A1 PCT/CN2022/136364 CN2022136364W WO2023124784A1 WO 2023124784 A1 WO2023124784 A1 WO 2023124784A1 CN 2022136364 W CN2022136364 W CN 2022136364W WO 2023124784 A1 WO2023124784 A1 WO 2023124784A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
current sensor
magnetoresistive memory
detection section
section
Prior art date
Application number
PCT/CN2022/136364
Other languages
English (en)
French (fr)
Inventor
冷群文
闫韶华
赵海轮
丁凯文
周汪洋
Original Assignee
歌尔微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔微电子股份有限公司 filed Critical 歌尔微电子股份有限公司
Publication of WO2023124784A1 publication Critical patent/WO2023124784A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present application relates to the field of electronics, in particular to current sensors, electronic equipment and detection devices.
  • the magnitude of the magnetic field generated by the current to be measured on the sensor is related to the thickness and width of the current wire and the distance between the current wire and the sensor.
  • the width of the resistance unit needs to be smaller than the width of the current wire.
  • the resistance unit is often composed of multiple tunnel junctions or spin valves connected in series and parallel, which makes the design of the current wire complicated.
  • the sensing direction of the magnetoresistive sensor is in its plane. In order to further increase the induction sensitivity, it is necessary to design a corresponding ring current wire or a magnetic flux concentrator structure, which will also increase the difficulty of micro-nano processing.
  • the main purpose of this application is to propose a current sensor, electronic equipment and detection device, aiming to solve the problem that the detection circuit of the existing current sensor cannot pass through the current sensor when the resistance unit of the sensor is a magnetic tunnel junction with perpendicular magnetic anisotropy.
  • the problem of detection of similar resistance power supply is to propose a current sensor, electronic equipment and detection device, aiming to solve the problem that the detection circuit of the existing current sensor cannot pass through the current sensor when the resistance unit of the sensor is a magnetic tunnel junction with perpendicular magnetic anisotropy.
  • the present application proposes a current sensor, wherein the current sensor includes:
  • a detection line used for conduction with the circuit to be detected of the chip.
  • a sensing assembly includes a plurality of magnetoresistive memory units formed on the chip, the magnetization direction of the pinned layer of each magnetoresistive memory unit is set along its thickness direction, and the plurality of magnetoresistive memory units At least two magnetoresistive memory cells in the connected form a half-bridge circuit;
  • the detection circuit includes a first detection circuit
  • the first detection circuit includes a first detection section and a second detection section respectively wound around the sides of the two magnetoresistive memory units, and the first detection section A first induction magnetic field is generated, and the second detection section generates a second induction magnetic field, and the helical direction of the current flowing through the first detection section and the current flowing through the second detection section is reversed, so that the first detection section An induced magnetic field is opposite to the second induced magnetic field.
  • the first detection section and the second detection section are arranged in series, and the detection circuit further includes a connection section connecting the first detection section and the second detection section, and the first detection section The detection section and the second detection section are respectively arranged on two sides of the connection section.
  • the sensing component includes four magnetoresistive memory units, and the four magnetoresistive memory units are connected to form a full bridge circuit;
  • the detection circuit includes two first detection circuits, so as to have two first detection sections and two second detection sections wound around the four magnetoresistive memory units, and the two first detection sections
  • the detection section generates two first induction magnetic fields
  • the two second detection sections generate two second induction magnetic fields, and the difference between the currents flowing through the two first detection sections and the two second detection sections
  • the helical directions are set in opposite directions, so that the two first induced magnetic fields are opposite to the two second induced magnetic fields.
  • the two first detection sections and the two second detection sections are arranged in series, and the detection circuit further includes a connection between the two first detection sections and the two second detection sections.
  • the connection section, the two first detection sections are arranged on one side of the connection section, and the two second detection sections are arranged on the other side of the connection section.
  • each magnetoresistive memory cell includes a plurality of magnetic tunnel junctions connected in series.
  • each magnetoresistive memory unit includes a plurality of magnetic tunnel junctions connected in parallel.
  • the top electrode of each magnetoresistor and the detection circuit are prepared by photolithography and evaporation.
  • the top electrode of the magnetic tunnel junction and the detection circuit are disposed on the same plane.
  • the present application also provides an electronic device, the electronic device includes the above-mentioned current sensor, and the current sensor includes:
  • a detection line used for conduction with the circuit to be detected of the chip.
  • a sensing assembly includes a plurality of magnetoresistive memory units formed on the chip, the magnetization direction of the pinned layer of each magnetoresistive memory unit is set along its thickness direction, and the plurality of magnetoresistive memory units At least two magnetoresistive memory cells in the connected form a half-bridge circuit;
  • the detection circuit includes a first detection circuit
  • the first detection circuit includes a first detection section and a second detection section respectively wound around the sides of the two magnetoresistive memory units, and the first detection section A first induction magnetic field is generated, and the second detection section generates a second induction magnetic field, and the helical direction of the current flowing through the first detection section and the current flowing through the second detection section is reversed, so that the first detection section An induced magnetic field is opposite to the second induced magnetic field.
  • the present application also provides a detection device, the detection device includes the above-mentioned current sensor, and the current sensor includes:
  • a detection line used for conduction with the circuit to be detected of the chip.
  • a sensing assembly includes a plurality of magnetoresistive memory units formed on the chip, the magnetization direction of the pinned layer of each magnetoresistive memory unit is set along its thickness direction, and the plurality of magnetoresistive memory units At least two magnetoresistive memory cells in the connected form a half-bridge circuit;
  • the detection circuit includes a first detection circuit
  • the first detection circuit includes a first detection section and a second detection section respectively wound around the sides of the two magnetoresistive memory units, and the first detection section A first induction magnetic field is generated, and the second detection section generates a second induction magnetic field, and the helical direction of the current flowing through the first detection section and the current flowing through the second detection section is reversed, so that the first detection section An induced magnetic field is opposite to the second induced magnetic field.
  • the current sensor includes a detection line for conducting with the circuit to be detected of the chip, and a sensing component for measuring the current of the circuit to be detected, and the sensing component includes a circuit formed on the A plurality of magnetoresistive memory units on the chip, the magnetization direction of the pinned layer of each magnetoresistive memory unit is set along its thickness direction, and at least two magnetoresistive memory units in the plurality of magnetoresistive memory units are connected to form a half bridge circuit, wherein the detection circuit includes a first detection circuit, and the first detection circuit includes a first detection section and a second detection section, by setting the first A detection section and a second detection section, a first induction magnetic field is generated in the first detection section, a second induction magnetic field is generated in the second detection section, and flows through the first detection section and the second detection section The helical direction of the current in the segment is reversed.
  • the original detection circuit can be used for current detection to solve the problem that when the resistance unit of the sensor is a magnetic tunnel junction with perpendicular magnetic anisotropy, the detection circuit of the existing current sensor cannot pass through this type of resistance. Power supply detection problem.
  • 1 is a schematic diagram of the principle of an existing magnetoresistive sensor
  • Fig. 2 is the structural schematic diagram of the Wheatstone bridge of magnetoresistive sensor
  • FIG. 3 is a schematic diagram of the basic structure of the magnetic tunnel junction and the magnetization direction of the magnetic layer
  • FIG. 4 is a schematic perspective view of an embodiment of a current sensor provided by the present application.
  • FIG. 5 is a schematic perspective view of another embodiment of the current sensor provided by the present application.
  • Fig. 6 is a schematic diagram of an embodiment of the current wire structure on the magnetoresistive memory unit in Fig. 4;
  • FIG. 7 is a schematic diagram of another embodiment of the current wire structure on the magnetoresistive memory unit in FIG. 4 .
  • the directional indications are only used to explain the position in a certain posture (as shown in the attached figure). If the specific posture changes, the directional indication will also change accordingly.
  • IDDQ static current test determines whether there are physical defects such as bridging, open and short circuit in the circuit by detecting static leakage current or its variation; IDDT transient current The test detects faults by observing the instantaneous dynamic current drawn by the circuit under test, and can detect circuit faults that cannot be detected by voltage tests and IDDQ tests, such as redundant faults and time delay faults. There are two ways of current detection, on-chip and off-chip.
  • the on-chip test uses the built-in self-test technology (Built-In-Self-Test, BIST), and integrates the built-in current sensor (Built-In-Current-Sensor, BICS), by processing and analyzing the current flowing through the tested circuit, the defect information of the tested circuit can be obtained.
  • the off-chip test is to put the corresponding current detection template next to the CUT for testing. However, the speed and resolution of the off-chip test are low, and the delay of the test equipment and the size of the probe will also affect the test effect, so the on-chip test is a more efficient and reliable method.
  • GMR giant magnetoresistance
  • TMR tunneling magnetoresistance
  • CMOS complementary metals Oxide semiconductor
  • This type of magnetoresistive sensor detects the magnitude of the current by measuring the magnetic field generated by the current.
  • MRAM non-volatile Magnetic Random Access Memory
  • MTJ Magnetic Tunnel Junction
  • Current sensing can be implemented as a current sensing unit.
  • the core structure of the magnetoresistive sensor is a "sandwich" structure composed of two ferromagnetic layers and a spacer layer, one of which is called a free layer, and its magnetic moment direction can rotate freely under the action of an external magnetic field ;
  • the other ferromagnetic layer is called the reference layer (pinning layer), and its magnetic moment direction is generally pinned by the adjacent antiferromagnetic layer or synthetic antiferromagnetic structure, and remains stationary within a certain magnetic field range.
  • the spacer layer is an insulating tunneling layer composed of MgO or Al2O3, etc., and its basic unit is called a magnetic tunnel junction.
  • spin valve Spin Valve
  • the arrows shown in the figure represent the directions of the magnetic moments of the pinned layer and the free layer respectively.
  • the magnetic moment of the pinned layer is relatively fixed under the action of a certain magnetic field
  • the magnetic moment of the free layer is relatively free and rotatable relative to the magnetic moment of the pinned layer, and flips with the change of the external field. Because the direction of the magnetic domains in the pinned layer is difficult to change, and the coercive force of the free layer is generally small, it is easy to reverse the direction under the action of an external magnetic field.
  • the resistance value of the whole structure changes with the change of the angle between the magnetization direction of the free layer and the reference layer. If the magnetization directions of the two layers are parallel to each other, then in one magnetic layer, the electrons in the majority-spin subband will enter the empty state of the majority-spin subband in the other magnetic layer, and the electrons in the minority-spin subband will also enter the other magnetic layer.
  • the total tunneling current is larger; if the magnetization directions of the two magnetic layers are antiparallel, the situation is just the opposite, that is, in a magnetic layer, the electrons in the majority spin subband will Enter the empty state of the minority spin subband in another magnetic layer, and the electrons in the minority spin subband will also enter the empty state of the majority spin subband in another magnetic layer, and the tunneling current in this state is relatively small. Therefore, the tunneling conductance changes with the change of the magnetization direction of the two ferromagnetic layers, and the conductance when the magnetization vectors are parallel is higher than that when the magnetization vectors are antiparallel.
  • the tunnel current of the current from the pinned layer through the oxide layer to the free layer is the largest, and a low resistance state is formed at this time ;
  • the magnetic domain direction of the pinned layer is opposite to that of the free layer.
  • it is difficult for the current to pass through the free layer showing a large tunnel magnetoresistance , forming a high-impedance state.
  • the magnetization directions of the two ferromagnetic layers can be changed by applying an external magnetic field, thereby changing the tunneling resistance and leading to the appearance of the TMR effect.
  • the magnetoresistive sensor is often designed as a Wheatstone bridge structure, as shown in Figure 2, the current wire and the sensor are separated by a certain thickness of insulating layer, and the current to be measured passes through a "U” or “S” Type wire, flowing through the surface of the resistance unit, generates a magnetic field in the opposite direction on the adjacent resistance unit, forming a Wheatstone full-bridge (Full Wheatstone Bridge) sensor.
  • a Wheatstone full-bridge Fel Wheatstone Bridge
  • each resistance unit can be a tunnel junction or a spin valve, or an array formed by connecting multiple tunnel junctions or spin valves in series and parallel.
  • the magnitude of the magnetic field generated by the current to be measured on the sensor is related to the thickness and width of the current wire and the distance between the current wire and the sensor.
  • the width of the resistance unit needs to be smaller than the width of the current wire.
  • the resistance unit is often composed of multiple tunnel junctions or spin valves connected in series and parallel, which makes the design of the current wire complicated.
  • the sensing direction of the magnetoresistive sensor is in its plane.
  • MRAM is gradually turning to MTJ with perpendicular magnetic anisotropy (Perpendicular Magnetic Anisotropy, PMA).
  • PMA Perpendicular Magnetic Anisotropy
  • FIG. 4 to FIG. 7 are specific embodiments of the current sensor 100 provided in the present application.
  • the current sensor 100 includes a detection line 1 and a sensing component 2, the detection line 1 is used to conduct with the circuit to be detected of the chip; the sensing component 2 includes a circuit formed on the chip A plurality of magnetoresistive memory cells 21, the magnetization direction of the pinned layer of each magnetoresistive memory cell 21 is set along its thickness direction, at least two magnetoresistive memory cells 21 in the plurality of magnetoresistive memory cells 21 are connected to form a half Bridge circuit; wherein, the detection circuit 1 includes a first detection circuit 11, and the first detection circuit 11 includes a first detection section 111 and a second detection section 111 respectively wound around the sides of the two magnetoresistive memory units 21.
  • the first detection section 111 generates a first induction magnetic field
  • the second detection section 112 generates a second induction magnetic field
  • the current flowing through the first detection section 111 and the second detection section 112 The helical direction of the set is opposite, so that the first induced magnetic field is opposite to the second induced magnetic field.
  • the current sensor 100 includes a detection line 1 for conducting with the circuit to be detected of the chip, and a sensing component 2 for measuring the current of the circuit to be detected, the sensing component 2 Including a plurality of magnetoresistive memory units 21 formed on the chip, the magnetization direction of the pinned layer of each magnetoresistive memory unit 21 is set along its thickness direction, at least two of the plurality of magnetoresistive memory units 21
  • the resistance storage unit 21 is connected to form a half-bridge circuit, wherein the detection circuit 1 includes a first detection circuit 11, and the first detection circuit 11 includes a first detection section 111 and a second detection section 112, which are respectively wound around the The first detection section 111 and the second detection section 112 on the two peripheral sides of the magnetoresistive memory unit 21 generate a first induction magnetic field in the first detection section 111 and generate a second induction magnetic field in the second detection section 112.
  • the magnetic field, the helical directions of the currents flowing through the first detection section 111 and the second detection section 112 are set in opposite directions, according to the right-hand rule, in the thickness direction of the two magnetoresistive memory units 21
  • Two induced magnetic fields with opposite directions will be generated respectively, and the magnetic field directions of the two induced magnetic fields are parallel to the magnetization direction of the pinned layer, and act on the magnetic fields of the free layers of the two magnetoresistive memory units 21, so that the two magnetic fields
  • the resistance value of the resistance memory unit 21 changes, so that when the magnetization direction of the pinned layer of the magnetoresistive memory unit 21 is set along its thickness direction, the original detection circuit can be used for current detection to solve the problem of the resistance of the sensor.
  • the unit is a magnetic tunnel junction with perpendicular magnetic anisotropy, the detection circuit of the existing current sensor 100 cannot detect through this type of resistive power supply.
  • the first detection section 111 and the second detection section 112 are arranged in series, and the current flow direction of the lines arranged in series is in the The direction on the first detection section 111 is consistent with the direction on the second detection section 112.
  • the detection circuit 1 also includes a connection The connection section between the first detection section 111 and the second detection section 112, the first detection section 111 and the second detection section 112 are separately arranged on both sides of the connection section, according to the right-hand rule, so When the current passes through the first detection section 111 and the second detection section 112, the direction of the magnetic field generated is opposite, so that one of the two magnetoresistive storage units 21 presents a high resistance state, and the other presents a low resistance state, which can generate TMR effect.
  • the sensing component 2 includes four magnetoresistive storage units 21, and the four magnetoresistive storage units 21 are connected to form a full bridge circuit , because the directions of the pinning layers utilizing two adjacent resistors in the Wheatstone full-bridge circuit are reversed, and the full-bridge structure can be regarded as two half-bridge structures
  • the detection circuit 1 includes two The first detection circuit 11 has two first detection sections 111 and two second detection sections 112 respectively wound around the sides of the four magnetoresistive memory units 21, and the two first detection sections 111 generates two first induction magnetic fields, and the two second detection sections 112 generate two second induction magnetic fields, which flow through the two first detection sections 111 and the two second detection sections 112
  • the spiral direction of the current is set in reverse, so that the two first induced magnetic fields are opposite to the two second induced magnetic fields, so that the directions of the induced magnetic fields generated by each adjacent two detection segments are opposite, so that the four The magnetoresistive memory cells 21
  • the two first detection sections 111 and the two second detection sections 112 are arranged in series.
  • the current helical directions of the two first detection sections 111 and the two second detection sections 112 are opposite, and the detection circuit 1 also includes a connection between the two first detection sections 111 and the two second detection sections 111 .
  • the connection section of the detection section 112, the two first detection sections 111 are arranged on one side of the connection section, and the two second detection sections 112 are arranged on the other side of the connection section, according to the right-hand rule , so that the currents flowing through every two adjacent detection segments are set in opposite directions.
  • each magnetoresistive memory unit 21 may be a magnetoresistance formed by a magnetic tunnel junction, or may be a magnetoresistance formed by a plurality of magnetic tunnel junctions.
  • each The magnetoresistive memory unit 21 includes a plurality of magnetic tunnel junctions connected in series, of course, a plurality of magnetic tunnel junctions connected in parallel can also be selected in series or in parallel according to requirements such as range, accuracy or wiring.
  • the radius of the loop current line and the distance between it and the magnetic tunnel junction can be further reduced, and the magnetic field generated by the current to be measured will also be further increased, which improves the sensitivity of the current sensor 100 , to achieve current detection as small as microampere or even nanoampere
  • the top electrodes of the magnetoresistors and the detection lines 1 are prepared by photolithography and evaporation. Because of the bottom electrode layer (Bottom Conducting Layer) and the top electrode layer (Top Conducting Layer) are in direct electrical contact with the associated antiferromagnetic layer and free layer.
  • the electrode layer is usually made of non-magnetic conductive material, which can carry current into the ohmmeter, which is suitable for the known current passing through the entire tunnel junction, and measures the current (or voltage).
  • the tunnel barrier layer provides most of the resistance of the device, around 1000 ohms, while all conductors have a resistance of around 10 ohms.
  • the bottom electrode layer is located above the insulating substrate (Insulating Layer), and the insulating substrate is wider than the bottom electrode layer, and located above the bottom substrate (Body Substrate) made of other materials.
  • the base substrate material is usually silicon, quartz, Pyrex, GaAs, AlTiC or any other material that can be integrated on a wafer. Silicon is the best choice due to its ease of processing into integrated circuits.
  • the top electrode of the magnetic tunnel junction and the detection circuit 1 are arranged on the same plane, so the current wire and the top electrode of the tunnel junction can be directly integrated in the same layout of the layout without using an insulating layer. layer, which simplifies the process steps, and at the same time reduces the distance between the current wire and the unit to be measured, and the magnetic field to be measured on the sensing unit is improved compared with the existing scheme.
  • the present application also provides an electronic device, which includes the current sensor 100.
  • the current sensor 100 For the specific structure of the current sensor 100, refer to the above-mentioned embodiments. Since this electronic device adopts all the technical solutions of all the above-mentioned embodiments, it has at least the above-mentioned All the beneficial effects brought by all the technical solutions of all the embodiments will not be repeated here.
  • the current sensor 100 In addition to being used as a built-in current sensor 100 to detect weak currents, it can also be used to detect large currents by adjusting parameters such as the width, radius, and distance from the sensing unit of the current wire, and can be used to detect currents in power grids or new energy vehicle batteries, etc. .
  • the present application also provides a detection device, which includes the current sensor 100.
  • a detection device which includes the current sensor 100.
  • the current sensor 100 For the specific structure of the current sensor 100, refer to the above-mentioned embodiments. Since this detection device adopts all the technical solutions of all the above-mentioned embodiments, it has at least the above-mentioned All the beneficial effects brought by all the technical solutions of all the embodiments will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本申请公开一种电流传感器(100)、电子设备和检测装置,电流传感器(100)包括检测线路(1)和传感组件(2),传感组件(2)包括形成于芯片上的多个磁阻存储单元(21),各磁阻存储单元(21)的钉扎层的磁化方向沿其厚度方向设置,多个磁阻存储单元(21)中的至少两个磁阻存储单元(21)连接形成半桥电路,检测线路(1)包括第一检测段(111)和第二检测段(112)。

Description

电流传感器、电子设备和检测装置
本申请要求于2021年12月31日申请的、申请号为202111681559.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子领域,尤其涉及电流传感器、电子设备和检测装置。
背景技术
在内置电流传感器BICS中,待测电流在传感器上产生的磁场大小与电流导线的厚度、宽度和电流导线与传感器的距离有关。一般来说,电流导线宽度越小、与传感器的距离越近,产生的磁场就越大,而且为了产生均匀的待测磁场,需要电阻单元的宽度小于电流线宽度。而在磁阻传感器中,考虑到需要降低噪声水平、优化线性度等因素,其电阻单元常采用多个隧道结或自旋阀串并联而成,使得电流导线的设计变得复杂。在上述内置电流传感器中,磁阻传感器的感应方向在其平面内。为了进一步增大感应灵敏度,需要设计相应的环形电流导线或磁通聚集器结构等,也会使得微纳加工难度提高。
此外,随着人们对存储密度和可靠性要求的提高,磁随机存储器正逐渐转向使用具有垂直磁各向异性(Perpendicular Magnetic Anisotropy,PMA)的MTJ。在这类MTJ中,自由层的磁矩取向为垂直于薄膜平面。此时若继续用MTJ检测电路,上述只能产生面内磁场的电流导线结构就不再适用了。
技术问题
本申请的主要目的是提出一种电流传感器、电子设备和检测装置,旨在解决在传感器的电阻单元是具有垂直磁各向异性的磁隧道结时,现有的电流传感器的检测电路不能通过该类电阻电源进行检测的问题。
技术解决方案
为实现上述目的,本申请提出一种电流传感器,其中所述电流传感器包括:
检测线路,用于与芯片的待检测的电路导通;以及,
传感组件,所述传感组件包括形成于所述芯片上的多个磁阻存储单元,各磁阻存储单元的钉扎层的磁化方向沿其厚度方向设置,多个所述磁阻存储单元中的至少两个磁阻存储单元连接形成半桥电路;
其中,所述检测线路包括第一检测线路,所述第一检测线路包括分别绕设于两个所述磁阻存储单元周侧的第一检测段和第二检测段,所述第一检测段产生第一感应磁场,所述第二检测段产生第二感应磁场,流经所述第一检测段和流经所述第二检测段的电流的螺旋方向呈反向设置,以使得所述第一感应磁场与所述第二感应磁场相反。
在一实施例中,所述第一检测段与所述第二检测段串联设置,所述检测线路还包括连通所述第一检测段与所述第二检测段的连接段,所述第一检测段和所述第二检测段分设于所述连接段的两侧。
在一实施例中,所述传感组件包括四个磁阻存储单元,四个所述磁阻存储单元连接形成全桥电路;
所述检测线路包括两个所述第一检测线路,以具有绕设于四个所述磁阻存储单元周侧的两个第一检测段和两个第二检测段,两个所述第一检测段产生两个第一感应磁场,两个所述第二检测段产生两个第二感应磁场,流经两个所述第一检测段与流经两个所述第二检测段的电流的螺旋方向呈反向设置,以使得两个所述第一感应磁场与两个所述第二感应磁场相反。
在一实施例中,两个所述第一检测段与两个所述第二检测段串联设置,所述检测线路还包括连通两个所述第一检测段与两个所述第二检测段的连接段,两个所述第一检测段设于所述连接段的一侧,两个所述第二检测段设于所述连接段的另一侧。
在一实施例中,各所述磁阻存储单元包括相串联的多个磁隧道结。
在一实施例中,各所述磁阻存储单元包括相并联的多个磁隧道结。
在一实施例中,各所述磁阻的顶电极与所述检测线路通过光刻和蒸镀制备。
在一实施例中,所述磁隧道结的顶电极与所述检测线路设置于同一平面。
本申请还提供一种电子设备,所述电子设备包括上述的电流传感器,所述电流传感器包括:
检测线路,用于与芯片的待检测的电路导通;以及,
传感组件,所述传感组件包括形成于所述芯片上的多个磁阻存储单元,各磁阻存储单元的钉扎层的磁化方向沿其厚度方向设置,多个所述磁阻存储单元中的至少两个磁阻存储单元连接形成半桥电路;
其中,所述检测线路包括第一检测线路,所述第一检测线路包括分别绕设于两个所述磁阻存储单元周侧的第一检测段和第二检测段,所述第一检测段产生第一感应磁场,所述第二检测段产生第二感应磁场,流经所述第一检测段和流经所述第二检测段的电流的螺旋方向呈反向设置,以使得所述第一感应磁场与所述第二感应磁场相反。
本申请还提供一种检测装置,所述检测装置包括上述的电流传感器,所述电流传感器包括:
检测线路,用于与芯片的待检测的电路导通;以及,
传感组件,所述传感组件包括形成于所述芯片上的多个磁阻存储单元,各磁阻存储单元的钉扎层的磁化方向沿其厚度方向设置,多个所述磁阻存储单元中的至少两个磁阻存储单元连接形成半桥电路;
其中,所述检测线路包括第一检测线路,所述第一检测线路包括分别绕设于两个所述磁阻存储单元周侧的第一检测段和第二检测段,所述第一检测段产生第一感应磁场,所述第二检测段产生第二感应磁场,流经所述第一检测段和流经所述第二检测段的电流的螺旋方向呈反向设置,以使得所述第一感应磁场与所述第二感应磁场相反。
有益效果
本申请提供的技术方案中,电流传感器包括用于与芯片的待检测的电路导通的检测线路、以及用于测量所述待检测电路电流的传感组件,所述传感组件包括形成于所述芯片上的多个磁阻存储单元,各磁阻存储单元的钉扎层的磁化方向沿其厚度方向设置,多个所述磁阻存储单元中的至少两个磁阻存储单元连接形成半桥电路,其中,所述检测线路包括第一检测线路,所述第一检测线路包括第一检测段和第二检测段,通过设置分别绕设于两个所述磁阻存储单元周侧的第一检测段和第二检测段,在所述第一检测段产生第一感应磁场,在所述第二检测段产生第二感应磁场,流经所述第一检测段和流经所述第二检测段的电流的螺旋方向呈反向设置,根据右手定则,在两个所述磁阻存储单元的厚度方向上会分别产生方向相反的两个感应磁场,两个感应磁场平行于钉扎层磁化方向,且对两个所述磁阻存储单元的自由层的磁场作用,使得两个所述磁阻存储单元的阻值发生变化,可以实现在磁阻存储单元的钉扎层的磁化方向沿其厚度方向设置的时候,可以利用原有的检测电路进行电流检测,以解决在传感器的电阻单元是具有垂直磁各向异性的磁隧道结时,现有的电流传感器的检测电路不能通过该类电阻电源进行检测的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为现有磁阻传感器的原理示意图;
图2为磁阻传感器的惠斯通电桥结构示意图;
图3为磁隧道结基本结构及磁性层磁化方向示意图;
图4为本申请提供的电流传感器一实施例的立体示意图;
图5为本申请提供的电流传感器另一实施例的立体示意图;
图6为图4中的磁阻存储单元上的电流导线结构一实施例示意图;
图7为图4中的磁阻存储单元上的电流导线结构另一实施例示意图。
附图标号说明:
标号 名称 标号 名称
100 电流传感器 112 第二检测段
1 检测线路 2 传感组件
11 第一检测线路 21 磁阻存储单元
111 第一检测段    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
电流检测是芯片可靠性测试中非常重要的环节,例如IDDQ静态电流测试通过检测静态漏电流或其变化量是否有较明显变化来判定电路中是否有桥接、开短路等物理缺陷;IDDT瞬态电流测试通过观察被测电路所吸取的瞬间动态电流来检测故障的方法,可以检测出电压测试和IDDQ测试不能检测的电路故障,如冗余故障、时延故障等。电流检测有片内和片外两种方式。片内测试使用内建自测技术(Built-In-Self-Test,BIST),在被测电路(Circuit Under Test,CUT)和电源之间集成内置电流传感器(Built-In-Current-Sensor,,BICS),对流过被测电路的电流进行处理分析,便能得出被测电路的缺陷信息。片外测试则是将相应的电流检测模板放在CUT旁进行测试。但是片外测试的速度低、分辨率低,测试设备的延迟和探头的尺寸也会影响测试效果,因此片内测试是更高效、可靠的方法。
在各类内置电流传感器BICS中,基于巨磁阻(Giant Magnetoresistance,GMR)或隧穿磁阻效应(Tunneling Magnetoresistance,TMR)的电流传感器得益于高灵敏度、小体积、低功耗和兼容互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor Transistor,CMOS)技术等优点,极具应用价值。这类磁阻传感器通过测量电流产生的磁场来检测电流大小。特别是在非易失性磁随机存储器(Magnetic Random Access Memory,MRAM)的应用中,磁隧道结(Magnetic Tunnel Junction,MTJ)既是存储单元,用来存储“0”或“1”的信息,又可以作为电流传感单元实现电流检测。
请参阅图1,因磁阻传感器的核心结构是两个铁磁层和一个间隔层构成的“三明治”结构,其中一个铁磁层称为自由层,其磁矩方向可在外磁场作用下自由转动;另一个铁磁层称为参考层(钉扎层),其磁矩方向一般被相邻的反铁磁层或合成反铁磁结构钉扎住,在一定磁场范围内保持不动。在TMR传感器中,间隔层是由MgO或Al2O3等构成的绝缘隧穿层,其基本单元称为磁隧道结。在GMR传感器中,间隔层使用Cu、Ag等重金属材料,其基本单元称为自旋阀(Spin Valve,SV)。如图所示的箭头分别代表被钉扎层和自由层的磁矩方向。被钉扎层的磁矩在一定大小的磁场作用下是相对固定的,自由层的磁矩相对于被钉扎层的磁矩是相对自由且可旋转的,随外场的变化而发生翻转。因钉扎层磁畴的方向比较难以改变,而自由层一般自由层的矫顽力较小,在外加磁场的作用下容易发生方向翻转。整个结构的电阻值随着自由层与参考层磁化方向夹角的变化而变化。若两层磁化方向互相平行,则在一个磁性层中,多数自旋子带的电子将进入另一磁性层中多数自旋子带的空态,少数自旋子带的电子也将进入另一磁性层中少数自旋子带的空态,总的隧穿电流较大;若两磁性层的磁化方向反平行,情况则刚好相反,即在一个磁性层中,多数自旋子带的电子将进入另一磁性层中少数自旋子带的空态,而少数自旋子带的电子也将进入另一磁性层中多数自旋子带的空态,这种状态的隧穿电流比较小。因此,隧穿电导随着两铁磁层磁化方向的改变而变化,磁化矢量平行时的电导高于反平行时的电导。当钉扎层的磁畴方向以外磁场方向一致时,由于自由层的磁畴方向以外磁场一致,此时电流从钉扎层通过氧化层再到自由层的隧道电流最大,此时形成低阻态;当钉扎层的磁畴方向以外磁场方向不一致时,钉扎层的磁畴方向与自由层的磁畴方向相反,此时电流通过就很难通过自由层,展现出很大的隧道磁电阻,此时形成高阻态。通过施加外磁场可以改变两铁磁层的磁化方向,从而使得隧穿电阻发生变化,导致TMR效应的出现。
为了提高温度稳定性,常将磁阻传感器设计成惠斯通电桥结构,如图2所示,电流导线与传感器之间相隔一定厚度的绝缘层,待测电流通过“U”型或“S”型导线,流过电阻单元的表面,在相邻的电阻单元上产生相反方向的磁场,构成惠斯通全桥式(Full Wheatstone Bridge)传感器。例如,根据“右手定则”,电阻R1和R2检测的磁场方向是相反的。电桥中,每个电阻单元可以是一个隧道结或自旋阀,也可以是多个隧道结或自旋阀通过串并联形成的阵列。
在上述内置电流传感器BICS中,待测电流在传感器上产生的磁场大小与电流导线的厚度、宽度和电流导线与传感器的距离有关。一般来说,电流导线宽度越小、与传感器的距离越近,产生的磁场就越大,而且为了产生均匀的待测磁场,需要电阻单元的宽度小于电流线宽度。而在磁阻传感器中,考虑到需要降低噪声水平、优化线性度等因素,其电阻单元常采用多个隧道结或自旋阀串并联而成,使得电流导线的设计变得复杂。在上述内置电流传感器中,磁阻传感器的感应方向在其平面内。为了进一步增大感应灵敏度,需要设计相应的环形电流导线或磁通聚集器结构等,也会使得微纳加工难度提高。
随着人们对存储密度和可靠性要求的提高,磁随机存储器正逐渐转向使用具有垂直磁各向异性(Perpendicular Magnetic Anisotropy,PMA)的MTJ。请参阅图3,在这类MTJ中,钉扎层与自由层的磁矩取向为垂直于薄膜平面。此时若继续用MTJ检测电流,上述只能产生面内磁场的电流导线结构就不再适用了。
为了解决上述问题,本申请提供一种电流传感器100,图4至图7为本申请提供的电流传感器100的具体实施例。
请参阅图4,所述电流传感器100包括检测线路1和传感组件2,所述检测线路1用于与芯片的待检测的电路导通;所述传感组件2包括形成于所述芯片上的多个磁阻存储单元21,各磁阻存储单元21的钉扎层的磁化方向沿其厚度方向设置,多个所述磁阻存储单元21中的至少两个磁阻存储单元21连接形成半桥电路;其中,所述检测线路1包括第一检测线路11,所述第一检测线路11包括分别绕设于两个所述磁阻存储单元21周侧的第一检测段111和第二检测段112,所述第一检测段111产生第一感应磁场,所述第二检测段112产生第二感应磁场,流经所述第一检测段111和流经所述第二检测段112的电流的螺旋方向呈反向设置,以使得所述第一感应磁场与所述第二感应磁场相反。
本申请提供的技术方案中,电流传感器100包括用于与芯片的待检测的电路导通的检测线路1、以及用于测量所述待检测电路电流的传感组件2,所述传感组件2包括形成于所述芯片上的多个磁阻存储单元21,各磁阻存储单元21的钉扎层的磁化方向沿其厚度方向设置,多个所述磁阻存储单元21中的至少两个磁阻存储单元21连接形成半桥电路,其中,所述检测线路1包括第一检测线路11,所述第一检测线路11包括第一检测段111和第二检测段112,通过设置分别绕设于两个所述磁阻存储单元21周侧的第一检测段111和第二检测段112,在所述第一检测段111产生第一感应磁场,在所述第二检测段112产生第二感应磁场,流经所述第一检测段111和流经所述第二检测段112的电流的螺旋方向呈反向设置,根据右手定则,在两个所述磁阻存储单元21的厚度方向上会分别产生方向相反的两个感应磁场,两个感应磁场的磁场方向平行于钉扎层磁化方向,且对两个所述磁阻存储单元21的自由层的磁场作用,使得两个所述磁阻存储单元21的阻值发生变化,可以实现在磁阻存储单元21的钉扎层的磁化方向沿其厚度方向设置的时候,可以利用原有的检测电路进行电流检测,以解决在传感器的电阻单元是具有垂直磁各向异性的磁隧道结时,现有的电流传感器100的检测电路不能通过该类电阻电源进行检测的问题。
具体地,为了简化线路的布线,请参阅图4,在本实施例中,所述第一检测段111与所述第二检测段112串联设置,而串联设置的线路的电流流向方向在所述第一检测段111与所述第二检测段112上的方向一致,为了使所述第一检测段111与所述第二检测段112的电流螺旋方向反向,所述检测线路1还包括连通所述第一检测段111与所述第二检测段112的连接段,所述第一检测段111和所述第二检测段112分设于所述连接段的两侧,根据右手定则,这样使得电流经过所述第一检测段111与所述第二检测段112时,产生的磁场方向相反,从而使得两个磁阻存储单元21一个呈现高阻态,另一个呈现低阻态,可以产生TMR效应。
进一步,为了提升所述电流传感器100的精度和灵敏度,在另一实施例中,所述传感组件2包括四个磁阻存储单元21,四个所述磁阻存储单元21连接形成全桥电路,因利用惠斯通全桥电路中的两个相邻的电阻的钉扎层的方向呈反向设置,并且全桥结构可以看成是两个半桥结构,所述检测线路1包括两个所述第一检测线路11,以具有分别绕设于四个所述磁阻存储单元21周侧的两个第一检测段111和两个第二检测段112,两个所述第一检测段111产生两个第一感应磁场,两个所述第二检测段112产生两个第二感应磁场,流经两个所述第一检测段111与流经两个所述第二检测段112的电流的螺旋方向呈反向设置,以使得两个所述第一感应磁场与两个所述第二感应磁场相反,这样使得每相邻的两个检测段产生的感应磁场的方向相反,使得四个所述磁阻存储单元21形成两个高阻态和两个低阻态电阻。
具体地,同样的为了简化线路的布线,请参阅图5,在本实施例中,两个所述第一检测段111与两个所述第二检测段112串联设置,同样的为了使流经两个所述第一检测段111与两个所述第二检测段112的电流螺旋方向反向,所述检测线路1还包括连通两个所述第一检测段111与两个所述第二检测段112的连接段,两个所述第一检测段111设于所述连接段的一侧,两个所述第二检测段112设于所述连接段的另一侧,根据右手定则,以使得流经每相邻的两个检测段的电流都呈反向设置。
进一步,各所述磁阻存储单元21可以是一个磁隧道结形成的磁阻,也可以是多个磁隧道结形成的磁阻,在本实施例中,请参阅图6和图7,各所述磁阻存储单元21包括相串联的多个磁隧道结,当然也可以是相并联的多个磁隧道结,可以根据量程,精准度或是布线等需求来选择串联或是并联。进一步地,随着磁隧道结的尺寸微缩,环形电流线的半径以及其与磁隧道结的距离也可进一步缩小,待测电流所产生的磁场也将进一步增大,提升了电流传感器100的灵敏度,实现小至微安培甚至纳安培的电流检测
具体地,在本实施例中,各所述磁阻的顶电极与所述检测线路1通过光刻和蒸镀制备。因底电极层(Bottom Conducting Layer)和顶电极层(Top Conducting Layer)直接与相关的反铁磁层和自由层电接触。电极层通常采用非磁性导电材料,能够携带电流输入欧姆计,欧姆计适用于已知的穿过整个隧道结的电流,并对电流(或电压)进行测量。通常情况下,隧道势垒层提供了器件的大多数电阻,约为1000欧姆,而所有导体的阻值约为10欧姆。底电极层位于绝缘基片(Insulating Layer)上方,绝缘基片要比底电极层要宽,且位于其他材料构成的底基片(Body Substrate)的上方。底基片的材料通常是硅、石英、耐热玻璃、GaAs、AlTiC或者是能够于晶圆集成的任何其他材料。硅由于其易于加工为集成电路成为最好的选择。
具体地,所述磁隧道结的顶电极与所述检测线路1设置于同一平面,因此在微纳加工时,可以不使用绝缘层,直接将电流导线与隧道结的顶电极集成在版图的同一层,简化了工艺步骤,同时减小了电流导线与待测单元的间距,传感单元上的待测磁场相对于现有方案得到提升。
本申请还提供一种电子设备,该电子设备包括所述电流传感器100,该电流传感器100的具体结构参照上述实施例,由于本电子设备采用了上述所有实施例的全部技术方案,因此至少具有上述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。
除了用作芯片内置电流传感器100来检测微弱电流,还可以通过调节电流导线的宽度、半径、与传感单元的距离等参数,实现大电流检测,用作电网或新能源汽车电池电流的检测等。
本申请还提供一种检测装置,该检测装置包括所述电流传感器100,该电流传感器100的具体结构参照上述实施例,由于本检测装置采用了上述所有实施例的全部技术方案,因此至少具有上述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种电流传感器,其中,包括:
    检测线路,用于与芯片的待检测的电路导通;以及,
    传感组件,所述传感组件包括形成于所述芯片上的多个磁阻存储单元,各磁阻存储单元的钉扎层的磁化方向沿其厚度方向设置,多个所述磁阻存储单元中的至少两个磁阻存储单元连接形成半桥电路;
    其中,所述检测线路包括第一检测线路,所述第一检测线路包括分别绕设于两个所述磁阻存储单元周侧的第一检测段和第二检测段,所述第一检测段产生第一感应磁场,所述第二检测段产生第二感应磁场,流经所述第一检测段和流经所述第二检测段的电流的螺旋方向呈反向设置,以使得所述第一感应磁场与所述第二感应磁场相反。
  2. 如权利要求1所述的电流传感器,其中,所述第一检测段与所述第二检测段串联设置,所述检测线路还包括连通所述第一检测段与所述第二检测段的连接段,所述第一检测段和所述第二检测段分设于所述连接段的两侧。
  3. 如权利要求1所述的电流传感器,其中,所述传感组件包括四个磁阻存储单元,四个所述磁阻存储单元连接形成全桥电路;
    所述检测线路包括两个所述第一检测线路,以具有分别绕设于四个所述磁阻存储单元周侧的两个第一检测段和两个第二检测段,两个所述第一检测段产生两个第一感应磁场,两个所述第二检测段产生两个第二感应磁场,流经两个所述第一检测段与流经两个所述第二检测段的电流的螺旋方向呈反向设置,以使得两个所述第一感应磁场与两个所述第二感应磁场相反。
  4. 如权利要求3所述的电流传感器,其中,两个所述第一检测段与两个所述第二检测段串联设置,所述检测线路还包括连通两个所述第一检测段与两个所述第二检测段的连接段,两个所述第一检测段设于所述连接段的一侧,两个所述第二检测段设于所述连接段的另一侧。
  5. 如权利要求1所述的电流传感器,其中,各所述磁阻存储单元包括相串联的多个磁隧道结。
  6. 如权利要求1所述的电流传感器,其中,各所述磁阻存储单元包括相并联的多个磁隧道结。
  7. 如权利要求1所述的电流传感器,其中,各所述磁阻的顶电极与所述检测线路通过光刻和蒸镀制备。
  8. 如权利要求7所述的电流传感器,其中,所述磁隧道结的顶电极与所述检测线路设置于同一平面。
  9. 一种电子设备,其中,包括如权利要求1至8中任意一项所述的电流传感器。
  10. 一种检测装置,其中,包括如权利要求1至8中任意一项所述的电流传感器。
PCT/CN2022/136364 2021-12-31 2022-12-02 电流传感器、电子设备和检测装置 WO2023124784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111681559.1A CN114509593A (zh) 2021-12-31 2021-12-31 电流传感器、电子设备和检测装置
CN202111681559.1 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124784A1 true WO2023124784A1 (zh) 2023-07-06

Family

ID=81548279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136364 WO2023124784A1 (zh) 2021-12-31 2022-12-02 电流传感器、电子设备和检测装置

Country Status (2)

Country Link
CN (1) CN114509593A (zh)
WO (1) WO2023124784A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509593A (zh) * 2021-12-31 2022-05-17 歌尔微电子股份有限公司 电流传感器、电子设备和检测装置
CN116953336B (zh) * 2023-09-21 2024-01-19 北京智芯微电子科技有限公司 电流传感器芯片、制作方法和电路
CN117405958B (zh) * 2023-12-14 2024-02-13 江苏多维科技有限公司 电流传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226836A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法
CN102419393A (zh) * 2011-12-30 2012-04-18 江苏多维科技有限公司 一种电流传感器
CN102590768A (zh) * 2012-03-14 2012-07-18 江苏多维科技有限公司 一种磁电阻磁场梯度传感器
US20190219616A1 (en) * 2018-01-12 2019-07-18 Allegro Microsystems, Llc Current Sensor Using Modulation of or Change of Sensitivity of Magnetoresistance Elements
CN111596239A (zh) * 2020-06-15 2020-08-28 北京航空航天大学 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法
CN114509593A (zh) * 2021-12-31 2022-05-17 歌尔微电子股份有限公司 电流传感器、电子设备和检测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910004261B1 (ko) * 1987-04-09 1991-06-25 후지쓰 가부시끼가이샤 자전 변환 소자를 이용한 검지기
JP4286686B2 (ja) * 2004-03-05 2009-07-01 内橋エステック株式会社 電線の導体欠陥検知用センサ
TWI300224B (en) * 2006-02-21 2008-08-21 Ind Tech Res Inst Structure of magnetic memory cell and magnetic memory device
JP4853807B2 (ja) * 2007-02-21 2012-01-11 甲神電機株式会社 電流検知デバイス
CN102812367B (zh) * 2010-03-12 2014-10-29 阿尔卑斯绿色器件株式会社 电流测定装置
CN107228898A (zh) * 2017-07-31 2017-10-03 广东工业大学 焊接缺陷检测装置
CN108387852A (zh) * 2018-04-23 2018-08-10 北京航空航天大学青岛研究院 单、双轴磁场传感器及其制备方法
CN112305469B (zh) * 2019-07-29 2022-04-29 甘肃省科学院传感技术研究所 具有集成式退火结构的巨磁阻传感器
CN111044953A (zh) * 2020-01-06 2020-04-21 珠海多创科技有限公司 单一芯片全桥tmr磁场传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226836A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法
CN102419393A (zh) * 2011-12-30 2012-04-18 江苏多维科技有限公司 一种电流传感器
CN102590768A (zh) * 2012-03-14 2012-07-18 江苏多维科技有限公司 一种磁电阻磁场梯度传感器
US20190219616A1 (en) * 2018-01-12 2019-07-18 Allegro Microsystems, Llc Current Sensor Using Modulation of or Change of Sensitivity of Magnetoresistance Elements
CN111596239A (zh) * 2020-06-15 2020-08-28 北京航空航天大学 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法
CN114509593A (zh) * 2021-12-31 2022-05-17 歌尔微电子股份有限公司 电流传感器、电子设备和检测装置

Also Published As

Publication number Publication date
CN114509593A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023124784A1 (zh) 电流传感器、电子设备和检测装置
Tondra et al. Picotesla field sensor design using spin-dependent tunneling devices
US7619431B2 (en) High sensitivity magnetic built-in current sensor
JP3017061B2 (ja) ブリッジ回路磁界センサー
EP2040089B1 (en) A magnetic tunnel junction (MTJ) based magnetic field angle sensor
JP3818276B2 (ja) スピン注入素子及びそれを用いた磁気装置
US8243503B2 (en) Magnetic storage element responsive to spin polarized current
US20040125649A1 (en) MRAM and methods for reading the MRAM
US20050280960A1 (en) Magnetic random access memory array with coupled soft adjacent magnetic layer
JP4660529B2 (ja) 二重接合磁気メモリデバイスの読み出し方法および二重接合磁気メモリデバイスへの書き込み方法
CN112082579B (zh) 宽量程隧道磁电阻传感器及惠斯通半桥
Wu et al. Electrical modeling of STT-MRAM defects
JP2014515470A (ja) シングルチップ2軸ブリッジ型磁界センサ
TW200306431A (en) A magnetic field detection sensor
CN109507617A (zh) 基于自旋轨道耦合的矢量探测器及未知磁场的探测方法
US11531071B2 (en) Magnetic field detection device
WO2005119688A1 (en) Sense amplifying magnetic tunnel device
WO2005064357A2 (en) Flux guides for magnetic field sensors and memories
US20030057461A1 (en) Magneto-resistive device including soft synthetic ferrimagnet reference layer
US7312506B2 (en) Memory cell structure
CN1591673B (zh) 磁隧道结及包括它的存储器件
CN114839418A (zh) 传感器、电子设备和检测装置
JP6116694B2 (ja) 磁気抵抗効果素子を備えた磁界検出器、および電流検出器
CN114487545A (zh) 电流传感器、电子设备及检测装置
CN116801706A (zh) 抗磁场干扰的自旋轨道磁性随机存储器及信息存储方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914039

Country of ref document: EP

Kind code of ref document: A1