WO2023124653A1 - 一种发送数据的方法、射频装置和控制装置 - Google Patents

一种发送数据的方法、射频装置和控制装置 Download PDF

Info

Publication number
WO2023124653A1
WO2023124653A1 PCT/CN2022/133408 CN2022133408W WO2023124653A1 WO 2023124653 A1 WO2023124653 A1 WO 2023124653A1 CN 2022133408 W CN2022133408 W CN 2022133408W WO 2023124653 A1 WO2023124653 A1 WO 2023124653A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
information
radio frequency
control device
total power
Prior art date
Application number
PCT/CN2022/133408
Other languages
English (en)
French (fr)
Inventor
梅景泉
李海波
范闻达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124653A1 publication Critical patent/WO2023124653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a method for sending data, a radio frequency device and a control device.
  • NR and LTE can share a spectrum resource.
  • NR and LTE can report their respective channel configuration information to the resource allocation node, and the resource allocation node can perform resource block (resource block, RB) and power configuration according to the channel configuration information of the two standards.
  • the baseband processing unit corresponding to NR and the baseband processing unit corresponding to LTE may independently schedule the configured RBs and power.
  • the two systems need to send data according to the configured fixed transmission power, and power cannot be increased. If two systems or one of them has power boosted, since the baseband processing units of the two systems cannot sense each other whether the power has been boosted, the total power of the two systems may exceed the power usage range and affect the hardware. operation and overall performance.
  • the present application provides a method for sending data, a radio frequency device and a control device, so as to improve the flexibility of a system for sending data.
  • a method for sending data may be executed by a radio frequency device or a chip in the radio frequency device, and the method includes: the radio frequency device obtains transmission power, and the transmission power is based on the first power boost information and the second power Determined by the increase information, the first power increase information is used to indicate the first power increase range corresponding to the first system in time units, and the second power increase information is used to indicate the second power increase range corresponding to the second system in time units; The device sends the data corresponding to the time unit according to the transmission power; wherein, the first standard and the second standard are different baseband working standards.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmission power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission efficiency of the system. flexibility.
  • the radio frequency device acquires the transmit power, including: the radio frequency device receives first power up information from the first control device; the radio frequency device receives the second power up information from the second control device; Power up information: the radio frequency device determines the transmission power according to the total power information, the total power information is determined according to the first power up range and the second power up range, the total power information is used to determine the total power spectrum, and the total power spectrum is used to represent time Correspondence between frequency and power in the unit.
  • the first control device and the second control device can respectively send their own power increase information to the radio frequency device, and the radio frequency device will summarize the two power increase information after receiving them, and then can summarize them according to the two standards
  • the final total power information and its own transmission capability determine the final transmission power of the transmitted data, so that the power can also be increased in the scenario where the two systems share power, and the flexibility of the system to transmit data is improved.
  • the radio frequency device acquires transmission power, including: the radio frequency device receives total power information from the first control device; or, the radio frequency device receives total power information from the second control device information; the radio frequency device determines the transmission power according to the total power information; wherein, the total power information is determined according to the first power increase range and the second power increase range.
  • the first control device or the second control device can combine the first power up information and the second power up information to generate total power information, and send the total power information to the radio frequency device, and then the radio frequency device according to the two
  • the total power information summarized by the standard and its own transmission capability determine the final transmission power of the transmitted data, so that the power can also be increased in the scenario where the two standards share power, and the flexibility of the system to transmit data is improved.
  • the radio frequency device determines the transmission power according to the total power information, including: when the total power of the total power spectrum is greater than or equal to the first threshold, and the spectral density of the total power spectrum is greater than or equal to When it is equal to the second threshold, the radio frequency device determines the transmission power by performing clipping processing on the total power spectrum, the total power spectrum is determined according to the total power information, and the total power spectrum is used to represent the corresponding relationship between frequency and power in a time unit.
  • the radio frequency device can determine whether to perform clipping processing according to the total power spectrum, so as to improve the reliability of the data sent by the system.
  • the acquiring transmit power by the radio frequency device includes: the radio frequency device receives transmit power from the first control device; or, the radio frequency device receives transmit power from the second control device.
  • the first control device or the second control device can obtain the capability information of the radio frequency device to transmit data, generate the total power information by itself according to the first power boost information and the second power boost information, and determine the total power according to the total power information
  • the transmission power of the radio frequency device to send data can also be increased in the scenario where two systems share power, and the flexibility of the system to send data can be improved.
  • the time unit is a symbol.
  • the radio frequency device can obtain the transmit power at the symbol granularity, which improves the flexibility of the system for sending data.
  • a method for sending data may be executed by a control device or a chip in the control device, wherein the control device may include a first control device and a second control device, the method includes: the first control The device sends the first power increase information to the radio frequency device, the first power increase information is used to indicate the first power increase range corresponding to the first standard in time units, the first power increase range and the second power corresponding to the second system in time units
  • the lift range is used to determine the total power information
  • the total power information is used to determine the transmission power
  • the transmission power is used to send data corresponding to the time unit, wherein the first system and the second system are different baseband working systems.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmission power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission efficiency of the system. flexibility.
  • the method further includes: the second control device sends second power increase information to the radio frequency device, and the second power increase information is used to indicate the second power increase range.
  • the time unit is a symbol.
  • a method for sending data may be executed by a control device or a chip in the control device, wherein the control device may include a first control device, and the method includes: the first control device receives data from the first control device The second power increase information of the second control device, the second power increase information is used to indicate the second power increase range corresponding to the second system in time units; the first control device corresponds to the first power increase range in time units according to the first system Determine the total power information with the second power increase range, the total power information is used to determine the transmission power, and the transmission power is used to send data corresponding to the time unit; the first control device sends the total power information to the radio frequency device; wherein, the first system and the second The two standards are different baseband working standards.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmission power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission efficiency of the system. flexibility.
  • the time unit is a symbol.
  • a method for sending data may be executed by a radio frequency device and a control device or a chip in the radio frequency device and a chip in the control device, wherein the control device includes a first control device and a second control device device, the method includes: the first control device sends the first power increase information to the radio frequency device, and the first power increase information is used to indicate the first power increase range corresponding to the first standard in a time unit; the second control device sends to the radio frequency device The second power increase information, the second power increase information is used to indicate the second power increase range corresponding to the second standard in the time unit; the radio frequency device determines the transmission power according to the first power increase information and the second power increase information; the radio frequency device determines the transmit power according to the transmission The data corresponding to the power transmission time unit; wherein, the first system and the second system are different baseband working systems.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmission power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission efficiency of the system. flexibility.
  • the radio frequency device determines the transmission power according to the first power up information and the second power up information, including: the radio frequency device determines the transmission power according to the total power information, and the total power information is Determined according to the first power increase range and the second power increase range, the total power information is used to determine the total power spectrum, and the total power spectrum is used to represent the corresponding relationship between frequency and power in a time unit; when the total power of the total power spectrum is greater than or is equal to the first threshold and the spectral density of the total power spectrum is greater than or equal to the second threshold, the radio frequency device determines the transmission power by performing clipping processing on the total power spectrum.
  • the time unit is a symbol.
  • a method for sending data may be executed by a radio frequency device and a control device or a chip in the radio frequency device and a chip in the control device, wherein the control device includes a first control device and a second control device device, the method includes: the second control device sends second power increase information to the first control device, the second power increase information is used to indicate the second power increase range corresponding to the second standard in time units; the first control device according to the first The first power increase information and the second power increase information determine the total power information.
  • the first power increase information is used to indicate the first power increase range corresponding to the first standard in time units.
  • the total power information is based on the first power increase range and the second power increase range.
  • the power increase range is determined; the first control device sends total power information to the radio frequency device; the radio frequency device determines the transmit power according to the total power information; wherein, the first system and the second system are different baseband working systems.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmission power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission efficiency of the system. flexibility.
  • the radio frequency device determines the transmission power according to the total power information, including: when the total power of the total power spectrum is greater than or equal to the first threshold, and the spectral density of the total power spectrum is greater than or equal to When it is equal to the second threshold, the radio frequency device determines the transmission power by performing clipping processing on the total power spectrum, the total power spectrum is determined according to the total power information, and the total power spectrum is used to represent the corresponding relationship between frequency and power in a time unit.
  • the time unit is a symbol.
  • a radio frequency device in a sixth aspect, includes an acquisition unit and a transceiver unit, the acquisition unit is used to acquire transmission power, the transmission power is determined according to the first power up information and the second power up information, the first power The increase information is used to indicate the first power increase range corresponding to the first system in time units, and the second power increase information is used to indicate the second power increase range corresponding to the second system in time units; the transceiver unit is used to transmit according to the transmit power The data corresponding to the time unit; wherein, the first standard and the second standard are different baseband working standards.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmission power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission efficiency of the system. flexibility.
  • the acquisition unit is specifically configured to receive the first power up information from the first control device, receive the second power up information from the second control device, and according to the total power
  • the information determines the transmission power, the total power information is determined according to the first power increase range and the second power increase range, the total power information is used to determine the total power spectrum, and the total power spectrum is used to represent the corresponding relationship between frequency and power in a time unit.
  • the acquiring unit is specifically configured to receive the total power information from the first control device, or receive the total power information from the second control device, and determine according to the total power information Transmit power; wherein, the total power information is determined according to the first power increase range and the second power increase range.
  • the acquisition unit when the total power of the total power spectrum is greater than or equal to the first threshold, and the spectral density of the total power spectrum is greater than or equal to the second threshold, the acquisition unit is specifically configured to pass Perform clipping processing on the total power spectrum to determine the transmission power, the total power spectrum is determined according to the total power information, and the total power spectrum is used to represent the corresponding relationship between frequency and power in a time unit.
  • the obtaining unit is specifically configured to receive the transmission power from the first control device; or, the obtaining unit is specifically configured to receive the transmission power from the second control device.
  • the time unit is a symbol.
  • a control device in a seventh aspect, includes a first control device, the first control device includes a first transceiver unit, and the first transceiver unit is configured to send first power up information to the radio frequency device, the first The power increase information is used to indicate the first power increase range corresponding to the first system in time units, and the first power increase range and the second power increase range corresponding to the second system in time units are used to determine the total power information. For determining the transmission power, the transmission power is used to send the data corresponding to the time unit, wherein the first system and the second system are different baseband working systems.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmission power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission efficiency of the system. flexibility.
  • control device further includes a second control device, the second control device includes a second transceiver unit, and the second transceiver unit is configured to send the second The power increase information, the second power increase information is used to indicate the second power increase range.
  • the time unit is a symbol.
  • a control device includes a first control device, the first control device includes a first transceiver unit and a first processing unit, the first transceiver unit is used to receive the first Two power increase information, the second power increase information is used to indicate the second power increase range corresponding to the second standard in time units; the first processing unit is used to determine the total power information according to the first power increase information and the second power increase information, The first power increase information is used to indicate the first power increase range corresponding to the first standard in time units, the total power information is determined according to the first power increase range and the second power increase range, and the total power information is used to determine the transmit power, The transmission power is used to send data corresponding to the time unit; the first transceiver unit is also used to send total power information to the radio frequency device; wherein, the first system and the second system are different baseband working systems.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmission power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission efficiency of the system. flexibility.
  • the time unit is a symbol.
  • a radio frequency device may include a transceiver unit and an acquisition unit.
  • the acquisition unit may be a processing unit, or the acquisition unit may be a transceiver unit, or the acquisition unit may be a combination of a transceiver unit and a processing unit.
  • the transceiver unit may also be a sending unit and a receiving unit.
  • the processing unit may be a processor, and the transceiver unit may be a transceiver; the device may also include a storage unit, which may be a memory; the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit , so that the radio frequency device executes the first aspect or any possible implementation manner in the first aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to make the chip Execute the first aspect or any possible implementation manner in the first aspect.
  • the storage unit is used to store instructions, and the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit outside the chip in the radio frequency device (for example, a read-only memory, random access memory, etc.).
  • a control device may include a transceiver unit and a processing unit.
  • the transceiving unit may be a sending unit and a receiving unit.
  • the processing unit may be a processor, and the transceiver unit may be a transceiver; the device may also include a storage unit, which may be a memory; the storage unit is used for storing instructions, the The processing unit executes the instructions stored in the storage unit, so that the control device executes the second aspect or any possible implementation manner in the second aspect or implements the above third aspect or any possible implementation manner in the third aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to make the chip Executing the second aspect or any possible implementation manner of the second aspect or implementing the above third aspect or any possible implementation manner of the third aspect.
  • the storage unit is used to store instructions, and the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit outside the chip in the control device (for example, a read-only memory, random access memory, etc.).
  • the processing unit may be a processor, and the transceiver unit may be a transceiver; the device may also include a storage unit, which may be a memory; the storage unit is used to store instructions, the The processing unit executes the instructions stored in the storage unit, so that the control device executes the second aspect or any possible implementation manner in the second aspect or implements the above third aspect or any possible implementation manner in the third aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to make the chip Executing the second aspect or any possible implementation manner of the second aspect or implementing the above third aspect or any possible implementation manner of the third aspect.
  • the storage unit is used to store instructions, and the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit outside the chip in the control device (for example, a read-only memory, random access memory, etc.).
  • the present application provides an apparatus, including a processor.
  • the processor is coupled with the memory, and can be used to execute the instructions in the memory, so as to realize the method in the above-mentioned first aspect or any one of the possible implementations of the first aspect, or realize the above-mentioned second aspect or any one of the second aspects A method in a possible implementation manner, or implement the method in the third aspect or any one of the possible implementation manners in the third aspect.
  • the device also includes a memory.
  • the device also includes a communication interface, and the processor is coupled with the communication interface.
  • the device is a radio frequency device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a chip system configured in a radio frequency device.
  • the communication interface may be an input/output interface.
  • the device is a first control device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a chip system configured in the first control device.
  • the communication interface may be an input/output interface.
  • the device is a second control device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip or a chip system configured in the second control device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed, any of the above-mentioned first aspect or the first aspect can be realized.
  • a computer program product containing instructions. When the instructions are executed, the method in any possible implementation manner of the above-mentioned first aspect or the first aspect is implemented, or the above-mentioned second aspect or The method in any possible implementation manner in the second aspect, or implement the above third aspect or the method in any possible implementation manner in the third aspect.
  • a computer program includes codes or instructions, and when the codes or instructions are executed, implement the method in the above-mentioned first aspect or any possible implementation manner of the first aspect, or Implement the method in the above second aspect or any possible implementation manner of the second aspect, or implement the above third aspect or the method in any possible implementation manner of the third aspect.
  • a chip system in a fifteenth aspect, includes a processor, and may also include a memory, for implementing the method in the above-mentioned first aspect or any possible implementation manner of the first aspect, or implementing the above-mentioned second Aspect or the method in any possible implementation manner of the second aspect, or implement the method in the above third aspect or any possible implementation manner of the third aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a sixteenth aspect provides a communication system, the system includes the device in the sixth aspect or any of the possible implementations of the sixth aspect and the device in the seventh aspect or any of the possible implementations of the seventh aspect
  • the device, or the system includes the sixth aspect or the device in any possible implementation manner of the sixth aspect and the eighth aspect or the device in any possible implementation manner of the eighth aspect.
  • the radio frequency device is a radio frequency unit RU
  • the control device is a baseband unit BU.
  • the first standard is New Radio NR
  • the second standard is Long Term Evolution LTE
  • the first standard is LTE
  • the second standard is NR.
  • Fig. 1 is a schematic structural diagram of a communication system to which the embodiment of the present application is applicable.
  • FIG. 2 shows a schematic diagram of an NR system and an LTE system sharing one RB.
  • Fig. 3 shows a schematic diagram of shared power between LTE and NR.
  • FIG. 4 shows a schematic flowchart of a method for sending data provided by an embodiment of the present application.
  • Fig. 5 shows a schematic diagram of a total power spectrum provided by an embodiment of the present application.
  • 6 to 8 are schematic structural diagrams of possible devices provided by the embodiments of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, frequency division duplex (frequency division duplex, FDD) system, time division duplex (time division duplex, TDD) ) system, fifth generation (5th generation, 5G) system or new radio (new radio, NR), sixth generation (6th generation, 6G) system or future communication system, etc.
  • the 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (standalone, SA) 5G mobile communication system.
  • the communication system may also be a public land mobile network (PLMN), a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, or an Internet of Things (Internet of Things).
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • Internet of Things Internet of Things
  • IoT Internet of Things
  • V2X vehicle to everything
  • UAV unmanned aerial vehicle
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 To facilitate understanding of the embodiment of the present application, an application scenario of the embodiment of the present application is described in detail first with reference to FIG. 1 .
  • Fig. 1 is a schematic structural diagram of a communication system to which the embodiment of the present application is applicable. Firstly, the devices that may be involved in the communication system will be described.
  • Radio frequency unit (radio unit, RU) 110 can realize signal intermediate frequency processing, radio frequency processing, duplexing and other functions.
  • the RU 110 may be a remote radio unit (remote radio unit, RRU), an active antenna processing unit (active antenna unit, AAU), or other network elements or communication devices capable of processing intermediate frequency signals, radio frequency signals, or intermediate radio frequency signals .
  • RRU remote radio unit
  • AAU active antenna processing unit
  • the RU 110 may also have a partial baseband processing function, which is not particularly limited in this application.
  • the RU 110 may further include a multimode-multiband architecture radio platform (MARP), and the MARP may implement intermediate frequency processing and radio frequency processing of signals.
  • MARP multimode-multiband architecture radio platform
  • Baseband unit (baseband unit, BU) 120 the BU 120 can realize the processing function of the baseband signal.
  • the BU 120 may be a baseband unit (baseband unit, BBU), a centralized control unit (central unit, CU), a distributed control unit (distributed unit, DU), or other network elements or communication devices with baseband signal processing capabilities.
  • the BU 120 can support multiple baseband working standards, for example, the BU 120 can support the NR standard and the LTE standard at the same time.
  • the BU 120 may include a first control device and a second control device, the first control device may independently implement the baseband processing of the NR standard, and the second control device may independently implement the baseband processing of the LTE standard.
  • the first control device for baseband processing of the NR system may include a physical layer (also referred to as layer 1 (layer 1, L1)), a data link layer (also referred to as L2) and a network layer ( Also known as L3).
  • L1 can implement functions such as resource block matching, compression, encryption, data encoding and decoding, modulation and demodulation, and verification.
  • L2 may include the RLC layer and the MAC layer, which can implement resource scheduling, allocate data to different resource blocks, and implement data identification and assembly.
  • L3 may include the RRC layer and the NAS layer, and may implement resource allocation and management.
  • the second control device for baseband processing of the LTE standard may also include L1, L2, and L3 to perform related baseband processing for the LTE standard.
  • the BU 120 and RU 110 can be connected by optical fibers, and the communication interface between them can be called a fronthaul interface.
  • the fronthaul interface can be a common radio interface (common public radio interface, CPRI), an eCPRI interface or a future defined
  • CPRI common public radio interface
  • eCPRI eCPRI interface
  • Other interfaces used to connect BU 120 and RU 110 are not particularly limited in this application.
  • the first control device and the second control device can respectively communicate with RU110 communicates, eg.
  • the first control device and the second control device may each communicate with the RU 110 via an optical fiber, or the first control device and the second control device may share an optical fiber to communicate with the RU 110.
  • the first control device and the second control device share an optical fiber to communicate with the RU 110, the first control device and the second control device can be connected to the same node and communicate with the RU 110 through this node.
  • a communication link is established between the device and the second control device, the first control device sends the information of the NR standard to the second control device, and the second control device sends the information of the NR standard and the information of the LTE standard to the RU 110, and vice versa Of course.
  • the NR standard and the LTE standard can share a section of frequency resources and power. For example, a part of the frequency on a symbol is used for data transmission of the NR standard, and a part of the frequency is used for data transmission of the LTE standard.
  • the LTE standard and the NR standard share the corresponding frequency of the symbol.
  • the frequency resources also share the power of the symbol configuration.
  • the frequency resource corresponding to a symbol can be divided at the granularity of a resource element (RE), where a RE is a subcarrier in the frequency domain, and the frequency resource corresponding to a symbol can include at least one subcarrier or RE.
  • RE resource element
  • the frequency resource corresponding to a symbol can also be divided at the granularity of RB, where one RB includes 12 subcarriers in the frequency domain, and the frequency resource corresponding to a symbol can include at least one RB, which is not particularly limited in this application.
  • the frequency resources corresponding to one symbol are divided by RE or subcarrier granularity as an example below.
  • the symbols are also referred to as time-domain symbols, which may specifically be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, or discrete Fourier transform spread spectrum OFDM (Discrete Fourier Transform- spread-OFDM, DFT-s-OFDM) symbols, or other time-domain symbols defined in future communications.
  • OFDM orthogonal frequency division multiplexing
  • OFDM discrete Fourier transform spread spectrum OFDM
  • DFT-s-OFDM discrete Fourier Transform- spread-OFDM
  • FIG. 2 shows a schematic diagram of an NR system and an LTE system sharing an RB.
  • an RB includes 12 subcarriers in the frequency domain, and the BU can use the resource element (resource element, RE) granularity for NR
  • RE resource element
  • the resources occupied by the standard and the resources occupied by LTE are allocated.
  • One RE is a subcarrier in the frequency domain and a symbol in the time domain. It can be seen that, on one symbol, some subcarriers can be used for data transmission of the NR standard, and some subcarriers can be used for data transmission of the LTE standard.
  • the power configured by one symbol is used not only for data transmission of the NR standard, but also for data transmission of the LTE standard.
  • Fig. 3 shows a schematic diagram of shared power between the LTE standard and the NR standard.
  • one RB is configured with a total power of 40W, wherein the power specification available for the LTE standard configuration is 20W, and the available power specification for the NR standard configuration is 20W.
  • the power quota of the two systems is reduced by half compared with the system of the single system, and there may be unused power in both systems, resulting in a serious waste of power specifications.
  • one RB is configured with a total power of 40W.
  • the BU allocates the resources occupied by the NR system and the resources occupied by the LTE at the granularity of the RE, it can allocate power according to the resources occupied by each.
  • the NR standard can use 30W power
  • the LTE standard can use 10W power.
  • the LTE standard configuration can use a power specification of 40W
  • the NR standard configuration can also use a power specification of 40W, which reduces the waste of power specifications.
  • the NR system when the NR system schedules the 30W power, it can only transmit according to the fixed parameters of the channel corresponding to each RE, and when the LTE system schedules the 10W power, it can only transmit according to the fixed parameters of the channel corresponding to each RE. Do not increase the power of a certain channel when sending, otherwise the total power of the two systems may exceed 40W, which will affect the operation of the hardware and the overall performance.
  • the present application proposes a method for sending data, which can improve the flexibility of the system for sending data.
  • FIG. 4 shows a schematic flowchart of a method 400 for sending data provided by an embodiment of the present application.
  • the radio frequency device acquires transmit power.
  • the transmission power is determined according to the first power increase information and the second power increase information, the first power increase information is used to indicate the first power increase range corresponding to the first standard in time units, and the second power increase information is used to indicate the first The second power increase range corresponding to the second system in this time unit.
  • the first standard and the second standard are two different baseband working standards, for example, the first standard is the NR standard, and the second standard is the LTE standard, or the first standard is the LTE standard, and the second standard is the NR standard.
  • the transmission power is the transmission power shared by the first standard and the second standard, or in other words, the data sent by the radio frequency device using the transmission power includes the data of the first standard and the data of the second standard.
  • the radio frequency device may obtain the transmit power in the following three ways, which will be introduced respectively below.
  • the step S410 includes steps S4101 to S4103.
  • the first control device sends first power up information to the radio frequency device, and correspondingly, the radio frequency device receives the first power up information from the first control device.
  • the first power increase information is used to indicate the first power increase range corresponding to the first system in time units.
  • the time unit is a symbol.
  • the first power boosting range may be used to represent a multiple of a certain symbol boosting power.
  • the first power boost information may include a symbol number and a decibel boost power.
  • the multiple of the boosted power of a symbol refers to the multiple of the boosted power of the symbol compared to the configured power of the symbol.
  • the first control device sends a power configuration parameter of the first standard to the radio frequency device, where the power configuration parameter indicates the configured power of each symbol in the plurality of symbols.
  • the configured power of the symbol may be represented by a configured power spectrum configured for each symbol by the first control device when allocating power.
  • the configuration power spectrum describes the corresponding relationship between frequency and power, for example, the configuration power spectrum may represent the power of data sent by each subcarrier in one symbol.
  • the configured power of the symbol is the total power of the configured power spectrum.
  • the configured power spectrum indicates that the powers of the subcarrier #1, subcarrier #2, and subcarrier #3 in the symbol #1 are 1W, 1W, and 2W respectively. , then the total power of the configured power spectrum is 4W, and the configured power of symbol #1 corresponding to the first standard is 4W.
  • the power of the symbol #1 corresponding to the first standard is increased by 3dB (about 1 times)
  • the power of the symbol #1 corresponding to the first standard is raised to 8W
  • the symbol #1 of the first standard is raised
  • the following power spectrum indicates that the powers of the subcarrier #1, subcarrier #2 and subcarrier #3 transmit data are 2W, 2W and 4W respectively.
  • the first power boosting range indicates that the multiple of the symbol boosting power is 0 times, it means that the corresponding symbol #1 of the first standard is not boosted, and data is still sent according to the configured power.
  • the second control device sends second power up information to the radio frequency device, and correspondingly, the radio frequency device receives the second power up information from the second control device.
  • the second power increase information is used to indicate the second power increase range corresponding to the second system in the time unit.
  • the description about the second power up information is similar to the description about the first power up information, and for the sake of brevity, details are not repeated here.
  • the radio frequency device determines the transmission power according to the total power information, the total power information is determined according to the first power increase range and the second power increase range, the total power information is used to determine the total power spectrum, and the total power spectrum is used to represent the time unit Correspondence between internal frequency and power.
  • the radio frequency device can determine the total power information according to the first power increase range and the second power increase range.
  • the total power information can have two forms. The first form: the total power information describes the power increase range of each frequency in a time unit , so that the radio frequency device can determine the raised power of each frequency according to the power configuration parameters of the time unit to form a total power spectrum; the second form: the total power information directly describes the raised power of each frequency in the time unit , to form the total power spectrum.
  • the radio frequency device determines the power increase range of the symbol #1 corresponding to the first standard according to the first increase information, and determines the power increase range of the symbol #1 corresponding to the second standard according to the second standard increase information, and then the radio frequency device can be based on the first standard and The power configuration parameters of the second standard determine the boosted power of each subcarrier in symbol #1 to form a total power spectrum.
  • symbol #1 includes 12 subcarriers (subcarrier #1 to subcarrier #12), subcarrier #1 to subcarrier #6 are configured to send data in the first standard, and subcarrier #7 to subcarrier #12 is configured to send data for the second standard, and the configured power of subcarrier #1 to subcarrier #12 is 1W.
  • the first power boost information indicates that the power of symbol #1 corresponding to the first standard is doubled, and then the power of subcarrier #1 to subcarrier #6 after the double boost is 2W.
  • the second power boost information indicates that the power of the corresponding symbol #1 of the second standard is boosted by 0.5 times, then the power of the subcarrier #7 to subcarrier #12 after boosting by 0.5 times is 1.5W.
  • FIG. 5 shows the total power spectrum corresponding to the example.
  • the abscissa represents the frequency.
  • 12 subcarriers are used to represent the frequency, and the ordinate is the power of each subcarrier.
  • the frequency domain corresponding to symbol #1 includes 12 subcarriers (1 RB).
  • the total power spectrum should include the correspondence between all frequency bands and power supported by symbol #1 .
  • the power spectrum may describe the power corresponding to each RB in the symbol.
  • the radio frequency device may determine the transmission power of the final data transmission according to the total power spectrum and its own ability to transmit data.
  • the radio frequency device determines the transmit power by clipping the total power spectrum.
  • the radio frequency device when the total power spectrum indicates that the raised power exceeds the capability of the radio frequency device to send data, the radio frequency device performs clipping processing on the total power spectrum so that the sum of the power of the two systems exceeds the capability of the radio frequency device to send data. within range.
  • the total power spectrum satisfies two conditions, it can be considered that the raised power exceeds the capability range of the radio frequency device for sending data.
  • Condition 1 The total power of the total power spectrum is greater than or equal to the first threshold.
  • the total power is the sum of the power corresponding to each frequency in the time unit.
  • the total power is the area of the total spectrum diagram, and the frequency is represented by subcarriers, then the total power of the 12 subcarriers after lifting It is 21W.
  • the value of the first threshold is related to the transmission capability of the radio frequency device to send data.
  • the first threshold can be the rated transmission power of the radio frequency device to send data. If the total power is greater than the first threshold, it means that the rated transmission power of the radio frequency device is full. .
  • Condition 2 The spectral density of the total power spectrum is greater than or equal to the second threshold.
  • the spectral density is the average power of the power corresponding to each frequency in the time unit.
  • the value of the second threshold is also related to the transmission capability of the radio frequency device for sending data.
  • the value of the second threshold may be a value at which the spectral density of the configured power spectrum corresponding to the configuration parameter is increased by 1.8 dB.
  • the condition 2 can be equivalently replaced by, the spectral density of the total power spectrum is greater than or equal to 1.8 dB in decibels compared with the spectral density of the configured power spectrum. For example, in Fig.
  • the configured power of 12 sub-carriers without lifting is 1W, that is, the spectral density of the configured power spectrum is 1W, and the spectral density of the total power spectrum is 10lg( 0.75) is approximately equal to 1.2dB, less than 1.8dB.
  • the radio frequency device needs to perform clipping processing on the total power spectrum.
  • the clipping processing may refer to reducing the transmit power of the symbol as a whole or other ways of reducing power that may make at least one of the above conditions not satisfied.
  • the radio frequency device may default to this In this case, if the combined power of the two systems does not exceed the capability range, the radio frequency device does not need to judge the above two conditions. Otherwise, the radio frequency device needs to determine whether the total power spectrum satisfies the above two conditions according to the first lift information and the second lift information.
  • the first control device and the second control device can respectively send their own power up information to the radio frequency device, and the radio frequency device summarizes the two power up information after receiving them, and then summarizes them according to the two standards
  • the total power information of the system and its own transmission capability determine the transmission power of the final transmitted data, so that the power can also be increased in the scenario where the two systems share power, and the flexibility of the system to transmit data is improved.
  • the step S410 includes step S4104 to step S4107.
  • the second control device sends second power up information to the first control device, and correspondingly, the first control device receives the second power up information from the second control device.
  • the first control device and the second control device may establish a communication link through which the second control device sends the second lift information to the first control device.
  • the first control device determines total power information.
  • the first control means determines the total power information based on the first power boost information and the second power boost information received from the second control means.
  • the second control device may also send the power configuration parameters corresponding to the second standard to the first control device.
  • the first control device sends the total power information to the radio frequency device, and correspondingly, the radio frequency device receives the total power information from the first control device.
  • the radio frequency device determines transmit power according to the total power information.
  • the description about the radio frequency device determining the transmission power according to the total power information is similar to the description in the above-mentioned manner 1, and for the sake of brevity, details are not repeated here.
  • the first control device determines the total power information.
  • the first control device sends the first power boost information to the second control device, and the second control device determines the total power information and sends the total power information to the radio frequency device.
  • the information is similar and will not be repeated here.
  • the first control device or the second control device can combine the first power up information and the second power up information to generate total power information, and send the total power information to the radio frequency device, and then the radio frequency device according to the two
  • the total power information summarized by the standard and its own transmission capability determine the final transmission power of the transmitted data, so that the power can also be increased in the scenario where the two standards share power, and the flexibility of the system to transmit data is improved.
  • the step S410 includes step S4108 to step S4110.
  • the second control device sends second power up information to the first control device, and correspondingly, the first control device receives the second power up information from the second control device.
  • This step can be referred to as similar to step S4104 above, and for the sake of brevity, details are not repeated here.
  • the first control device determines transmit power.
  • the first control device can obtain the capability information of the radio frequency device for sending data, and then the first control device determines the total power information according to the first boosted power information and the second power boosted information, and determines the transmission power according to the total power information.
  • the manner in which the first control device determines the transmission power according to the total power information is similar to the way in which the radio frequency device determines the transmission power according to the total power information, and for simplicity, details are not repeated here.
  • the first control device sends transmit power to the radio frequency device, and correspondingly, the radio frequency device receives transmit power from the first control device.
  • the first control device may send the transmission power to the radio frequency device by sending the total power information and the clipping strategy, or the first control device may directly send the transmission power to the radio frequency device, which is not particularly limited in this application.
  • the determination of the transmission power by the first control device is described above, and the determination of the transmission power by the second control device is similar, and will not be repeated here.
  • the first control device or the second control device can obtain the capability information of the radio frequency device to transmit data, generate total power information by itself according to the first power boost information and the second power boost information, and determine the total power according to the total power information
  • the transmission power of the radio frequency device to send data can also be increased in the scenario where two systems share power, and the flexibility of the system to send data can be improved.
  • the radio frequency device sends data corresponding to the time unit according to the transmission power.
  • the radio frequency device uses the transmission power to send the data corresponding to the time unit.
  • the data corresponding to the time unit may refer to the sum of the data corresponding to the time unit in the first format and the data corresponding to the time unit in the second format.
  • the radio frequency device sends the data corresponding to symbol #1 of the first standard and the data corresponding to symbol #1 of the second standard according to the transmission power, that is, the first standard and the symbol #1 of the second standard share the transmission power.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmit power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission power of the system. Data flexibility.
  • the device may be a radio frequency device, a first control device or a second control device, and may also be a module (such as a chip) applied in the radio frequency device, the first control device or the second control device.
  • an apparatus 600 includes an acquisition unit 610 and a transceiver unit 620 .
  • the device 600 is configured to realize the function of the radio frequency device in the method embodiment shown in FIG. 4 above.
  • the device 600 may include a module for implementing any function or operation of the radio frequency device in the method embodiment shown in FIG. 4 above, and the module may be implemented in whole or in part by software, hardware, firmware or any combination thereof .
  • the obtaining unit 610 is used to obtain the transmission power, and the transmission power is determined according to the first power up information and the second power up information,
  • the first power increase information is used to indicate the first power increase range corresponding to the first system in time units
  • the second power increase information is used to indicate the second power increase range corresponding to the second system in time units
  • the transceiver unit 620 is used to The data corresponding to the time unit is sent according to the transmission power; wherein, the first system and the second system are different baseband working systems.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmit power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission power of the system. Data flexibility.
  • the device 700 includes a processing unit 710 and a transceiver unit 720 .
  • the device 700 is used to implement the functions of the first control device or the second control device in the above method embodiment shown in FIG. 4 .
  • the device 700 may include a module for realizing any function or operation of the first control device or the second control device in the method embodiment shown in FIG. firmware or any combination thereof.
  • the transceiver unit 720 is used to send the first power up information, and the first power up information is used to indicate that the first system is in the time unit
  • the corresponding first power increase range, the first power increase range and the second power increase range corresponding to the second standard in the time unit are used to determine the total power information, the total power information is used to determine the transmission power, and the transmission power is used to send the time unit
  • the corresponding data, wherein, the first standard and the second standard are different baseband working standards.
  • the transceiver unit 720 is configured to receive second power increase information from the second control device, the second power increase information is used to indicate the second power increase range corresponding to the second standard in time units; the processing unit 710 is configured to The power increase information and the second power increase information determine the total power information.
  • the first power increase information is used to indicate the first power increase range corresponding to the first standard in time units.
  • the total power information is based on the first power increase range and the second power increase range.
  • the total power information is used to determine the transmission power, and the transmission power is used to send data corresponding to the time unit; the transceiver unit 720 is also used to send the total power information to the radio frequency device; wherein, the first standard and the second standard are different The baseband working standard.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmit power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission power of the system. Data flexibility.
  • processing unit 710 and the transceiver unit 720 can be directly obtained by referring to the relevant descriptions in the method embodiment shown in FIG. 4 , and details are not repeated here.
  • the transceiver unit 720 is used to send the second power up information, and the second power up information is used to indicate that the second system is in the time unit
  • the corresponding second power increase range, the second power increase range and the first power increase range corresponding to the first standard in the time unit are used to determine the total power information, the total power information is used to determine the transmission power, and the transmission power is used to send the time unit
  • the corresponding data, wherein, the first standard and the second standard are different baseband working standards.
  • the radio frequency device can also increase the power in the scenario where the two systems share power by obtaining the transmit power jointly determined according to the first power increase information and the second power increase information, so as to improve the transmission power of the system. Data flexibility.
  • processing unit 710 and the transceiver unit 720 can be directly obtained by referring to the relevant descriptions in the method embodiment shown in FIG. 4 , and details are not repeated here.
  • the device 800 includes a processor 810 , and optionally further includes an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the device 800 may further include a memory 830 for storing instructions executed by the processor 810, or storing input data required by the processor 810 to execute the instructions, or storing data generated by the processor 810 after executing the instructions.
  • the interface circuit 820 is used to implement all or part of the functions of the acquisition unit 620 and the functions of the transceiver unit 620 .
  • the processor 810 is used to realize the functions of the above-mentioned processing unit 710
  • the interface circuit 820 is used to realize the functions of the above-mentioned transceiver unit 720 .
  • the processor 810 is used to realize the function of the above-mentioned processing unit 710
  • the interface circuit 820 is used to realize the function of the above-mentioned transceiver unit 720 .
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • memory can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable Programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art .
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (solid state disk, SSD).
  • a corresponds to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the above is an example of the three elements of A, B and C to illustrate the optional items of the project.
  • the expression includes at least one of the following: A, B, ..., and X"
  • the applicable entries for this item can also be obtained according to the aforementioned rules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Selective Calling Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送数据的方法、射频装置和控制装置,该方法可以由射频装置或射频装置中的芯片执行,该方法包括:射频装置获取发射功率,发射功率是根据第一功率抬升信息和第二功率抬升信息确定的,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;射频装置根据发射功率发送时间单元对应的数据;其中,第一制式和第二制式为不同的基带工作制式,能够提高系统发送数据的灵活性。

Description

一种发送数据的方法、射频装置和控制装置
本申请要求于2021年12月31日提交中国专利局、申请号为202111669147.6、申请名称为“一种发送数据的方法、射频装置和控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术的领域,并且更具体地,涉及一种发送数据的方法、射频装置和控制装置。
背景技术
目前,两种不同的基带工作制式可以共享同一个载波,例如新无线(new radio,NR)和长期演进(long term evolution,LTE)可以共享一份频谱资源。NR和LTE可以将各自的信道配置信息上报给资源分配节点,资源分配节点可以根据两个制式的信道配置信息进行资源块(resource block,RB)和功率的配置。进而,NR对应的基带处理单元和LTE对应的基带处理单元可以各自独立对配置获得的RB和功率进行调度。
但是,当两个制式共享一份功率时,两个制式需要按照配置的固定发射功率发送数据,不能进行功率的抬升。如果两个制式或者其中一个制式进行了功率抬升,由于两个制式的基带处理单元之间不能互相感知到对方是否进行了功率抬升,那么两个制式的总功率可能会超出功率使用范围,影响硬件的运行和整体的性能。
因此,亟需一种发送数据的方法、射频装置和控制装置,能够提高系统发送数据的灵活性。
发明内容
本申请提供一种发送数据的方法、射频装置和控制装置,提高系统发送数据的灵活性。
第一方面,提供了一种发送数据的方法,该方法可以由射频装置或射频装置中的芯片执行,该方法包括:射频装置获取发射功率,发射功率是根据第一功率抬升信息和第二功率抬升信息确定的,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;射频装置根据发射功率发送时间单元对应的数据;其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第一方面,在第一方面的某些实现方式中,射频装置获取发射功率,包括:射频装置接收来自第一控制装置的第一功率抬升信息;射频装置接收来自第二控制装置的第二功率抬升信息;射频装置根据总功率信息确定发射功率,总功率信息是根据第一功率抬升 幅度和第二功率抬升幅度确定的,总功率信息用于确定总功率谱,总功率谱用于表示时间单元内频率与功率的对应关系。
从而,在本申请中,第一控制装置和第二控制装置可以分别将自己的功率抬升信息发送给射频装置,射频装置接收到该两个功率抬升信息后进行汇总,进而能够根据两个制式汇总后的总功率信息,以及自己的发射能力确定最终发送数据的发射功率,以实现两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第一方面,在第一方面的某些实现方式中,射频装置获取发射功率,包括:射频装置接收来自第一控制装置的总功率信息;或者,射频装置接收来自第二控制装置的总功率信息;射频装置根据总功率信息确定发射功率;其中,总功率信息是根据第一功率抬升幅度和第二功率抬升幅度确定的。
从而,在本申请中,第一控制装置或第二控制装置可以汇合第一功率抬升信息和第二功率抬升信息生成总功率信息,并将总功率信息发送给射频装置,进而射频装置根据两个制式汇总后的总功率信息,以及自己的发射能力确定最终发送数据的发射功率,以实现两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第一方面,在第一方面的某些实现方式中,射频装置根据总功率信息确定发射功率,包括:当总功率谱的总功率大于或等于第一阈值,总功率谱的谱密度大于或等于第二阈值时,射频装置通过对总功率谱进行削波处理确定发射功率,总功率谱是根据总功率信息确定的,总功率谱用于表示时间单元内频率与功率的对应关系。
从而,在本申请中,射频装置可以根据总功率谱确定是否需要进行削波处理,提高系统发送数据的可靠性。
结合第一方面,在第一方面的某些实现方式中,射频装置获取发射功率,包括:射频装置接收来自第一控制装置的发射功率;或者,射频装置接收来自第二控制装置的发射功率。
从而,在本申请中,第一控制装置或第二控制装置可以获取射频装置发送数据的能力信息,自己根据第一功率抬升信息和第二功率抬升信息生成总功率信息,并根据总功率信息确定射频装置发送数据的发射功率,以实现两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第一方面,在第一方面的某些实现方式中,时间单元为符号。
从而,在本申请中,可以射频装置可以获取符号粒度的发射功率,提高系统发送数据的灵活性。
第二方面,提供了一种发送数据的方法,该方法可以由控制装置或控制装置中的芯片执行,其中,控制装置可以包括第一控制装置和第二控制装置,该方法包括:第一控制装置向射频装置发送第一功率抬升信息,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,第一功率抬升幅度和第二制式在时间单元对应的第二功率抬升幅度用于确定总功率信息,总功率信息用于确定发射功率,发射功率用于发送时间单元对应的数据,其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第二方面,在第二方面的某些实现方式中,方法还包括:第二控制装置向射频装 置发送第二功率抬升信息,第二功率抬升信息用于指示第二功率抬升幅度。
结合第二方面,在第二方面的某些实现方式中,时间单元为符号。
第三方面,提供了一种发送数据的方法,该方法可以由控制装置或控制装置中的芯片执行,其中,该控制装置可以包括第一控制装置,该方法包括:第一控制装置接收来自第二控制装置的第二功率抬升信息,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;第一控制装置根据第一制式在时间单元对应的第一功率抬升幅度和第二功率抬升幅度确定总功率信息,总功率信息用于确定发射功率,发射功率用于发送时间单元对应的数据;第一控制装置向射频装置发送总功率信息;其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第三方面,在第三方面的某些实现方式中,时间单元为符号。
第四方面,提供了一种发送数据的方法,该方法可以由射频装置和控制装置或射频装置中的芯片和控制装置中的芯片执行,其中,该控制装置包括第一控制装置和第二控制装置,该方法包括:第一控制装置向射频装置发送第一功率抬升信息,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度;第二控制装置向射频装置发送第二功率抬升信息,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;射频装置根据第一功率抬升信息和第二功率抬升信息确定发射功率;射频装置根据发射功率发送时间单元对应的数据;其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第四方面,在第四方面的某些实现方式中,射频装置根据第一功率抬升信息和第二功率抬升信息确定发射功率,包括:射频装置根据总功率信息确定发射功率,总功率信息是根据第一功率抬升幅度和第二功率抬升幅度确定的,总功率信息用于确定总功率谱,总功率谱用于表示时间单元内频率与功率的对应关系;当总功率谱的总功率大于或等于第一阈值,总功率谱的谱密度大于或等于第二阈值时,射频装置通过对总功率谱进行削波处理确定发射功率。
结合第四方面,在第四方面的某些实现方式中,时间单元为符号。
第五方面,提供了一种发送数据的方法,该方法可以由射频装置和控制装置或射频装置中的芯片和控制装置中的芯片执行,其中,该控制装置包括第一控制装置和第二控制装置,该方法包括:第二控制装置向第一控制装置发送第二功率抬升信息,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;第一控制装置根据第一功率抬升信息和第二功率抬升信息确定总功率信息,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,总功率信息是根据第一功率抬升幅度和第二功率抬升幅度确定的;第一控制装置向射频装置发送总功率信息;射频装置根据总功率信息确定发射功率;其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送 数据的灵活性。
结合第五方面,在第五方面的某些实现方式中,射频装置根据总功率信息确定发射功率,包括:当总功率谱的总功率大于或等于第一阈值,总功率谱的谱密度大于或等于第二阈值时,射频装置通过对总功率谱进行削波处理确定发射功率,总功率谱是根据总功率信息确定的,总功率谱用于表示时间单元内频率与功率的对应关系。
结合第五方面,在第五方面的某些实现方式中,时间单元为符号。
第六方面,提供了一种射频装置,该装置包括获取单元和收发单元,该获取单元用于获取发射功率,发射功率是根据第一功率抬升信息和第二功率抬升信息确定的,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;该收发单元用于根据发射功率发送时间单元对应的数据;其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第六方面,在第六方面的某些实现方式中,获取单元具体用于接收来自第一控制装置的第一功率抬升信息,接收来自第二控制装置的第二功率抬升信息,根据总功率信息确定发射功率,总功率信息是根据第一功率抬升幅度和第二功率抬升幅度确定的,总功率信息用于确定总功率谱,总功率谱用于表示时间单元内频率与功率的对应关系。
结合第六方面,在第六方面的某些实现方式中,获取单元具体用于接收来自第一控制装置的总功率信息,或者,接收来自第二控制装置的总功率信息,根据总功率信息确定发射功率;其中,总功率信息是根据第一功率抬升幅度和第二功率抬升幅度确定的。
结合第六方面,在第六方面的某些实现方式中,当总功率谱的总功率大于或等于第一阈值,总功率谱的谱密度大于或等于第二阈值时,获取单元具体用于通过对总功率谱进行削波处理确定发射功率,总功率谱是根据总功率信息确定的,总功率谱用于表示时间单元内频率与功率的对应关系。
结合第六方面,在第六方面的某些实现方式中,获取单元具体用于接收来自第一控制装置的发射功率;或者,获取单元具体用于接收来自第二控制装置的发射功率。
结合第六方面,在第六方面的某些实现方式中,时间单元为符号。
第七方面,提供了一种控制装置,该控制装置包括第一控制装置,该第一控制装置包括第一收发单元,该第一收发单元用于向射频装置发送第一功率抬升信息,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,第一功率抬升幅度和第二制式在时间单元对应的第二功率抬升幅度用于确定总功率信息,总功率信息用于确定发射功率,发射功率用于发送时间单元对应的数据,其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第七方面,在第七方面的某些实现方式中,该控制装置还包括第二控制装置,该第二控制装置包括第二收发单元,该第二收发单元用于向射频装置发送第二功率抬升信息,第二功率抬升信息用于指示第二功率抬升幅度。
结合第七方面,在第七方面的某些实现方式中,时间单元为符号。
第八方面,提供了一种控制装置,该控制装置包括第一控制装置,该第一控制装置包括第一收发单元和第一处理单元,第一收发单元用于接收来自第二控制装置的第二功率抬升信息,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;第一处理单元用于根据第一功率抬升信息和第二功率抬升信息确定总功率信息,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,总功率信息是根据第一功率抬升幅度和第二功率抬升幅度确定的,总功率信息用于确定发射功率,发射功率用于发送时间单元对应的数据;第一收发单元还用于向射频装置发送总功率信息;其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
结合第八方面,在第八方面的某些实现方式中,时间单元为符号。
第九方面,提供了一种射频装置,该装置可以包括收发单元、获取单元。获取单元可以为处理单元,或者获取单元可以为收发单元,或者获取单元可以为收发单元和处理单元的结合。可选的,收发单元还可以为发送单元和接收单元。
该处理单元可以是处理器,该收发单元可以是收发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该射频装置执行第一方面或第一方面中任一种可能实现方式。当该装置是射频装置内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第一方面或第一方面中任一种可能实现方式。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该射频装置内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第十方面,提供了一种控制装置,该控制装置可以包括收发单元和处理单元。可选地,收发单元可以是发送单元和接收单元。
当控制装置为第一控制装置时,该处理单元可以是处理器,该收发单元可以是收发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该控制装置执行第二方面或第二方面中任一种可能实现方式或者实现上述第三方面或第三方面中任一种可能实现方式。当该装置是控制装置内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第二方面或第二方面中任一种可能实现方式或者实现上述第三方面或第三方面中任一种可能实现方式。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该控制装置内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
当控制装置为第二控制装置时,该处理单元可以是处理器,该收发单元可以是收发器;该装置还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该控制装置执行第二方面或第二方面中任一种可能实现方式或者实现上述第三方面或第三方面中任一种可能实现方式。当该装置是控制 装置内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第二方面或第二方面中任一种可能实现方式或者实现上述第三方面或第三方面中任一种可能实现方式。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该控制装置内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第十一方面,本申请提供了一种装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法,或者实现上述第二方面或第二方面中任一种可能实现方式中的方法,或者实现上述第三方面或第三方面中任一种可能实现方式中的方法。其中,该装置还包括存储器。其中,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为射频装置。当装置为射频装置时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于射频装置中的芯片或芯片系统。当该装置为配置于射频装置中的芯片或芯片系统时,该通信接口可以是输入/输出接口。
在一种实现方式中,该装置为第一控制装置。当装置为第一控制装置时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于第一控制装置中的芯片或芯片系统。当该装置为配置于第一控制装置中的芯片或芯片系统时,该通信接口可以是输入/输出接口。
在一种实现方式中,该装置为第二控制装置。当装置为第二控制装置时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于第二控制装置中的芯片或芯片系统。当该装置为配置于第二控制装置中的芯片或芯片系统时,该通信接口可以是输入/输出接口。
其中,该收发器可以为收发电路。其中,该输入/输出接口可以为输入/输出电路。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面或第一方面中任一种可能实现方式中的方法,或者实现上述第二方面或第二方面中任一种可能实现方式中的方法,或者实现上述第三方面或第三方面中任一种可能实现方式中的方法。
第十三方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现上述第一方面或第一方面中任一种可能实现方式中的方法,或者实现上述第二方面或第二方面中任一种可能实现方式中的方法,或者实现上述第三方面或第三方面中任一种可能实现方式中的方法。
第十四方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现上述第一方面或第一方面中任一种可能实现方式中的方法,或者实现上述第二方面或第二方面中任一种可能实现方式中的方法,或者实现上述第三方面或第三方面中任一种可能实现方式中的方法。
第十五方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能实现方式中的方法,或者实现上述第二方面或第二方面中任一种可能实现方式中的方法,或者实现上述第三方面或第三方面中任一种可能实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十六方面,提供一种通信系统,该系统包括上述第六方面或第六方面中任一种可能实现方式中的装置和上述第七方面或第七方面中任一种可能实现方式中的装置,或者该系统包括上述第六方面或第六方面中任一种可能实现方式中的装置和上述第八方面或第八方面中任一种可能实现方式中的装置。
在一些实现方式中,该射频装置为射频单元RU,控制装置为基带单元BU。
在一些实现方式中,该第一制式为新无线NR,第二制式为长期演进LTE。或者,该第一制式为LTE,第二制式为NR。
附图说明
图1是本申请实施例适用的一种通信系统的示意性结构图。
图2示出了一种NR制式和LTE制式共用一份RB的示意图。
图3示出了一种LTE制式和NR制式共用功率的示意图。
图4示出了本申请实施例提供的一种发送数据的方法的示意性流程图。
图5示出了本申请实施例提供的一种总功率谱的示意图。
图6至图8是本申请实施例提供的可能的装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、频分双工(frequency division duplex,FDD)系统、时分双工(time division duplex,TDD)系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、第六代(6th generation,6G)系统或未来的通信系统等。本申请中所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。通信系统还可以是公共陆地移动网络(public land mobile network,PLMN)、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of things,IoT)通信系统、车联万物(vehicle to everything,V2X)通信系统、无人机(unmanned aerial vehicle,UAV)通信系统或者其他通信系统。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先结合图1详细说明本申请实施例的一个应用场景。
图1是本申请实施例适用的一种通信系统的示意性结构图。首先对该通信系统中可能涉及的装置进行说明。
1、射频单元(radio unit,RU)110:RU 110可以实现信号的中频处理、射频处理、双工等功能。例如,RU 110可以是射频拉远单元(remote radio unit,RRU)、有源天线处理单元(active antenna unit,AAU)或者其它具有中频信号、射频信号或者中射频信号处理能力的网元或通信装置。在某些通信系统中,例如在采用增强型通用无线接口(enhanced common public radio interface,eCPRI)的通信系统中,RU 110还可以具有部 分基带处理的功能,本申请对此不作特别限定。
在本申请实施例中,RU 110中还可以包括多模多频架构中射频平台(multimode-multiband architecture radio platform,MARP),MARP可以实现信号的中频处理和射频处理。
2、基带单元(baseband unit,BU)120:BU 120可以实现基带信号的处理功能。例如,BU 120可以是基带单元(baseband unit,BBU)、集中控制单元(central unit,CU)、分布式控制单元(distributed unit,DU)或者其它具有基带信号处理能力的网元或通信装置。
在本申请实施例中,BU 120可以支持多种基带工作制式,例如,BU 120可以同时支持NR制式和LTE制式。在这种情况下,BU 120中可以包括第一控制装置和第二控制装置,第一控制装置可以独立实现NR制式的基带处理,第二控制装置可以独立实现LTE制式的基带处理。
其中,用于NR制式的基带处理的第一控制装置可以包括物理层(也可以称之为层1(layer 1,L1))、数据链路层(也可以称之为L2)和网络层(也可以称之为L3)。L1可以实现资源块匹配、压缩、加密、数据编解码、调制解调、校验等功能。L2可以包括RLC层和MAC层,可以实现资源的调度,将数据分配到不同的资源块上,可以实现数据识别和组装。L3可以包括RRC层和NAS层,可以实现资源的分配和管理。
对应地,用于LTE制式的基带处理的第二控制装置也可以包括L1、L2以及L3,对LTE制式进行相关的基带处理。
BU 120与RU 110之间可以用光纤连接,它们之间的通信接口可以称之为前传接口,例如,该前传接口可以是通用无线接口(common public radio interface,CPRI),eCPRI接口或者未来定义的其他用于连接BU 120和RU 110之间的接口,本申请对此不作特别限定。
其中,在本申请实施例中,当BU 120包括用于NR制式基带处理的第一控制装置和用于LTE制式基带处理的第二控制装置时,第一控制装置和第二控制装置可以分别与RU110进行通信,例如。第一控制装置和第二控制装置可以各自通过光纤与RU 110连接进行通信,或者,第一控制装置和第二控制装置可以共用光纤与RU 110连接进行通信。当第一控制装置和第二控制装置共用光纤与RU 110进行通信时,第一控制装置和第二控制装置可以连接到同一个节点,通过该节点与RU 110进行通信,也可以在第一控制装置和第二控制装置之间建立通信链路,第一控制装置将NR制式的信息发送给第二控制装置,第二控制装置将NR制式的信息和LTE制式的信息发送给RU 110,反之亦然。
NR制式和LTE制式可以共享一段频率资源和功率,例如,一个符号上有一部分频率用于NR制式的数据传输,有一部分频率用于LTE制式的数据传输,LTE制式和NR制式共享该符号对应的频率资源,也共享该符号配置的功率。一个符号对应的频率资源可以以资源元素(resource element,RE)的粒度划分,其中,一个RE在频域上是一个子载波,一个符号对应的频率资源可以包括至少一个子载波或者RE。一个符号对应的频率资源也可以以RB的粒度划分,其中,一个RB在频域上包括12个子载波,一个符号对应的频率资源可以包括至少一个RB,本申请对此不作特别限定,为了清楚,以下以一个符号对应的频率资源以RE或子载波的粒度划分进行举例。
在本申请的实施例中,符号也称为时域符号,具体可以是正交频分复用(orthogonal  frequency division multiplexing,OFDM)符号,或者是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号,或者是未来通信中定义的其它时域符号。
图2示出了一种NR制式和LTE制式共用一份RB的示意图,参见图2,一份RB在频域上包括12个子载波,BU可以以资源元素(resource element,RE)的粒度对NR制式占用的资源和LTE占用的资源进行分配,其中一个RE在频域上是一个子载波,在时域上是一个符号。可见,在一个符号上,有一部分子载波可以用于NR制式的数据传输,有一部分子载波可以用于LTE制式的数据传输。对应地,一个符号配置的功率既用于NR制式的数据传输,也用于LTE制式的数据传输。
图3示出了LTE制式和NR制式共用功率的示意图。参见图3的(a),例如,一个RB配置40W的总功率,其中,LTE制式配置可以使用的功率规格为20W,NR制式配置可以使用的功率规格为20W。在这种情况下,两个制式的功率配额相较于单制式的系统降低了一半,并且两个制式都可能存在没有使用的功率,会存在严重的功率规格的浪费。
参见图3的(b),例如,一个RB配置40W的总功率,BU在以RE的粒度对NR制式占用的资源和LTE占用的资源进行分配时,可以根据各自占用的资源进行功率的分配,例如,在该RB中,NR制式可以使用30W功率,LTE制式可以使用10W功率。此时,LTE制式配置可以使用的功率规格为40W,NR制式配置可以使用的功率规格也为40W,降低了功率规格的浪费。但是,在这种情况下,NR制式在调度该30W功率时只能按照各个RE对应的信道的固定参数进行发送,LTE制式在调度该10W功率时也只能按照各个RE对应的信道的固定参数进行发送,不能自行抬升某个信道的功率,否则会导致两个制式的总功率可能会超出40W,影响硬件的运行和整体的性能。
因此,本申请提出了一种发送数据的方法,能够提高系统发送数据的灵活性。
图4示出了本申请实施例提供的一种发送数据的方法400的示意性流程图。
S410,射频装置获取发射功率。
该发射功率是根据第一功率抬升信息和第二功率抬升信息确定的,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,第二功率抬升信息用于指示第二制式在该时间单元对应的第二功率抬升幅度。
其中,第一制式和第二制式为两种不同的基带工作制式,例如,第一制式为NR制式,第二制式为LTE制式,或者第一制式为LTE制式,第二制式为NR制式。
该发射功率为第一制式和第二制式共用的发射功率,或者说,该射频装置使用该发射功率发送的数据包括第一制式的数据和第二制式的数据。
射频装置可以采用如下三种方式获取该发射功率,以下将分别对此进行介绍。
方式1:
该步骤S410包括步骤S4101至S4103。
S4101,第一控制装置向射频装置发送第一功率抬升信息,对应地,射频装置接收来自第一控制装置的第一功率抬升信息。
该第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度。
可选地,该时间单元为符号。
第一功率抬升幅度可以用于表示某个符号抬升功率的倍数。其中,抬升功率的倍数可以用分贝数表示(1dB=10lg(A/B),A/B表示倍数)。第一功率抬升信息可以包括符号 号和抬升功率分贝数。
需要说明的是,符号抬升功率的倍数是指符号抬升后的功率相较于该符号的配置功率提高的倍数。
可选地,第一控制装置向射频装置发送第一制式的功率配置参数,该功率配置参数指示多个符号中每个符号的配置功率。
其中,该符号的配置功率可以用第一控制装置在分配功率时为每个符号配置的配置功率谱表示。该配置功率谱描述了频率与功率的对应关系,例如,该配置功率谱可以表示一个符号中每个子载波发送数据的功率。此时,符号的配置功率为该配置功率谱的总功率,例如,配置功率谱表示符号#1中子载波#1、子载波#2和子载波#3发送数据的功率分别为1W、1W和2W,那么该配置功率谱的总功率为4W,第一制式对应符号#1的配置功率为4W。另外,若第一功率抬升幅度指示第一制式对应符号#1的功率抬升3dB(约等于1倍),则第一制式对应符号#1抬升后的功率为8W,第一制式对应符号#1抬升后的功率谱表示子载波#1、子载波#2和子载波#3发送数据的功率分别为2W、2W和4W。
应理解,当第一功率抬升幅度表示符号抬升功率的倍数为0倍时,表示第一制式对应符号#1不作抬升,仍按照配置功率发送数据。
S4102,第二控制装置向射频装置发送第二功率抬升信息,对应地,射频装置接收来自第二控制装置的第二功率抬升信息。
该第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度。
其中,关于第二功率抬升信息的描述与第一功率抬升信息的描述类似,为了简便,在此不再赘述。
S4103,射频装置根据总功率信息确定发射功率,总功率信息是根据第一功率抬升幅度和第二功率抬升幅度确定的,总功率信息用于确定总功率谱,总功率谱用于表示该时间单元内频率与功率的对应关系。
射频装置可以根据第一功率抬升幅度和第二功率抬升幅度确定总功率信息,该总功率信息可以有两种形式,第一种形式:该总功率信息描述时间单元内每个频率的功率抬升幅度,从而射频装置可以根据该时间单元的功率配置参数确定每个频率抬升后的功率,以形成总功率谱;第二种形式:该总功率信息直接描述该时间单元内每个频率抬升后的功率,以形成总功率谱。
例如,射频装置根据第一抬升信息确定第一制式对应符号#1的功率抬升幅度,根据第二抬升信息确定第二制式对应符号#1的功率抬升幅度,进而,射频装置可以根据第一制式和第二制式的功率配置参数确定符号#1中每个子载波抬升后的功率,以形成总功率谱。
作为示例而非限定,符号#1中包括12个子载波(子载波#1至子载波#12),子载波#1至子载波#6配置给第一制式发送数据,子载波#7至子载波#12配置给第二制式发送数据,子载波#1至子载波#12的配置功率均为1W。第一功率抬升信息指示第一制式对应符号#1抬升功率1倍,那么子载波#1至子载波#6抬升1倍后的功率均为2W。第二功率抬升信息指示第二制式对应符号#1抬升功率0.5倍,那么子载波#7至子载波#12抬升0.5倍后的功率均为1.5W。为了方便描述,参见图5,图5示出了示例对应的总功率谱,横坐标表示频率,该示例中用12个子载波表示频率,纵坐标为每个子载波的功率。
应理解,以上仅是以符号#1对应的频域包括12个子载波(1个RB)进行举例,在本 申请实施例中,总功率谱应当包括符号#1支持的所有频段与功率的对应关系。例如,当一个符号对应的频率资源以RB的粒度划分时,该功率谱可以描述每个RB在该符号对应的功率。
射频装置可以根据总功率谱和自己发送数据的能力确定最终发送数据的发射功率。
可选地,当总功率谱的总功率大于或等于第一阈值、总功率谱的谱密度大于或等于第二阈值时,射频装置通过对总功率谱进行削波处理确定发射功率。
或者说,当总功率谱表示抬升后的功率超出了射频装置发送数据的能力范围时,射频装置对总功率谱进行削波处理,以使得两个制式的功率之和在射频装置发送数据的能力范围之内。其中,当总功率谱满足两个条件时,可以认为抬升后的功率超出了射频装置发送数据的能力范围。以下对这两个条件分别进行说明。
条件1:总功率谱的总功率大于或等于第一阈值。
其中,总功率为该时间单元内每个频率对应的功率的总和,例如,在图5中,总功率为该总频谱图的面积,用子载波表示频率,则12个子载波抬升后的总功率为21W。第一阈值的取值与射频装置发送数据的发射能力相关,例如,第一阈值可以取射频装置发送数据的额定发射功率,若总功率大于第一阈值,则表示射频装置的额定发射功率用满。
条件2:总功率谱的谱密度大于或等于第二阈值。
谱密度为该时间单元内每个频率对应的功率的平均功率,例如,在图5中,谱密度为该12个子载波的平均功率21/12=1.75W。第二阈值的取值也与射频装置发送数据的发射能力相关。在一种可能的实现方式中,第二阈值的取值可以是配置参数对应配置功率谱的谱密度抬升1.8dB的值。在这种情况下,该条件2可以等价替换为,总功率谱的谱密度相较于配置功率谱的谱密度抬升的分贝数大于等于1.8dB。例如,在图5中,12个子载波没有抬升的配置功率为1W,即配置功率谱的谱密度为1W,总功率谱的谱密度相较于配置功率谱的谱密度抬升的分贝数为10lg(0.75)约等于1.2dB,小于1.8dB。
若总功率谱满足如上两个条件,则射频装置需要对该总功率谱进行削波处理。
其中,削波处理可以是指整体降低该符号的发射功率或者其它可以使得上述至少一个条件不满足的降低功率的方式。
需要说明的是,当第一功率抬升信息指示第一制式对应时间单元抬升功率为0,且第二功率抬升信息指示第二制式对应该时间单元抬升功率也为0时,射频装置可以默认在这种情况下两个制式汇总的功率未超过能力范围,射频装置可以不作上述两个条件的判定。否则,射频装置需要根据第一抬升信息和第二抬升信息确定总功率谱是否满足上述两个条件。
从而,在方式1中,第一控制装置和第二控制装置可以分别将自己的功率抬升信息发送给射频装置,射频装置接收到该两个功率抬升信息后进行汇总,进而根据两个制式汇总后的总功率信息,以及自己的发射能力确定最终发送数据的发射功率,以实现两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
方式2:
该步骤S410包括步骤S4104至步骤S4107。
S4104,第二控制装置向第一控制装置发送第二功率抬升信息,对应地,第一控制装置接收来自第二控制装置的第二功率抬升信息。
例如,第一控制装置和第二控制装置可以建立通信链路,第二控制装置通过该通信链 路将第二抬升信息发送给第一控制装置。
S4105,第一控制装置确定总功率信息。
第一控制装置根据第一功率抬升信息和从第二控制装置接收的第二功率抬升信息确定总功率信息。
有关第一功率抬升信息、第二功率抬升信息以及总功率信息的描述与上述方式1中的描述的类似,为了简便,在此不再赘述。需要说明的是,当该总功率信息是直接描述该时间单元内每个频率抬升后的功率时,第二控制装置还可以向第一控制装置发送第二制式对应的功率配置参数。
S4106,第一控制装置向射频装置发送该总功率信息,对应地,射频装置接收来自第一控制装置的该总功率信息。
S4107,射频装置根据该总功率信息确定发射功率。
有关射频装置根据总功率信息确定发射功率的描述与上述方式1中的描述类似,为了简便,在此不再赘述。
应理解,以上以第一控制装置确定总功率信息进行举例,反之,第一控制装置向第二控制装置发送第一功率抬升信息,第二控制装置确定总功率信息并向射频装置发送该总功率信息与之类似,不再赘述。
从而,在方式2中,第一控制装置或第二控制装置可以汇合第一功率抬升信息和第二功率抬升信息生成总功率信息,并将总功率信息发送给射频装置,进而射频装置根据两个制式汇总后的总功率信息,以及自己的发射能力确定最终发送数据的发射功率,以实现两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
方式3:
该步骤S410包括步骤S4108至步骤S4110。
S4108,第二控制装置向第一控制装置发送第二功率抬升信息,对应地,第一控制装置接收来自第二控制装置的第二功率抬升信息。
该步骤可参见上述步骤S4104类似,为了简便,在此不再赘述。
S4109,第一控制装置确定发射功率。
第一控制装置可以获取射频装置发送数据的能力信息,进而第一控制装置根据第一抬升功率信息和第二功率抬升信息确定总功率信息,根据总功率信息确定发射功率。其中,第一控制装置根据总功率信息确定发射功率与射频装置根据总功率信息确定发射功率的方式类似,为了简便,在此不再赘述。
S4110,第一控制装置向射频装置发送发射功率,对应地,射频装置接收来自第一控制装置的发射功率。
其中,第一控制装置可以通过发送总功率信息和削波策略向射频装置发送发射功率,第一控制装置也可以直接将发射功率发送给射频装置,本申请对此不作特别限定。以上对第一控制装置确定发射功率说明,第二控制装置确定发射功率与之类似,不再赘述。
从而,在方式3中,第一控制装置或第二控制装置可以获取射频装置发送数据的能力信息,自己根据第一功率抬升信息和第二功率抬升信息生成总功率信息,并根据总功率信息确定射频装置发送数据的发射功率,以实现两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
以上对射频装置获取发射功率的方式进行了说明。
S420,射频装置根据该发射功率发送该时间单元对应的数据。
或者说,射频装置使用该发射功率发送该时间单元对应的数据。
其中,该时间单元对应的数据可以是指第一制式对应该时间单元的数据和第二制式对应该时间单元的数据的总和。
例如,射频装置根据发射功率发送第一制式对应符号#1的数据和第二制式对应符号#1的数据,即第一制式和第二制式对应符号#1共享该发射功率。
从而,在本申请实施例中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
图6至图8为本申请实施例提供的可能的装置的结构示意图。这些通信装置可以用于实现上述方法实施例中射频装置、第一控制装置或第二控制装置的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该装置可以是射频装置、第一控制装置或第二控制装置,还可以是应用于射频装置、第一控制装置或第二控制装置中的模块(如芯片)。
如图6所示,装置600包括获取单元610和收发单元620。装置600用于实现上述图4中所示的方法实施例中射频装置的功能。或者,装置600可以包括用于实现上述图4中所示的方法实施例中射频装置的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当装置600用于实现图4所示的方法实施例中信号处理装置的功能时,该获取单元610用于获取发射功率,发射功率是根据第一功率抬升信息和第二功率抬升信息确定的,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;该收发单元620用于根据发射功率发送时间单元对应的数据;其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请实施例中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
有关上述获取单元610、收发单元620更详细的描述可以直接参考图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图7所示,装置700包括处理单元710和收发单元720。装置700用于实现上述图4中所示的方法实施例中第一控制装置或第二控制装置的功能。或者,装置700可以包括用于实现上述图4中所示的方法实施例中第一控制装置或第二控制装置的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当装置700用于实现图4所示的方法实施例中第一控制装置的功能时,该收发单元720用于发送第一功率抬升信息,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,第一功率抬升幅度和第二制式在时间单元对应的第二功率抬升幅度用于确定总功率信息,总功率信息用于确定发射功率,发射功率用于发送时间单元对应的数据,其中,第一制式和第二制式为不同的基带工作制式。或者,收发单元720用于接收来自第二控制装置的第二功率抬升信息,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;处理单元710用于根据第一功率抬升信息和第二功率抬升信息确定总功率信息,第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度, 总功率信息是根据第一功率抬升幅度和第二功率抬升幅度确定的,总功率信息用于确定发射功率,发射功率用于发送时间单元对应的数据;收发单元720还用于向射频装置发送总功率信息;其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请实施例中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
有关上述处理单元710和收发单元720更详细的描述可以直接参考图4所示的方法实施例中相关描述直接得到,这里不加赘述。
当装置700用于实现图4所示的方法实施例中第二控制装置的功能时,该收发单元720用于发送第二功率抬升信息,第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度,第二功率抬升幅度和第一制式在时间单元对应的第一功率抬升幅度用于确定总功率信息,总功率信息用于确定发射功率,发射功率用于发送时间单元对应的数据,其中,第一制式和第二制式为不同的基带工作制式。
从而,在本申请实施例中,射频装置通过获取根据第一功率抬升信息和第二功率抬升信息共同确定的发射功率,在两个制式共享功率的场景中也可以进行功率的抬升,提高系统发送数据的灵活性。
有关上述处理单元710和收发单元720更详细的描述可以直接参考图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图8所示,装置800包括处理器810,可选地还包括接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当装置800用于实现图4的方法实施例中射频装置的功能时,处理器810用于实现上述获取单元610的全部或部分功能,接口电路820用于实现上述收发单元620的功能。或者接口电路820用于实现上述获取单元620的全部或部分功能和收发单元620的功能。
当装置800用于实现图4的方法实施例中第一控制装置的功能时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
当装置800用于实现图4的方法实施例中第二控制装置的功能时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中存储器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是 处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (23)

  1. 一种发送数据的方法,其特征在于,所述方法包括:
    射频装置获取发射功率,所述发射功率是根据第一功率抬升信息和第二功率抬升信息确定的,所述第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,所述第二功率抬升信息用于指示第二制式在所述时间单元对应的第二功率抬升幅度;
    所述射频装置根据所述发射功率发送所述时间单元对应的数据;
    其中,所述第一制式和所述第二制式为不同的基带工作制式。
  2. 如权利要求1所述的方法,其特征在于,所述射频装置获取所述发射功率,包括:
    所述射频装置接收来自第一控制装置的所述第一功率抬升信息;
    所述射频装置接收来自第二控制装置的所述第二功率抬升信息;
    所述射频装置根据总功率信息确定所述发射功率,所述总功率信息是根据所述第一功率抬升幅度和所述第二功率抬升幅度确定的。
  3. 如权利要求1所述的方法,其特征在于,所述射频装置获取所述发射功率,包括:
    所述射频装置接收来自第一控制装置的总功率信息;或者,
    所述射频装置接收来自第二控制装置的所述总功率信息;
    所述射频装置根据所述总功率信息确定所述发射功率;
    其中,所述总功率信息是根据所述第一功率抬升幅度和所述第二功率抬升幅度确定的。
  4. 如权利要求2或3所述的方法,其特征在于,所述射频装置根据所述总功率信息确定所述发射功率,包括:
    当总功率谱的总功率大于或等于第一阈值,所述总功率谱的谱密度大于或等于第二阈值时,所述射频装置通过对所述总功率谱进行削波处理确定所述发射功率,所述总功率谱是根据所述总功率信息确定的,所述总功率谱用于表示所述时间单元内频率与功率的对应关系。
  5. 如权利要求1所述的方法,其特征在于,所述射频装置获取所述发射功率,包括:
    所述射频装置接收来自第一控制装置的所述发射功率;或者,
    所述射频装置接收来自第二控制装置的所述发射功率。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述时间单元为符号。
  7. 一种发送数据的方法,其特征在于,所述方法包括:
    第一控制装置向射频装置发送第一功率抬升信息,所述第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,所述第一功率抬升幅度和第二制式在所述时间单元对应的第二功率抬升幅度用于确定总功率信息,所述总功率信息用于确定发射功率,所述发射功率用于发送所述时间单元对应的数据,其中,所述第一制式和所述第二制式为不同的基带工作制式。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    第二控制装置向所述射频装置发送第二功率抬升信息,所述第二功率抬升信息用于指示所述第二功率抬升幅度。
  9. 如权利要求7或8所述的方法,其特征在于,所述时间单元为符号。
  10. 一种发送数据的方法,其特征在于,所述方法包括:
    第一控制装置接收来自第二控制装置的第二功率抬升信息,所述第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;
    所述第一控制装置根据第一制式在所述时间单元对应的第一功率抬升幅度和所述第二功率抬升幅度确定总功率信息,所述总功率信息用于确定发射功率,所述发射功率用于发送所述时间单元对应的数据;
    所述第一控制装置向射频装置发送所述总功率信息;
    其中,所述第一制式和所述第二制式为不同的基带工作制式。
  11. 如权利要求10所述的方法,其特征在于,所述时间单元为符号。
  12. 一种发送数据的方法,其特征在于,所述方法包括:
    第一控制装置向射频装置发送第一功率抬升信息,所述第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度;
    第二控制装置向所述射频装置发送第二功率抬升信息,所述第二功率抬升信息用于指示第二制式在所述时间单元对应的第二功率抬升幅度;
    所述射频装置根据所述第一功率抬升信息和所述第二功率抬升信息确定发射功率;
    所述射频装置根据所述发射功率发送所述时间单元对应的数据;
    其中,所述第一制式和所述第二制式为不同的基带工作制式。
  13. 如权利要求12所述的方法,其特征在于,所述射频装置根据所述第一功率抬升信息和所述第二功率抬升信息确定发射功率,包括:
    所述射频装置根据总功率信息确定发射功率,所述总功率信息是根据所述第一功率抬升幅度和所述第二功率抬升幅度确定的,所述总功率信息用于确定总功率谱,所述总功率谱用于表示所述时间单元内频率与功率的对应关系;
    当所述总功率谱的总功率大于或等于第一阈值,所述总功率谱的谱密度大于或等于第二阈值时,所述射频装置通过对所述总功率谱进行削波处理确定所述发射功率。
  14. 如权利要求12或13所述的方法,其特征在于,所述时间单元为符号。
  15. 一种发送数据的方法,其特征在于,所述方法包括:
    第二控制装置向第一控制装置发送第二功率抬升信息,所述第二功率抬升信息用于指示第二制式在时间单元对应的第二功率抬升幅度;
    所述第一控制装置根据第一功率抬升信息和所述第二功率抬升信息确定总功率信息,所述第一功率抬升信息用于指示第一制式在时间单元对应的第一功率抬升幅度,所述总功率信息是根据所述第一功率抬升幅度和所述第二功率抬升幅度确定的;
    所述第一控制装置向射频装置发送所述总功率信息;
    所述射频装置根据所述总功率信息确定发射功率;
    其中,所述第一制式和所述第二制式为不同的基带工作制式。
  16. 如权利要求15所述的方法,其特征在于,所述射频装置根据所述总功率信息确定发射功率,包括:
    当总功率谱的总功率大于或等于第一阈值,所述总功率谱的谱密度大于或等于第二阈值时,所述射频装置通过对所述总功率谱进行削波处理确定所述发射功率,所述总功率谱是根据所述总功率信息确定的,所述总功率谱用于表示所述时间单元内频率与功率的对应关系。
  17. 如权利要求15或16所述的方法,其特征在于,所述时间单元为符号。
  18. 一种射频装置,其特征在于,包括用于执行权利要求1至6中任一项所述方法的至少一个单元。
  19. 一种控制装置,其特征在于,包括用于执行权利要求7至9中任一项所述方法的至少一个单元,或者权利要求10至11中任一项所述方法的至少一个单元。
  20. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行所述计算机程序或指令,以实现权利要求1至6,或者权利要求7至9,或者权利要求10至11中任一所述的方法。
  21. 一种故障检测的系统,其特征在于,包括:如权利要求18所述的信号处理装置和如权利要求19所述的控制装置。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至11任一项所述的方法。
  23. 一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至11任一项所述的方法。
PCT/CN2022/133408 2021-12-31 2022-11-22 一种发送数据的方法、射频装置和控制装置 WO2023124653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111669147.6 2021-12-31
CN202111669147.6A CN114499554A (zh) 2021-12-31 2021-12-31 一种发送数据的方法、射频装置和控制装置

Publications (1)

Publication Number Publication Date
WO2023124653A1 true WO2023124653A1 (zh) 2023-07-06

Family

ID=81497156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133408 WO2023124653A1 (zh) 2021-12-31 2022-11-22 一种发送数据的方法、射频装置和控制装置

Country Status (2)

Country Link
CN (1) CN114499554A (zh)
WO (1) WO2023124653A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114499554A (zh) * 2021-12-31 2022-05-13 华为技术有限公司 一种发送数据的方法、射频装置和控制装置
CN115190472A (zh) * 2022-05-31 2022-10-14 华为技术有限公司 一种功率分配的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842928A (zh) * 2017-11-25 2019-06-04 华为技术有限公司 一种信息接收方法及装置
CN110167123A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种功率控制方法及装置
US20200128494A1 (en) * 2018-10-23 2020-04-23 T-Mobile Usa, Inc. Dynamic power sharing for dual connectivity
CN111148151A (zh) * 2019-12-27 2020-05-12 宇龙计算机通信科技(深圳)有限公司 发射功率的调整方法、装置、存储介质及终端设备
CN114499554A (zh) * 2021-12-31 2022-05-13 华为技术有限公司 一种发送数据的方法、射频装置和控制装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333893B (zh) * 2014-11-19 2018-10-30 中国联合网络通信集团有限公司 一种基站配置方法和多模基站
CN109951852B (zh) * 2017-12-20 2021-08-13 华为技术有限公司 信号处理方法、装置及系统
CN111586820B (zh) * 2019-02-15 2022-06-10 华为技术有限公司 确定上行发送功率的方法和终端设备
CN113055994B (zh) * 2019-12-27 2022-08-19 华为技术有限公司 通信方法以及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842928A (zh) * 2017-11-25 2019-06-04 华为技术有限公司 一种信息接收方法及装置
CN110167123A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种功率控制方法及装置
US20200128494A1 (en) * 2018-10-23 2020-04-23 T-Mobile Usa, Inc. Dynamic power sharing for dual connectivity
CN111148151A (zh) * 2019-12-27 2020-05-12 宇龙计算机通信科技(深圳)有限公司 发射功率的调整方法、装置、存储介质及终端设备
CN114499554A (zh) * 2021-12-31 2022-05-13 华为技术有限公司 一种发送数据的方法、射频装置和控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "TP for power control for EN-DC in TS38.213", 3GPP TSG RAN WG1 MEETING #92 R1-1801803, 17 February 2018 (2018-02-17), XP051397777 *

Also Published As

Publication number Publication date
CN114499554A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023124653A1 (zh) 一种发送数据的方法、射频装置和控制装置
TWI785185B (zh) 傳輸配置方法及相關產品
US9813217B2 (en) Apparatus and method for resource allocation
US20200280524A1 (en) Information indication method, terminal device, and network device
WO2021087699A1 (zh) 用先听后说类型1共享信道占用时间的方法及相关装置
US11800506B2 (en) Method for performing communication service by using plurality of modems
WO2020029298A1 (zh) 一种用于载波聚合的方法、装置及系统
WO2019214523A1 (zh) 一种通信方法及装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
AU2017425815A1 (en) Data transmission method, terminal device and network device
WO2023125124A1 (zh) 一种数据交换的方法、交换装置和处理装置
US20210297291A1 (en) Srs transmission method, access network device, and terminal device
US20240014969A1 (en) Communication method and apparatus
EP4277435A1 (en) Communication method and communication device
WO2017201688A1 (zh) 射频拉远单元通道发射功率设置的方法和基站
WO2023231271A1 (zh) 一种功率分配的方法和装置
WO2023221724A1 (zh) 一种基带处理的方法和装置
WO2023124773A1 (zh) 一种传输信息的方法和通信装置
RU2762931C2 (ru) Способ поддержки дублирования данных, передающее оконечное устройство и приемное оконечное устройство
CN113612498B (zh) 一种天线配置方法及装置
WO2022151506A1 (zh) 一种bwp的确定方法及装置
WO2021029002A1 (ja) 端末
WO2024055174A1 (zh) 部分带宽的确定方法、配置方法、装置、介质及程序产品
WO2023024731A1 (zh) 一种降低峰均功率比papr的方法以及通信装置
CN113677025B (zh) 一种通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913911

Country of ref document: EP

Kind code of ref document: A1