WO2023124577A1 - 一种便携式高压水射流钢轨打磨入射角标定方法及系统 - Google Patents

一种便携式高压水射流钢轨打磨入射角标定方法及系统 Download PDF

Info

Publication number
WO2023124577A1
WO2023124577A1 PCT/CN2022/131419 CN2022131419W WO2023124577A1 WO 2023124577 A1 WO2023124577 A1 WO 2023124577A1 CN 2022131419 W CN2022131419 W CN 2022131419W WO 2023124577 A1 WO2023124577 A1 WO 2023124577A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
water jet
incident angle
pressure water
rail grinding
Prior art date
Application number
PCT/CN2022/131419
Other languages
English (en)
French (fr)
Inventor
李登
陈天一
巫世晶
周治宇
张琨
武子全
Original Assignee
武汉大学
中铁第四勘察设计院集团有限公司
沈阳奥拓福科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学, 中铁第四勘察设计院集团有限公司, 沈阳奥拓福科技股份有限公司 filed Critical 武汉大学
Publication of WO2023124577A1 publication Critical patent/WO2023124577A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B31/00Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
    • E01B31/02Working rail or other metal track components on the spot
    • E01B31/12Removing metal from rails, rail joints, or baseplates, e.g. for deburring welds, reconditioning worn rails
    • E01B31/17Removing metal from rails, rail joints, or baseplates, e.g. for deburring welds, reconditioning worn rails by grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B31/00Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
    • E01B31/02Working rail or other metal track components on the spot
    • E01B31/12Removing metal from rails, rail joints, or baseplates, e.g. for deburring welds, reconditioning worn rails

Definitions

  • the invention relates to the technical field of high-pressure water jet grinding, and more particularly, relates to a portable high-pressure water jet grinding incident angle calibration method and system.
  • the existing rail repair technologies mainly include rail grinding car repair and rail milling and grinding car repair.
  • the versatility of these two operation methods is poor.
  • my country does not have the technology to independently develop rail grinding vehicles and milling vehicles.
  • abrasive high-pressure water jet processing technology can also be applied to rail grinding and milling. To repair, when the high-pressure water jet is grinding the rail, a device is required to calibrate the incident angle of the high-pressure water jet nozzle.
  • the present invention provides a portable high-pressure water jet rail grinding incident angle calibration method, the method uses accelerometers and gyroscopes to collect the original acceleration data and angular velocity original data, combined with the two sensors Sensitivity obtains the three-axis acceleration data and three-axis angular velocity data, and then obtains the inertial force vector of the accelerometer by definition, and obtains the first set of angle data between the vector and each axis, in order to reduce mechanical vibration and Influenced by noise, the three-axis angular velocity data obtained by the gyroscope that is less affected by external vibrations is used as the second set of angle data, and the two sets of data are used to obtain accurate values using the first-order complementary algorithm, that is, different weights are assigned to the two sets of data Correction is carried out to finally determine the angle of incidence, and the disadvantages of the two sensors are complemented, which solves the problem of errors caused by mechanical vibration and noise when the water jet rail grinding incidence angle is
  • a portable high-pressure water jet rail grinding incident angle calibration method including the following steps:
  • ⁇ x,y,z ( ⁇ x,y,z ) A x,y,z ( ⁇ x,y,z )/Sensitivity ⁇ ( ⁇ ) ;
  • the first group of incident angles is obtained through calculation, the incident angle of the water jet is the inclination of the nozzle relative to the surface of the workpiece, and the coordinate system is established with the direction perpendicular to the surface of the workpiece as the Z axis, and ⁇ and ⁇ are respectively equal to and It can be seen from S200 that the acceleration data of each axis are R x , R y , R z respectively, and satisfy:
  • R ⁇ 2 R x 2 +R y 2 +R z 2 ;
  • ⁇ ⁇ 2 ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ;
  • the incident angle of high-pressure water jet rail grinding is finally calibrated through the included angle with the X and Y axes of the workpiece coordinate system, that is, the pitch angle ⁇ and roll angle ⁇ .
  • a portable high-pressure water jet rail grinding incident angle calibration system including:
  • a control unit configured to obtain the first set of incident angles, the second set of incident angles, and the determined values of the incident angles through calculation;
  • the display screen is used to display the final result obtained by the data calculation module
  • the sensor unit is in signal communication with the control unit, and the control unit is in signal communication with the display screen.
  • a protective housing is included, the sensor unit and the control unit are fixed in the protective housing, and the display screen is fixedly installed on the surface of the protective housing.
  • the fixing module includes claws and a chuck, the chuck is fixedly arranged on the side of the protective housing, and the claws are arranged on the chuck.
  • the present invention provides a portable high-pressure water jet rail grinding incident angle calibration method, using accelerometers and gyroscopes to collect raw acceleration data and raw angular velocity data, and combining the sensitivity of the two sensors to obtain triaxial acceleration data and triaxial angular velocity data, and then obtain the inertial force vector of the accelerometer by definition, and obtain the first set of angle data between the vector and each axis.
  • the three-axis angular velocity data obtained by the gyroscope is used as the second set of included angle data, and the two sets of data are used to obtain accurate values using the first-order complementary algorithm, that is, the two sets of data are assigned different weights for correction, and the incident angle is finally determined.
  • the disadvantages of the sensors complement each other, which solves the problem of errors caused by mechanical vibration and noise when the water jet rail grinding incident angle is calibrated.
  • the present invention provides a portable high-pressure water jet rail grinding incident angle calibration system, which includes a protective housing, a display screen, claws, and a chuck, and integrates a sensor unit and a control unit into the protective housing to prevent damage to the calibration system during grinding , and fix the display screen on the surface of the protective shell, display the final calculated data on the display screen, which is convenient for the operator to view the data in real time, and the protective shell can be quickly positioned by the chuck on the nozzle, and then the Jaw locking increases the portability of the calibration system.
  • Fig. 1 is a structural schematic diagram of a portable high-pressure water jet rail grinding incident angle calibration system according to an embodiment of the present invention
  • Fig. 2 is a pin connection diagram of a sensor unit and a control unit according to an embodiment of the present invention
  • Fig. 3 is a diagram of a portable high-pressure water jet rail grinding incident angle calibration method according to an embodiment of the present invention
  • Fig. 4 is a signal transmission diagram of a portable high-pressure water jet rail grinding incident angle calibration system according to an embodiment of the present invention.
  • the present invention provides a portable high-pressure water jet rail grinding incident angle calibration system, including a sensor unit 11 for collecting raw angular velocity data and raw acceleration data;
  • the unit 12 is used to calculate the first group of incident angles, the second group of incident angles and the determined values of the incident angles;
  • the display screen 2 is used to display the final results obtained by the data calculation module; and the protective shell 1 and the jaws 3 and the chuck 4, wherein the protective shell 1 is a metal shell, in which a sensor unit 11 and a control unit 12 are arranged, both of which are powered by an external power supply, and the sensor unit 11 is equipped with various sensors for collecting information such as the inclination angle of the nozzle , and then transmit the information to the control unit 12, a display screen 2 is fixedly installed on the surface of the protective shell 1, and the display screen 2 communicates with the control unit 12, and the screen is used to display the incident angle of the high-pressure water jet in the process of processing, and then
  • the fixed module includes a chuck 4 and a claw 3.
  • a through hole is set in the center of the chuck 4 for the nozzle to penetrate.
  • Claw 3. By adjusting the clamping or loosening of the claw 3, the upper and lower positions of the chuck 4 can be adjusted, thereby adjusting the position of the protective shell 1.
  • the entire calibration system is easy to disassemble and install, and it solves the problem that the calibration of the incident angle of the water jet nozzle is easily affected by vibration. Influence and use are not convenient enough.
  • the sensor unit 11 integrates a three-axis gyroscope, a three-axis accelerometer and an attitude solver.
  • the sensor unit 11 adopts the MPU-6050 module, and the gyroscope has the following four Magnification: ⁇ 250°/s, ⁇ 500°/s, ⁇ 1000°/s, ⁇ 2000°/s, the accelerometer takes the multiple of the acceleration of gravity as the unit, and there are four magnifications: ⁇ 2g, ⁇ 4g, ⁇ 8g , ⁇ 16g, the gyroscope and the accelerometer transmit the collected data to the control unit 12 through I2C reading.
  • the control unit 12 preferably adopts an STM32 microcontroller based on the Cortex-M3 core, which is a 32-bit microprocessor with oil quantity pin compatibility and peripheral compatibility
  • the system clock defaults to 8MHz. Generally, 72MHz is used as the system clock after frequency multiplication.
  • the collected data is processed by the controller unit, and the actual incident angle of the water jet is obtained through calculation.
  • the control unit 12 then transmits the angle data to the display screen. 2.
  • the display screen 2 is used to display the incident angle of the high-pressure water jet in the processing process in real time.
  • an organic light-emitting diode (OLED) display screen is used.
  • OLED organic light-emitting diode
  • the present invention provides a portable high-pressure water jet rail grinding incident angle calibration method, which specifically includes:
  • the chuck 4 is set on the nozzle 5, and after the position is adjusted, the rotating claw 3 is stuck on the nozzle 5, thereby fixing the calibration system, using I2C serial communication to the interface of the system control unit 12, and reading through I2C
  • the six data measured by the sensor unit 11 are the original angular velocity data A x , A y , A z measured by the three-axis gyroscope, and the original acceleration data ⁇ x , ⁇ y , ⁇ measured by the three-axis accelerometer.
  • the coordinate system of the sensor unit 11 is consistent with the direction of the workpiece coordinate system before measurement, so the incident angle can be determined by including the included angle with the X and Y axis directions of the workpiece coordinate system, that is, the pitch angle ⁇ and roll angle ⁇ in the attitude angle;
  • Acceleration data acceleration raw data / accelerometer sensitivity
  • Angular velocity data raw angular velocity data / gyroscope sensitivity
  • the data obtained by the accelerometer and gyroscope can define an inertial force vector whose direction is consistent with the direction of the acceleration vector R ⁇ .
  • the direction establishes a coordinate system for the Z axis, and ⁇ and ⁇ are equal to and From the ⁇ x, y, z obtained from S200, it can be seen that the acceleration data of each axis are R x , R y , R z respectively, and satisfy:
  • R ⁇ 2 R x 2 +R y 2 +R z 2 ;
  • ⁇ ⁇ 2 ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ;
  • the angle between the acceleration vector Ra and the X and Y axes can be obtained by the following formula:
  • the data measured by the accelerometer can preliminarily obtain the inclination angle of each axis, but the data obtained from this is not accurate enough.
  • the inertial force measured by the accelerometer is only caused by gravity, but in actual operation, Due to the movement of the water jet nozzle, the accelerometer will also be affected by other forces.
  • the accelerometer needs to be adjusted.
  • the value collected by the accelerometer has no cumulative error, and the inclination angle can be calculated.
  • the water jet nozzle will produce acceleration during the water jet processing operation.
  • the abrasive water jet is ejected from the nozzle at high speed, and the vibration of the workpiece will also produce acceleration. Therefore, it cannot
  • the data of the accelerometer is directly used as the final data, while the gyroscope is less affected by external vibrations and has reliable accuracy.
  • the value of the inclination can be calculated by integrating the angular velocity ⁇ , but at the same time, cumulative errors will be generated in the process. Therefore, the accelerometer or gyroscope cannot be used alone to obtain the final result of the inclination angle;
  • the formula for calculating the inclination obtained by the gyroscope is:
  • n is the sampling frequency
  • t is the sampling time
  • ⁇ i is the real-time angular velocity
  • the first-order complementary algorithm is used for the two sets of data obtained by the accelerometer and gyroscope to obtain accurate values, that is, different weights are assigned to the values calculated by the accelerometer and gyroscope, and corrections are made to finally determine the angle of incidence value;
  • the incident angle is finally determined by the angle between the X and Y axis directions of the workpiece coordinate system, that is, the pitch angle ⁇ and the roll angle ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种便携式高压水射流钢轨打磨入射角标定方法及系统。该标定方法为先采用加速度计和陀螺仪采集加速度和角速度的原始数据,结合加速度计和陀螺仪这两种传感器的灵敏度求得三轴加速度数据和三轴角速度数据,然后通过定义计算出加速度计的惯性力矢量,并得出该矢量与各轴之间的第一组夹角数据,将受外界振动影响较小的陀螺仪得到的三轴角速度数据作为第二组夹角数据,将该两组数据采用一阶互补算法得到精确值从而确定最终入射角度,该标定方法将加速度计和陀螺仪劣势互补,解决了水射流钢轨打磨入射角标定时机械振动和噪声带来误差的问题。便携式高压水射流钢轨打磨入射角标定系统则包括采集加速度和角速度原始数据的传感器单元(11)、计算得出第一组入射角度、第二组入射角度和最终入射角度的控制单元(12)和显示屏(2),控制单元(12)分别与传感器单元(11)和显示屏(2)信号连通。

Description

一种便携式高压水射流钢轨打磨入射角标定方法及系统 技术领域
本发明涉及高压水射流打磨技术领域,更具体地,涉及一种便携式高压水射流钢轨打磨入射角标定方法及系统。
背景技术
随着我国铁路交通飞速发展,铁路的里程、范围高速增长,同时列车的运行速度、载重也有很大的提升,这些情况给钢轨带来了很大的压力,由此引发的钢轨疲劳、磨损等问题越来越突出。现有的钢轨修复技术主要有钢轨打磨车修复和钢轨铣磨车修复两种,这两种作业方式环境比较恶劣,作业过程中产生的金属火花、粉尘和噪音使钢轨维护作业的费用高,同时这两种作业方式通用性较差,我国目前并不具有自主开发钢轨打磨车和铣磨车的技术,在已有的技术方案之外,磨料高压水射流加工技术也可以应用于钢轨的打磨和修复,在高压水射流对钢轨进行打磨时,需要一种装置对高压水射流喷嘴的入射角度进行标定。
现有技术存在的缺点:目前,针对水射流领域的角度标定系统较少,已有的倾角仪设备大多适合在机械振动和噪声不大的环境下工作,在受机械振动较大时容易影响测算数据,并且大多数角度标定系统采用激光技术、红外测距技术,成本高昂。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供一种便携式高压水射流钢轨打磨入射角标定方法,本方法采用加速度计和陀螺仪来采集加速度原始数据和角速度原始数据,结合两种传感器的灵敏度求得三轴加速度数据和三轴角速度数据,然后通过定义求得加速度计的惯性力矢量,求出 该矢量与各轴之间的第一组夹角数据,为降低打磨作业中机械振动和噪声的影响,将受外界振动影响较小的陀螺仪得到的三轴角速度数据作为第二组夹角数据,将两组数据采用一阶互补算法得到精确值,即给两组数据赋值不同的权重进行修正,最终确定入射角度,将两种传感器的劣势互补,解决了水射流钢轨打磨入射角标定时易受机械振动和噪声影响带来误差的问题。
为了实现上述目的,按照本发明的一个方面,提供一种便携式高压水射流钢轨打磨入射角标定方法,包括以下步骤:
S100,固定标定系统并采集原始数据,测得角速度原始数据A x、A y、A z,以及加速度原始数据Ω x、Ω y、Ω z
S200,计算加速度数据和陀螺仪数据,S100中的原始数据,以及三轴加速度计和三轴陀螺仪的灵敏度,由以下公式计算得到加速度数据α x,y,z和角速度数据ω x,y,z
α x,y,zx,y,z)=A x,y,zx,y,z)/Sensitivity α(ω)
S300,解算得到第一组入射角度,水射流的入射角度即喷嘴相对于工件表面的倾斜度,以垂直于工件表面的方向为Z轴建立坐标系,θ和Φ分别等于
Figure PCTCN2022131419-appb-000001
Figure PCTCN2022131419-appb-000002
由S200可知各轴加速度数据分别为R x、R y、R z,且满足:
R α 2=R x 2+R y 2+R z 2
α α 2=α x 2y 2z 2
然后通过如下的公式得到加速度矢量R α与X、Y轴之间的夹角:
Figure PCTCN2022131419-appb-000003
Figure PCTCN2022131419-appb-000004
S400,解算得到第二组入射角度,由角速度数据得到的倾角计算公式为:α x,y=∫ω x,ydt;
S500,通过融合算法得到入射角度,对S300和S400得到的数据,给 加速度计和陀螺仪计算得到的值赋以不同的权重,最终通过以下计算式得到入射角度的确定值:
Figure PCTCN2022131419-appb-000005
Figure PCTCN2022131419-appb-000006
高压水射流钢轨打磨入射角度最终通过与工件坐标系X,Y轴方向夹角,即俯仰角θ和滚转角Φ完成标定。
按照本发明的另一个方面,提供一种便携式高压水射流钢轨打磨入射角标定系统,包括:
传感器单元,用于采集角速度原始数据和加速度原始数据;
控制单元,用于解算得到第一组入射角度、第二组入射角度和入射角的确定值;
显示屏,用于显示数据解算模块得到的最终结果;
所述传感器单元和所述控制单元信号连通,所述控制单元与所述显示屏信号连通。
进一步地,包括防护壳体,所述传感器单元和所述控制单元固定于所述防护壳体内,所述显示屏固定安装于所述防护壳体表面。
进一步地,所述固定模块包括卡爪和卡盘,所述卡盘固定设于所述防护壳体的侧部,所述卡爪设于所述卡盘上。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1.本发明提供一种便携式高压水射流钢轨打磨入射角标定方法,采用加速度计和陀螺仪来采集加速度原始数据和角速度原始数据,结合两种传感器的灵敏度求得三轴加速度数据和三轴角速度数据,然后通过定义求得加速度计的惯性力矢量,求出该矢量与各轴之间的第一组夹角数据,为降低打磨作业中机械振动和噪声的影响,将受外界振动影响较小的陀螺仪得到的三轴角速度数据作为第二组夹角数据,将两组数据采用一阶互补算法 得到精确值,即给两组数据赋值不同的权重进行修正,最终确定入射角度,将两种传感器的劣势互补,解决了水射流钢轨打磨入射角标定时易受机械振动和噪声影响带来误差的问题。
2.本发明提供一种便携式高压水射流钢轨打磨入射角标定系统,包括防护壳体、显示屏、卡爪、卡盘,将传感器单元和控制单元集成于防护壳体内,防止打磨时损伤标定系统,并在防护壳体表面固定显示屏,将最终解算得到的数据显示在显示屏上,方便操作人员实时查看数据,而通过卡盘套在喷嘴上,可以将防护壳体快速定位,然后将卡爪锁定,增加了标定系统的使用便携性。
附图说明
图1是本发明实施例便携式高压水射流钢轨打磨入射角标定系统的结构示意图一;
图2是本发明实施例传感器单元与控制单元的引脚连接图;
图3是本发明实施例便携式高压水射流钢轨打磨入射角标定方法图;
图4是本发明实施例便携式高压水射流钢轨打磨入射角标定系统的信号传输图。
在所有附图中,同样的附图标记表示相同的技术特征,具体为:1-防护壳体、2-显示屏、3-卡爪、4-卡盘、5-喷嘴、11-传感器单元、12-控制单元。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1、图2和图4所示,按照本发明的一个方面,本发明提供便携式 高压水射流钢轨打磨入射角标定系统,包括传感器单元11,用于采集角速度原始数据和加速度原始数据;控制单元12,用于解算得到第一组入射角度、第二组入射角度和入射角的确定值;显示屏2,用于显示数据解算模块得到的最终结果;以及防护壳体1、卡爪3和卡盘4,其中,防护壳体1为金属外壳,其内设置传感器单元11和控制单元12,两者通过外接电源供电,传感器单元11内设多种传感器用于采集喷嘴的倾角等信息,然后将该信息传送至控制单元12,在防护壳体1表面固定安装有显示屏2,显示屏2与控制单元12信号连通,该屏幕用于显示加工过程中高压水射流的入射角度,既而保证加工的精度,在防护壳体1的侧面还固定有固定模块,固定模块包括卡盘4和卡爪3,卡盘4中心设置通孔供喷嘴穿入,在卡盘4上还设置有卡爪3,通过调整卡爪3夹紧或松弛,可以调整卡盘4的上下位置,从而调整防护壳体1的位置,整个标定系统便于拆卸和安装,解决了水射流喷嘴入射角标定容易受振动影响和使用不够便捷的问题。
进一步地,如图1所示,所述传感器单元11集成了三轴陀螺仪、三轴加速度计以及姿态解算器,优选地,传感器单元11采用MPU-6050模块,陀螺仪的有以下4个倍率:±250°/s、±500°/s、±1000°/s、±2000°/s,加速度计以重力加速度的倍数为单位,有一下4个倍率:±2g、±4g、±8g、±16g,陀螺仪和加速度计将采集到的数据通过I2C读取传输给控制单元12。
进一步地,如图1所示,所述控制单元12优选采用基于Cortex-M3内核的STM32微控制器,该控制器是一种具有油量引脚兼容性和外设兼容性的32位微处理器,系统时钟默认采用8MHz,一般经过倍频后采用72MHz作为系统时钟,通过控制器单元处理采集到的数据,解算得到水射流实际入射角度,控制单元12再将该角度数据传输至显示屏2。进一步地,显示屏2用于实时显示加工过程中高压水射流的入射角度,优选地,采用有机发光二极管(OLED)显示屏,相较于传统的液晶显示,采用OLED单元结构简单 轻便,相应迅速,还具有良好的可视角度。
如图1-图3所示,按照本发明的另一个方面,本发明提供便携式高压水射流钢轨打磨入射角标定方法,具体包括:
S100,固定标定系统并采集原始数据;
具体地,将卡盘4套装于喷嘴5上,调整好位置后转动卡爪3卡设在喷嘴5上,从而将标定系统固定,使用I2C串行通信至系统控制单元12接口,通过I2C读取到传感器单元11测得的六个数据,分别是三轴陀螺仪测得的角速度原始数据A x、A y、A z,以及三轴加速度计测得的加速度原始数据Ω x、Ω y、Ω z,测量之前传感器单元11坐标系与工件坐标系方向保持一致,因此入射角度可用包括与工件坐标系X,Y轴方向的夹角,即姿态角中的俯仰角θ和滚转角Φ来确定;
S200,计算加速度数据和陀螺仪数据;
具体地,由于MPU-6050的加速计和陀螺仪都采用16位二进制补码来分别储存最近的X、Y、Z轴的加速度原始数据和角速度原始数据,陀螺仪的有以下4个倍率:±250°/s、±500°/s、±1000°/s、±2000°/s,加速度计以重力加速度的倍数为单位,有一下4个倍率:±2g、±4g、±8g、±16g,MPU6050的初始化设置的加速度计满量程范围为±2g,陀螺仪满量程范围为±2000°/s,以上的六个分量都是16位的二进制补码值,其输出范围为-32768至32768,加速度计的灵敏度为32767/2=16384,陀螺仪的灵敏度为32767/2000=16.4,具体计算公式为:α x,y,zx,y,z)=A x,y,zx,y,z)/Sensitivity α(ω),α x,y,z为加速度数据,ω x,y,z为角速度数据,即:
加速度数据=加速度原始数据/加速度计灵敏度;
角速度数据=角速度原始数据/陀螺仪灵敏度;
S300,解算得到第一组入射角度;
具体地,由加速度计和陀螺仪得到的数据可以定义一个惯性力矢量, 其方向与加速度矢量R α方向一致,水射流的入射角度即喷嘴相对于工件表面的倾斜度,以垂直于工件表面的方向为Z轴建立坐标系,θ和Φ分别等于
Figure PCTCN2022131419-appb-000007
Figure PCTCN2022131419-appb-000008
由S200得出的α x,y,z可知,各轴加速度数据分别为R x、R y、R z,且满足:
R α 2=R x 2+R y 2+R z 2
α α 2=α x 2y 2z 2
可以通过如下的公式得到加速度矢量R a与X、Y轴之间的夹角:
Figure PCTCN2022131419-appb-000009
Figure PCTCN2022131419-appb-000010
由加速度计测得的数据可以初步得到了各轴的倾斜角度,但是仅由此得到的数据是不够准确的,理想状态下,加速度计测量的惯性力只由引力引起,但在实际作业中,由于水射流喷嘴的运动,加速度计还会受其他的力作用,除此以外,高压水射流进行钢轨打磨作业时,产生的机械振动和噪声也会影响数据的准确性,因此,需要对加速度计和陀螺仪采集到的数据进行综合分析;
加速度计采集到的数值没有累积误差,可以计算得到倾角,但是在水射流加工作业时水射流喷嘴会产生加速度,磨料水射流从喷嘴中高速喷出,工件的振动也会产生加速度等,因此不能直接将加速度计的数据作为最终数据,而陀螺仪受外界的振动影响较小,具有可靠的精度,通过对角速度ω积分可以计算得到倾角的数值,但是同时会在这个过程中产生累积误差。因此,不能单独使用加速度计或者陀螺仪来得到倾角的最终结果;
S400,解算得到第二组入射角度;
具体地,由陀螺仪得到的倾角计算公式为:
α x,y=∫ω x,ydt;
由于读取数据的采样频率是有限的,因此上式实际上可写成:
Figure PCTCN2022131419-appb-000011
其中n为采样次数,t为采样时间,ω i为实时角速度;
S500,通过融合算法得到入射角度;
具体地,对加速度计和陀螺仪得到的两组数据采用一阶互补算法来得到精确值,即给加速度计和陀螺仪计算得到的值赋以不同的权重,进行修正,最终得到入射角度的确定值;
计算公式如下:
Figure PCTCN2022131419-appb-000012
Figure PCTCN2022131419-appb-000013
因此,入射角度最终通过与工件坐标系X,Y轴方向夹角,即俯仰角θ和滚转角Φ完成确定。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种便携式高压水射流钢轨打磨入射角标定方法,包括以下步骤:
    S100,固定标定系统并采集原始数据,测得角速度原始数据A x、A y、A z,以及加速度原始数据Ω x、Ω y、Ω z
    S200,计算加速度数据和陀螺仪数据,S100中的原始数据,以及三轴加速度计和三轴陀螺仪的灵敏度,由以下公式计算得到加速度数据α x,y,z和角速度数据ω x,y,z
    α x,y,zx,y,z)=A x,y,zx,y,z)/Sensitivity α(ω)
    S300,解算得到第一组入射角度,水射流的入射角度即喷嘴相对于工件表面的倾斜度,以垂直于工件表面的方向为Z轴建立坐标系,θ和Φ分别等于
    Figure PCTCN2022131419-appb-100001
    Figure PCTCN2022131419-appb-100002
    由S200可知各轴加速度数据分别为R x、R y、R z,且满足:
    R α 2=R x 2+R y 2+R z 2
    α α 2=α x 2y 2z 2
    然后通过如下的公式得到加速度矢量R α与X、Y轴之间的夹角:
    Figure PCTCN2022131419-appb-100003
    Figure PCTCN2022131419-appb-100004
    S400,解算得到第二组入射角度,由角速度数据得到的倾角计算公式为:α x,y=∫ω x,ydt;
    S500,通过融合算法得到入射角度,对S300和S400得到的数据,给加速度计和陀螺仪计算得到的值赋以不同的权重,最终通过以下计算式得到入射角度的确定值:
    Figure PCTCN2022131419-appb-100005
    Figure PCTCN2022131419-appb-100006
    高压水射流钢轨打磨入射角度最终通过与工件坐标系X,Y轴方向夹角,即俯仰角θ和滚转角Φ完成标定。
  2. 根据权利要求1所述的一种便携式高压水射流钢轨打磨入射角标定方法,其特征在于,所述S100包括:固定三轴加速度计和三轴陀螺仪,通过三轴陀螺仪和通过三轴加速度分别测得角速度原始数据和加速度原始数据。
  3. 根据权利要求2所述的一种便携式高压水射流钢轨打磨入射角标定方法,其特征在于,所述三轴加速度计和所述三轴陀螺仪的坐标系与工件坐标系方向相同。
  4. 根据权利要求1所述的一种便携式高压水射流钢轨打磨入射角标定方法,其特征在于,所述S300包括:加速度数据和角速度数据可以定义一个惯性力矢量,其方向与加速度矢量R α方向一致。
  5. 根据权利要求1所述的一种便携式高压水射流钢轨打磨入射角标定方法,其特征在于,所述S500包括:
    读取数据的采样频率是有限的,α x,y=∫ω x,ydt转化为以下公式:
    Figure PCTCN2022131419-appb-100007
    其中n为采样次数,t为采样时间,ω i为实时角速度。
  6. 一种便携式高压水射流钢轨打磨入射角标定系统,其特征在于,包括:传感器单元(11),用于采集角速度原始数据和加速度原始数据;
    控制单元(12),用于解算得到第一组入射角度、第二组入射角度和入射角的确定值;
    显示屏(2),用于显示数据解算模块得到的最终结果;
    所述传感器单元(11)和所述控制单元(12)信号连通,所述控制单元(12)与所述显示屏(2)信号连通。
  7. 根据权利要求6所述的一种便携式高压水射流钢轨打磨入射角标定系统,其特征在于,包括防护壳体(1),所述传感器单元(11)和所述控 制单元(12)固定于所述防护壳体(1)内,所述显示屏(2)固定安装于所述防护壳体(1)表面。
  8. 根据权利要求7所述的一种便携式高压水射流钢轨打磨入射角标定系统,其特征在于,所述固定模块包括卡爪(3)和卡盘(4),所述卡盘(4)固定设于所述防护壳体(1)的侧部,所述卡爪(3)设于所述卡盘(4)上。
PCT/CN2022/131419 2021-12-31 2022-11-11 一种便携式高压水射流钢轨打磨入射角标定方法及系统 WO2023124577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111670640.XA CN114395953B (zh) 2021-12-31 2021-12-31 一种便携式高压水射流钢轨打磨入射角标定方法及系统
CN202111670640.X 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124577A1 true WO2023124577A1 (zh) 2023-07-06

Family

ID=81229458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131419 WO2023124577A1 (zh) 2021-12-31 2022-11-11 一种便携式高压水射流钢轨打磨入射角标定方法及系统

Country Status (2)

Country Link
CN (1) CN114395953B (zh)
WO (1) WO2023124577A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395953B (zh) * 2021-12-31 2023-05-09 武汉大学 一种便携式高压水射流钢轨打磨入射角标定方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1313192A (en) * 1969-12-09 1973-04-11 Honeywell Gmbh Stabilizing vehicles against centrifugal force
US6408675B1 (en) * 1999-01-19 2002-06-25 Akebono Research & Development Centre Ltd. Eccentric error corrector and method of eccentric error correction for acceleration sensor in acceleration generating apparatus
EP1367175A2 (en) * 2002-05-30 2003-12-03 Balfour Beatty plc Rail grinding apparatus and method
CN107543546A (zh) * 2016-06-28 2018-01-05 沈阳新松机器人自动化股份有限公司 一种六轴运动传感器的姿态解算方法及装置
WO2018215362A1 (de) * 2017-05-26 2018-11-29 Robel Bahnbaumaschinen Gmbh Schienen-schleifmaschine und schleifverfahren
CN109540135A (zh) * 2018-11-09 2019-03-29 华南农业大学 水田拖拉机位姿检测和偏航角提取的方法及装置
CN109789526A (zh) * 2016-09-19 2019-05-21 苏州宝时得电动工具有限公司 手持式工具系统
CN110672017A (zh) * 2019-10-11 2020-01-10 大连海事大学 一种激光位移传感器振动补偿平台
CN212553400U (zh) * 2020-08-07 2021-02-19 武汉大学 一种轨道超高压磨料射流与纯水射流联合打磨装置
CN114395953A (zh) * 2021-12-31 2022-04-26 武汉大学 一种便携式高压水射流钢轨打磨入射角标定方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111648176A (zh) * 2020-06-10 2020-09-11 北京同和时代轨道科技有限公司 曲面打磨机及使用其进行廓形打磨的打磨工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1313192A (en) * 1969-12-09 1973-04-11 Honeywell Gmbh Stabilizing vehicles against centrifugal force
US6408675B1 (en) * 1999-01-19 2002-06-25 Akebono Research & Development Centre Ltd. Eccentric error corrector and method of eccentric error correction for acceleration sensor in acceleration generating apparatus
EP1367175A2 (en) * 2002-05-30 2003-12-03 Balfour Beatty plc Rail grinding apparatus and method
CN107543546A (zh) * 2016-06-28 2018-01-05 沈阳新松机器人自动化股份有限公司 一种六轴运动传感器的姿态解算方法及装置
CN109789526A (zh) * 2016-09-19 2019-05-21 苏州宝时得电动工具有限公司 手持式工具系统
WO2018215362A1 (de) * 2017-05-26 2018-11-29 Robel Bahnbaumaschinen Gmbh Schienen-schleifmaschine und schleifverfahren
CN109540135A (zh) * 2018-11-09 2019-03-29 华南农业大学 水田拖拉机位姿检测和偏航角提取的方法及装置
CN110672017A (zh) * 2019-10-11 2020-01-10 大连海事大学 一种激光位移传感器振动补偿平台
CN212553400U (zh) * 2020-08-07 2021-02-19 武汉大学 一种轨道超高压磨料射流与纯水射流联合打磨装置
CN114395953A (zh) * 2021-12-31 2022-04-26 武汉大学 一种便携式高压水射流钢轨打磨入射角标定方法及系统

Also Published As

Publication number Publication date
CN114395953A (zh) 2022-04-26
CN114395953B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2023124577A1 (zh) 一种便携式高压水射流钢轨打磨入射角标定方法及系统
US20180058849A1 (en) Near-bit dynamic well deviation angle measurement method and apparatus
CN111076880A (zh) 一种考虑相机姿态变化的大跨桥梁多点挠度测量方法
JP2008002992A (ja) 姿勢角検出装置と姿勢角検出方法
CN103364171A (zh) 一种高速风洞模型姿态视频测量系统及测量方法
WO2019007259A1 (zh) 一种悬架特性试验车轮六自由度位移测量装置及方法
CN209961329U (zh) 用于道路情况分析的振动检测系统
CN101608920A (zh) 一种组合式空间位姿精密动态测量装置及方法
CN103837100A (zh) 激光跟踪仪在大型球磨机中空轴同轴度测量中的应用
CN112484722B (zh) 结合惯性导航系统的视觉传感器全局定位方法
CN115597535B (zh) 基于惯性导航的高速磁悬浮轨道不平顺检测系统及方法
CN106290968A (zh) 一种大空间稳态流场三维测量系统及测量方法
EP2592379B1 (en) Method for determining the orientation of two shafts connected via two universal joints and a third shaft in the plane of the three shafts
CN109084807B (zh) 一种飞机攻角传感器校准器及水平校准方法
EP2592380A2 (en) Device and method for determining the orientation of two shafts connected via two universal joints and a third shaft with a pivot joint
CN202041184U (zh) 起重机结构安全的多参数检测装置
CN206020457U (zh) 一种基于惯性传感器的五孔探针
JP4333055B2 (ja) 変形計測システム及び方法
CN112539780A (zh) 一种建筑测量机器人
CN116398111A (zh) 一种面向地质勘测的岩土层钻进系统及方法
CN116448177A (zh) 转体桥转体施工监控系统及施工方法
CA2475295A1 (en) Method for dynamic measuring the position and the orientation of a wheel
CN107132377A (zh) 一种车辆加速度及所处坡度的测量装置与计算方法
KR101706370B1 (ko) 구조물 측정 시스템
JPH11295335A (ja) 移動体の位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE