WO2023124516A1 - 内窥镜摄像头和内窥镜摄像系统 - Google Patents

内窥镜摄像头和内窥镜摄像系统 Download PDF

Info

Publication number
WO2023124516A1
WO2023124516A1 PCT/CN2022/129362 CN2022129362W WO2023124516A1 WO 2023124516 A1 WO2023124516 A1 WO 2023124516A1 CN 2022129362 W CN2022129362 W CN 2022129362W WO 2023124516 A1 WO2023124516 A1 WO 2023124516A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging sensor
light
optical path
splitting
assembly
Prior art date
Application number
PCT/CN2022/129362
Other languages
English (en)
French (fr)
Inventor
刘闯
石强勇
胡莲
袁小文
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202280072057.5A priority Critical patent/CN118159180A/zh
Publication of WO2023124516A1 publication Critical patent/WO2023124516A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances

Definitions

  • the invention relates to the technical field of medical instruments, in particular to an endoscope camera head and an endoscope camera system.
  • the endoscope camera system has both the development capabilities of the first imaging light and the second imaging light mode.
  • it can realize the equipment integration function, that is, it can meet the requirements of the traditional first imaging light endoscope.
  • Clinical needs can also meet the needs of second imaging light field of view surgery that requires high lesion identification capabilities, effectively reduce the equipment configuration of the operating room and improve the hospital's departmental diagnosis and treatment capabilities.
  • the second imaging light camera has the imaging capabilities of the first imaging light and the second imaging light at the same time, this requires that the camera must contain two imaging sensors, the first imaging light and the second imaging light, and divide the common optical path into two Two light-splitting light paths, the two imaging sensors of the first imaging light and the second imaging light are respectively located on the two light-splitting light paths.
  • the existing endoscopic camera products on the market have complex optical path structure installation, and the installation process often needs to be adjusted, and the installation efficiency is low.
  • an endoscope camera head including a common optical path module and a split optical path module;
  • the public optical path module includes a public optical path mounting seat and a public optical path assembly, the public optical path mounting seat has a public optical path channel, the public optical path assembly is arranged in the public optical path channel, and the public optical path channel includes an incident end and an outgoing end;
  • the light splitting light path module includes a light splitting light path mount, a light splitting light path assembly and an imaging sensor assembly, the light splitting light path mounting seat has a light splitting light path channel, the light splitting light path channel includes an incident end and at least two output ends, the light splitting light path The incident end of the channel is docked with the output end of the common light path channel, and the beam splitting light path assembly includes a beam splitter, the beam splitter is located in the beam splitting light path channel, and the beam splitter is used to at least divide the incoming common light into different types
  • the first imaging sensor assembly is used to obtain the first imaging light to generate a first image signal
  • the second imaging sensor assembly is used to obtain the second imaging light to generate a first image signal.
  • a second image signal is generated.
  • the public optical path mounting seat is provided with an integrally processed first mounting hole, the first mounting hole forms the public optical path channel, and the public optical path assembly is mounted on the integrally processed and formed inside the mounting hole.
  • the common optical path mounting seat and the split optical path mounting seat are arranged to be docked, so that the split optical path channel is docked with the common optical path channel.
  • the common optical path assembly includes a fixed lens group and a focusing lens group, the fixed lens group is fixedly installed in the common optical path channel, and the focusing lens group is movable along the common optical path channel.
  • the fixed lens group is located at the incident end of the common optical path channel, and the focusing lens group is located at the outgoing end of the common optical path channel.
  • the common optical path assembly further includes a protective window, and the protective window is installed at the incident end of the common optical path channel.
  • the common optical path assembly further includes a focusing lens mounting seat, the focusing lens mounting seat is installed in the common optical path movable along the common optical path channel, and the focusing lens group is installed in the common optical path channel. on the focusing lens mount described above.
  • the focus lens mount is disposed in the first mount hole of the common optical path mount.
  • the light-splitting optical channel includes a light-splitting area and at least a first light-splitting channel and a second light-splitting channel, the light-splitting area has one entrance and at least two exits, and the entrance of the light-splitting area is the The incident end of the light-splitting light path channel, at least two of the exit ports of the light-splitting area are respectively connected to at least the first light-splitting channel and the second light-splitting channel, and the first light-splitting channel and the second light-splitting channel are far away from the The exit end of the light splitting area is the exit end of the light splitting light channel.
  • the beam splitter is arranged in the beam splitting area, the beam splitter has a first exit surface and a second exit surface, and the first exit surface is used to emit the first imaging light, so The second exit surface is used to emit the second imaging light, the first exit surface is connected to the first light splitting channel, and the second exit surface is connected to the second light splitting channel.
  • the first imaging sensor component includes a first imaging sensor mounting component and a first imaging sensor, and the first imaging sensor is mounted on the beam splitting optical path mounting base through the first imaging sensor mounting component , the first imaging sensor is located at the exit end of the first light splitting channel.
  • the first imaging sensor installation assembly and/or the first imaging sensor are provided with a first radial adjustment installation part, and the first radial adjustment installation part is used to adjust and install the first imaging sensor. Radial position of an imaging sensor.
  • the first imaging sensor mounting assembly includes a first imaging sensor bracket, and the first imaging sensor bracket is installed on the beam splitting light path mount and is located at the exit end of the first beam splitting channel, The first imaging sensor is mounted on the first imaging sensor bracket.
  • the first imaging sensor bracket is connected to the beam splitting optical path mounting seat through a first axial adjustment mounting part, and the first axial adjustment mounting part is used to adjust the axial direction of the installation of the first imaging sensor. Location.
  • the first imaging sensor bracket is connected to the beam splitting optical path mounting seat through at least three first locking pieces, and each of the first locking pieces corresponds to one of the first axial adjustment installations.
  • the first locking member is used to fix the axial position and inclination angle of the first imaging sensor.
  • the second imaging sensor assembly includes a second imaging sensor mounting assembly and a second imaging sensor, and the second imaging sensor is mounted on the beam splitting optical path mounting base through the second imaging sensor mounting assembly , the second imaging sensor is located at the exit end of the second light splitting channel.
  • the second imaging sensor mounting assembly and/or the second imaging sensor is provided with a second radial mounting part, and the second radial mounting part is used to adjust and install the second imaging sensor.
  • the radial position of the sensor is provided with a second radial mounting part, and the second radial mounting part is used to adjust and install the second imaging sensor. The radial position of the sensor.
  • the second imaging sensor mounting assembly includes a second imaging sensor bracket, and the second imaging sensor bracket is installed on the light splitting light path mounting base and is located at the exit end of the second splitting light channel.
  • the second imaging sensor bracket is connected to the beam splitting optical path mounting seat through a second axial adjustment mounting part, and the second axial adjustment mounting part is used to adjust and install the second imaging sensor axial position.
  • the beam splitting optical path assembly further includes a zoom lens group; the zoom lens group is arranged in the first beam splitting channel or the second beam splitting channel, and the zoom lens group is used to reduce or enlarge the The imaging frame of the first imaging light or the second imaging light.
  • the first imaging light is white light
  • the second imaging light is fluorescence
  • an endoscope camera head including a common optical path module and a split optical path module;
  • the public optical path module includes a public optical path mounting seat and a public optical path assembly, the public optical path mounting seat is provided with an integrated first mounting hole, and the public optical path assembly is arranged in the first mounting hole;
  • the splitting optical path module includes a splitting optical path mounting base, a splitting optical path assembly and an imaging sensor assembly, the splitting optical path mounting base is provided with an integrated second mounting hole, and the splitting optical path assembly is arranged in the second mounting hole, The first installation hole and the second installation hole are butted, and the light splitting light path assembly is used to at least divide the incident common light into different types of first imaging light and second imaging light;
  • the imaging sensor assembly at least includes A first imaging sensor assembly and a second imaging sensor assembly, the first imaging sensor assembly and the second imaging sensor assembly are arranged in the second mounting hole or docked with the second mounting hole, the first imaging sensor The component is used to acquire the first imaging light to generate a first image signal, and the second imaging sensor component is used to acquire the second imaging light to generate a second image signal.
  • the first imaging sensor component includes a first imaging sensor mounting component and a first imaging sensor, and the first imaging sensor is mounted on the beam splitting optical path mounting base through the first imaging sensor mounting component , the first imaging sensor is located at the exit end of the first installation hole.
  • the first imaging sensor installation assembly and/or the first imaging sensor are provided with a first radial adjustment installation part, and the first radial adjustment installation part is used to adjust and install the first imaging sensor. Radial position of an imaging sensor.
  • the second imaging sensor assembly includes a second imaging sensor mounting assembly and a second imaging sensor, and the second imaging sensor is mounted on the beam splitting optical path mounting base through the second imaging sensor mounting assembly , the second imaging sensor is located at the exit end of the second installation hole.
  • the second imaging sensor mounting assembly and/or the second imaging sensor is provided with a second radial mounting part, and the second radial mounting part is used to adjust and install the second imaging sensor.
  • the radial position of the sensor is provided with a second radial mounting part, and the second radial mounting part is used to adjust and install the second imaging sensor. The radial position of the sensor.
  • an endoscopic camera head including a beam splitting optical path module
  • the beam splitting light path module includes a light splitting light path mount, a light splitting light path assembly and an imaging sensor assembly;
  • the beam-splitting light path mounting base has a light-splitting light path channel, and the beam splitter is located in the light-splitting light path channel;
  • the light-splitting light path channel includes a light-splitting area and at least a first light-splitting channel and a second light-splitting channel;
  • the imaging sensor assembly includes at least a first imaging sensor assembly and a second imaging sensor assembly;
  • the first imaging sensor assembly includes a first imaging sensor installation assembly and a first imaging sensor, and the first imaging sensor is arranged at the exit end of the first light splitting channel through the first imaging sensor installation assembly;
  • An imaging sensor bracket is connected to the split optical path mounting seat through a first axial adjustment mounting part, and the first axial adjustment mounting part is used to adjust the axial position of the first imaging sensor;
  • the second imaging sensor assembly includes a second imaging sensor installation assembly and a second imaging sensor, and the second imaging sensor is arranged at the exit end of the second light splitting channel through the second imaging sensor installation assembly;
  • the second imaging sensor mounting assembly and/or the second imaging sensor is provided with a second radial mounting portion, and the second radial mounting portion is used for adjusting the radial position where the second imaging sensor is mounted.
  • the first imaging sensor mounting assembly includes a first imaging sensor bracket, and the first imaging sensor bracket is installed on the beam splitting light path mount and is located at the exit end of the first beam splitting channel, The first imaging sensor is mounted on the first imaging sensor bracket.
  • the first imaging sensor bracket is connected to the beam splitting optical path mounting seat through a first axial adjustment mounting part, and the first axial adjustment mounting part is used to adjust the axial direction of the installation of the first imaging sensor. Location.
  • the second imaging sensor assembly includes a second imaging sensor mounting assembly and a second imaging sensor, and the second imaging sensor is mounted on the beam splitting optical path mounting base through the second imaging sensor mounting assembly , the second imaging sensor is located at the exit end of the second light splitting channel.
  • the second imaging sensor mounting assembly and/or the second imaging sensor is provided with a second radial mounting part, and the second radial mounting part is used to adjust and install the second imaging sensor.
  • the radial position of the sensor is provided with a second radial mounting part, and the second radial mounting part is used to adjust and install the second imaging sensor. The radial position of the sensor.
  • an endoscope camera system including a cable, a camera host, and the above-mentioned endoscope camera head, one end of the cable is connected to the endoscope camera head, and the other end of the cable One end is connected to the camera host, and the cable is used to transmit the image signal generated by the endoscope camera to the camera host.
  • the public optical path mounting seat since the public optical path assembly is installed in the public optical path channel of the public optical path mounting seat, the public optical path mounting seat has an integrated structure, and the public optical path mounting seat has an integrally formed
  • the first installation hole, the first installation hole forms a common optical path channel, which is beneficial to the axial processing of the common optical path channel, thereby making it easier to install the common optical path components with a higher coaxiality, reducing the difficulty of assembly, and improving the installation efficiency;
  • the imaging sensor assembly is mounted on the beam-splitting light path channel on the beam-splitting light path mounting base.
  • the beam-splitting light path mounting base has an integrated structure.
  • Fig. 1 is a sectional view of an embodiment endoscopic camera
  • Fig. 2 is a cross-sectional view of a common optical path module and a split optical path module of an embodiment
  • Fig. 3 is a cross-sectional view of a common optical path module of an embodiment
  • Fig. 4 is a cross-sectional view of a common optical path mounting seat of an embodiment
  • Fig. 5 is a cross-sectional view of an embodiment of an optical splitting optical path module
  • Fig. 6 is a cross-sectional view of an embodiment of an optical splitting light path mounting base
  • Fig. 7 is a schematic diagram of an exploded structure of an embodiment of an optical splitting optical path module
  • Fig. 8 is a schematic structural view of an embodiment of an endoscope camera system
  • 1-public optical path module 11-public optical path mount, 11a-mounting hole, 111-public optical path channel, 112-chute, 113-avoid opening, 12-public optical path assembly, 121-fixed lens group, 1211-fixed lens , 122-focusing lens group, 1221-focusing lens, 123-focusing lens mount, 1231-raised part, 124-first filter, 125-protective window;
  • 2-light splitting light path module 21-light splitting light path mount, 21a-second mounting hole, 211-light splitting light path channel, 2111-light splitting area, 2112-first light splitting light path channel, 2113-second light splitting light path channel,
  • 22-split common optical path assembly 221-beam splitter, 222-zoom lens group, 223-second filter;
  • 23-imaging sensor assembly 231-first imaging sensor assembly, 2311-first imaging sensor installation assembly, 2312-first imaging sensor, 2313-first radial adjustment installation part;
  • 10-light source 20-light guide, 30-endoscope, 40-endoscope camera, 50-camera host, 60-display, 71-cable, 72-video connection line, 100-site to be observed, 1000- Endoscopic camera system.
  • the existing endoscopic camera products mainly have three obvious shortcomings: (1) In order to meet the installation and positioning accuracy of the optical lens, due to the complexity of the optical path channel, such as the combination of multiple components, the lens installation process is often It needs to be installed and adjusted, and the installation efficiency is low; (2) The actual imaging area of the sensor is not in the center of the sensor, resulting in image eccentricity, which can only be solved by full-screen display and algorithm adjustment, sacrificing the imaging performance of the sensor; (3) White light The registration of the two sensors with the fluorescence is achieved through algorithm tuning, and the structural registration is not realized. In order to eliminate the impact caused by the positioning error of the mechanical installation, only a small part of the imaging area is used to ensure that the light always falls on the imaging surface of the sensor. Then, the position of the imaging area of the two sensors is corrected by an algorithm, which sacrifices the imaging performance of the sensor and increases the calculation amount of the system.
  • the common optical path and the split optical path are set as two modules, and the two modules are respectively installed on a mounting base, and the two mounting bases are respectively provided with a public optical path channel and a split optical path channel, and the common optical path channel and the split optical path channel are both
  • the coaxiality makes it easier for the optical lenses installed in the common optical path to improve the accuracy of the coaxiality, and at the same time can reduce the difficulty of installation, thereby improving the installation efficiency.
  • the first imaging sensor (white light sensor) and the second imaging sensor (fluorescent sensor) are installed on the light-splitting light path mounting seat through the mounting support, and the installation between the mounting support and the light-splitting light path mounting seat is adjustable.
  • the sensor and the second imaging sensor are also adjustablely installed with the mounting support, so that the first imaging sensor and the second imaging sensor can realize axial position adjustment, tilt angle adjustment, and radial position adjustment through the mounting support respectively, Furthermore, the problem of image eccentricity can be solved, and the imaging performance of the first imaging sensor and the second imaging sensor can be effectively utilized.
  • the first imaging sensor and the second imaging sensor are installed on the light-splitting light path mounting seat through the mounting support, wherein the installation between the mounting support and the light-splitting light path mounting seat is adjustable, and the first imaging sensor and the second imaging sensor are respectively connected to
  • the installation support is also adjustable, so that the first imaging sensor and the second imaging sensor can realize radial position adjustment and axial rotation adjustment respectively through the installation support.
  • first imaging sensor As a reference, first adjust the first imaging sensor The centering position of the imaging sensor, and then adjust the radial position and rotational position of the second imaging sensor, so that the first imaging light image (white light image) generated by the first imaging sensor and the second imaging light image generated by the second imaging sensor
  • the images are aligned, adapted and overlapped, so that the light falls as much as possible in the sensing areas of the first imaging sensor and the second imaging sensor, so that the imaging performance of the first imaging sensor and the second imaging sensor can be effectively utilized, and Reduce the computational throughput of the system.
  • the adjustments of the first imaging sensor and the second imaging sensor are all adjustments during the production and installation process, so that the first imaging sensor and the second imaging sensor can be installed in preset accurate positions.
  • the first imaging sensor and the second imaging sensor are fixed structures, and the positions cannot be adjusted arbitrarily; if the positions of the first imaging sensor and the second imaging sensor are moved due to long-term use or accidents, professional assemblers can
  • the installation positions of the first imaging sensor and the second imaging sensor are adjusted and maintained, and the maintained first imaging sensor and the second imaging sensor are also in a fixed state. That is, in the above solution, the position of the sensor can be adjusted during installation or maintenance, but cannot be adjusted during use.
  • Embodiments of the present application may include any one of the improvements above, or any combination of improvements.
  • connection and “connection” mentioned in this application all include direct and indirect connection (connection) unless otherwise specified.
  • the incident end is the end close to the patient, and the outgoing end is the end far away from the patient.
  • the adjustable installation in this article refers to the movable adjustment installation during the assembly process to eliminate installation errors.
  • the movable adjustment cannot be performed after the assembly is fixed, that is, the product cannot be adjusted after leaving the factory.
  • the docking or docking installation in this article means that two components are aligned on an optical axis to realize optical path propagation, and the two docking components are connected by direct contact, and the two docking components can also be spaced apart.
  • an endoscope camera head is provided.
  • the optical imaging unit in the endoscope camera head is divided into front and rear parts according to the optical structure.
  • the optical path module 2, the common optical path module 1 is located at the incident end, and the split optical path module 2 is located at the outgoing end, and the two are connected and installed.
  • the endoscope camera head also includes a handle 3, which has an accommodating cavity, and the common optical path module 1 and the split optical path module 2 are installed in the accommodating cavity of the handle 3, wherein the incident end of the common optical path module 1 protrudes from the handle 3. Accommodating cavity.
  • the front end of the handle 3 is connected to the mounting part 4 and the snap ring 5 in sequence, the mounting part 4 and the snap ring 5 have a cavity communicating with the handle 3, and the incident end of the common optical path module 1 is located in the mounting part 4 and the snap ring 5 inside the cavity.
  • the clasp 5 is used to connect with the endoscope, so that the imaging light emitted by the endoscope can be incident into the common optical path module 1 .
  • the public optical path module 1 includes a public optical path mounting base 11 and a public optical path assembly 12, the public optical path mounting base 11 is an integrated lens barrel structure, the public optical path mounting base 11 has a first mounting hole 11a, the first mounting The hole 11a forms a common optical path channel 111, and the outer peripheral surface of the first mounting hole 11a is provided with a raised shoulder and an annular groove, the shoulder is used for limiting and fixing the mounting seat 11 of the public optical path, and the annular groove is used for installing The sealing gasket realizes the sealing installation and prevents water vapor and dust from entering the inside of the handle 3.
  • the first installation hole 11 a may be an integrally formed structure, and the first installation hole 11 a is used for positioning and installing the common optical path assembly 12 .
  • the common optical path 111 is composed of a first integrally formed mounting hole 11a, and the common optical path 111 may also be composed of multiple mounting holes combined in series.
  • the first installation hole 11a is manufactured by one-time clamping and processing, which can effectively ensure the coaxiality of each step section, and the lens can be installed on the basis of the high coaxiality of the first installation hole 11a. Ensure the consistency of the alignment of lenses of different sizes on the optical axis, thereby improving the imaging quality. At the same time, it can reduce the difficulty of lens installation and debugging, and effectively improve the installation efficiency.
  • the public optical path assembly 12 includes a fixed lens group 121 and a focusing lens group 122, the fixed lens group 121 is fixedly installed in the public optical path channel 111 of the public optical path mount 11, and the focusing lens group 122 can be positioned along the optical axis.
  • the direction moving one is installed in the public light path channel 111 of the public light path mount 11 .
  • the common optical path channel 111 includes an incident end and an exit end, the incident end is an end (the left end in Fig. 2 ) close to the subject, and the exit end is an end (the right end in Fig.
  • the fixed lens group 121 is located in the public optical path
  • the incident end of the channel 111 and the focus lens group 122 are located at the exit end of the common optical path channel 111.
  • the focus lens group 122 can move relative to the fixed lens group 121 along the axial direction of the common optical path channel 111 to achieve clear imaging in different focal lengths.
  • the fixed lens group 121 can include several fixed lenses 1211, and several fixed lenses 1211 are installed in the common optical path channel 111, and the several fixed lenses 1211 can be installed and fixed at intervals by spacers or shaft shoulders, etc., and several fixed lenses 1211 It can also be attached together by gluing.
  • the public optical path assembly 12 also includes a focusing lens mounting seat 123, the focusing lens mounting seat 123 is installed in the public optical path mounting seat 11, the focusing lens mounting seat 123 is located in the public optical path channel 111 (first mounting hole 11a), and the focusing lens mounting seat 123 Can move in the common optical path channel 111 along the axial direction of the common optical path channel 111 .
  • An axial chute 112 is arranged in the common optical path channel 111, and the focusing lens mount 123 has a raised portion 1231 adapted to the chute 112, and the raised portion 1231 can be a plastic component installed on the focusing lens mount 123, The plastic part has the characteristics of wear resistance and elastic anti-collision.
  • the protrusion 1231 is snapped into the sliding groove 112, and the protrusion 1231 can move axially along the sliding groove 112 to form a radial limit for the focusing lens mounting seat 123 , improving the stability of the axial movement of the focusing lens mount 123 .
  • the inner shoulder of the common optical path channel 111 can also limit the axial movement of the focusing lens mount 123 .
  • the protrusion 1231 and the focusing lens mounting seat 123 may also be of an integral structure, and the protrusion 1231 of the integral structure located in the slide groove 112 may also serve as a guide.
  • the public optical path mounting seat 11 is also provided with an avoidance opening 113, which is located on the other side of the chute 112, and the avoidance opening 113 is an elongated opening extending in the axial direction, so that the focusing lens mounting seat 123 It can be connected with the drive member (such as a drive motor) on the outside of the common optical path mount 11 through the avoidance opening 113, and the drive member is used to drive the focus lens mount 123 and the focus lens group 122 to move to achieve autofocus or zoom.
  • the size and length of the avoidance opening 113 can be set according to the focusing lens mounting seat 123 to meet the needs of connecting the focusing lens mounting seat 123 with the driving element and moving axially.
  • the focusing lens group 122 may include several focusing lenses 1221 mounted on the focusing lens mounting base 123, and the focusing lens mounting base 123 drives the focusing lenses 1221 to move axially together to achieve focusing or zooming imaging.
  • the common optical path assembly 12 further includes a first filter 124, the first filter 124 is installed on the focusing lens mount 123, the first filter 124 is located at the exit end of the focusing lens group 122, and the first filter 124 is located at the exit end of the focusing lens group 122, A filter 124 moves axially together with the focusing lens group 122 , and the first filter 124 is used to filter stray light in the imaging light to improve the imaging quality.
  • the first optical filter 124 can also be fixedly installed directly at the exit end of the common optical path channel 111 , which can also filter the imaging light.
  • the public optical path assembly 12 can also include a protective window 125, the protective window 125 is installed on the incident end of the public optical path mounting seat 11 (the first mounting hole 11a) through the protective window mounting seat, and the protective window 125 is used to seal the common
  • the incident end of the optical path channel 111 protects the fixed lens 1211 in the common optical path channel 111 .
  • the protective window 125 can be a sapphire window, and the protective window 125 made of sapphire has high structural strength and stability, which can prevent the protective window 125 from being scratched by foreign objects during disassembly and maintenance, thereby effectively ensuring the imaging quality.
  • the protective window 125 can be arranged obliquely relative to the axial direction of the common optical path channel 111.
  • the obliquely arranged protective window 125 can effectively prevent the reflected light of the protective window 125 from entering the imaging light, avoid stray light interference, and further improve image quality.
  • the protective window 125 is directly fixed on the incident end of the common optical path mount 11 , and can also protect the fixed lens in the common optical path channel 111 .
  • the common optical path assembly 12 may be a fixed focal length optical path, and the common optical path assembly 12 includes several fixed lenses, which are glued to each other or installed in the common optical path channel 111 at intervals through spacers.
  • the public optical path with a fixed focal length can be used for imaging in a specific scene, and the integrally processed public optical path channel 111 can also improve the installation accuracy of the lens and reduce the installation difficulty.
  • the beam-splitting optical path module 2 is used to divide the common light into multiple different types of imaging light, such as dividing into imaging light of different wavelengths according to wavelength, and each imaging light of different wavelength corresponds to an imaging sensor for separate imaging,
  • the light-splitting optical path module 2 divides the common light into white light and fluorescence.
  • the white light corresponds to a white light sensor.
  • the white light sensor is used to acquire white light to generate a white light image
  • the fluorescence sensor is used to acquire fluorescence to generate a fluorescence image.
  • the beam splitting optical path module 2 can also be used to divide the common light into three or four paths of light, and set three imaging sensors or four imaging sensors corresponding to one of them. In this embodiment, the splitting optical path module 2 splits the common light into two lights with different wavelengths as an example for illustration.
  • the splitting optical path module 2 includes a splitting optical path mount 21, a splitting optical path assembly 22, and an imaging sensor assembly 23.
  • the splitting optical path mount 21 has an integrated structure, and the splitting optical path mount 21 has a second mounting hole 21a, and the second mounting hole 21 forms a splitting beam.
  • the optical path channel 211, the split optical path channel 211 includes an incident end and two output ends, the split optical path mounting base 21 is docked with the public optical path mounting base 11, so that the output end of the common optical path channel 111 is docked with the incident end of the split optical path channel 211 .
  • the second mounting hole 21a in the beam-splitting light path mounting base 21 is integrally formed, and the beam-splitting light path channel 211 is formed by an integrally formed second mounting hole 21a.
  • the light-splitting light channel 211 is a T-shaped structure, and the light-splitting light channel 211 includes a light-splitting area 2111, a first light-splitting channel 2112, and a second light-splitting channel 2113.
  • the light-splitting area 2111 has an entrance and two exit ports, and the two exit ports are the first The exit port and the second exit port, the entry port of the light splitting area 2111 is the entry port of the light splitting light path channel 211, and the entry port of the light splitting area 2111 is connected to the exit end of the common light path channel 111.
  • the two exit ports of the beam splitting area 2111 are located in the light splitting light path installation seat 21 , wherein the first exit port is located in a direction perpendicular to the incident direction of the entrance port, and the second exit port is located on a straight line with the entrance port.
  • the first output port is connected to the first light splitting channel 2112
  • the second output port is connected to the second light splitting channel 2113 .
  • beam splitting optical path assembly 22 comprises beam splitter 221, and beam splitter 221 is the device with beam splitting function such as dichroic prism, beam splitter 221 is installed in beam splitting area 2111, and beam splitter 221 is used for reflecting the first imaging
  • the light and the transmitted second imaging light, the first imaging light and the second imaging light are two kinds of light with different wavelengths, for example, the first imaging light is white light, and the second imaging light is fluorescent light.
  • the beam splitter 221 reflects the incident common light into the first imaging light, and irradiates the first imaging light into the first beam splitting channel 2112, and transmits the incident common light into the second imaging light, and converts the second imaging light into the second imaging light.
  • the light is irradiated into the second light splitting channel 2113 .
  • the beam splitter 221 is a square structure, and there is a beam splitting film inclined at 45° inside the beam splitter 221.
  • the beam splitter film is used to reflect the common light to reflect the first imaging light and transmit the second imaging light.
  • the beam splitting mirror 221 has an incident surface and Two exit surfaces, the incident surface of the beam splitter 221 is used for incident common light, and the two exit surfaces include a first exit surface 2211 and a second exit surface 2212; the first exit surface 2211 is docked with the first light splitting channel 2112, the first exit The surface 2211 is used to output the first imaging light to the first light splitting channel 2112; the second output surface 2212 is docked with the second light splitting channel 2113, and the second output surface 2212 is used to output the second imaging light to the second light splitting channel 2113 .
  • the light-splitting light path channel 211 includes three light-splitting channels or four light-splitting channels
  • the light-splitting mirror 221 includes three or four prisms. Two or four prisms are compounded side by side, and a splitting surface is formed between every two prisms.
  • one of the splitting light paths is collinear with the common light path, and the other three splitting light paths are respectively perpendicular to the common light path.
  • the spectroscopic area 2111 is provided with corresponding three exit ports or four exit ports, each exit port of the spectroscopic area 2111 is connected to a spectroscopic channel, and a corresponding imaging sensor is installed at the rear end of each spectroscopic channel.
  • the imaging sensor assembly 23 includes a first imaging sensor assembly 231 and a second imaging sensor assembly 232 .
  • the first imaging sensor assembly 231 includes a first imaging sensor mounting assembly 2311 and a first imaging sensor 2312 (white light sensor), the first imaging sensor 2312 is installed on the split light path mounting base 21 through the first imaging sensor mounting assembly 2311, and the first The imaging sensor 2312 is located at the exit end of the first beam splitting channel 2112, and the first imaging sensor 2312 is used for acquiring the first imaging light reflected by the beam splitting mirror 221 and generating the first imaging light image.
  • the first imaging sensor mounting assembly 2311 and the light-splitting optical path mounting base 21 are adjustable and fixedly installed, and the first imaging sensor 2312 and the first imaging sensor mounting assembly 2311 are also adjustable and fixedly installed, so that the first imaging sensor 2312
  • the installation position adjustment relative to the first spectroscopic channel 2112 can be realized through the first imaging sensor installation assembly 2311 , wherein the installation position adjustment includes but not limited to the adjustment of the axial position, radial position and tilt position.
  • the first imaging sensor 2312 is provided with a first radial adjustment installation part 2313 , and the first imaging sensor 2312 can be installed on the first imaging sensor installation assembly 2311 through the first radial adjustment installation part 2313 to eliminate installation errors.
  • the first radial adjustment installation part 231 can be an installation hole with a certain adjustment range, and the installation hole has a preset adjustable length perpendicular to the first imaging light emission direction.
  • the first radial adjustment installation part 231 is used to adjust the first imaging sensor 2312 radial position.
  • the first radial adjustment installation part 2313 can also be arranged on the first imaging sensor installation assembly 2311, or the first imaging sensor installation assembly 2311 and the first imaging sensor 2312 are both provided with a first adjustment installation part, both of which can realize the first
  • the imaging sensor 2312 is adjustably mounted on the first imaging sensor mounting assembly 2311.
  • the first imaging sensor mounting assembly 2311 includes a first imaging sensor bracket 23111 and a first axial adjustment member 23112, the first imaging sensor bracket 23111 is provided with three mounting holes, and the three mounting holes are located on the peripheral edge of the first imaging sensor bracket 23111 position, the splitting optical path mounting base 21 is provided with threaded holes corresponding to the three mounting holes, and a first locking member 23113 is installed in each mounting hole, and the first locking member 23113 can be a locking screw or a locking screw In an equal locking structure, the first imaging sensor bracket 23111 is fixed on the first imaging sensor bracket 23111 through three first locking pieces 23113 .
  • first axial adjustment members 23112 there are also three first axial adjustment members 23112, the first axial adjustment members 23112 can be elastic washers or elastic blocks, the first axial adjustment members 23112 can be in a ring structure or a U-shaped structure, each first A first axial adjustment member 23112 is sheathed on the locking member 23113, and the first axial adjustment member 23112 is located between the first imaging sensor bracket 23111 and the beam splitting optical path mounting seat 21, by controlling the three first locking members
  • the locking degree of 23113 can compress the three first axial adjustment parts 23112 to different thicknesses, and then through the three first axial adjustment parts 23112, the axial position and inclination of the first imaging sensor bracket 23111 can be adjusted Angle, that is, the axial position and inclination angle of the first imaging sensor 2312 can be adjusted, so that the first imaging sensor 2312 can have a proper focal length position and be perpendicular to the optical axis of the first imaging light.
  • the first imaging sensor bracket 23111 is adjusted by setting three points, and three points can determine a plane, so three points can be used to adjust the tilt angle, and can realize the adjustment of the axial position; in other embodiments , four points can also be set for adjustment, for example, four installation holes are provided on the first imaging sensor bracket 23111, and the four installation holes are distributed in a matrix, and each installation hole is correspondingly installed with a first locking member 23113 and The first axial adjustment member 23112 can also adjust the axial position and tilt angle of the first imaging sensor 2312 .
  • annular rigid spacer 23114 is also provided between the first axial adjustment member 23112 and the beam splitting optical path mounting seat 21, and the rigid spacer 23114 supports and limits the first axial adjustment member 23112 It is beneficial to the telescopic adjustment of the first axial adjustment member 23112.
  • the mounting seat 21 of the beam splitting optical path is provided with a corresponding annular boss, which can also support and limit the first axial adjustment member 23112 .
  • the first imaging sensor 2312 is installed on the surface of the first imaging sensor bracket 23111 facing away from the beam-splitting light path mounting seat 21, and the first imaging sensor 2312 is provided with two first adjustment holes, the first adjustment holes being the first An axial adjustment mounting part 23112, the first imaging sensor bracket 23111 is provided with threaded holes corresponding to the two first adjustment holes, each first adjustment hole is installed with a second locking part 23115, the second locking part
  • the 23115 can be a locking structure such as a locking screw or a locking screw, and the first imaging sensor 2312 is fixed on the first imaging sensor bracket 23111 through two second locking pieces 23115 .
  • the inner diameter of the first adjustment hole is larger than the outer diameter of the second locking member 23115, and there is an adjustment gap between the first adjustment hole and the second locking member 23115, through which the first imaging sensor 2312 can adjust the first imaging sensor 2312 Relative to the planar position of the first imaging sensor bracket 23111 , the radial movement of the first imaging sensor 2312 relative to the optical axis of the first imaging light can be adjusted so that the center position of the first imaging sensor 2312 is aligned with the optical axis of the first imaging light.
  • the first imaging sensor 2312 is a circuit board on which the first imaging sensor components are installed, and the first adjustment hole is set on the circuit board.
  • the middle part of the first imaging sensor bracket 23111 is provided with a mounting hole, which is used to avoid the first imaging light, and the sensing end of the first imaging sensor 2312 (the incident end of the first imaging light) is located in the area avoided by the mounting hole, so as to This enables the first imaging light to be incident into the first imaging sensor 2312 .
  • the first imaging sensor 2312 is fixed by two points; in other embodiments, the first imaging sensor 2312 can also be fixed by three or four points, for example, three first Adjustment holes, each first adjustment hole is equipped with a second locking piece 23115.
  • the first imaging sensor 2312 is provided with a hollow avoidance structure, the avoidance structure corresponds to the first locking member 23113, the first locking member 23113 is not covered by the first imaging sensor 2312, and the first locking member 23113 is exposed on the avoidance structure Inside, so that the operator can adjust the first locking member 23113 through the avoidance structure.
  • the adjustment of the first imaging sensor 2312 is the adjustment during the production and installation process.
  • the first imaging sensor 2312 is a fixed structure after leaving the factory and cannot be adjusted during the use of the endoscope.
  • the installation adjustment of the first imaging sensor 2312 The principle is as follows:
  • the setting of the first imaging sensor mounting assembly 2311 enables the first imaging sensor 2312 to adjust the axial position, inclination and radial position, which can overcome processing and installation errors, thereby reducing processing costs and improving Installation efficiency.
  • the axial direction of the first imaging sensor 2312 can also be realized. Position adjustment installation.
  • the first axial adjustment member 23112 is installed on the second locking member 23115, and the first axial adjustment member 23112 is arranged between the first imaging sensor 2312 and the first imaging sensor bracket 23111, which can also be The axial position adjustment and inclination adjustment of the first imaging sensor 2312 are realized.
  • the common optical path assembly 22 further includes a second optical filter 223, the second optical filter 223 is installed in the first optical splitting channel 2112, and the second optical filter 223 is located between the spectroscopic mirror 221 and the first imaging sensor 2312 In between, the second filter 223 is used to filter the stray light reflected by the beam splitter 221 to improve the imaging quality.
  • the second optical filter 223 can also be installed on the first imaging sensor bracket 23111, and the second optical filter 223 is located at the incident end of the first imaging sensor 2312, which can also filter stray light and improve imaging quality.
  • the second imaging sensor assembly 232 includes a second imaging sensor mounting assembly 2321 and a second imaging sensor 2322, and the second imaging sensor 2322 is installed on the spectroscopic surface through the second imaging sensor mounting assembly 2321.
  • the second imaging sensor 2322 is located at the exit end of the second beam splitting channel 2113 , the second imaging sensor 2322 is used to acquire the second imaging light transmitted by the beam splitter 221 and generate the second imaging light image.
  • the second imaging sensor mounting assembly 2321 and the split light path mounting base 21 are adjustable, and the second imaging sensor 2322 and the second imaging sensor mounting assembly 2321 are also adjustable, so that the second imaging sensor 2322 passes through the second imaging sensor.
  • the installation assembly 2321 of the second imaging sensor can realize the adjustment of the installation position relative to the first beam splitting channel 2112 , wherein the installation position adjustment includes but not limited to the adjustment of the axial position, the radial position and the axial rotation position.
  • the second imaging sensor 2322 is provided with a second axial adjustment installation part 2323 , and the second imaging sensor 2322 can be installed on the second imaging sensor installation assembly 2321 through the second axial adjustment installation part 2323 to eliminate installation errors.
  • the second imaging sensor 2322 can be a mounting hole with a certain adjustment range.
  • the mounting hole has a preset adjustable length perpendicular to the outgoing direction of the second imaging light.
  • the second imaging sensor 2322 is used to adjust the radial position of the second imaging sensor 232 .
  • the second axial adjustment installation part 2323 can also be arranged on the second imaging sensor installation assembly 2321, or the second imaging sensor installation assembly 2321 and the second imaging sensor 2322 are provided with the second axial adjustment installation part 2323, both can The second imaging sensor 2322 can be adjusted to be mounted on the second imaging sensor mounting assembly 2321 .
  • the second imaging sensor mounting assembly 2321 includes a second imaging sensor bracket 23211 and a second axial adjustment mounting part 23212.
  • the second imaging sensor bracket 23211 is provided with three second adjustment holes, and the second adjustment holes are used for second axial adjustment. part 2323, the three second adjustment holes are located on the peripheral edge of the second imaging sensor bracket 23211, the beam splitting light path mounting seat 21 is provided with threaded holes corresponding to the three mounting holes, and a third lock is installed in each mounting hole Tightening piece 23213, the third locking piece 23213 can be a locking structure such as locking screw or locking screw rod, the inner diameter of the second adjusting hole is larger than the outer diameter of the third locking piece 23213, the second adjusting hole and the third locking There is an adjustable gap between the pieces 23213, and the second imaging sensor bracket 23211 is adjustablely installed on the beam splitting light path mounting base 21 through three third locking pieces 23213.
  • the second axial adjustment mounting part 23212 can be a shim or washer with a preset thickness.
  • the second axial adjustment mounting part 23212 is located between the second imaging sensor bracket 23211 and the beam splitting optical path mounting seat 21.
  • the locking and fixing of the fastener 23213 can fix the second imaging sensor bracket 23211 and the second axial adjustment mounting part 23212 on the beam splitting optical path mounting seat 21, and the second axial adjustment mounting part 23212 is a rigid structure, such as an alloy steel sheet , by selecting the second axial adjustment mounting member 23212 with different thickness, the axial position of the second imaging sensor bracket 23211 can be adjusted, and then the axial position of the second imaging sensor 2322 can be adjusted.
  • the second imaging sensor 2322 is installed on the surface of the second imaging sensor bracket 23211 facing away from the beam-splitting optical path mounting base 21, the second imaging sensor 2322 is provided with two mounting holes, and the second imaging sensor bracket 23211 is provided with A threaded hole corresponding to the two mounting holes, a fourth locking member 23214 is installed in each second adjusting hole, the fourth locking member 23214 can be a locking structure such as a locking screw or a locking screw, the second imaging The sensor 2322 is fixed on the second imaging sensor bracket 23211 through two fourth locking members 23214 .
  • the second imaging sensor 2322 adjusts the plane position of the second imaging sensor bracket 23211 relative to the beam-splitting optical path mount 21, that is, the second imaging sensor 2322 can be adjusted to move radially and rotate along the optical axis of the second imaging light, so that the second imaging sensor 2322 The imaging image of the sensor 2322 is aligned with the imaging image of the first imaging sensor 2312 .
  • the second imaging sensor 2322 is a circuit board on which the second imaging sensor components are installed, and the second adjustment hole is disposed on the circuit board.
  • the middle part of the second imaging sensor bracket 23211 and the second axial adjustment mounting part 23212 is provided with a mounting hole, which is used to avoid the second imaging light, and the sensing end of the second imaging sensor 2322 (the first imaging light incident end) is located at The installation hole avoids the area, so that the second imaging light can be incident into the second imaging sensor 2322 .
  • the second imaging sensor 2322 is fixed by two points; in other embodiments, the second imaging sensor 2322 can also be fixed by three or four points, for example, three second For the adjustment holes, a fourth locking piece 23214 is installed on each second adjustment hole.
  • the second imaging sensor 2322 is provided with a hollow avoidance structure, the avoidance structure corresponds to the third locking member 23213, the third locking member 23213 is not covered by the second imaging sensor 2322, and the third locking member 23213 is exposed on the avoidance structure Inside, so that the operator can adjust the third locking member 23213 through the avoidance structure.
  • the adjustment of the second imaging sensor 2322 is the adjustment during the production and installation process.
  • the second imaging sensor 2322 is a fixed structure after leaving the factory and cannot be adjusted during the use of the endoscope.
  • the installation adjustment of the second imaging sensor 2322 The principle is as follows:
  • the three third locking parts 23213 Loosen the three third locking parts 23213, replace the second axial adjustment mounting part 23212 with a preset thickness, and make the second imaging sensor bracket 23211 move in a plane relative to the beam splitting light path mounting seat 21 (radial movement and/or axial movement) direction rotation), after the second imaging sensor bracket 23211 is radially moved and/or rotated to a preset position, then the three third locking members 23213 are locked to realize the adjustment of the axial position of the second imaging sensor 2322, so that The focus imaging of the second imaging sensor 2322 and the alignment and overlap of the imaging image of the second imaging sensor 2322 and the imaging image of the first imaging sensor 2312 are realized.
  • the setting of the second imaging sensor installation assembly 2321 enables the second imaging sensor 2322 to adjust the axial position and radial position, which can eliminate processing and installation errors, thereby reducing processing costs and improving installation efficiency.
  • the second imaging light image of the second imaging sensor 2322 can also be overlapped with the first imaging light image of the first imaging sensor 2312, ensuring that the first imaging light and the second imaging light can fall on the first imaging sensor respectively.
  • 2312 and the imaging plane of the second imaging sensor 2322 the imaging performance of the first imaging sensor 2312 and the second imaging sensor 2322 can be effectively utilized, and the calculation throughput of the system can be reduced.
  • an elastic member is sheathed on the third locking member 23213 or the fourth locking member 23214 , which can also realize the adjustment and installation of the axial position of the second imaging sensor 2322 .
  • the second imaging light is the transmitted light of the beam splitter 221
  • the optical path of the second imaging light and the common optical path are located on a straight line, so the perpendicularity between the second imaging sensor 2322 and the optical path of the second imaging light is easy to ensure , the adjustment of the tilt angle of the second imaging sensor 2322 may not be provided.
  • the inclination of the second imaging sensor 2322 can be adjusted, which is also possible, and can further ensure the imaging quality.
  • the first imaging sensor 2312 is used as a reference, so the first imaging sensor 2312 may not be provided with axial rotation adjustment, and the first imaging sensor
  • the radial adjustment of 2312 is mainly used for centering and neutral adjustment.
  • the second imaging sensor 2322 can be set for radial adjustment and rotation adjustment of the rotating shaft.
  • the imaging image of the second imaging sensor 2322 and the imaging image of the first imaging sensor 2312 can be realized. Heavy fit.
  • the second imaging sensor 2322 is set as a reference, and the first imaging sensor 2312 is set as a radial movement and an axial rotation adjustment, which can also achieve adaptive adjustment of the images of the two sensors.
  • the common optical path assembly 22 also includes a zoom lens group 222, the zoom lens group 222 is installed in the second beam splitting channel 2113, the zoom lens group 222 is located between the beam splitter 221 and the second imaging sensor 2322, and the zoom lens group 222 is used to reduce or enlarge the frame size of the second imaging light image, so that the frame size of the second imaging image of the second imaging sensor 2322 can be adapted to the frame size of the first imaging image of the first imaging sensor 2312 .
  • the zoom lens group 222 can also be arranged in the first beam splitting channel 2113, and is used for zooming the frame of the first imaging light image, which can also make the frame size of the first imaging image and the second imaging image adaptation.
  • the zoom lens group 222 includes several zoom lenses 2221 and second spacers 2222, and the zoom lenses 2221 are glued and fixed, or fixed at intervals through the second spacers 2222, such as three zoom lenses 2221, along the In the direction of the optical axis, the first zoom lens 2221 and the second zoom lens 2221 at the incident end are spaced and fixed by the second spacer 2222 , and the second zoom lens 2221 and the third zoom lens 2221 are glued and fixed.
  • the zoom lens group 222 can select a specific lens combination according to the required zoom ratio.
  • the first imaging sensor 2312 can work alone to output an ordinary image, and the first imaging sensor 2312 and the second imaging sensor 2322 can also work together, and the generated first imaging light image and second imaging light image can be synthesized Used to observe the second imaging light image of the lesion.
  • the positions of the first imaging sensor assembly 231 and the second imaging sensor assembly 232 can be interchanged, the beam splitter 221 is configured to transmit the first imaging light and reflect the second imaging light, and the first imaging sensor assembly 231 is used for The first imaging light transmitted by the beam splitter 221 is acquired, and the second imaging sensor assembly 232 is used to acquire the second imaging light reflected by the beam splitter 221 , which can also realize the imaging of the first imaging light and the imaging of the second imaging light.
  • the optical imaging unit in the endoscope camera head can be divided into three parts according to the function, and the three parts are respectively the mounting base assembly, the optical path assembly and the imaging sensor assembly, wherein the mounting base assembly includes a common optical path mounting base 11 and the split light path mounting base 21, the focusing lens mounting base 123, the first imaging sensor mounting assembly 2311, the second imaging sensor mounting assembly 2321 and other mounting support components, the mounting base assembly is used to install and fix the optical path assembly and the imaging sensor assembly, and The mount assembly forms a common optical path channel and a split optical path channel.
  • the optical path assembly includes a public optical path assembly 12 and a split optical path assembly.
  • the optical path assembly mainly includes lens structures such as a fixed lens, a focusing lens, and a beam splitter.
  • the optical path assembly is installed in the public optical path channel 111 and the split optical path channel 211 respectively.
  • the light path and splitting the common light path into a first imaging light path and a second imaging light path.
  • the imaging sensor assembly includes a first imaging sensor 2312 and a second imaging sensor 2322, the first imaging sensor 2312 and the second imaging sensor 2322 are used to obtain the first imaging light and the second imaging light to realize the imaging of the first imaging light and the second imaging light. Imaging light imaging.
  • the optical imaging unit is divided into different parts, and the substantive specific components are the same as those in the above embodiment.
  • an endoscope camera system 1000 is provided in an embodiment, and the endoscope camera system 1000 includes a light source 10, a light guide 20, an endoscope 30, an endoscope camera 40, a cable 71, a camera Host 50, display 60 and video connection line 72.
  • the endoscope camera head 40 is the endoscope camera head in any of the above-mentioned embodiments, and the endoscope 30 adopts the cooperation of a homogenizer and an ultra-wide-angle optical fiber in the illumination light path, so as to improve the luminous flux and make the illuminance distribution in the observation field uniform , thereby improving the contrast and signal-to-noise ratio of the endoscopic image, thereby improving the imaging quality;
  • the camera host 50 is connected to the endoscope camera 40 through a cable 71 , and the first image signal and the second image signal generated by the endoscope camera 40 are transmitted to the camera host 50 through the cable 71 for processing.
  • the cable 71 can be an optical communication cable, such as an optical fiber; the endoscope camera 40 converts the image signal (electrical signal) into an optical signal, which is transmitted to the camera host 50 by the cable 71, and the camera host 50 Then convert the optical signal into an electrical signal (image signal).
  • the camera host 50 is connected to the display 60 through a video connection line 72 for sending image signals to the display 60 for display.
  • the endoscope camera system 1000 may include more or more than those shown in FIG. Fewer components, or a combination of some components, or different components, for example, the endoscope camera system 1000 may also include a dilator, a smoke control device, an input and output device, a network access device, and the like.
  • the light source 10 is used for providing an illumination source to the site to be observed 100 and exciting fluorescence imaging.
  • the light source 10 includes a white light source (visible light source) and an excitation light source (laser illumination light source, such as near-infrared light) corresponding to the fluorescent reagent.
  • a processor is provided in the camera main unit 50, and the processor is connected to the endoscopic camera 40 through a cable 71.
  • the processor acquires the image signal output by the camera, and processes the image signal to output at least the observed tissue
  • the acquired image signal may be a separate first image signal and second image signal, or may be an image signal obtained by combining the first image signal and the second image signal.
  • the public optical path assembly 12 in the endoscope camera 40 is installed in the public optical path channel of the public optical path mounting seat 11, and the public optical path channel of the public optical path mounting seat 11 forms an integrated structure, which is beneficial to the axial direction of the public optical path channel. processing, and then make it easier for the common optical path assembly 12 to achieve higher coaxiality installation, reduce the difficulty of assembly, and improve the installation efficiency; similarly, the imaging sensor assembly 23 is installed on the split optical path channel on the split optical path mount 21, The split light path channel forms an integrated structure, which is beneficial to the installation of the imaging sensor assembly 23, thereby ensuring the accuracy of the installation positions of multiple sensors, thereby improving the imaging quality.
  • an endoscope camera system 1000 includes an endoscope camera 40, a cable 71, and a camera host 50.
  • the endoscope camera 40 can be connected to different devices according to usage requirements, such as the endoscope camera 40 It can be connected with a software endoscope or a hard mirror endoscope to form a soft mirror camera system or a hard mirror camera system to meet the needs of different scenarios.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

一种内窥镜摄像头(40)和内窥镜摄像系统(1000),内窥镜摄像头(40)包括公共光路模块(1)和分光光路模块(2),公共光路模块(1)包括公共光路安装座(11)和公共光路组件(12),公共光路安装座(11)具有公共光路通道(111),公共光路组件(12)安装在公共光路通道(111)内;分光光路模块(2)包括分光光路安装座(21)和成像传感器组件(23),分光光路安装座(21)具有分光光路通道(211)。由于公共光路组件(12)安装在公共光路安装座(11)的公共光路通道(111)内,公共光路安装座(11)为一体式结构,有利于公共光路通道(111)的轴向加工,进而使得公共光路组件(12)更容易实现较高同轴度的安装,降低了装配难度,提高了安装效率;成像传感器组件(23)安装在分光光路安装座(21)上的分光光路通道(211)上,分光光路安装座(21)为一体式结构,有利于分光光路组件(22)和成像传感器组件(23)的安装。

Description

内窥镜摄像头和内窥镜摄像系统 技术领域
本发明涉及医疗器械技术领域,具体涉及一种内窥镜摄像头和内窥镜摄像系统。
背景技术
内窥镜摄像系统兼具第一成像光和第二成像光两种模式的显影能力,对于终端医疗机构来说,可实现设备一体化功能,即既能满足传统第一成像光内窥镜的临床需求,也能满足对病灶识别能力要求较高的第二成像光视野手术需求,有效减少手术室的设备配置并提升医院的科室诊疗能力。由于第二成像光摄像头同时具备第一成像光和第二成像光两种成像能力,这就要求摄像头内部必须包含第一成像光和第二成像光两个成像传感器,并将公共光路分为两条分光光路,第一成像光和第二成像光两个成像传感器分别位于两条分光光路上。
目前市面上现有的内窥镜摄像头产品,其光路结构安装复杂,安装过程往往需要装调实现,安装效率较低。
发明内容
一种实施例中,提供一种内窥镜摄像头,包括公共光路模块和分光光路模块;
所述公共光路模块包括公共光路安装座和公共光路组件,所述公共光路安装座具有公共光路通道,所述公共光路组件设置在所述公共光路通道内,所述公共光路通道包括入射端和出射端;
所述分光光路模块包括分光光路安装座、分光光路组件和成像传感器组件,所述分光光路安装座具有分光光路通道,所述分光光路通道包括一个入射端和至少两个出射端,所述分光光路通道的入射端与公共光路通道的出射端对接,所述分光光路组件包括分光镜,所述分光镜位于所述分光光路通道内,所述分光镜用于将射入的公共光至少分成不同种类的第一成像光和第二成像光;所述成像传感器组件至少包括第一成像传感器组件和第二成像传感器组件,所述第一成像传感器组件和第二成像传感器组件设置在所述分光光路通道内或与所述分光光路通道对接,所述第一成像传感器组件用于获取所述第一成像光以生成第一图像信号,所述第二成像传感器组件用于获取所述第二成像光以生成第二图像信号。
一种实施例中,所述公共光路安装座上设有一体加工成型的第一安装孔,所述第一安装孔形成所述公共光路通道,所述公共光路组件安装在所述一体加工成型的安装孔内。
一种实施例中,所述公共光路安装座和所述分光光路安装座对接设置,以使得所述分光光路通道与公共光路通道对接。
一种实施例中,所述公共光路组件包括固定镜片组和对焦镜片组,所述固定镜片组固定安装在所述公共光路通道内,所述对焦镜片组可沿所述公共光路通道移动的安装在所述公共光路通道内;所述固定镜片组位于所述公共光路通道的入射端,所述对焦镜片组位于所述公共光路通道的出射端。
一种实施例中,所述公共光路组件还包括保护窗,所述保护窗安装在所述公共光路通道的入 射端。
一种实施例中,所述公共光路组件还包括对焦镜片安装座,所述对焦镜片安装座可沿所述公共光路通道移动的安装在所述公共光路通道内,所述对焦镜片组安装在所述对焦镜片安装座上。
一种实施例中,所述焦镜片安装座设置在所述公共光路安装座的所述第一安装孔内。
一种实施例中,所述分光光路通道包括分光区及至少第一分光通道和第二分光通道,所述分光区具有一个入射口和至少两个出射口,所述分光区的入射口为所述分光光路通道的入射端,所述分光区的至少两个所述出射口分别与至少所述第一分光通道和第二分光通道对接,所述第一分光通道和第二分光通道远离所述分光区的出射端为所述分光光路通道的出射端。
一种实施例中,所述分光镜设置在所述分光区内,所述分光镜具有第一出射面和第二出射面,所述第一出射面用于出射所述第一成像光,所述第二出射面用于出射所述第二成像光,所述第一出射面与所述第一分光通道对接,所述第二出射面与所述第二分光通道对接。
一种实施例中,所述第一成像传感器组件包括第一成像传感器安装组件和第一成像传感器,所述第一成像传感器通过所述第一成像传感器安装组件安装在所述分光光路安装座上,所述第一成像传感器位于所述第一分光通道的出射端。
一种实施例中,所述第一成像传感器安装组件和/或所述第一成像传感器上设有第一径向调节安装部,所述第一径向调节安装部用于调节安装所述第一成像传感器的径向位置。
一种实施例中,所述第一成像传感器安装组件包括第一成像传感器支架,所述第一成像传感器支架安装在所述分光光路安装座上,并位于所述第一分光通道的出射端,所述第一成像传感器安装在所述第一成像传感器支架上。
一种实施例中,所述第一成像传感器支架通过第一轴向调节安装件与所述分光光路安装座连接,所述第一轴向调节安装件用于调节安装第一成像传感器的轴向位置。
一种实施例中,所述第一成像传感器支架通过至少三个第一锁紧件与所述分光光路安装座连接,每个所述第一锁紧件对应一个所述第一轴向调节安装件,所述第一锁紧件用于固定所述第一成像传感器的轴向位置和倾斜角度。
一种实施例中,所述第二成像传感器组件包括第二成像传感器安装组件和第二成像传感器,所述第二成像传感器通过所述第二成像传感器安装组件安装在所述分光光路安装座上,所述第二成像传感器位于所述第二分光通道的出射端。
一种实施例中,所述第二成像传感器安装组件和/或所述第二成像传感器上设有第二径向安装部,所述第二径向安装部用于调节安装所述第二成像传感器的径向位置。
一种实施例中,所述第二成像传感器安装组件包括第二成像传感器支架,所述第二成像传感器支架安装在所述分光光路安装座上,并位于所述第二分光通道的出射端。
一种实施例中,所述第二成像传感器支架通过第二轴向调节安装件与所述分光光路安装座连接,所述第二轴向调节安装件用于调节安装所述第二成像传感器的轴向位置。
一种实施例中,所述分光光路组件还包括缩放镜组;所述缩放镜组设置在所述第一分光通道或所述第二分光通道内,所述缩放镜组用于缩小或放大所述第一成像光或所述第二成像光的成像画幅。
一种实施例中,所述第一成像光为白光,所述第二成像光为荧光。
一种实施例中,提供一种内窥镜摄像头,包括公共光路模块和分光光路模块;
所述公共光路模块包括公共光路安装座和公共光路组件,所述公共光路安装座设有一体式的第一安装孔,所述公共光路组件设置在所述第一安装孔内;
所述分光光路模块包括分光光路安装座、分光光路组件和成像传感器组件,所述分光光路安装座设有一体式的第二安装孔,所述分光光路组件设置在所述第二安装孔内,所述第一安装孔和所述第二安装孔对接,所述分光光路组件用于将射入的公共光至少分成不同种类的第一成像光和第二成像光;所述成像传感器组件至少包括第一成像传感器组件和第二成像传感器组件,所述第一成像传感器组件和第二成像传感器组件设置在所述第二安装孔内或与所述第二安装孔对接,所述第一成像传感器组件用于获取所述第一成像光以生成第一图像信号,所述第二成像传感器组件用于获取所述第二成像光以生成第二图像信号。
一种实施例中,所述第一成像传感器组件包括第一成像传感器安装组件和第一成像传感器,所述第一成像传感器通过所述第一成像传感器安装组件安装在所述分光光路安装座上,所述第一成像传感器位于所述第一安装孔的出射端。
一种实施例中,所述第一成像传感器安装组件和/或所述第一成像传感器上设有第一径向调节安装部,所述第一径向调节安装部用于调节安装所述第一成像传感器的径向位置。
一种实施例中,所述第二成像传感器组件包括第二成像传感器安装组件和第二成像传感器,所述第二成像传感器通过所述第二成像传感器安装组件安装在所述分光光路安装座上,所述第二成像传感器位于所述第二安装孔的出射端。
一种实施例中,所述第二成像传感器安装组件和/或所述第二成像传感器上设有第二径向安装部,所述第二径向安装部用于调节安装所述第二成像传感器的径向位置。
一种实施例中,提供一种内窥镜摄像头,包括分光光路模块;
所述分光光路模块包括分光光路安装座、分光光路组件和成像传感器组件;
所述分光光路安装座具有分光光路通道,所述分光镜位于所述分光光路通道内;所述分光光路通道包括分光区及至少第一分光通道和第二分光通道;
所述成像传感器组件包括至少包括第一成像传感器组件和第二成像传感器组件;
所述第一成像传感器组件包括第一成像传感器安装组件和第一成像传感器,所述第一成像传感器通过所述第一成像传感器安装组件设置在所述第一分光通道的出射端;所述第一成像传感器支架通过第一轴向调节安装件与所述分光光路安装座连接,所述第一轴向调节安装件用于调节安装第一成像传感器的轴向位置;
所述第二成像传感器组件包括第二成像传感器安装组件和第二成像传感器,所述第二成像传感器通过所述第二成像传感器安装组件设置在所述第二分光通道的出射端;所述第二成像传感器安装组件和/或所述第二成像传感器上设有第二径向安装部,所述第二径向安装部用于调节安装所述第二成像传感器的径向位置。
一种实施例中,所述第一成像传感器安装组件包括第一成像传感器支架,所述第一成像传感器支架安装在所述分光光路安装座上,并位于所述第一分光通道的出射端,所述第一成像传感器安装在所述第一成像传感器支架上。
一种实施例中,所述第一成像传感器支架通过第一轴向调节安装件与所述分光光路安装座连接,所述第一轴向调节安装件用于调节安装第一成像传感器的轴向位置。
一种实施例中,所述第二成像传感器组件包括第二成像传感器安装组件和第二成像传感器,所述第二成像传感器通过所述第二成像传感器安装组件安装在所述分光光路安装座上,所述第二成像传感器位于所述第二分光通道的出射端。
一种实施例中,所述第二成像传感器安装组件和/或所述第二成像传感器上设有第二径向安装部,所述第二径向安装部用于调节安装所述第二成像传感器的径向位置。
一种实施例中,提供一种内窥镜摄像系统,包括线缆、摄像主机和上述的内窥镜摄像头,所述线缆的一端与所述内窥镜摄像头连接,所述线缆的另一端与所述摄像主机连接,所述线缆用于将所述内窥镜摄像头生成的图像信号传输至所述摄像主机。
依据上述实施例的内窥镜摄像头和内窥镜摄像系统,由于公共光路组件安装在公共光路安装座的公共光路通道内,公共光路安装座为一体式结构,公共光路安装座内具有一体成型的第一安装孔,第一安装孔形成公共光路通道,有利于公共光路通道的轴向加工,进而使得公共光路组件更容易实现较高同轴度的安装,降低了装配难度,提高了安装效率;同样的,成像传感器组件安装在分光光路安装座上的分光光路通道上,分光光路安装座为一体式结构,分光光路安装座内具有一体成型的第二安装孔,第二安装孔形成分光光路通道,有利于分光光路组件和成像传感器组件的安装。
附图说明
图1为一种实施例内窥镜摄像头的剖视图;
图2为一种实施例公共光路模块和分光光路模块的剖视图;
图3为一种实施例公共光路模块的剖视图;
图4为一种实施例公共光路安装座的剖视图;
图5为一种实施例分光光路模块的剖视图;
图6为一种实施例分光光路安装座的剖视图;
图7为一种实施例分光光路模块的爆炸结构示意图;
图8为一种实施例内窥镜摄像系统的结构示意图;
其中附图标记如下:
1-公共光路模块,11-公共光路安装座,11a-安装孔,111-公共光路通道,112-滑槽,113-避让开口,12-公共光路组件,121-固定镜片组,1211-固定镜片,122-对焦镜片组,1221-对焦镜片,123-对焦镜片安装座,1231-凸起部,124-第一滤光片,125-保护窗;
2-分光光路模块,21-分光光路安装座,21a-第二安装孔,211-分光光路通道,2111-分光区,2112-第一分光光路通道,2113-第二分光光路通道,
22-分共光路组件,221-分光镜,222-缩放镜组,223-第二滤光片;
2211-第一出射面,2212-第二出射面;2221-缩放镜片,2222-第二隔圈;
23-成像传感器组件,231-第一成像传感器组件,2311-第一成像传感器安装组件,2312-第一成像传感器,2313-第一径向调节安装部;
23111-第一成像传感器支架,23112-第一轴向调节安装件,23113-第一锁紧件,23114-刚性垫片,23115-第二锁紧件;
232-第二成像传感器组件,2321-第二成像传感器安装组件2,2322-第二成像传感器,2323-第二径向调节安装部;
23211-第二成像传感器支架,23212-第二轴向调节安装件,23213-第三锁紧件,23214-第四锁紧件;
3-手柄,4-安装件,5-卡环;
10-光源,20-导光束,30-内窥镜,40-内窥镜摄像头,50-摄像主机,60-显示器,71-线缆,72-视频连接线,100-待观察部位,1000-内窥镜摄像系统。
具体实施方式
目前现有的内窥镜摄像头产品主要存在三个明显缺点:(1)为满足光学镜片的安装定位精度,由于光路通道较为复杂,如光路通道由多个部件组合而成,镜片的安装过程往往需要装调实现,安装效率较低;(2)传感器实际成像区域未处于传感器中心,导致图像偏心,只能通过全屏显示、算法调教来解决偏心问题,牺牲了传感器的成像性能;(3)白光和荧光两个传感器的配准通过算法调教实现,未实现结构上的配准,为了消除机械安装定位误差造成的影响,只使用了较少部分成像区域,保证光线始终落在传感器成像面内,然后通过算法矫正两传感器成像区域位置,牺牲了传感器的成像性能,增大了系统的计算量。
针对上述问题,申请人对内窥镜摄像头做了如下改进以解决上述技术问题。
(1)将公共光路和分光光路设置为两个模块,两个模块分别安装在一个安装座上,两个安装座分别设有的公共光路通道和分光光路通道,公共光路通道和分光光路通道均为一体加工成型的孔道,其中公共光路通道为安装孔,安装孔包括孔径大小依次阶梯变化的阶梯段,相比拼接安装的公共光路通道,一体加工成型的安装孔各阶梯段之间具有良好的同轴度,使得安装在公共光路通道中的光学镜片更容易提高同轴度的精度,同时还能够降低安装难度,进而提高安装效率。
(2)第一成像传感器(白光传感器)和第二成像传感器(荧光传感器)通过安装支座安装在 分光光路安装座,其中安装支座与分光光路安装座之间为可调节安装,第一成像传感器和第二成像传感器分别与安装支座之间也为可调节安装,使得第一成像传感器和第二成像传感器分别通过安装支座能够实现轴向位置调节、倾斜角度调节、径向位置调节,进而能够解决图像偏心的问题,进而能够有效发挥第一成像传感器和第二成像传感器的成像性能。
(3)第一成像传感器和第二成像传感器通过安装支座安装在分光光路安装座,其中安装支座与分光光路安装座之间为可调节安装,第一成像传感器和第二成像传感器分别与安装支座之间也为可调节安装,使得第一成像传感器和第二成像传感器分别通过安装支座能够实现径向位置调节和轴向转动调节,以第一成像传感器作为基准,先调节第一成像传感器的对中位置,再调节第二成像传感器的径向位置和转动位置,进而能够使得第一成像传感器生成的第一成像光图像(白光图像)和第二成像传感器生成的第二成像光图像(荧光图像)对齐适配重合,以使得光线尽可能的落在第一成像传感器和第二成像传感器的感应区域内,进而能够有效发挥第一成像传感器和第二成像传感器的成像性能,及降低系统的计算通量。
上述方案中,第一成像传感器和第二成像传感器的调节均为在生产安装过程中的调节,以使得第一成像传感器和第二成像传感器能够安装到预设的准确位置上。出厂后,第一成像传感器和第二成像传感器均为固定结构,不能随意调节位置;若在长时间使用或意外事故导致第一成像传感器和第二成像传感器位置出现移动时,专业的组装人员可以对第一成像传感器和第二成像传感器的安装位置进行调节维护,维护后的第一成像传感器和第二成像传感器也处于固定的状态。即上述方案中对传感器的位置可以在安装或维护过程中进行调节,在使用过程中不能进行调节。
本申请的实施例中可以包括上述任意一个的改进点,或任意改进点的组合。
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。入射端为靠近患者的一端,出射端为远离患者的一端。本文中的可调节安装,指在组装过程 中可以进行活动调节安装,以消除安装误差,组装固定后无法进行活动调节,即产品出厂后不可调节。本文中的对接或对接安装,指两个部件对齐在一条光轴上,以实现光路传播,对接的两个部件以直接接触连接,对接的两个部件也可以间隔开设置。
请参考图1,一种实施例中,提供了一种内窥镜摄像头,内窥镜摄像头内的光学成像单元,根据光学结构划分为前后两部分,该两部分分别为公共光路模块1和分光光路模块2,公共光路模块1位于入射端,分光光路模块2位于出射端,两者对接安装。内窥镜摄像头还包括手柄3,手柄3内具有容置腔,公共光路模块1和分光光路模块2安装在手柄3的容置腔内,其中公共光路模块1的入射端凸出于手柄3的容置腔。手柄3的前端连接有依次连接有安装件4和卡环5,安装件4和卡环5具有与手柄3连通的腔体,公共光路模块1的入射端位于安装件4和卡环5内的腔体内。卡环5用于与内窥镜连接,以使得内窥镜出射的成像光能够入射到公共光路模块1内。
请参考图2,公共光路模块1包括公共光路安装座11和公共光路组件12,公共光路安装座11为一体式的镜筒结构,公共光路安装座11内具有第一安装孔11a,第一安装孔11a形成公共光路通道111,第一安装孔11a的外圆周面上设有凸起的轴肩及环形凹槽,轴肩用于限位固定安装公共光路安装座11,环形凹槽用于安装密封垫圈,实现密封安装,防止水汽和粉尘进入到手柄3的内部。
请参考图3,第一安装孔11a可以为一体加工成型的结构,第一安装孔11a用于定位安装公共光路组件12。公共光路通道111由一条一体成型的第一安装孔11a构成,公共光路通道111也可以包括由多个安装孔串联组合而成。
本实施例中,第一安装孔11a采用一次装夹加工完成的方式制造,能够有效保证各阶梯段的同轴度,在第一安装孔11a具有较高同轴度的基础上安装镜片,可以保证不同大小镜片在光轴上对齐的一致性,进而提高成像质量。同时,可以降低镜片的安装难度及调试难度,有效提高安装效率。
请参考图2至图5,公共光路组件12包括固定镜片组121和对焦镜片组122,固定镜片组121固定安装在公共光路安装座11的公共光路通道111内,对焦镜片组122可沿光轴方向移动的安装在公共光路安装座11的公共光路通道111内。公共光路通道111包括入射端和出射端,入射端为靠近拍摄对象的一端(图2中的左端),出射端为远离拍摄对象的一端(图2中的右端),固定镜片组121位于公共光路通道111的入射端,对焦镜片组122位于公共光路通道111的出射端,对焦镜片组122能够相对固定镜片组121沿着公共光路通道111的轴向移动,以实现不同焦段的清晰成像。
固定镜片组121可以包括若干个固定镜片1211,若干个固定镜片1211安装在公共光路通道111内,若干个固定镜片1211之间可以通过隔圈或轴肩等方式间隔安装固定,若干个固定镜片1211也可以通过胶合的方式贴靠在一起。
公共光路组件12还包括对焦镜片安装座123,对焦镜片安装座123安装在公共光路安装座11内,对焦镜片安装座123位于公共光路通道111(第一安装孔11a)内,对焦镜片安装座123能够 在公共光路通道111内沿着公共光路通道111的轴向移动。公共光路通道111内设有轴向的滑槽112,对焦镜片安装座123具有与滑槽112适配的凸起部1231,凸起部1231可以为安装在对焦镜片安装座123上的塑料部件,塑料部件具有耐磨和弹性防撞的特性,凸起部1231卡接在滑槽112内,凸起部1231能够沿着滑槽112轴向移动,形成对对焦镜片安装座123的径向限位,提高了对焦镜片安装座123轴向移动的稳定性。公共光路通道111内轴肩也能够对对焦镜片安装座123的轴向移动起到限位的作用。
在其他实施例中,凸起部1231与对焦镜片安装座123也可以为一体式结构,一体式结构的凸起部1231位于滑槽112内也能够起到导向的作用。
本实施例中,公共光路安装座11上还设有避让开口113,避让开口113位于相对滑槽112的另一侧,避让开口113为沿轴向延伸的长条口,使得对焦镜片安装座123能够通过避让开口113与公共光路安装座11外侧的驱动件(如驱动电机)连接,驱动件用于驱动对焦镜片安装座123及对焦镜片组122移动,以实现自动对焦或变焦。避让开口113的大小及长度可根据对焦镜片安装座123进行设置,以满足焦对焦镜片安装座123与驱动件连接及轴向移动的需求。
对焦镜片组122可以包括若干个对焦镜片1221,若干个对焦镜片1221安装在对焦镜片安装座123上,对焦镜片安装座123带动对焦镜片1221一起轴向移动,以实现对焦或变焦成像。
一种实施例中,公共光路组件12还包括第一滤光片124,第一滤光片124安装在对焦镜片安装座123上,第一滤光片124位于对焦镜片组122的出射端,第一滤光片124随着对焦镜片组122一起轴向移动,第一滤光片124用于过滤成像光中的杂散光,以提高成像质量。
在其他实施例中,第一滤光片124也可以直接固定安装在公共光路通道111的出射端,同样能够对成像光起到过滤作用。
一种实施例中,公共光路组件12还可以包括保护窗125,保护窗125通过保护窗安装座安装在公共光路安装座11(第一安装孔11a)的入射端,保护窗125用于密封公共光路通道111的入射端,对公共光路通道111内的固定镜片1211起到保护作用。保护窗125可以为蓝宝石窗片,蓝宝石材质的保护窗125具有较高的结构强度和稳定性,在拆装维护过程中可以避免保护窗125被异物刮花,进而有效保证成像质量。
在其他实施例中,保护窗125可以相对公共光路通道111的轴向倾斜设置,倾斜设置的保护窗125能够有效避免保护窗125的反射光进入到成像光中,避免杂光干扰,能够进一步提高成像质量。
在其他实施例中,保护窗125直接固定在公共光路安装座11的入射端,也能够对公共光路通道111内的固定镜片起到保护作用。
在其他实施例中,公共光路组件12可以为固定焦段光路,公共光路组件12包括若干固定镜片,若干固定镜片相互胶合或通过隔圈间隔安装在公共光路通道111内。采用固定焦段的公共光路,能够适用于特定场景的成像使用,并采用一体加工成型的公共光路通道111,也能够提高镜片的安 装精度及降低安装难度。
本实施例中,分光光路模块2用于将公共光分成多条不同种类的成像光,如根据波长分为不同波长的成像光,每条不同波长的成像光对应有一个成像传感器进行单独成像,如分光光路模块2将公共光分成白光和荧光,白光对应有白光传感器,白光传感器用于获取白光以生成白光图像,荧光传感器用于获取荧光以生成荧光图像。分光光路模块2也可以用于将公共光分成三路光或四路光,并设置三个成像传感器或四个成像传感器与之一一对应。本实施例中,以分光光路模块2将公共光分出两条不同波长的光为例进行说明。
分光光路模块2包括分光光路安装座21、分光光路组件22和成像传感器组件23,分光光路安装座21为一体式结构,分光光路安装座21具有第二安装孔21a,第二安装孔21形成分光光路通道211,分光光路通道211包括一个入射端和两个出射端,分光光路安装座21与公共光路安装座11对接安装,以使得公共光路通道111的出射端与分光光路通道211的入射端对接。
分光光路安装座21内的第二安装孔21a采用一体加工成型,分光光路通道211由一条一体成型的第二安装孔21a构成。分光光路通道211为T型结构,分光光路通道211包括分光区2111、第一分光通道2112和第二分光通道2113,分光区2111具有一个入射口和两个出射口,两个出射口为第一出射口和第二出射口,分光区2111的入射口为分光光路通道211的入射口,分光区2111的入射口与公共光路通道111的出射端对接。分光区2111的两个出射口位于分光光路安装座21内,其中第一出射口位于与入射口入射方向垂直的方向上,第二出射口与入射口位于一条直线上。第一出射口与第一分光通道2112对接,第二出射口与第二分光通道2113对接。
请参考图5至图7,分光光路组件22包括分光镜221,分光镜221为二向棱镜等具有分光功能的器件,分光镜221安装在分光区2111内,分光镜221用于反射第一成像光和透射第二成像光,第一成像光和第二成像光为波长不同的两种光,如第一成像光为白光,第二成像光为荧光。分光镜221将入射的公共光中反射成第一成像光,并将第一成像光照射到第一分光通道2112中,及将入射的公共光中透射成第二成像光,并将第二成像光照射到第二分光通道2113中。具体的,分光镜221为方形体结构,分光镜221内具有倾斜45°的分光膜,分光膜用于将公共光反射第一成像光和透射第二成像光,分光镜221具有一个入射面和两个出射面,分光镜221的入射面用于入射公共光,两个出射面包括第一出射面2211和第二出射面2212;第一出射面2211与第一分光通道2112对接,第一出射面2211用于将第一成像光出射至第一分光通道2112;第二出射面2212与第二分光通道2113对接对接,第二出射面2212用于将第二成像光出射至第二分光通道2113。
在其他实施例中,当分光光路模块2将公共光分为三路光或四路光时,分光光路通道211包括三条分光通道或四条分光通道,分光镜221包括三个或四个棱镜,三个或四个棱镜并排复合,每两个棱镜之间形成一个分光面,如其中一条分光光路与公共光路共线,其他三条分光光路分别与公共光路垂直。分光区2111设置有对应的三个出射口或四个出射口,分光区2111的每一个出射口对 接一条分光通道,每个分光通道的后端安装有一个对应的成像传感器。
本实施例中,成像传感器组件23包括第一成像传感器组件231和第二成像传感器组件232。第一成像传感器组件231包括第一成像传感器安装组件2311和第一成像传感器2312(白光传感器),第一成像传感器2312通过第一成像传感器安装组件2311安装在分光光路安装座21上,并且第一成像传感器2312位于第一分光通道2112的出射端,第一成像传感器2312用于获取分光镜221反射的第一成像光及生成第一成像光图像。第一成像传感器安装组件2311与分光光路安装座21之间为可调节固定安装,且第一成像传感器2312与第一成像传感器安装组件2311之间也为可调节固定安装,使得第一成像传感器2312通过第一成像传感器安装组件2311能够实现相对第一分光通道2112的安装位置调节,其中安装位置调节包括但不限于轴向位置、径向位置及倾斜位置的调节。第一成像传感器2312上设有第一径向调节安装部2313,第一成像传感器2312通过第一径向调节安装部2313能够实现消除安装误差的安装到第一成像传感器安装组件2311上。第一径向调节安装部231可以为具有一定调节范围的安装孔,安装孔垂直第一成像光出射方向具有预设的可调长度,第一径向调节安装部231用于调节第一成像传感器2312的径向位置。第一径向调节安装部2313也可以设置在第一成像传感器安装组件2311上,或者第一成像传感器安装组件2311和第一成像传感器2312上均设有第一调节安装部,都能够实现第一成像传感器2312可调节的安装到第一成像传感器安装组件2311上。
第一成像传感器安装组件2311包括第一成像传感器支架23111和第一轴向调节件23112,第一成像传感器支架23111上设有三个安装孔,三个安装孔位于第一成像传感器支架23111的四周边缘位置,分光光路安装座21上设有与三个安装孔对应的螺纹孔,每个安装孔内安装有一个第一锁紧件23113,第一锁紧件23113可以为锁紧螺钉、锁紧螺杆等锁紧结构,第一成像传感器支架23111通过三个第一锁紧件23113固定在第一成像传感器支架23111上。其中,第一轴向调节件23112也具有三个,第一轴向调节件23112可以为弹性垫片或弹性块,第一轴向调节件23112可以为环形结构或U型结构,每个第一锁紧件23113上套设有一个第一轴向调节件23112,并且第一轴向调节件23112位于第一成像传感器支架23111和分光光路安装座21之间,通过控制三个第一锁紧件23113的锁紧程度,可以将三个第一轴向调节件23112压缩至不同的厚度,进而通过将三个第一轴向调节件23112,可以调节第一成像传感器支架23111的轴向位置和倾斜角度,即能够调节第一成像传感器2312的轴向位置和倾斜角度,以使得第一成像传感器2312能够具有合适的焦距位置及与第一成像光光轴垂直。
本实施例中,第一成像传感器支架23111设置三个点进行调节,三个点可以确定一个面,因此采用三个点可以倾斜角度的调节,且能够实现轴向位置的调节;在其他实施例中,也可以设置四个点进行调节,如在第一成像传感器支架23111上设有四个安装孔,四个安装孔成矩阵分布,每个安装孔对应安装有一个第一锁紧件23113和第一轴向调节件23112,同样能够实现第一成像传感器 2312的轴向位置和倾斜角度调节。
本实施例中,在第一轴向调节件23112和分光光路安装座21之间还设有环形的刚性垫片23114,刚性垫片23114对第一轴向调节件23112起到支撑和限位的作用,有利于第一轴向调节件23112的伸缩调节。在其他实施例中,分光光路安装座21上设有对应的环形凸台,也能够对第一轴向调节件23112起到支撑和限位的作用。
本实施例中,第一成像传感器2312安装在第一成像传感器支架23111背向分光光路安装座21的面上,第一成像传感器2312上设有两个第一调节孔,第一调节孔为第一轴向调节安装件23112,第一成像传感器支架23111设有与两个第一调节孔对应的螺纹孔,每个第一调节孔内安装有一个第二锁紧件23115,第二锁紧件23115可以为锁紧螺钉或锁紧螺杆等锁紧结构,第一成像传感器2312通过两个第二锁紧件23115固定在第一成像传感器支架23111上。第一调节孔的内径大于第二锁紧件23115的外径,第一调节孔与第二锁紧件23115之间具有调节间隙,第一成像传感器2312通过该调节间隙能够调节第一成像传感器2312相对第一成像传感器支架23111的平面位置,即能够调节第一成像传感器2312相对第一成像光光轴径向移动,以使得第一成像传感器2312的中心位置与第一成像光光轴对齐。
本实施例中,第一成像传感器2312为安装有第一成像传感器元器件的电路板,第一调节孔设置在电路板上。第一成像传感器支架23111的中部设有安装孔,该安装孔用于避让第一成像光,第一成像传感器2312的感应端(第一成像光的入射端)位于安装孔避让的区域内,以使得第一成像光能够入射到第一成像传感器2312内。
本实施例中,第一成像传感器2312通过两点进行固定;在其他实施例中,第一成像传感器2312也可以通过三点或四点固定,如在第一成像传感器2312上设有三个第一调节孔,每个第一调节孔上安装有一个第二锁紧件23115。
第一成像传感器2312上设有镂空的避让结构,避让结构与第一锁紧件23113对应,第一锁紧件23113未被第一成像传感器2312覆盖住,第一锁紧件23113露出在避让结构内,以使得操作人员能够穿过避让结构调节第一锁紧件23113。
本实施例中,第一成像传感器2312的调节为生产安装过程中的调节,出厂后第一成像传感器2312为固定结构,在内窥镜使用过程中无法进行调节,第一成像传感器2312的安装调节原理如下:
(1)调节三个第一锁紧件23113的锁紧程度,分别压缩三个点上第一轴向调节件23112的厚度,实现第一成像传感器2312轴向位置的调节,及倾斜度的调节,以使得第一成像传感器2312的对焦及与第一成像光光轴垂直。
(2)松开两个第二锁紧件23115,使得第一成像传感器2312相对第一成像传感器支架23111可以平面活动(径向活动),将第一成像传感器2312平面移动至预设位置后,再锁紧两个第二锁紧件23115,紧固住第一成像传感器2312的径向位置,实现第一成像传感器2312与第一成像光光轴 对齐调节安装。
本实施例中,第一成像传感器安装组件2311的设置,使得第一成像传感器2312能够进行轴向位置、倾斜度和径向位置的调节,可以克服加工和安装误差,进而能够降低加工成本和提高安装效率。
在其他实施例中,通过选择不同厚度的第一成像传感器支架23111,或者在第一成像传感器2312与分光光路安装座21垫不同厚度的刚性垫片23114,也能够实现第一成像传感器2312轴向位置的调节安装。
在其他实施例中,将第一轴向调节件23112安装在第二锁紧件23115上,第一轴向调节件23112设置在第一成像传感器2312与第一成像传感器支架23111之间,也能够实现第一成像传感器2312的轴向位置调节及倾斜度调节。
本实施例中,分共光路组件22还包括第二滤光片223,第二滤光片223安装在第一分光通道2112内,第二滤光片223位于分光镜221和第一成像传感器2312之间,第二滤光片223用于过滤分光镜221反射的杂散光,以提高成像质量。在其他实施例中,第二滤光片223也可以安装在第一成像传感器支架23111上,第二滤光片223位于第一成像传感器2312的入射端,同样能够过滤杂散光,提高成像质量。
请参考图5至图7,本实施例中,第二成像传感器组件232包括第二成像传感器安装组件2321和第二成像传感器2322,第二成像传感器2322通过第二成像传感器安装组件2321安装在分光光路安装座21上,并且第二成像传感器2322位于第二分光通道2113的出射端,第二成像传感器2322用于获取分光镜221透射的第二成像光及生成第二成像光图像。第二成像传感器安装组件2321与分光光路安装座21之间为可调节安装,及第二成像传感器2322与第二成像传感器安装组件2321之间也为可调节安装,使得第二成像传感器2322通过第二成像传感器安装组件2321能够实现相对第一分光通道2112的安装位置调节,其中安装位置调节包括但不限于轴向位置、径向位置及轴向转动位置的调节。第二成像传感器2322上设有第二轴向调节安装部2323,第二成像传感器2322通过第二轴向调节安装部2323能够实现消除安装误差的安装到第二成像传感器安装组件2321上。第二成像传感器2322可以为具有一定调节范围的安装孔,安装孔垂直第二成像光出射方向具有预设的可调长度,第二成像传感器2322用于调节第二成像传感器232的径向位置。第二轴向调节安装部2323也可以设置在第二成像传感器安装组件2321上,或者第二成像传感器安装组件2321和第二成像传感器2322上均设有第二轴向调节安装部2323,都能够实现第二成像传感器2322可调节的安装到第二成像传感器安装组件2321上。
第二成像传感器安装组件2321包括第二成像传感器支架23211和第二轴向调节安装件23212,第二成像传感器支架23211上设有三个第二调节孔,第二调节孔为第二轴向调节安装部2323,三个第二调节孔位于第二成像传感器支架23211的四周边缘位置,分光光路安装座21上设有与三个 安装孔对应的螺纹孔,每个安装孔内安装有一个第三锁紧件23213,第三锁紧件23213可以为锁紧螺钉或锁紧螺杆等锁紧结构,第二调节孔的内径大于第三锁紧件23213的外径,第二调节孔与第三锁紧件23213之间具有调节的间隙,第二成像传感器支架23211通过三个第三锁紧件23213可调节的安装在分光光路安装座21上。
第二轴向调节安装件23212可以为预设厚度的垫片或垫圈,第二轴向调节安装件23212位于第二成像传感器支架23211和分光光路安装座21之间,通过控制三个第三锁紧件23213的锁紧固定,可以将第二成像传感器支架23211和第二轴向调节安装件23212固定在分光光路安装座21上,第二轴向调节安装件23212为刚性结构,如合金钢片,通过选取不同厚度的第二轴向调节安装件23212,能够调节第二成像传感器支架23211的轴向位置,进而调节第二成像传感器2322的轴向位置。
本实施例中,第二成像传感器2322安装在第二成像传感器支架23211背向分光光路安装座21的面上,第二成像传感器2322上设有两个安装孔,第二成像传感器支架23211设有与两个安装孔对应的螺纹孔,每个第二调节孔内安装有一个第四锁紧件23214,第四锁紧件23214可以为锁紧螺钉或锁紧螺杆等锁紧结构,第二成像传感器2322通过两个第四锁紧件23214固定在第二成像传感器支架23211上。
第二成像传感器2322通过调节第二成像传感器支架23211相对分光光路安装座21的平面位置,即能够调节第二成像传感器2322径向移动和沿着第二成像光光轴转动,以使得第二成像传感器2322的成像图像与第一成像传感器2312的成像图像对齐重合。
本实施例中,第二成像传感器2322为安装有第二成像传感器元器件的电路板,第二调节孔设置在电路板上。第二成像传感器支架23211和第二轴向调节安装件23212的中部设有安装孔,该安装孔用于避让第二成像光,第二成像传感器2322的感应端(第一成像光入射端)位于安装孔避让的区域内,以使得第二成像光能够入射到第二成像传感器2322内。
本实施例中,第二成像传感器2322通过两点进行固定;在其他实施例中,第二成像传感器2322也可以通过三点或四点固定,如在第二成像传感器2322上设有三个第二调节孔,每个第二调节孔上安装有一个第四锁紧件23214。
第二成像传感器2322上设有镂空的避让结构,避让结构与第三锁紧件23213对应,第三锁紧件23213未被第二成像传感器2322覆盖住,第三锁紧件23213露出在避让结构内,以使得操作人员能够穿过避让结构调节第三锁紧件23213。
本实施例中,第二成像传感器2322的调节为生产安装过程中的调节,出厂后第二成像传感器2322为固定结构,在内窥镜使用过程中无法进行调节,第二成像传感器2322的安装调节原理如下:
松开三个第三锁紧件23213,更换预设厚度的第二轴向调节安装件23212,并且使得第二成像传感器支架23211相对分光光路安装座21可以平面活动(径向移动和/或轴向转动),将第二成像 传感器支架23211径向移动和/或转动至预设位置后,再锁紧三个第三锁紧件23213,实现第二成像传感器2322轴向位置的调节,以使得第二成像传感器2322的对焦成像,以及实现第二成像传感器2322的成像图像与第一成像传感器2312的成像图像对齐重合。
本实施例中,第二成像传感器安装组件2321的设置,使得第二成像传感器2322能够进行轴向位置、径向位置的调节,可以消除加工和安装误差,进而能够降低加工成本和提高安装效率,通过轴向转动还能够实现第二成像传感器2322的第二成像光图像与第一成像传感器2312的第一成像光图像重合,保证第一成像光和第二成像光分别能够落在第一成像传感器2312和第二成像传感器2322的成像面内,有效发挥第一成像传感器2312和第二成像传感器2322的成像性能,及降低系统的计算通量。
在其他实施例中,在第三锁紧件23213或第四锁紧件23214上套设弹性件,也能够实现第二成像传感器2322轴向位置的调节安装。
本实施例中,由于第二成像光为分光镜221的透射光,第二成像光光路与公共光路位于一条直线上,因此第二成像传感器2322与第二成像光光路之间的垂直度容易保证,可以不用设置第二成像传感器2322倾斜角度的调节。当然,在其他实施例中,第二成像传感器2322设置的倾斜度可以调节,也是可以的,能够进一步保证成像质量。
本实施例中,在第一成像传感器2312和第二成像传感器2322的图像适配调节中,第一成像传感器2312作为基准,因此第一成像传感器2312可以不设置轴向转动调节,第一成像传感器2312的径向调节主要用于对中居中性调节,第二成像传感器2322设置为径向调节和转轴转动调节即可,可以实现第二成像传感器2322的成像图像与第一成像传感器2312的成像图像重合适配。当然,在其他实施例中,将第二成像传感器2322设置为基准,将第一成像传感器2312设置为径向移动和轴向转动调节,也能够实现两个传感器图像的适配调节。
本实施例中,分共光路组件22还包括缩放镜组222,缩放镜组222安装在第二分光通道2113内,缩放镜组222位于分光镜221和第二成像传感器2322之间,缩放镜组222用于对第二成像光图像的画幅大小进行缩小或放大处理,以使得第二成像传感器2322的第二成像图像的画幅大小能够与第一成像传感器2312的第一成像图像的画幅大小适配。
在其他实施例中,缩放镜组222也可以设置在第一分光通道2113内,用于对第一成像光图像的画幅进行缩放处理,同样能够使得第一成像图像和第二成像图像的画幅大小适配。
本实施例中,缩放镜组222包括若干个缩放镜片2221和第二隔圈2222,缩放镜片2221之间胶合固定,或通过第二隔圈2222间隔固定,如缩放镜片2221包括三个,沿着光轴方向,位于入射端的第一个缩放镜片2221和第二缩放镜片2221之间通过第二隔圈2222间隔固定,第二个缩放镜片2221和第三缩放镜片2221胶合固定。在其他实施例中,缩放镜组222可以根据需要缩放的比例选择具体的镜片组合。
本实施例中,第一成像传感器2312可以单独工作输出普通图像,第一成像传感器2312也可以和第二成像传感器2322可以一同工作,生成的第一成像光图像和第二成像光图像能够合成用于观察病灶的第二成像光图像。
在其他实施例中,第一成像传感器组件231和第二成像传感器组件232的位置可以互换,分光镜221设置为透射第一成像光和反射第二成像光,第一成像传感器组件231用于获取分光镜221透射的第一成像光,第二成像传感器组件232用于获取分光镜221反射的第二成像光,同样能够实现第一成像光成像和第二成像光成像。
一种实施例中,内窥镜摄像头内的光学成像单元,根据功能可以划分为三个部分,三个部分分别为安装座组件、光路组件和成像传感器组件,其中安装座组件包括公共光路安装座11和分光光路安装座21、对焦镜片安装座123、第一成像传感器安装组件2311、第二成像传感器安装组件2321等安装支撑部件,安装座组件用于安装和固定光路组件和成像传感器组件,并且安装座组件形成公共光路通道和分光光路通道。
光路组件包括公共光路组件12和分光光路组件,光路组件主要包括固定镜片、对焦镜片、分光镜等镜片结构,光路组件分别安装在公共光路通道111和分光光路通道211内,光路组件用于传播公共光路及将公共光路拆分为第一成像光光路和第二成像光光路。
成像传感器组件包括第一成像传感器2312和第二成像传感器2322,第一成像传感器2312和第二成像传感器2322,分别用于获取第一成像光和第二成像光实现第一成像光成像和第二成像光成像。
本实施例中与上述实施例中,将光学成像单元划分为不同的部件,其实质具体构件与上述实施例中相同。
请参考图8,一种实施例中提供一种内窥镜摄像系统1000,内窥镜摄像系统1000包括光源10、导光束20、内窥镜30、内窥镜摄像头40、线缆71、摄像主机50、显示器60和视频连接线72。其中内窥镜摄像头40为上述任一实施例中的内窥镜摄像头,内窥镜30在照明光路中采用匀光器和超广角光纤的配合,达到提高光通量的同时使得观察视野内照度分布均匀,从而改善内窥镜图像的对比度和信噪比,进而提高成像质量;内窥镜30包括照明光路和成像光路,照明光路与导光束20对接,成像光路与内窥镜摄像头40对接。
摄像主机50通过线缆71与内窥镜摄像头40连接,内窥镜摄像头40生成的第一图像信号和第二图像信号通过线缆71传输到摄像主机50进行处理。在某些实施例中,线缆71可以为光通信线缆,例如光纤;内窥镜摄像头40将图像信号(电信号)转成光信号,由线缆71传输到摄像主机50,摄像主机50再将光信号转成电信号(图像信号)。摄像主机50通过视频连接线72与显示器60连接,用于将图像信号发送到显示器60进行显示。本领技术人员应当理解的是,图6仅是内窥镜摄像系统1000的示例,并不构成对内窥镜摄像系统1000的限定,内窥镜摄像系统1000可以包 括比图6所示更多或更少的部件,或者组合某些部件,或者不同的部件,例如内窥镜摄像系统1000还可以包括扩张器、烟雾控制装置、输入输出设备、网络接入设备等。
光源10用于向待观察部位100提供照明光源和激发荧光成像。光源10包括白光光源(可见光光源)和对应于荧光试剂的激发光光源(激光照明光源,例如近红外光)。
本实施例中,摄像主机50内设有处理器,处理器通过线缆71与内窥镜摄像头40连接,处理器获取摄像头输出的图像信号,并对图像信号进行处理,以至少输出被观察组织的第二成像光图像(荧光图像)。其中获取的图像信号可以为单独的第一图像信号和第二图像信号,也可以为第一图像信号和第二图像信号合并的图像信号。
本实施例中,内窥镜摄像头40中公共光路组件12安装在公共光路安装座11的公共光路通道内,公共光路安装座11的公共光路通道形成一体式结构,有利于公共光路通道的轴向加工,进而使得公共光路组件12更容易实现较高同轴度的安装,降低了装配难度,提高了安装效率;同样的,成像传感器组件23安装在分光光路安装座21上的分光光路通道上,分光光路通道形成一体式结构,有利于成像传感器组件23的安装,进而能够保证多个传感器的安装位置精度,进而提高成像质量。
在其他实施例中,一种内窥镜摄像系统1000包括内窥镜摄像头40、线缆71、摄像主机50,内窥镜摄像头40可以根据使用需要与不同的设备连接,如内窥镜摄像头40可以与软件内窥镜或硬镜内窥镜连接,以组合成软镜摄像系统或硬镜摄像系统,以满足不同场景的使用需求。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (31)

  1. 一种内窥镜摄像头,其特征在于,包括公共光路模块(1)和分光光路模块(2);
    所述公共光路模块(1)包括公共光路安装座(11)和公共光路组件(12),所述公共光路安装座(11)具有公共光路通道(111),所述公共光路组件(12)设置在所述公共光路通道(111)内,所述公共光路通道(111)包括入射端和出射端;
    所述分光光路模块(2)包括分光光路安装座(21)、分光光路组件(22)和成像传感器组件(23),所述分光光路安装座(21)具有分光光路通道(211),所述分光光路通道(211)包括一个入射端和至少两个出射端,所述分光光路通道(211)的入射端与公共光路通道(111)的出射端对接,所述分光光路组件(22)包括分光镜(221),所述分光镜(221)位于所述分光光路通道(211)内,所述分光镜(221)用于将射入的公共光至少分成不同种类的第一成像光和第二成像光;所述成像传感器组件(23)至少包括第一成像传感器组件(231)和第二成像传感器组件(232),所述第一成像传感器组件(231)和第二成像传感器组件(232)设置在所述分光光路通道(211)内或与所述分光光路通道(211)对接,所述第一成像传感器组件(231)用于获取所述第一成像光以生成第一图像信号,所述第二成像传感器组件(232)用于获取所述第二成像光以生成第二图像信号。
  2. 如权利要求1所述的内窥镜摄像头,其特征在于,所述公共光路安装座(11)上设有一体加工成型的第一安装孔(11a),所述第一安装孔(11a)形成所述公共光路通道(111),所述公共光路组件(12)安装在所述一体加工成型的安装孔内。
  3. 如权利要求1所述的内窥镜摄像头,其特征在于,所述公共光路安装座(11)和所述分光光路安装座(21)对接设置,以使得所述分光光路通道(211)与公共光路通道(111)对接。
  4. 如权利要求1或2所述的内窥镜摄像头,其特征在于,所述公共光路组件(12)包括固定镜片组(121)和对焦镜片组(122),所述固定镜片组(121)固定安装在所述公共光路通道(111)内,所述对焦镜片组(122)可沿所述公共光路通道(111)移动的安装在所述公共光路通道(111)内;所述固定镜片组(121)位于所述公共光路通道(111)的入射端,所述对焦镜片组(122)位于所述公共光路通道(111)的出射端。
  5. 如权利要求3所述的内窥镜摄像头,其特征在于,所述公共光路组件(12)还包括保护窗(125),所述保护窗(125)安装在所述公共光路通道(111)的入射端。
  6. 如权利要求2所述的内窥镜摄像头,其特征在于,所述公共光路组件(12)还包括对焦镜片安装座(123),所述对焦镜片安装座(123)可沿所述公共光路通道(111)移动的安装在所述公共光路通道(111)内,所述对焦镜片组(122)安装在所述对焦镜片安装座(123)上。
  7. 如权利要求6所述的内窥镜摄像头,其特征在于,所述焦镜片安装座(123)设置在所述公共光路安装座(11)的所述第一安装孔(11a)内。
  8. 如权利要求1所述的内窥镜摄像头,其特征在于,所述分光光路通道(211)包括分光区(2111)及至少第一分光通道(2112)和第二分光通道(2113),所述分光区(2111)具有一个入射口和至少两个出射口,所述分光区(2111)的入射口为所述分光光路通道(211)的入射端,所述分光区 (2111)的至少两个所述出射口分别与至少所述第一分光通道(2112)和第二分光通道(2113)对接,所述第一分光通道(2112)和第二分光通道(2113)远离所述分光区(2111)的出射端为所述分光光路通道(211)的出射端。
  9. 如权利要求8所述的内窥镜摄像头,其特征在于,所述分光镜(221)设置在所述分光区(2111)内,所述分光镜(221)具有第一出射面(2211)和第二出射面(2212),所述第一出射面(2211)用于出射所述第一成像光,所述第二出射面(2212)用于出射所述第二成像光,所述第一出射面(2211)与所述第一分光通道(2112)对接,所述第二出射面(2212)与所述第二分光通道(2113)对接。
  10. 如权利要求8所述的内窥镜摄像头,其特征在于,所述第一成像传感器组件(231)包括第一成像传感器安装组件(2311)和第一成像传感器(2312),所述第一成像传感器(2312)通过所述第一成像传感器安装组件(2311)安装在所述分光光路安装座(21)上,所述第一成像传感器(2312)位于所述第一分光通道(2112)的出射端。
  11. 如权利要求10所述的内窥镜摄像头,其特征在于,所述第一成像传感器安装组件(2311)和/或所述第一成像传感器(2312)上设有第一径向调节安装部(2313),所述第一径向调节安装部(2313)用于调节安装所述第一成像传感器(2312)的径向位置。
  12. 如权利要求10所述的内窥镜摄像头,其特征在于,所述第一成像传感器安装组件(2311)包括第一成像传感器支架(23111),所述第一成像传感器支架(23111)安装在所述分光光路安装座(21)上,并位于所述第一分光通道(2112)的出射端,所述第一成像传感器(2312)安装在所述第一成像传感器支架(23111)上。
  13. 如权利要求12所述的内窥镜摄像头,其特征在于,所述第一成像传感器支架(23111)通过第一轴向调节安装件(23112)与所述分光光路安装座(21)连接,所述第一轴向调节安装件(23112)用于调节安装第一成像传感器(2312)的轴向位置。
  14. 如权利要求13所述的内窥镜摄像头,其特征在于,所述第一成像传感器支架(23111)通过至少三个第一锁紧件(23113)与所述分光光路安装座(21)连接,每个所述第一锁紧件(23113)对应一个所述第一轴向调节安装件(23112),所述第一锁紧件(23113)用于固定所述第一成像传感器(2312)的轴向位置和倾斜角度。
  15. 如权利要求8所述的内窥镜摄像头,其特征在于,所述第二成像传感器组件(232)包括第二成像传感器安装组件(2321)和第二成像传感器(2322),所述第二成像传感器(2322)通过所述第二成像传感器安装组件(2321)安装在所述分光光路安装座(21)上,所述第二成像传感器(2322)位于所述第二分光通道(2113)的出射端。
  16. 如权利要求15所述的内窥镜摄像头,其特征在于,所述第二成像传感器安装组件(2321)和/或所述第二成像传感器(2322)上设有第二径向安装部(2323),所述第二径向安装部(2323)用于调节安装所述第二成像传感器(2322)的径向位置。
  17. 如权利要求15所述的内窥镜摄像头,其特征在于,所述第二成像传感器安装组件(2321)包括第二成像传感器支架(23211),所述第二成像传感器支架(23211)安装在所述分光光路安装座(21)上,并位于所述第二分光通道(2113)的出射端。
  18. 如权利要求17所述的内窥镜摄像头,其特征在于,所述第二成像传感器支架(23211)通过第二轴向调节安装件(23212)与所述分光光路安装座(21)连接,所述第二轴向调节安装件(23212)用于调节安装所述第二成像传感器(2322)的轴向位置。
  19. 如权利要求8所述的内窥镜摄像头,其特征在于,所述分光光路组件(22)还包括缩放镜组(222);所述缩放镜组(222)设置在所述第一分光通道(2112)或所述第二分光通道(2113)内,所述缩放镜组(222)用于缩小或放大所述第一成像光或所述第二成像光的成像画幅。
  20. 如权利要求8所述的内窥镜摄像头,其特征在于,所述第一成像光为白光,所述第二成像光为荧光。
  21. 一种内窥镜摄像头,其特征在于,包括公共光路模块(1)和分光光路模块(2);
    所述公共光路模块(1)包括公共光路安装座(11)和公共光路组件(12),所述公共光路安装座(11)设有一体式的第一安装孔(11a),所述公共光路组件(12)设置在所述第一安装孔(11a)内;
    所述分光光路模块(2)包括分光光路安装座(21)、分光光路组件(22)和成像传感器组件(23),所述分光光路安装座(21)设有一体式的第二安装孔(21a),所述分光光路组件(22)设置在所述第二安装孔(21a)内,所述第一安装孔(11a)和所述第二安装孔(21a)对接,所述分光光路组件(22)用于将射入的公共光至少分成不同种类的第一成像光和第二成像光;所述成像传感器组件(23)至少包括第一成像传感器组件(231)和第二成像传感器组件(232),所述第一成像传感器组件(231)和第二成像传感器组件(232)设置在所述第二安装孔(21a)内或与所述第二安装孔(21a)对接,所述第一成像传感器组件(231)用于获取所述第一成像光以生成第一图像信号,所述第二成像传感器组件(232)用于获取所述第二成像光以生成第二图像信号。
  22. 如权利要求21所述的内窥镜摄像头,其特征在于,所述第一成像传感器组件(231)包括第一成像传感器安装组件(2311)和第一成像传感器(2312),所述第一成像传感器(2312)通过所述第一成像传感器安装组件(2311)安装在所述分光光路安装座(21)上,所述第一成像传感器(2312)位于所述第一安装孔(11a)的出射端。
  23. 如权利要求22所述的内窥镜摄像头,其特征在于,所述第一成像传感器安装组件(2311)和/或所述第一成像传感器(2312)上设有第一径向调节安装部(2313),所述第一径向调节安装部(2313)用于调节安装所述第一成像传感器(2312)的径向位置。
  24. 如权利要求21所述的内窥镜摄像头,其特征在于,所述第二成像传感器组件(232)包括第二成像传感器安装组件(2321)和第二成像传感器(2322),所述第二成像传感器(2322)通过所述第二成像传感器安装组件(2321)安装在所述分光光路安装座(21)上,所述第二成像传感 器(2322)位于所述第二安装孔(21a)的出射端。
  25. 如权利要求24所述的内窥镜摄像头,其特征在于,所述第二成像传感器安装组件(2321)和/或所述第二成像传感器(2322)上设有第二径向安装部(2323),所述第二径向安装部(2323)用于调节安装所述第二成像传感器(2322)的径向位置。
  26. 一种内窥镜摄像头,其特征在于,包括分光光路模块(2);
    所述分光光路模块(2)包括分光光路安装座(21)、分光光路组件(22)和成像传感器组件(23);
    所述分光光路安装座(21)具有分光光路通道(211),所述分光镜(221)位于所述分光光路通道(211)内;所述分光光路通道(211)包括分光区(2111)及至少第一分光通道(2112)和第二分光通道(2113);
    所述成像传感器组件(23)包括至少包括第一成像传感器组件(231)和第二成像传感器组件(232);
    所述第一成像传感器组件(231)包括第一成像传感器安装组件(2311)和第一成像传感器(2312),所述第一成像传感器(2312)通过所述第一成像传感器安装组件(2311)设置在所述第一分光通道(2112)的出射端;所述第一成像传感器支架(23111)通过第一轴向调节安装件(23112)与所述分光光路安装座(21)连接,所述第一轴向调节安装件(23112)用于调节安装第一成像传感器(2312)的轴向位置;
    所述第二成像传感器组件(232)包括第二成像传感器安装组件(2321)和第二成像传感器(2322),所述第二成像传感器(2322)通过所述第二成像传感器安装组件(2321)设置在所述第二分光通道(2113)的出射端;所述第二成像传感器安装组件(2321)和/或所述第二成像传感器(2322)上设有第二径向安装部(2323),所述第二径向安装部(2323)用于调节安装所述第二成像传感器(2322)的径向位置。
  27. 如权利要求26所述的内窥镜摄像头,其特征在于,所述第一成像传感器安装组件(2311)包括第一成像传感器支架(23111),所述第一成像传感器支架(23111)安装在所述分光光路安装座(21)上,并位于所述第一分光通道(2112)的出射端,所述第一成像传感器(2312)安装在所述第一成像传感器支架(23111)上。
  28. 如权利要求27所述的内窥镜摄像头,其特征在于,所述第一成像传感器支架(23111)通过第一轴向调节安装件(23112)与所述分光光路安装座(21)连接,所述第一轴向调节安装件(23112)用于调节安装第一成像传感器(2312)的轴向位置。
  29. 如权利要求26所述的内窥镜摄像头,其特征在于,所述第二成像传感器组件(232)包括第二成像传感器安装组件(2321)和第二成像传感器(2322),所述第二成像传感器(2322)通过所述第二成像传感器安装组件(2321)安装在所述分光光路安装座(21)上,所述第二成像传感器(2322)位于所述第二分光通道(2113)的出射端。
  30. 如权利要求29所述的内窥镜摄像头,其特征在于,所述第二成像传感器安装组件(2321)和/或所述第二成像传感器(2322)上设有第二径向安装部(2323),所述第二径向安装部(2323)用于调节安装所述第二成像传感器(2322)的径向位置。
  31. 一种内窥镜摄像系统,其特征在于,包括线缆(71)、摄像主机(50)和如权利要求1至30中任一项所述的内窥镜摄像头(40),所述线缆(71)的一端与所述内窥镜摄像头(40)连接,所述线缆(71)的另一端与所述摄像主机(50)连接,所述线缆(71)用于将所述内窥镜摄像头(40)生成的图像信号传输至所述摄像主机(50)。
PCT/CN2022/129362 2021-12-29 2022-11-02 内窥镜摄像头和内窥镜摄像系统 WO2023124516A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280072057.5A CN118159180A (zh) 2021-12-29 2022-11-02 内窥镜摄像头和内窥镜摄像系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/142259 2021-12-29
CN2021142259 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023124516A1 true WO2023124516A1 (zh) 2023-07-06

Family

ID=86997517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129362 WO2023124516A1 (zh) 2021-12-29 2022-11-02 内窥镜摄像头和内窥镜摄像系统

Country Status (2)

Country Link
CN (1) CN118159180A (zh)
WO (1) WO2023124516A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182289A1 (en) * 1984-11-15 1986-05-28 Sumitomo Electric Industries Limited Bidirectional optical adapter
JP2012034874A (ja) * 2010-08-09 2012-02-23 Univ Of Tokyo 内視鏡
CN109222880A (zh) * 2018-11-09 2019-01-18 苏州新光维医疗科技有限公司 一种高稳定性腹腔镜摄像手柄
CN111772560A (zh) * 2020-08-06 2020-10-16 山西医科大学 一种基于双通道高效传输的荧光内窥镜成像系统及方法
CN112932389A (zh) * 2014-04-05 2021-06-11 手术感应设备公司 用于解析和绘制生理状况的成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182289A1 (en) * 1984-11-15 1986-05-28 Sumitomo Electric Industries Limited Bidirectional optical adapter
JP2012034874A (ja) * 2010-08-09 2012-02-23 Univ Of Tokyo 内視鏡
CN112932389A (zh) * 2014-04-05 2021-06-11 手术感应设备公司 用于解析和绘制生理状况的成像系统
CN109222880A (zh) * 2018-11-09 2019-01-18 苏州新光维医疗科技有限公司 一种高稳定性腹腔镜摄像手柄
CN111772560A (zh) * 2020-08-06 2020-10-16 山西医科大学 一种基于双通道高效传输的荧光内窥镜成像系统及方法

Also Published As

Publication number Publication date
CN118159180A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
US10642135B2 (en) Projector
US20150301302A1 (en) Lens barrel, image-capturing device, and method for controlling lens barrel
CA2553283A1 (en) Convergence optics for stereoscopic imaging systems
JP2004029205A (ja) レーザ走査型顕微鏡
WO2023124516A1 (zh) 内窥镜摄像头和内窥镜摄像系统
US9696533B2 (en) Optical image scanning component and microscope device
US11002978B2 (en) Microscope having a beam splitter assembly
JP2016031405A (ja) 投射光学系及び投射型画像表示装置
JP4855388B2 (ja) レーザ走査型顕微鏡への光の入射または同顕微鏡からの光の出射のための少なくとも4つの位置を持つ鏡筒回転装置
JP2007212731A (ja) 投射レンズ装置および画像投射装置
WO2021244144A1 (zh) 定焦镜头调整机构
JP2010002856A (ja) レンズ鏡筒、レンズ鏡筒の製造方法、及び光学機器
KR101478572B1 (ko) 줌 대물렌즈를 이용한 자동초점 시스템
JP7022314B2 (ja) 投写レンズおよびプロジェクター
JP2000352650A (ja) 投射レンズ鏡筒構造
US6825977B2 (en) Fixture for microscope component alignment
CN219763291U (zh) 双光路的光学镜头与内窥镜设备
US11287731B2 (en) Optical module and projector
CN219763290U (zh) 双光路的适配镜头与内窥镜设备
US20230003986A1 (en) Surgical microscope system and microscope camera adapter
JP2018171242A (ja) 内視鏡装置のプロセッサおよび内視鏡用光源装置
KR101012177B1 (ko) 광학 현미경을 부착한 전자주사현미경
WO2022097104A1 (en) Digitization module for microscopes to enable sample viewing on a smart device
JPH06331903A (ja) テレビカメラ接続鏡筒
CN117288438A (zh) 芯片测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913779

Country of ref document: EP

Kind code of ref document: A1